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Quasi-static crack growth simulations

J. Englund *

Numerical Analysis, Centre for Mathematical Sciences, Lund University,
Box 118, SE-221 00, Lund, Sweden.

Abstract

An efficient scheme for the simulation of quasi-static crack growth in two-dimensional
linearly elastic isotropic specimens is presented. The crack growth is simulated in a
stepwise manner where an extension to the already existing crack is added in each
step. In a local coordinate system each such extension is represented as a polynomial of
some, user specified, degree, n. Denote an extension by I'***| where I'**? = {(z,y(z)) :
0 < z < h}, where z and y are local coordinates and where h denotes step size. Let
zk, k = 1,...,n — 1 be distinct points in (0, k] and define partial extensions, I's**, as
et = {(z,y(z)) : 0 < z < zx}. The coefficients of the polynomial describing an
extension are found by requiring that the mode II stress intensity factor is equal to zero
for all partial extensions. Through numerical experiments, it was found that the most
efficient choice if highly accurate results are desired is n = 3. If a crack grows from a
pre-existing crack so that a kink develops, the leading term describing the crack shape
close to the kink will, in a local coordinate system, be 2%/2, We therefore allow the crack
extensions to contain such a term in addition to the monomial terms. The discontinuity
in the crack growth direction at a kink, the kink angle, is determined by requiring that
the mode II stress intensity factor should be equal to zero for an infinitesimal extension
of the existing crack. To implement the scheme, accurate values of the stress intensity
factors and T'-stress are needed in each step of the simulation. These fracture parameters
are computed using a previously developed integral equation of the second kind.

Key words: stress intensity factor; integral equation; crack growth; fast multipole method

1 Introduction

The present paper will study the problem of simulating quasi-static crack growth in two-
dimensional linearly elastic specimens. One can envisage numerous practical situations where
knowledge of the path a crack will follow under general loading is of interest. For example,
properties of composite materials can be evaluated, and information can be obtained regarding
the influence of different cracks on the life span of a certain specimen. The mathematical side
of crack growth problems is very complex, as discussed in Friedman, Hu, and Velazquez [1].
We assume that the cracks we study grow quasi-statically, which means that dynamic effects
can be neglected. We also assume that the cracks grow under mode I symmetry. Under
these assumptions, a growing crack will follow a path such that the mode II stress intensity
factor always is equal to zero. The problem of simulating a crack growing in such a way
can be seen as a non-standard free boundary problem. Compared to typical free boundary
problems studied in the literature [2], the problem under consideration here differs in at least
two ways [1]. First, instead of having some condition on the entire free boundary, we only
have a condition of vanishing mode II stress intensity factor at the crack tip. Second, once the
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crack tip has passed through a point, the boundary at that point remains fixed. To the best
of our knowledge, proving well-posedness of the problem at hand is an open problem.

Crack growth simulations in different settings have been conducted in a vast number of
earlier papers. Examples are [3-21]. A majority of these schemes simulate the growing crack
as a succession of straight pieces. The simulated crack will therefore contain kinks and the
order of such a scheme cannot be higher than one. There exist relatively few papers that
consider crack propagation that is not piecewise straight. Examples are given by [8, 9, 14, 19].
Studies of convergence of crack paths under mesh refinement are also scarce. Examples are
given by [4, 11, 19]. In the present paper the goal is to construct a scheme that is of second
order in the step size. That is, when the path taken by a quasi-statically growing crack in
a certain setup is simulated, the error in the crack tip position at the end of the simulation
is proportional to the square of the step size. Such a second order scheme is achieved using
non-straight crack extensions together with a combination of different numerical and analytical
methods.

The paper is organized as follows. Section 2 reviews different approaches used in quasi-
static crack growth simulations. Section 3 discusses the new developments of the present paper.
The numerical implementation of those developments is also mentioned briefly in Section 3.
Section 4 contains the background of our numerical methods for the computation of stress
intensity factors and T-stress. The key element is a boundary integral equation of the second
kind, which has been studied in the earlier papers [22] and [23]. Finally, Section 5 contains
several numerical experiments that verify the quality of our approach.

2 Review of previous work

In the present section we will discuss different approaches to the problem of simulating quasi-
static crack growth. The first approaches that we mention are straightforward and compara-
tively easy to implement. These approaches, however, turn out to be suboptimal if accurate
results are desired. The reason for mentioning them anyway is that they are the most com-
monly used methods in earlier papers. If one wants to obtain a highly reliable solution in a
fast way, more involved approaches must be used. These are also discussed below.

The main interest in a majority of the papers where crack growth simulations are performed
is usually not to construct efficient schemes for non-straight crack extensions. Instead, the
focus is typically on the construction of algorithms for the computation of the stress field and
fracture parameters rather than developing methods that specifically concern the problem of
crack growth. The problem of simulating crack growth is only considered to be an application
of the stress field algorithm. Many papers where finite element methods are used, focus on
the construction of schemes that try to minimize the amount of remeshing.

2.1 Examples of explicit crack growth direction criteria

Assume that we have the situation depicted in Fig. 1 and that we want to determine the
direction, 6, the crack would take initially if it starts growing in a quasi-static fashion from
v*. The most commonly used crack growth direction criterion is presented in [24], where it is
suggested that a crack will grow in a direction perpendicular to the maximum principal stress.
This criterion for crack growth direction is usually called the mazximum circumferential stress
criterion, the maximum hoop stress criterion or the maximum principal stress criterion. From
the expressions describing the stress field close to a crack tip, see for instance page 520 of [24],
it follows that the direction with maximum circumferential stress is given by the solution to

Kisin(0) + K11(3cos (6) — 1) =0, (1)



Figure 1: Part of an existing crack with tip at 4*. The dashed line indicates that the existing crack
continues in that direction.

where 6 is defined in Fig. 1, and where K7 and Ki; denote the mode I and mode II stress
intensity factors for crack tip 7%, respectively. Thus, to be able to apply this criterion, one
has to compute the stress intensity factors. Two other well known crack growth direction
criteria are given in [25] and [26]. The criterion in [25] is usually called the minimum strain
energy density criterion and suggests that a crack will grow in a direction that minimizes
the strain energy density factor. The criterion in [26] is usually called the mazimum energy
release rate criterion and suggests that a crack will grow in a direction which maximizes the
energy release rate. This criterion leads to an identical crack growth direction as the maximum
circumferential stress criterion [26]. In Reference [7] it is pointed out that one merit of using
the maximum energy release rate criterion rather that the maximum circumferential stress
criterion is that the latter criterion requires that the stress intensity factors can be computed
accurately, while the former criterion can use information about the stress field further away
from the crack tip. Knowledge of the stress intensity factors is not needed. Application of the
maximum circumferential stress criterion is however more straightforward since one only has to
solve Eq. (1) in order to get a growth direction, while the maximum energy release rate criterion
is more computationally expensive [7]. According to some authors [5, 6], the minimum strain
energy density criterion is less appropriate than the other two criteria. Examples of references
where the maximum circumferential stress criterion is used are [3, 5, 11, 12, 13, 15, 16].
Examples of references where the minimum strain energy density and maximum energy release
rate criteria are used are [4, 17] and [6, 7], respectively.

We will now mention a serious shortcoming of the maximum circumferential stress criterion,
which is the most commonly used criterion in the literature. Since the other two criteria
mentioned above are similar to this criterion, they exhibit similar shortcomings. In our opinion,
the use of the maximum circumferential criterion for simulating crack growth is questionable
in many situations since this criterion does not give the correct kink angle, see Section 8.6
of [27]. For a visualization of this problem see Fig. 2, where crack growth has been simulated
using straight extensions in combination with the maximum circumferential stress criterion.
That this criterion leads to an incorrect kink angle is a consequence of the fact that it only
considers the situation before the crack actually grows. One could say that it is an explicit
criterion rather than an implicit one. The kink angle for the first step using this criterion
turns out to be approximately 37.92° for the situation shown in Fig. 2. From the figure one
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Figure 2: Example of a crack growth simulation using straight extensions in combination with the
maximum circumferential stress criterion. The kink angle for the first step according to that criterion
is approximately 37.92° in the present situation. The original crack is shown as a bold line. Details
regarding the setup used in the figure are given in Section 5.1. The step size is denoted by h.

can clearly see that this angle is too small and as the step size, h, is decreased, the kink angle
for the second step does not tend to zero.

2.2 An implicit crack growth direction criterion

A more appropriate approach than those presented in the previous section is to investigate
the stress field when the crack has been allowed to grow an infinitesimal distance. One could
say that this is an implicit approach. In order to proceed we need to introduce the principle
of local symmetry [28] which assumes that the leading order of the expansion of the stress
field around the tip of a quasi-statically growing crack is symmetric. This in turn has the
consequence that

K =0. (2)

In other words, the crack growth problem consists of constructing a growing crack that fulfills
Eq. (2) as closely as possible. Denote an existing crack by I‘El). We will use the notation
K11 when we are referring to the mode II stress intensity factor of an existing crack. Below,
we will frequently consider the situation when some extension is to be added to an existing
crack. Before the crack is actually extended, an appropriate form of the extension must be
found. Denote a possible extension by I'2°5. By the notation ki will be meant the mode II
stress intensity factor for a possible extension, Fgl) UTP%. Once an appropriate extension has
been found, the crack is extended. Denote the extended crack by ng). If ng) then is to be
extended with yet another extension, the crack 1"‘£2) will now be seen as an existing crack,
and so on. The condition of vanishing mode II stress intensity factor can be used as a crack
growth direction criterion. To this end one has to determine the direction of crack growth
that gives ki = 0 for an infinitesimal crack extension. One way to find that direction is by
investigating an infinite crack with a finite kink, as depicted in Fig. 3. The problem consists
of computing the stress intensity factors for the crack in Fig. 3 when known traction is applied
at infinity and when the crack is traction free. One method that can be used to solve such
a problem analytically is presented in [29] and [30]. The main components of the method
described there are: The Mellin transform is applied to the equilibrium conditions, to Hooke’s
law, and to the boundary conditions. This will transform the problem into a factorization
problem for matrices, the solution of which is given in [29]. Once the factorization problem



Figure 3: The setup studied in [30] to compute stress intensity factors at the tip of an infinitesimal
kink. The dashed line indicates that the crack extends towards infinity in that direction. The length
of the kink is unity.

has been solved, stress intensity factors at crack tip 4%, defined in Fig. 3, can be obtained
directly from the Mellin transformed quantities, see Section 4.9 of [27]. Numerical results
regarding the solution of the problem at hand can be found in [30], where the mode II stress
intensity factor, ki, for crack tip 4%,;, is given in the form

k11(6) = R21(0) K1 + Ro2(6) K11, (3)

where 6 is as defined in Fig. 3, where Kj and Ky are stress intensity factors for the crack
without the kink, and where Ry (0) and R23(6) are functions that are computed numerically
in [30]. Given Ki and Kij, Eq. (3) can now be used as a crack growth direction criterion
by computing the angle § that gives kir = 0. As an example, Eq. (3) gives a kink angle
of approximately 39.57° for the situation in Fig. 2. This angle is the correct one to use.
Numerical experiments show that, using this criterion and letting the step size tend to zero,
the kink angle for the second step of the simulation also tends to zero. If instead the maximum
circumferential stress criterion is used while letting the step size tend to zero, the kink angle
for the second step tends to 39.57° — 37.92° = 1.65°.

Once the functions Ry (0) and Rz2(0) have been computed, Eq.(3) can be used as a crack
growth direction criteria for any cracked specimen. The functions Ro;(f) and Ra»(6) are
universal in the sense that they do not depend on the setup under consideration.

2.3 The leading non-monomial term

Numerical crack growth simulations are typically performed in a stepwise manner, where an
extension to the already existing crack is added in each step. When crack growth is simulated
using straight extensions, the only parameter that has to be determined in each step is the
current direction of crack growth. With such an approach, each extension can be described
using a linear function. In the preceding section a method to determine the correct form of a
first degree extension, using universal functions, was discussed. A natural question to ask is
if similar universal functions can be found that describe asymptotically correct higher order
terms of an extension. The answer to that question can be found in [1] and [31]. It turns out
that universal functions that describe the leading non-linear term of an extension can be found
for a crack that at onset of crack growth develops a kink, see page 466 of [31]. The setup in



Figure 4: The non-straight extension discussed in [31]. The crack tip of the existing crack is denoted
by %, while the crack tip of the extension is denoted by 7!,. By s is meant the arclength of the
extension. The dashed line indicates that the existing crack continues in that direction.

Fig. 2 is an example of such a situation, where a kink will typically form at 7. As discussed
in both [1] and [31], all other higher order terms of the crack shape depend on the setup under
consideration and those terms cannot be described by a universal function. Assume that an
existing crack is extended from crack tip 4* in the fashion depicted in Fig. 4. As discussed
in Appendix A of [32], it is natural and necessary to assume that the extension in a local
coordinate system centered at 7' and aligned with the crack growth direction given by Eq. (3),
can be described by

y(z) = d3/2z3/2 + doz? + O(ms/z), (4)

where d3/5,d, € R. Similar crack extension shapes are discussed in [33] for a crack growing
quasi-statically in mode III. In [31] and [32] it is also derived that the stress intensity factor
ki at crack tip 4¢,,, for an extension of the type (4), can be expanded as

kri(s) = co + 61/281/2 + 15 + O(s%?), (5)

where co, ¢1/2,¢1 € R, and where s is the arclength of the extension, see Fig. 4. The coeflicient
c1 contains a non-universal term and will not be considered in what follows, while the other
two coefficients in Eq. (5) are given by [31]

co = F(0)Ki+ Fr(6) K, (6)
ciy2 = Ga2(0)T + dsjp (Ha1(0) K1 + H22(0) K1), (7

where K1 and Kjp are stress intensity factors for the existing crack and where T' denotes T'-
stress for the existing crack. The functions Fy;(0), F22(6), G2(6), H21(0), and Hay(6) are
universal functions that can be computed numerically. Actually, the functions Fs;(6) and
F55(0) are identical to the functions Ry (#) and Ra2(@) of Eq. (3). The only thing that differs
is the method used to derive them. This fact will be discussed further in Section 3. From
condition (2) we know that ki1(s) is equal to zero for the analytically correct crack extension.
In other words, the coefficients appearing in the expansion of Eq. (5) are also equal to zero
for the analytically correct extension. The condition ¢y = 0 is identical to the condition
kir(6) = 0 from Eq. (3) and can be used as a crack growth direction criterion. From the
condition ¢; » = 0 one can in a similar manner obtain the asymptotically correct value of ds /o
of Eq. (4). In Section 3 we will discuss the computation of the different functions appearing
in Egs. (6) and (7), and the use of them in our crack growth scheme.



2.4 Non-straight extensions in the literature

As mentioned in Section 1, there are comparatively few papers that consider the problem of
simulating crack growth using extensions that are not straight. For instance, in [14] the crack
growth direction for the first step is determined using the maximum circumferential stress
criterion, while the direction for subsequent steps are determined using the assumption that
k1 should be zero each time the crack has been extended. The crack extensions used in [14]
consist of circular arcs. A similar approach is taken in [9]. In order to find an extension that
gives a small value of kg1, an iterative procedure is used [9, 14]. In Stone and Babuska [19],
an approach that is similar to our scheme is taken. The crack extensions are assumed to have
the form dpz? in a local coordinate system at the crack tip, compare Fig. 4. To determine
an appropriate value of the coefficient d», the secant method is used in order achieve a value
of kip at the crack tip 7},, that is as small as possible. The first step of the simulations
in [19] is allowed to produce a kink, the angle of which is determined using the maximum
circumferential stress criterion. Since kj; will be small for the first step, the kink angle is
assumed to be zero for the subsequent steps. Interestingly, in [19] a potential modification
of their scheme is discussed, where they point out the possibility of approximating crack
extensions using polynomials with higher degree, n, than two. Denote an extension by I'®**t,
where I'*P = {(z,y(z)) : 0 < z < h}, where z and y are local coordinates as in Fig. 4 and
where h denotes step size. Let z, k = 1,...,n — 1 be distinct points in (0, ] and define the
partial extensions, I'$*, as T$* = {(z,y(z)) : 0 < z < z1}. The coefficients of the polynomial
describing an extension should be determined so that the value of kj; is small for all partial
extensions. In [19] it is however claimed that such an approach, using extensions consisting of
third degree polynomials and a certain step size, is similar to taking two steps of half the step
size using polynomials of degree two. It is also claimed that using higher degree polynomials in
z will not be competitive due to the increased computational cost of such an approach. Below,
we will show that those claims are not necessarily true. Our numerical experiments indicate
that using extensions which consist of polynomials of degree three in z is significantly more
accurate than taking two steps using second degree polynomials. The overall computational
cost of reaching a certain accuracy in the solution turns out to be lower using third degree
polynomials instead of second degree polynomials.

Stone and Babugka [19] is one of a few papers in the literature that present numerical
results showing the convergence of the simulated crack paths as the step size is decreased.
Figure 18 in [19] shows the convergence of the crack path towards a reference crack, which was
obtained using extrapolation. That figure indicates that the method used in [19] approximately
is a first order method. That is, the distance from the crack tip of the simulated crack to the
tip of the reference crack seems to decrease linearly with the step size. Below, we show that
our algorithm, when using extensions in the form of second degree polynomials, seems to be of
order 1.5 for at least one situation. One reason for the difference between the present results
and those in [19] might be that the step size used in [19] is too large for the asymptotic order
of the method to be seen.

3 The new developments

As mentioned in Sections 1 and 2, a common approach in the literature is to simulate quasi-
static crack growth using straight extensions. Two obvious downsides with straight extensions
are: First, kinks will be introduced along the propagating crack. Obtaining accurate results
is typically more costly, from a computational point of view, when the crack contains kinks.
Second, the order of such a method will surely never be higher than one. Here we aim at
constructing a scheme that both makes the kink angles very small after each crack extension
and has higher order that one. This section summarizes the main features of our scheme.



n=2, x,=3h/4 =3 n=a

Figure 5: The points, x, which define the partial extensions, for different values of n. The crack tip
of the existing crack is denoted by ~*.

3.1 Finding appropriate extensions

For a crack that starts growing in a quasi-static fashion, a kink will typically appear, see Fig. 2.
Note that the appearance of this kink is a consequence of the problem formulation rather than
an effect of the algorithm used. The kink angle is determined from the criterion ¢y = 0, where
¢co is defined by Eq. (6). Furthermore, the dominant term of the crack shape close to a kink
is given by dj /2x3/ 2 compare Eq. (4). The asymptotically correct value of the coefficient ds /2
can be obtained from the condition ¢; ; = 0, where c; /, is defined by Eq. (7). The two criteria
co = 0 and c;/» = 0 are important for the first step of a crack growth simulation. For the
subsequent steps, the mode II stress intensity factor will be non-zero but small after each step.
This has the consequence that the kink angle, 6, and the coefficient ds/, also will be small
for the subsequent steps. We compute and use values of 6 and ds/, for all steps, even though
other parameters will be the dominant ones for steps other than the first. Once the values of
6 and ds/; have been determined for a certain step, we will assume that the extension, in the
local coordinate system of Fig. 4, has the form

n
y(z) = d3/2:r3/2 + Zdimi, z € [0, hl, (8)
i=2
where h denotes the step size and where n > 2. Extensions of the type defined by Eq. (8) are
used in all steps of a simulation. Note that even if a constant step size is used, the arclength
of the extensions will vary slightly from step to step. The coefficients d;, i+ = 2,...,n of
Eq. (8) must be determined in order to get an appropriate form of the extension. According to
the criterion (2) the coefficients should be such that the value of the mode II stress intensity
factor is small for each partial extension. See Section 2 for a definition of the concept partial
extension. In order to find suitable coefficients d; for a certain extension we use Broyden’s
method, which is a modification of the secant method applicable to systems of equations. For
one dimensional problems Broyden’s method is identical to the secant method, which is the
method used in Stone and Babugka [19] to compute d». Let dg be a vector of dimension n — 1
containing initial guesses for the n — 1 unknown coefficients of Eq. (8). For simplicity, one can
use the initial guess d; = 0, for all . Let f(d;) denote a vector containing values of the mode
IT stress intensity factor for all the n — 1 partial extensions. For n = 2 we choose either z; = h
or z; = 3h/4. For n > 2 we choose the points z as z, = kh/(n—1), k=1,...,n — 1, see
Fig. 5. Pseudo-code for Broyden’s method in this setting is

j=0
while norm(f(d_j))>tolerance
Solve B_j*s_j=-f(d_j)
d_jplus=d_j+s_j
y_j=f(d_jplus)-£f(d_j)
B_j=B_j+scalprod(y_j-B_j*s_j,s_j)/scalprod(s_j,s_j)
d_j=d_jplus



j=j+1
end

where scalprod denotes a function that computes the scalar product and where B_j for j =0
can be chosen as the (n —1) x (n — 1) identity matrix. In each iteration kg has to be computed
for the n—1 partial extensions. In the numerical experiments below, the tolerance was typically
set to 10710,

3.2 Computation of the universal functions

We will now discuss the computation of the functions appearing on the right-hand sides of
Egs. (6) and (7). As mentioned in Section 2.3, the functions F»;(0) and F55(0) are identical to
the functions Ro;(6) and R22(6) of Eq. (3). Accurate values of those functions can be found
in both [30] and [31]. Since we desire even higher accuracy than found in these references we
have to perform new computations of the function values of interest. In [30] a method based
on [29], as described briefly in Section 2.2, was used. In [31] a completely different method
was used. It deserves to be mentioned that for the computation of the functions F»;(6) and
F»5(0) we implemented both methods. Below, we have chosen to use the method suggested
in [31], despite being slower than the method of [30] with our implementation, since it can
be used to compute also the functions appearing on the right hand side of Eq. (7). The
absolute differences between the obtained function values, using the two methods, was found
to be on the order of 1015, For example, both methods gave Fy;(7/12) = 0.12812831601512
and Fa(m/12) = 0.94722714515556. When implementing the method of [30] we noticed some
minor misprints in that reference. On the left hand side of Eq. (20) in [30] is says A_(—1/2),
while it should say AZY ?(~1/2), compare Eq. (4.5) in [29]. The last term within square
brackets on the right hand side of Eq. (22) in [30] should be squared, compare the line below
Eq. (4.4) in [29].

The method used in [31], to obtain the functions Fy;(6), F22(6), and G2(8), is to map a
kinked crack conformally onto the unit circle. The exterior of the crack is mapped onto the
exterior of the unit disk. A boundary integral equation for the computation of the stress field
around the crack is derived for the mapped problem. Two integral equations for the situation
when the kink is infinitesimally short is obtained by expanding appearing quantities in powers
of the length of the kink. One of the two integral equations concerns the computation of
F51(0) and F53(0), while the other concerns the computation of G2(6). In a similar, but more
complicated fashion, an integral equation for the computation of Hs;(0) and Hax(6) of Eq. (7)
is also derived. Solving these integral equations is straightforward, except for one circumstance
regarding the computation of the functions Hs;(#) and Hs2(#). This is discussed on page 490
of [31] and concerns the numerical computation of integrals of the type

f(r)dr
/r— (r—z)m’

where m is equal to either 2 or 3, where I'™ in [31] is defined as '~ = cos (¢) + i/2sin (¢),
—m < t < 0, and where 2z is some point on the unit circle. The construction of I'™ in [31]
is not optimal from a numerical point of view. If an adaptive approach is taken, where
the mesh is refined for ¢ close to —m and 0, discretization points on '~ will end up very
close to some points, z, of the unit circle. Further refinement of the mesh only makes the
situation worse. This problem is fortunately easy to avoid by defining I'™ as for instance
I~ =t+i(—1/2+3/4t>—1/4t*), —1 < t < 1 instead. This is the construction used here when
computing the functions Hy; (0) and Hao(6).

The functions Fy; (6), Fz2(6), G2(8), Ho1(0), and Haz(#) can be computed once and for all
in a preprocessing step. To this end, the interval [0, 7/2] was subdivided into 100 equally long
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Figure 6: Investigation of K1 using extensions of the type shown in Eq. (8). The quantity K is a
vector containing values of the mode II stress intensity factor for 100 partial extensions. Extensions
with different values of n are compared. The step size is denoted by h.

subintervals. In each subinterval, the functions of interest were computed at the points corre-
sponding to the nodes of 8-point Gauss-Legendre quadrature. In the numerical experiments
below these computed values are interpolated in each subinterval in order to obtain the func-
tion values needed in the simulations. The functions F22(0) and Hz; (@) are even, while F; (),
G2(0), and Hay(0) are odd. Furthermore, the largest possible kink angle is approximately 77°,
and it is therefore sufficient to compute the functions for 6 € [0, 7/2].

3.3 Differences between the present scheme and Reference [19]

The differences between the present crack growth scheme and the one in Stone and Babugka [19]
include:

o Our scheme uses higher order extensions than in [19], where only second degree polyno-
mials are used.

o We use a more suiting crack growth direction criterion. In [19] the maximum circumfer-
ential stress criterion, Eq. (1), is used for the first step while we use ¢y = 0 for all steps,
compare Eq. (6). See Fig. 2 for an example of the relevance of using an appropriate
crack growth direction criterion.

o Here, the analysis from [31] has been used to obtain the asymptotically correct expression
for the leading non-linear term of extensions adjacent to a kink. That is, the coefficient
ds/2, appearing in Eq. (8), is computed in each step by requiring that ¢, ;» = 0, compare
Eq. (7). In [19] this term is omitted.

e In [19], partial extensions with 2, = h is used for n = 2. We prefer to use partial
extensions with z; = 3h/4 for n = 2, see Fig. 5. This results in slightly more accurate
results, as will be seen in Section 5.1.

e We use a boundary integral equation of the second kind, see Section 4, to compute
parameters needed by the crack growth scheme. In [19] a finite element method is used
for the same purpose.

3.4 Properties of different extensions

In order to investigate the behaviour of different types of extensions, a series of numerical
experiments were performed. Briefly, the setup used here concerns the second step of the
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Figure 7: Left, investigation of the impact on K1 of the choice of z1 when n = 2. Right, the values
of K11 when n = 3, using different step sizes, h. The quantity Ky is a vector containing values of the
mode II stress intensity factor for 100 partial extensions.

crack growth simulation in Section 5.1. That is, one extension with step size A = 0.01 has
already been added to the setup of Fig. 9. Extensions with different values of n were then
added to that setup in accordance with the scheme described above. In doing so we either
added one step with A = 0.01 or two steps with A = 0.005. As above, an extension is
denoted by I'**P = {(z,y(z)) : 0 < z < h}, where z and y are local coordinates as in Fig. 4.
(note that for h = 0.005, an extension will consist of two steps in the present experiment).
Then, values of the mode II stress intensity factor were computed for the partial extensions
et = {(z,y(z)) : 0 < z < z}, where 2z = kh/100, k = 1,...,100. Denote a vector
containing values of the mode II stress intensity factor for all partial extensions by K. Results
from the different experiments can be seen in Figs. 6 and 7, and in Table 1. Note that the
time and the number of iterations in the last two lines of Table 1 is the sum of the time and
the number of iterations from two steps. We conjecture that the area defined by the different
extensions in Figs. 6 and 7 is somehow connected with the quality of the extension. Some
things should be noted from the table and the figures. First, the value of ||K11||o decreases
quickly when the degree of the extensions is increased. For n = 4, the absolute value of the
mode II stress intensity factor is less than 10 for all partial extensions. This means that
we have found an extension that approximately fulfills the condition given by Eq. (2). That
is, the mode II stress intensity factor is small for any partial extension, and not just for the
partial extensions used by the crack growth scheme. From the right part of Fig. 6 it is also
evident that taking one step using a third degree polynomial is better than taking two steps
using second degree polynomials. Second, the value of ||K;||o decreases more for n = 3 than
for n = 2, when the step size is decreased, compare right part of Fig. 6 and right part of Fig. 7.
This indicates that the order of a scheme with n = 3 is higher than the order of a scheme
with n = 2. In Section 5.1 we will apply the different possible extensions to the problem of
simulating crack growth taking more steps than was done here. Such simulations will reveal
that, with our implementation, extensions with n = 3 are preferable. Third, the area defined
by the curve Ky for 21 = 3h/4 in the left part of Fig. 7 is smaller than the corresponding area
for 1 = h. This indicates that z; = 3h/4 might be preferable.

4 Equations and relations

Consider an isotropic linearly elastic specimen that occupies a bounded and simply-connected
domain, D, in the plane, see Fig. 8. The problem under consideration here is the computation
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Table 1: Results for different types of extensions and step sizes, h. The column denoted Iterations
contains the number of iterations needed by Broyden’s method to determine the coefficients appearing
in the different extensions. The iterations where terminated when either ||f(d;)||2 had reached 107°,
or when the change in f(d;) between two consecutive iterations had stagnated. The final column shows
the computational time (normalized with respect to the first line) needed to compute the coefficients
of the different extensions. Note that for A = 0.005, two steps have been taken.

n h IK1||loo  Iterations Time
2 0.01 98-107* 5 1.00
3 001 7.6-1075 7 2.28
4 001 86-10°° 15 8.19
2 0.005 3.1-10"* 11 2.23
3 0.005 1.4-107° 10 3.92
rO
D D

Figure 8: Example of a geometry with one edge crack. The figure shows the positive orientation of I
and some notation. The crack tip is denoted by ' and the triple-junction by +'.

of the stress field in D when prescribed traction is applied to its oriented boundary, I'. The
exterior of D is denoted by D’. Furthermore, we assume that no body forces are present
and that the applied traction is such that the specimen is in equilibrium. The specimens we
will study contain a single traction free edge crack, I';, and an outer boundary, I'y. That
is, ' = Ty UT';. The boundary will, in the present work, always contain four corners and a
triple-junction, see Fig. 8. We have previously constructed integral equation methods for the
numerical investigation of such setups, see [22] and [23]. Since the focus of attention in the
present paper is on the modelling of quasi-static crack growth we will only briefly review some
crucial material from [22] and [23].

The first step in the construction of an integral equation for the problem at hand is to use
that Airy’s stress function, W(z,y), (z,y) € D U D', can be represented as

W (z,y) = Re{zp(2) + x(2)}, (9)

where ¢(z) and x(z) are analytic functions of the complex variable z = z +iy. As in [22]
and [23], introduce ®(z) = ¢'(2), ¥(z) = x"(2), and the Cauchy potentials
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B(z) = — /M, 2eDUD, (10)
IN

o1 Jp T2
1 Qr)ydr 1 7Q(r)dT
v = - —— [ ==)T
() 27ri/r T—2z 27t Jp (1 —2)2
— L/M ze DuD' (11)
2mi r T—Z ’ ’

where Q(z) is an unknown layer density on I', where n = n(z) is the unit normal to T', and
where tP"(2) denotes prescribed traction. Once ®(z) and ¥(z) have been determined, the
stress state in D U D' is known via the Kolosov formulae

Ozz +0yy = 4Re{®(2)}, z€DUD, (12)
2(29'(z) + ¥(2)), z2€ DUD'". (13)

Oyy — Ogg — 2104y
Using the potentials (10) and (11) it is possible to derive the following integral equation of the
second kind for the problem at hand [22]
[T — pM1p ' (M; + xr,(iPo + 2Q))] Q(z) = pM1p 'g(2), z€T. (14)
The integral operators in Eq. (14) are defined by

1 7f(T) dT, zel, (15)

My f(z) = mJr T—2

1 [ fr)dr a1 [ f(r)dr

M:JG) = 5 ) 7=2 Tnaml) 7=z
1 [ f(ndFr a1 [ (r—2)f(r)d7
ik 7oz Tnenle G-zp 0 €D (16)
of = [ s¢yas a7)
and
Pof:—iRe{ [ f(z)zdz}, (18)

where A denotes the area of D. By xr,(z) is meant the characteristic function of I'g. Let ~*
denote the crack tip of I';, and let o' denote the triple-junction, see Fig. 8. The function p(z)
appearing in Eq. (14) is defined by

| —pc(2), ze DUTy,
"(z)‘{ pelz), z€D'UTy, (19)

where

pe(z) = (z =)/ (2 =412 (20)

The value of p.(z) for z € T" is defined as the limit from the right relative to the orientation of
T'. Furthermore, we choose the branch given by a branch cut along I'; and
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lim p.(2) = 1. (21)

zZ—r00
The right hand side of Eq. (14) is given by
ntP (z) @ 1 n(7)tP" (1) d7
= - —— T. 22
9(2) 2 +n27ri/p -z € (22)

Equation (14) was studied in [22]. In [23] a simple preconditioner, which we now will review,
was derived for Eq. (14). Below, we use a Nystrém scheme based on composite quadrature
to discretize our integral equations. Assume that I' has been partitioned into a number of
quadrature panels in such a way that no panel contains either a corner or a triple-junction in
its interior. Number the corners of I'y from 1 to 4 and let the triple-junction have number 5.
Let I'} be the union of the two (or three) quadrature panels closest to corner (or triple-junction)
7. Define the operator

T—z

w e BRE zeT) =15
0, z € F\U?:l 7.

MPf(z) = { (23)
The operator M} is defined analogously. In [23] a preconditioned version of Eq. (14) was
constructed as

[T — (I —P)""(pMyp~" (M3 + xr, (iPo + 2Q)) — P)] Q(2) = (I — P)"'pM1p~'g(2), z€T,

(24)

where P = pMFp~'M?%. In the numerical examples below we solve Eq. (24). Introduce the

complex valued stress intensity factor K (') defined by K (v*) = K1 +iKj1, where K7 and Kp;

are the usual mode I and II stress intensity factors for the crack tip 7*. Using the solution
Q(z) of (24) the stress intensity factors can be computed as [34]

Q —

K(y*) = iv27 lim { (z)} lim {p(z)\/és(z)}, z €T, (25)
z—yt p(z) z—yt

where §s(z) is arclength measured from *. In Eq. (25) we have assumed that the orientation

of the crack is away from +*%, as shown in Fig. 8. The T-stress, T'(y%), at a crack tip 7* can be

computed using [34]

£y _ () (TN L S
T(v") = 2Re S () +¥(Y) ) o (26)
n(7")
Accurate values of the stress intensity factors and the T-stress are needed in our crack growth
scheme.

5 Numerical experiments

The numerical implementation for the computation of the stress field used here is very similar
to the ones used in [22] and [23]. We therefore refer to those two papers for more details. In
the present section we will solve the integral equation (24) using a Nystrém scheme were the
integrals are discretized using composite quadrature. The code was written in Fortran 77 and
compiled using the Sun Fortran 77 compiler. All experiments were performed on a SunBlade
100 workstation.
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Figure 9: The initial configuration of the specimens studied in Sections 5.1 and 5.2. In all setups,
w =1 and g1 + g2 = 1. The values of the other quantities in the figure are defined in the text. Note
that all specimens are centered at the origin of the complex plane.

The linear system of equations was solved using the GMRES iterative solver. A non-
adaptive version of the fast multipole method was used to perform matrix-vector multiplica-
tions.

Around corners, at the triple-junction, ', and around the kink that appears when the
crack starts growing, an a priori adaptive approach was used when computing the stress field.
Special quadrature as described in [23] was used around the corners and at the triple-junction,
and therefore only a few levels of refinement are needed. At the kink more levels of refinement
are needed, if one is aiming at obtaining highly accurate results, since the leading term of the
solution, (z), of Eq. (24) will be singular there [23].

The simulations below all concern setups similar to the one shown in Fig. 9. The upper and
lower edges of the specimens are loaded with traction of unit magnitude, while the other edges
are traction free. All specimens are assumed to be centered at the origin of the complex plane,
and they all have width and height equal to one. That is, w =1 and g; + g» = 1. The crack
tip of the growing crack is denoted by y*. The crack tip of the initial configuration is denoted
by v'*. In order to assess the accuracy of different simulations we will use the computed
intersection of the crack path and the imaginary axis, yo, as a benchmark parameter, see
Fig. 10. The simulations are discontinued once the growing crack has crossed the imaginary
axis.

In all simulations we have used a constant step size, h.

5.1 A benchmark example

In this section we will study the path taken by the crack shown in Fig. 9 when it grows
quasi-statically. The quantities in Fig. 9 are chosen as g1 = 0.2, go = 0.8, § = 7/4, and
4i* = —0.2. This setup was simulated using different polynomial degrees of the extensions and
using different step sizes, see Fig. 11. Since the change in yo when decreasing the step size,
for n = 3, turned out to decrease approximately in a quadratic fashion, we thought that it
is reasonable to extrapolate the results for n = 3 in order to obtain an estimated reference
value. Assuming that the error decreases quadratically when the step size is decreased, a
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Figure 10: Left, the crack of the specimen discussed in Section 5.1 has been allowed to grow from the
initial configuration until the crack tip has reached the imaginary axis. The intersection of the crack
path and the imaginary axis is denoted by yo. Right, a close-up of the crack path between the initial
crack tip and the imaginary axis.
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Figure 11: A convergence test where the crack defined in Section 5.1 has been allowed to grow until
reaching the imaginary axis, compare Fig. 10. Different step sizes, h, and different degrees of the
extensions, n, are compared.

simple Richardson extrapolation based on the values of yg for h=1-10"2, h = 5- 1073, and
h = 2.5-1073 with n = 3 resulted in y5* = —0.0035325215. This is the value used as reference
in Fig. 11. Figure 11 has several interesting features. For instance, one can clearly see that
extensions with third degree polynomials, n = 3, give significantly more accurate results than
extensions with second degree polynomials, n = 2, for a given step size. The order of a scheme
with n = 3 also seems to be higher than the order of a scheme with n = 2. According to
Fig. 11, the order when using n = 3 seems to be approximately 2, while the order when using
n = 2 seems to be approximately 1.5. In the figure one can also see that the use of z; = 3h/4
when n = 2, rather than z; = h, leads to slightly more accurate results. A final thing to note in
Fig. 11 is that using fourth degree extensions, n = 4, does not give the significant improvement
that Fig. 6, left part, hints at. One possible explanation for this behaviour might be that a
term of the type 2°/2 needs to be included in Eq. (8) in order to obtain a method of higher
order than 2.

The most accurate result obtained for the benchmark parameter was yo = —0.0035325,
which we believe is correct in all the presented digits. This value corresponds to the diamond
symbol in the lower left corner of Fig. 11. Regarding execution times for different choices of
n one can say the following: In order to achieve an absolute error of about 1078 in yg, the
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Figure 12: Examples of obtained crack paths for two of the specimens considered in Section 5.2. Left,
the obtained crack path when the quantities in Fig. 9 were chosen as g1 = 0.3, g2 = 0.7, § = 0,
and 7'* = —0.4 4+ 0.2i. Right, the obtained crack path when the quantities in Fig. 9 were chosen as
91 =0.5, g = 0.5, § = 7/3, and ¥"* = —0.5 + 0.1 exp (ir/3).

execution time needed if extensions with n = 2 are used is about 5 to 10 times longer than if
extensions with n = 3 are used.

5.2 Further numerical examples

In addition to the benchmark example of the previous section, two simple parametric studies
were performed. The first of these studies concerns the dependence of the crack path on the
position of the edge crack. In this study the quantities in Fig. 9 are chosen as g1 = 0.5—k-1072,
6 =0, and 7'* = —0.4 + ik - 1072, where k = 0,...,20. The second study investigates the
dependence of the crack path on the angle of a slanted edge crack. In this study the quantities
in Fig. 9 are chosen as g; = 0.5, § = kn /36, and 7* = —0.5 + 0.1¢', where k = 0,...,12.
Examples of obtained crack paths are shown in Fig. 12. The results from the two parametric
studies are shown in Fig. 13, where y is defined as above. From the left part of Fig. 13 one can
see that as soon as the initial crack is moved from the midpoint of the plate, its extended path
tends to approach the closest horizontal plate edge. When the initial crack has been moved a
distance of 0.2, the extended path will almost reach the horizontal boundary, before it reaches
the imaginary axis. The behaviour shown in the right part of Fig. 13 is similar to the left part
when it comes to the behaviour of yo as a function of Im {7!*}. Consider the value of y, for
|91 — 0.5] = 0.05 in the left part of Fig. 13, and the value of yo for § = 7/6 in the right part of
Fig. 13. In both these setups, Im {y'*} = 0.05. The difference in yo between these two setups
turned out to be approximately 8 - 10~%. That is, the crack tip of the initial configuration has
a stronger influence on the value of yy than the other characteristics of the crack. For instance,
the distance between the triple-junctions of the two setups just mentioned is 5 - 1072.

6 Discussion

A scheme for efficient and accurate numerical simulation of quasi-static crack growth in two-
dimensional elastic specimens has been presented. The scheme models the growing crack as
a sequence of polynomial extensions. The shapes of the extensions are determined using the
criterion that the mode II stress intensity factor vanishes when a crack grows quasi-statically
under mode I symmetry. For situations when the crack develops a kink, the direction of crack
growth, and the leading term of the crack shape were determined using analytical methods.
In order to be able to use the scheme in a satisfactory manner, stress intensity factors and
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Figure 13: Results of the parametric studies of Section 5.2. Left, the intersection between the crack
and the left edge of the plate was varied, while 8 was held fixed at § = 0. Right, the intersection
between the crack and the left edge of the plate was held fixed at 4* = —0.5, while  was varied. The
value of yo is compared to Im {*}.

T-stress must be computed accurately. This was achieved using a previously developed second
kind integral equation.

It is unlikely that one can obtain crack paths with higher accuracy than the accuracy of
the stress intensity factors that are computed in each step of the simulation. The algorithm
used to compute stress intensity factors in the present paper can typically compute these
fracture parameters with relative errors of less than 10719 for setups similar to the ones studied
here. Therefore, it is probably the crack growth scheme, and not the stress intensity factor
computations, that is the limiting factor when it comes to the accuracy of the obtained crack
paths, for the step sizes used above.

With the present implementation, crack extensions in the form of third degree polynomials,
defined in a local coordinate system, turned out to be the best choice. The order of a scheme
with such extensions appears to be higher than one. It should be mentioned that to the best
of our knowledge, proving convergence of schemes such as ours, is an open problem. To this
end, questions that need to be answered are for instance: How does the accuracy in the stress
intensity factors influence the crack path? What is the relation between the size of the mode
IT stress intensity factor for different partial extensions and the accuracy in the crack path?
See Figs. 6, 7, and 11. Is it possible to modify the type of extensions used here, Eq. (8), in
order to obtain a scheme with higher order than 27
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