LUND UNIVERSITY

Identification of Linear, Multivariable Process Dynamics Using Closed Loop
Experiments

Gustavsson, Ivar; Ljung, Lennart; Séderstrém, Torsten

1974

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Gustavsson, I., Ljung, L., & Soderstrom, T. (1974). Identification of Linear, Multivariable Process Dynamics
Using Closed Loop Experiments. (Research Reports TFRT-3069). Department of Automatic Control, Lund
Institute of Technology (LTH).

Total number of authors:
3

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

« You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/4adacf3f-65ee-42ca-989a-0dcb83395815

TELE] - B06T

IDENTIFICATION OF LINEAR, MULTIVARIABLE

PROCESS DYNAMICS USING CLOSED LOOP
EXPERIMENTS

1.GUSTAVSSON
LLUNG
. T.SODERSTROM

Report 7401 January 1974
Lund Institute of Technology
Division of Automatic Control




IDENTIFICATION OF LINEAR, MULTIVARIABLE PROCESS DYNAMICS
JSING CLOSED LOOP EXPERIMENTES

I. Gustavsson, L. Ljung and T. S8derstrim

ABRSTRACT

The identifiability of linear, multivariaﬁle, time invar-
iant systems under output feedback control is analysed.
Vector difference equation models are used., It is shown
that the open loop characteristics can often be determined,
even if data from closed loop experiments are used. One
approach is to treat the closed loop data as in the open
loop case using e.g. the maximum likelihood method. An-
other technigue would be to start by estimating the closed
loop transfer function and then try to compute the open
loop characteristics using the knowledge of the regulator,
It is shown that the two approaches have the same identi-
fiability properties., One advantage of the stralghtforward
method is that no special algorithms are necessary. If the
regulator 1s time varying, or non-linear, or if disturban-
ces act in the feedback loop, or if an external input is
applied, then the identifiability is most often secured.
In the case of a line#dr, time invariant, noise free regu-
lator without any extfa input signal, the identifiability
conditions will involve the structures of the gystem, the
regulator and the model. For the single-input single-out-
put case explicit necessabty and sufficient conditions are
given. One practical way to achieve identifiability is to
alternate between several different linear feedback laws,
It is shown that the required number of regulators depends

only on the number of inputs and outputs of the system.
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1. INTRODUCTION

Mathematical models of dynamical systems are often desired,
e.g. for design of control strategies. There are essentially
two ways 1o construct such models. One way is to use basic
physical laws and the other to use system identification, i.e.
to determine the model from process measurements. The field
of identification has developed rapidly during the past decade.
A great number of applications have now beer reported, see

e.g. the survey papers Baeyens and Jacquet {(1973), Bekey (1973)
and Gustavsson (1973).

It is most often desired for control design purposes to know
the oper loop characteristics of the process. Therefore the
ldeﬂtlflLaLlOH techniques have mostly been developed to handle
processes operating in open loop during the expériments How-~
ever, in practice it is frequently desirable and even necessanry
to perfoem the experiments in closed loop. One reason may be
that the process behaviour itself is unstable or very poor
without the control. Risks of process’ damages, loss of pro-
duction or reduction of process efficiency may prevent open
loop experiments. Another reason may be that a linear model,
valid around a certain point, is desired, The process should
thus be kept near this point during the experiments. In all
these cases a regulator or manual control must keep the proo-
esg within the desired limits. Another very important reason
is that there are systems that are inherently in closed loop
and for which it is impossible to break up the feedback loop.
Many economical andg bioclogical sysfems are of this kind,

It turns out to be very important to be able to identify proc-
esses operating in closed loop during the experiments., It has
been realized since long that identification of such processes
causes extra difficulties, In fact there are simple, but yvet
realistic cases, when identification is impossible under closed

‘loop, Consider for example the system (y(t) denotes the output,

u(t) the input and e(t) white noige)



y(t+1) + a y{t) = b u{t) + e(t+l)

with & proportional linear regulator

uf{t) = g y (&}

An attempt to estimate the parameters a and b, e.g. by the
least squares method, shows that all parameter estimates

a=2a+yg

5=b+y

y arbitrary, give the same value for the identification cri-
terion. For Y # 0 an erroneous description of the open loop
system is obtalned. Notice 1in particular that it is of no help
to know the regulator parameter, g. :

Many of the analyses of identification schemes assume expli-
citly that the experiments are carried out in open loop. Seve-
ral methods will actually give wrong estimates when applied

to data from closed loop systems, Other methods may or may

not produce correct results depending on the structure of the
process, the model and the regulator. However, the possibili-
ties of identifying the open loop characteristics from closed
loop experiments and the necessary conditions that must be ful-
filled in order to obtain reasonable estimates seem to be large-
ly unknown. This is.partiéularly the case for multivariable
systems and foxr the case with a time varying regulator. There
is no paper indicating these problems clearly and giving the
solutions systematically. This has resulted in a somewhat con-

fuéing situation concerning what can actually be done.

An attempt is made in this repbrt to give a unified approach
to the problem of identification of linear, multivariable sys-
ems operating in closed loop. Previous contributions in the
area are reviewed in Section 2, where also fhe basic problem




formulation is given, Formal definitions of the models and the
identification methods used are presented in Section 3. The
identifiability concepts are introduced in Section 4. Iden-
tification of the opén loop dynamics from measurements of the
inputs and the outputs is treated in Section 5, In Section 6
it is shown that this approach has the same identifiability
properties as the indirect identification approach, in which
the closed loop transfer function is estimated first. Then

it is solved for the open loop characteristics., In this case
the regulator has to be known. One way to achieve identifia-
bility is to alternate between several different feedback
laws. In Section 7 the numbher of feedback laws that is suf-
ficient for identifiability is determined. It is never pos-
gible to test identifiability by evaluation of the experi-
mental data only. This is demonstrated in Section 8. In Sec-
tion 9 conditions, which are both necessary and, sufficient
for identifiability, are giveﬁ explicitly for>the'sing1e—
input single~output case, In Section 10 some numerical illug-
trations are presented. The main conclusions are summarized

in Section 11,



2. SURVEY OF PREVIOUS RESULTS

Various results on identification of systems operating in
closed loop have been presented in a number of papers. In
this section some of them will be reviewed. The basic pro-
blem formulation will first be given in order to obtain a
unified and systematic notation in the following. Some pro-
perties of identification techniques will also be discussed.

2.1 Problem formulation

In the following the closed loop system configuration shown

in Fig. 2.1 will be considered.

Yy
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Fig. 2.1 Block diagram of a closed loop system
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u input signal to the process (measurable)
v output signal

uy extra perturbation signal {(measurable)
u feedback signal ’

Vis Vo disturbances (unmeasurable)




The main problem is to investigate under what conditions on the
process, the regulator and the signals it is possible to deter-
mine the open loop characteristics, i.e. the transfer function
of the process and the characteristics of the disturbances on

the output, from measurements on the elosed loop system,

In the following it is asgssumed that the process? itgell is
linear and time invariant. Disturbances are acting on the

process. They are denoted by v This signal includes the

measurement noise on the autputlsignal and 1is usually non
zero. The input u is assumed to be measured without noise.
The signal u; is a deliberately applied inmput signal. It is
natural to assume that it is independent of vy. A distur-

bance Vo, that is not directly measurabie, may act in the

feedback loop. The disturbances v. and v, are alsc assumed

1
to be independent. Notice that only output feedback is

allowed, ) .

It turns out that it is convenient to distinguish between

some different cases:

1)

2) u 0 and/or v, § 0

}_.J
-

3) u, = 0, vV, = 0

a) nonlinear regulator
b) time varying regulator

¢) linear, time invariant regulator

The first case is the open loop case, which will be considered
only briefly. The second case is when there is a deliberately
applied input signal or when there is a disturbance source in
the feedback loop. The third case covers the situations when

the feedback is noise free and when no extra perturbation Uy

i

?“Process” and "system" will be used synonymously.




is injected. Identifiability problems arise in particular
in the thivrd case, when the regulator is linear and time

invariant (see Section 5).

2.2 Identification techniques

There are several ways to identify the open loop characte-
ristics. The straightforward technique is to use measure-
ments of the input v and the output y without assuming that
the process is in closed loop. This approach will be called

direct identification, By indirect identification is meant

identification of the closed loop behaviour. and solution for
the open loop dynamics. The regulator has to be known exact-
ly in this case. The closed loop behaviour from . to y is
determined, opr if W, = 0, time series analysis of the output
y is performed. Notice that indirect identification is not
sultable, e.g. if the regulator is time varying or if there
is noise in the feedback loop. Indirect identification in-
cludes also all methods that require an exact knowledge of
the regulator. Such identification techniques can e.g. esti-~
mate the system parameters directly but use the closed loop
transfer function as model structure with the regulator para-

meters inserted.

Many different identification methods are available, sce e.g.
the survey paper Astrdm and Eykhoff (1971). For some of them
physical realizability (causality) of the model is not assumed.

Such methods will be called noncausal methods. Cross spectral
analysis is an exampie of such a method. For other methods,
on the other hand, parametric models whose structure implies
causality are postulated. HMany of these methode can be con=
sidered as prediction error methods which minimize some pre-

diction error eriterion in order to get the parameter esti-
mates. Examples are the least squares method and the maximum
likelihood method. Most of the results in this report arve
‘derived for prediction érrcr methods applied to vector dif-

ference equation models.
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2.3 _Review of previoug contributicns

In a short review like this ir is not possible tc give full
details., Notions like identifiability etvc. will therefore

be used without giving the definitions that were used in

each particular paper. Nevertheless it is most often intui-
tively clear what is meant. For details it is referred to

the papers themselves. In Table 2.1 an attempt is made to
systemize the centributions according to the cases discussed
and the methods and model structures used. The papers dealin@
with the adaptive situation are not included in the table, In
the following the notations from Sections 2.1 and 2.2 will be
used., The papers are reviewed in thonological order,

Fisher (1965) discusses identifiabllity of continuous, de-
terministic, linear state space gsystems with no extra per-
turbation and with a time invariant, noise free feedback., A
least sguares approach to the parameter estimation iz taken.
Necessary and sufficient conditions for identifiability are in
thls case that the control law is not linear in the states,
and that the system is completely controllable., This result
corresponds to the result in this report that identifiability
is secured if the regulator has high enough order or is non-
linear. Linear state feeadback does not fulfil this condition.

The problem of identification of closed loop systems has been
treated in several papers by Akaike (1967, 1968). There are
also several applicationslusing his ideas, e.yg. Otomo, Naka~
gawa and Akaike (1969) and Itoh, Saito, Takumi and Shimizu
(1971) . Akaike points out that cross spectral analysis re-
quires, that the input is measured without noise and that the
noise and the input are independent. This last condition is
violated for closed loop systems. If there is an extra pertur-—
bation, i.e. ul%O, cross spectral analysis can, howevery, be
used in a special way. Using the signals uys U and v it is
possible to estimate the open loop transfer function without

knowing the regulator. This approach cannot be directly re-
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ferred to be either direct or indirect identification as de-
finad in Section 2.1, since besides u and y alsc the signal
Uy is used. Akaike treats particularly the case when there
iz an ummeasurable disturbance in the feedback loop. Then
ordinary cross spectral analysis fails. 1Instead the problem
is solved by introducing a causal time domain model.. Direct
identification is used with an impuise response model with a
finlte number of parameters. The condition of identifiabili-
ty is that there is a delay in the system or in the regula-
tor, so that a change in the inpui signal to the syét@ﬁ does
not instantanecusly influences on the feedback signal.

Priestley (1969) treats the problem of estimating the process
transfer function from data consisting of records of the in-
put énd the output from a closed lbop system with additive
disturbances. No known perturbation is available and the
feedback is linear. Direct identification is used. The least
squares method is compared with the weighted least squares
method. It is claimed that the two methods give identical re-
sults for the open loop case and for the closed loop case with
noise free feedhack. Tt is alse remarked that if the models
are not restricted to be causal, e.g. by using cross spectral
analysis, the estimated models may be quite incorrect, Never-
theless cross spectral analysis ie recommendé& as an initial
step for identification of closed loop systems,

In the survey paper on identification by Astrdm and Eykhoff

(1971) identification. of closed locp systems is only discussed
very briefly. An example is given for the case of noise free,
linear, time invariant regulator without extra perturbation.
In this case a noncausal method will give the inverse of the
regulator as the model. However, a method using a causal mod-
el may or may not give the correct model according to the re-
sults in e.g. Section 9 of this report.

The most general discussion is given by Bohlin (197la). fThis
paper is concerned with the basic limitations of identifica-
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tion and the practical implications of the mathematical as-
sumptions involved. Thus also identification of Processes
cperating in closed loop during the experiments’is treated.
Bohlin remarks that there are very simple but realistic cases
when identification is impossible under cloged loop condi-
tions. However, a closed loop during the experiments does
not necessarily prevent identification of the open loop char-
acteristics. In the case of noise free, linsar feedback
without any extra perturbatiocn the process 1is not identifi-
able without a priori knowledge of the structure. A chosen
structure cannot be validated by the data, of Section & of
this report. In general, feedback is allowed only from the
cutput and from no other sources. Otherwise identification
is not possible. This condition is violated e.g. if a human
operétor intervenes in order to aéjust for unfavourable be~
haviour of other variables than the input and the obutput.
Bohlin also points out that it is necessary to use methods
for which open loop is not postulated. Otherwise an incorrect
model is obtained. Even methods allowing for feedback may
result in uncertain, ambiguous or undeterminable solutions.
Some examples of identification of industrial processes opbr-
ating in closed loop during the experiments are given. Di-~
rect identification with the maximum likelihood method is
used,

In Bohlin (1971b) the ambiguity of the maximum 1likelihood
method is treated. It is demonstrated that if the regulator
is noise free, linear, time invariant and if no extra pertur-
bation is injected only the noise transfer function for the
closed loop system is identifiable. When the structure is
known, identifiability of the open loop transfer function is
secured 1f there is a one to one correspondence between the
parameters of the open loop transfer function and the closed
loop noise transfer function. No explicit conditions for the
identifiability of the open loop dynamics are given. Bohlin
also treats the special case, when the regulator is known to
be a minimum variance regulator. If the trénsport delay is




11,

known, it is possible in this case to obtain a model of the
open loop dynamics which is equivalent ko the true process
in the sense that they have the same wminimum variance con-
trol law. Finally Bohlin remarks that introduction of a
small persistently exciting perturbation generally removes
the ambiguity problems under closed loop conditions, cf Sec-

tion 5 of this report.

Schultze (1871) treats the case with an extra perturbation uy
or with an unknown disturbance Voo In fact he states that
extra perturbation or noise is necessary for identifiability
but that it need not be directly measurable, cf however Sec-
tions 5 and 9 in this report. The choice of model structure
and identification criterion is diso discussed. It is demon-
strated that this choice is of crucial importance. For the
closed loop case the difference equation model for the process
must include possibilities to handle correlated disturbances.
Direct identification is proposed.‘ An application to a ball

mill is presented.

Box and MacBregor (1872) consider identification of closed

lcop single-input single-output systemsfﬁsing impulse response
and difference equation models. Indirect identification with
nencausal methods is used. It is shown that crosscorrelation
of the input and output sequences for identifying the process
transfer function is invalid in closed loop situations. Under
noise free, linear feedback without extra perturbation this
crosscorrelation procedure gives the inverse of the regulator
transfer function. If the regulator is known and if an inde-
pendent noise sequence is added to the input, then the transfer
function can be identified by cresscorrelating this added noise
with the output. This method is analogous to the one used by
Akaike for the same case. It is alsc shown that tests on the re-
siduals in order to verify the obtained model ave not reliable
in many closed loop situations. Several different models may
yield the same residual sequence. It ig stated that the re-

gulator must be known in order to perform identification of
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the process transfer functiocn, ¢f however Section 5 of this
report. Under certain conditions the regulator can be iden-
tified if it is not known a& priori. fome applications to

real data are given.

Caines and Wall (1972) discuss parameter estimation of closed

loop systems and particularly the case with an unknown dis-
turbance in the feedback locp. They state that direct iden-
tification using the loss function for the open loop maximum
likelihood estimation will not give the maximum likelihood
estimates for the closed loop case. Instead it is proposed
to estimate the parameters in the model consisting of the
inputs and outputs expressed as time series of the noise

sources. This idea is now being studied by Chan (1873).

Leonhard (1872) discusses the identification of systems oper-
ating in closed loop. TIndirect identification with the least
squares method is used. It is stated that the ocpen loop

transfer function can be obtained if an extra perturbation uy

is injected or when there is a disturbance v, acting in the

?
feaedback loop. An example using direct identification is also
given. From the results it seens, howevefi'that a noncausal

model structure has been used in thig example.

Eykhoff (1373) discusses briefly identification &f closed loop
systems in connection with least sguares estimation. The case
with noise free feedback and with a perturbation signal is
treated. Indirect and direct identification are proposed as
the two existing possibilities. It is mentioned that diffi-
culties can arise in indirect identification because it is not
always trivial to solve for the open loop dynamics from the
closed loop transfer function. For direct identification on
the other hand the problem with dependence between input and
noise arises. A simple example of direct identificaticn is
given. An impulse response model is shown to be non identi-

‘fiable if the output depends instantaneously on the input.
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Glover (1273) is mainly c¢oncerned with parameter identifia-
bility of continuous and discrete time state space systems.
The example from Astrdm and Eykhoff (1971) is used to illus~
trate that identification in the presence of feedback can
cause significant problems. A recommended way to model a
system with feedback is +to write down the state space equa-
tions for the Open 1loop system and then modify these equa-
tions with the feedback law. The closed loop system is then
expressed in terms of the open loop parameters and the para-
meters of the feedback law. The identifiability guestions
for the unknown parameters of thies closed loop system can

then be answered as for the Gpen lioop case.

Goodwin, Payne and Murdoch (1873) are mainly concerned with
the éynthesis of optimal test signals for closed loop iden~
tification. A variant of the case with an extra perturbation
is treated, According to our notion indivect iéentification
is used. A prediction error method is one of the proposed
estimation techniques. Identifiability problems are not dis-
cussed explicitly, However, the criterion for the synthesis
of optimal test signals is a function of the uncertainty of
the estimated parameters, The two problems:are thus closely
related. A few simulations are presented.,.

Lindberger (1973a, b) has discussed problems related to the
identification of closed loop systems. 1In principle the case
with unmeasurable disturbances in the feedback loop is treated.
Lindberger uses indiregt identification according to our no-
tion. He also propases a strategy-in order to try to a-
chieve identifiability by successively increasing the com-
plexity of the regulator and performing one experiment with
each regulator until a reasonable model is obtained. This
Strategy, however, need not necessarily lead to the correct
model. Lindberger gives some necessary conditions for iden-
tifiability but they are not complete,

The papers reviewed so far have mainly been concerned with
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the identification of the open loop dynamics from closed loop
experiments with constant regulators. Identifiability prob-
lems for closed loop systems appear also naturally in many
adaptive control situations. Adaptive techniques often con-
sist of simultaneous estimation and control, see Fig. 2.2.
The current estimate and the regulator setting depend on the
measurements. This implies that the feedback is time varying
in a very subtle way., It thus becomes very difficult to ver-
ify the identifiability of the system., A few references are
given below. '

Vi

© ———% PROCESS ¥

* ~+ ESTIMATOR [

Fig. 2.2 Typiecal configuration for adaptive control

Turtle and Phillipson (1971) investigate identification and
simultaneous control under a feedback control system of Box

and Jenkins type and without any extra perturbations. The
case when the estimates and thus also the regulator parame-

ters are updated only every n-th measurement is discussed.
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The open loop transfer funcvion will be identifiéble if the
process has transport delays énough, FPurthermore sufficient
conditions for identifiability are given for a more general
structure. The linear system of equations in the unknowns
which is obtained in indirect jdentification should have a
unique solution. However, no explicit, complete conditions
on the process and the regulator ave given. The accuracy of
the estimates obtained by indirect identification is also
briefly discussed. The paper deals exclusively with indi-
rect identification and it is remarked that a feedback of a
mathematically undefined nature, e.g. manual control, will
give data records virtually useless for reliable parameter
estimation. Accerding to the results in Section 5 of this
report it may however be possible to obtain a correct model
if direct identification is used instead of indirect identi-

fication. : o

Saridis and Lobbia (1972) and Lobbia and Saridis (1872) con-

sider the problem of consistent parameter identification of

stochastic, linear, discrete Time processes driven by feed-
back controllers with different structures. In the first
paper single-input single-output systems are treated. Direct
identification is performed by stochastic aﬁproximatiou al~
gorithms. The model is in state space form. The identifia-
bility condition for the case of linear state fesdback with-
out extra perturbation was established. It turns out that the
order of the regulator has to be sufficiently large. This
condition is considered td be a too vestrictive condition in
practice. The case with an arbitrary feedback structure and
with ar extra perturbation signal is also treated in this
paper. The perturbation signal is assumed to be white noise.
The same case 1is also treated in the second paper for the
multivariable case., Because of the extra perturbation no
restrictions on the feedback are necegsary, cf Section 5 of

this report.

Balakrishnan (1973) presents an approach to ‘adaptive control
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of linear, continuous systems in state space form. It turns
eut that & crucial assumption for the algorithm for optimal
adaptive control is that a certain identifiability conditicn
s tuifilled., 4 sufficient condition for identifiability in
closed loop is given. Tt can be formulated as nonsingularity
of a certain matrix. It is claimed that the condition can he
checked straightforwardly. If the condition is satisfied the
asymptotic consistency of the maximum likelihood estimates is
assured in the case the input to the system 1is an (adaptive)
feedback control. An extra perturbation may be present but

is not necessary,

From the given review it is clear that there exists no paper
“treating all the feedback cazes for the discrete time case.
Very.few papers deal with the multivariable case, In the
following an attempt is made to systemize the identifia-
bility properties for different feedback configurations,



17,

3. MCDELS AND IDENTIFICATION METHODS
The models and the identification methods, that are considered
in this report, and the concept of persistently exciting sig-

nals are defined in thiz section.

3.1l Models

Vector difference equations are frequently used as models of

multivariable systems. They constitute quite a general class
of linear models. If so desired, they can be transformed to
various staie space realizations. Most of the results in this

report refer to vector difference equations.

Consider a system S. Assume that the input output relation-

ship and the necise characteristics can be deseribed by
-1 - -1 -1
Aglg ™) y(t) = Belq ™) ult) + Colg ™) elt) (3.1)

where Ac(z) etc. are matrix polynomials in =z:

T na
As(z) = I+ z As,l + L.+ 2z As,na
. nb
Bstz) =z 8353 + o4 + 2z BS,nb
. Nea
CS(Z) = I + gz LS,I + ... + z CS,nC

The operator q‘l is the backward shift operator:
_l R
q — y{t) = y(t-1}

The variables e(t), t = 0, 1,... form a sequence of indepen-
dent random variables with zerc mean value and covariance

E e(t) eT(t) = A. . This matrix is assumed to be nonsingular.
‘The output y(t) is a vector of dimension n and the input u(t)

has dimension n,. It has been assumed that e{t) has the game
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dimensicn as y(t), which can be shown to be no loss of gere-
rality. It is alsc assumed that det{CS(z)} nas all zeroes
strictly outside the unit circle. Then the inverse Csml(qql)
iz an exponentially stable filter. CS{Z) is a c?nstanf,
square matrix for each given =z. The inverse Cg “{z) 1is there-

fore straightforwardly defined.

As,i’ Bs,i and C'Sﬁi

elements of these matrices may be partly known and partly un-

are matrices of proper dimensions. The

known. The identification problem is to determine the unknown
alements. To do g0, these elements or functions thereof are
collected into a parameter vector 0. The model of the system
then 1is

1

Aga te) v = Byl h,6) uled + Cylq T, 0) e(e) (3.2)

where., as before

s

a ~
(6) Yoa . + 2 AM, (6)

Aﬁ(z,e) = I+ 7z A n,

{ M,l

ete., and [e(t)} is a sequence of independent random variaﬁles
with zero mean value and covariance ﬁ_ The model (3.2) will
be denoted by M{e). The parameter vector 8 is to be chosen so
that M(8) in some sense describes the system S. This is fur-

ther discussed in Section u.

The matrices AMii(e)‘ete.,can depend on 8 in several

ways. As discussed above, some elements in AS,i etc. may be
known, and some may have to be assigned certain values. When
the parameter vector ¢ varies over a set of feasible values,
M(s), given by eq. (3.2), defines a set of models that will
be denoted by M. This set M can be described by the way the
parameter vector @ enters in the matricesnﬁﬁti(e), BM,i(e)
and CM,i(e)’ as well as by the variables n_s Ny and ﬁc. The

terms model structure and model parametrization will therefore
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alsc be used for the set M. This is an important concept,
especially for multivariable systems. If a canonical repre-
sentation related to the observability indices is chosen, M
can be described by these indices, see e.g., Rissanen (1972).
For single input single output (SIS0) systems it is accustomed
to use a structure, where the i first B-matrices (scalars)} are

assumed to be zero and all the other matrices unknown. This

~

> Pian > %1

n
Ces c; »and M can be described by the set {na, Nys 15 k}.

means that ¢ consists of By5 wens A7 b£+l’ P

~

Notice Fhat apart from the orders Ngs Dy and n, ne concept of

structure or parametrization has been introduced for the sys-

tem S.

For notational convenience it will be written

-1 -1 -1
Aglg ™) = A, Bglq ") = B, Cglg ™) = C

1 1

Aylq ,8) = A, BM(q ,8) = B, CM(q s0) = C
when no ambiguity can occur. Also the time argument in y{(i)

etc., will sometimes be omitted.

3.7 Prediction

Knowing the inputs u(t) and the outputs y(t} up to time t, it
is possible to predict y{(t+1l) as follows. From eg. (3.1):
) yi(t) :_ésul(q—l) Bs(qﬂl) ult) + e(t)

-1, -1 -
CS Fq ) As(q

1

and

g(t+l) = [z - e ™h Asiq‘l>] g(ts1) +

+ Csml(q“lﬁ BS(q"l) u(t+l) + e(t+l)
The right hand side of the above expression contains only y(s)

and u(s) up to time t. The term e{t+l) is independent of these
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variables, also in the case when u is determined from output
feedback. Hence the best prediction of y¢{t+l) is
y(t+1]t;8) = [I - o™ As(q-l)] y(t+1) +

v C

s T@™ Bga™hy uee) (3.3)

Analogously, the best prediction of y(t+l), assuming the
model (3.2) is true, is

yeest i) = [1 - ¢t @™o Ayta™h o) ] yiesny 4

y @ te ByaTre) ucten) (3.4)

+ C
The optimal prediction errsdy id

y(t+1l) - §(t+1[t;$) = e(t+l) (3.5)

Analogously, the prediction ervor for the prediction given by
eq. (3.%) is

YOE+1) - yCtei{es#(0)) = eCtel,H(0))

3.3 ldentification methods

Mainly, identification methods that minimize some function of
the prediction error will .be discussed in this report. The

maximum likelihood method is of this type.

Some scalar function of the matrix

p N-d T
QN(G;S,M) =5 .z e{t+1,M(8}) e (L+1,M(8)) =
t=0
1 N-1 - - T
=5 I [y(t+l) - y(t+l [t;M(0)) ) [y (t+l) - yCe+l{t;MCa) )]
t=0 .

is minimized over the model set M, giving the estimate 8 and

the medel M(eN). The covariance matrix A is then estimated as
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AN = QN CGN;S,M)

Usual choices for scalar loss functions are

VN(B;S,M) = det QN(G;S,H) (3.6
or
VN(S;S,M) = tr QN(S;S,M) (3.7)

The function (3.6) corresponds to the maximum likelihood meth-
~od in case {e(t)}} are jointly normal, Eaton (1967). Clearly

the two loss functions are the same in the single-output case.

3,4 Persistently exciting signals

In order to achileve identifiaﬁility the input éignals mist
satisfy certain conditions. Trivially, it is impossible to
estimate BM(q“l,e) if u(t) = 0. Caines (1970) has extended
the definition of persistently exciting signals given in
Astrdm and Bohlin (1965) as follows:

The signal u(t) is said to be persistently exciting of order n
if

N
lim % i u{t) uT(t+k) = R({k) exists, 0 ¢ k £ n,
Now -

where R{k) i1s an nulnu ‘matrix, and the Toeplitz block matrix

R of dimension n!nu , generated by R(k), is positive definite.

If u(t) is persistently exciting of order n and K(q“l) is a

linear filter of order n-1

K(q_l) = kl + kgq_l LRI S . q_(nhl)

. where ki are row vectors of dimension s then
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-

K@ ™) ult) = 0=k, =0 1= 1,2,0..,D

In particular, let u(t) be persistently exciting of suffi-

ciently high order. Assume that

M
L vT(t) v{t}) = 0

1im

By
Mo 1T

wnere

. . v _ _ B _
v = | egTHa™ Bgta™) - ¢ e e Bya *,0)uce)
Then it follows that

o Mz) Bglz) = ¢ M (z,0) By(z,0)  a.en
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L. IDENTIFIABILITY COMNCEPTS

The question of identifiability concerns the principal pos-
sibility to determine the characteristics of a system using

input output data. The data may have been collected during

cloged loop operation,

It is important to distinguish between two concepts. For
control purposes it is sufficient to have a model that de-
scribes the input output relationship as well as the noise
characteristics of the output, On the other hand, the objec-
tive of the identification may be to estimate certain para-
meters in the model, These may, for instance, correspond to
physical constants. Notions of identifiability, that corre-
spond to these two situations, are introduced in this section.

The identification result and hence the identifiability pro-

perties depend on the following factors:

§: The gystem, described by eq. (3.1)
M: The set of models (model structure), M(8), described by
eg. (3.2). (In this report all models are described by

vector difference equations).

The identification method

X: The experiment conditions, e.g. the choice of (extra)

input signal, the feedback structure and the regulator

parameters,

0f these factors, M and 1 can usuaily be chosen freely. 1In
many cases also some of the experiment conditions ¥ are dig-
posable. However, as pointed out in the introduction, they
cannot always be chosen in the most favourable way, i.e. to
perform the experiments in open loop with a persistently ex-

citing input signal.

‘Consider for given 8§,M,I, and X the sequence of estimates B

The smallest set into which the estimates converge w.p. 1
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will be denoted by

DI(S,M,Z,X)

0y » Dy(S,H,1,X) w.p. 1 asli> o

DI(S,M,I>X) therefore defines the obtained models.

When only a description of the open loop system is re-
quired, the subset of desired models is defined by

Hl

. — 1 - - i
DplSsM) = {BIAS (z) Bg(z) Ay l(z,e} BM(Z,B} and

H

ne "Mz cga) = A" H2,8) Cyz,0))

5

The first eguality in this definition means that the mcdel
M(e) has the same input output relation as the system §. The
second equality means that the noise characteristics of the
output are the same for the model and the system, If S,4.,1
and X are such that all obtained models belong to this set

of desired models, the true input output relation and the
true noise characteristics of the system S, eq. (3.1), have

been identified. The notion System Identifiability will be

used for this situwation. Cléarly, it is possible to obtain
gystem identifiability only for such models that DT(S,H} is
non-empty. If this is the only requirement on M to obtain
gystem identifiability, the system is said to be Strongly
System Identifiable, The concept Parameter Identifiable will

be used when GN actually converges to a value that corre-
sponds to a "true parameter value". These concepts are for-

mally defined as follows:

“The notion g, + D as N + « means that inf|e - e |+ 0 as N + =,
Mo pED] N
It does not imply that {SN} converges to a certain value,
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Definitions

For a given identification method, I, and a given set of

experiment conditions, X,

a) The system § is said to be System Identifiable for the
model structure M, SI(M,I,X), if &, » D (S,M) w.p. 1 as
N+ e, 1.2, DE(S,M,I,X) < DT(S,H),

N

b) The system § is said to be Strongly System Identifiable,
SSI(I,X), if it is SI(M,I,X) for all model structures M
such that DT(S,M) is non-empty.

¢) The system § is said to be Parameter Identifiable for the
model structure M, PI{M,T,X), if it is SI(M,1,X) and

D.(8,M) consists of only one element.

Remark: Notice that Dy DT in particular implies that D, is

non=-empty .

The arguments $,M,I and X in ST(M,7,X), SSI(I,X) and PI(M,1,X),
as well as in DI(S,M,i,X} and DT(S,H} will sometimes be sﬁp—

pressed.

Clearly the concepts SI, SS% and PI depend on the choices of
M,I and X, It is the purpose of the following analysis to
clarify the effects of different M,7 and X. The following
general comments about the choices of #M,7 and X apply. More

detailed analysis is given in Sections 5-9,

: A necessary condition on M to achieve SI(M,I,X) clear-

‘ ly is that DT(S,H) is non-empty. If the system is
S5S8I(1,X), this condition is also a sufficient condition
for ST(M,1,X). In that case the fact that the system
may operate in closed loop does not add any extra diffi-

culties when choosing appropriate model structures.
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I: S3ome different methods will be considered. It will
be shown that a prediction error methed as described
in Section 3.3 can be applied to closed loop data
exactiy as for open loop data. If ST(M,I,X} is not
obtained by this method, any other methed will also

fail, (see Section 6).

X: HNaturally it is most desirable if the experiments can
be performed in open loop and with a persistently ex-
citing input, uy.  If this is not possible, similar
identifiability properties are obtained if an extra
perturbation signal is added to the input of the pro-
cess, if noise is added in the regulator lcop, or if
the regulator isg time varying, (see Sections 5 and 7).
The only really unfavourable situation is when the feed-

back is linear, time invariant and noise free, and

when no extra input can be added, (see Sections 5 and 9).
Then the system is not SSI{I,X), and it cannot be tested
from input output data whether it ig SI(M,T1,X), or not,
(see Section 8),

Notice that PI(M,I,X) is always implied by SI(M,7,X) if DT(S,M)
consists of only one value. This condition does not involve
neither I nor X. Therefore it is most suitable to study the

. effects of different experiment conditions on the identifiabi-
lity properties by considering SI(M,7,X). If PI(M,T,X) is
desired, this property follows from B8I(M,1,X) exactly as

in the open loop case. Ag mentioned below, the latter proh-
lem is treated by other authors,

The concepts can be illustrated by the following simple examples:

EXAMPLE 4,1
Consider the single-input single-output system

y(t+1l) = b ult) + e(t+l) _ (%.1)
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Laet the experiment conditions be that the system is gqoverned
by the feedback law, Xl,

ult) = g y(t) (4.72)
Assume that the parameter b in the model gtructure Ml
y{t+l} = b ult) + e(t+1) _ {(%.3)

shall be estimated using the method of least squares (I,).
It is easy to see that b will conVerge to b. Hence the sys-

tem S is SI(M X )j as well as PI(M 1=X1)'
Consider now a different model structure, MZ:
y(t+1) + a y(t) = b ult) + e(t+l) (4.4)

Insert the feedback law (4.2) in eq. (4.4}
y(t+1) + (a-gb) y(t) = e(t+l)

Hence all a and B such that

; - gﬁ = -gb

will give a correct description of the closed loop system
(4.1) with the feedback law (4.2). The set D (8, M l,X )

therefore consists of all a and b satisfying thlS equatlon.
However, obviously e.g.

1
b+ 1l/g

Ty oy
il

1

in eq. (4.4%) does not give the correct transfer function of
the systnm $. The system $ is thus neither SI(M,,T;,X;) nor
CPI(M,,T,,X;). In particular $ is not SSI(Il,Xl) for the ex-
perimental configuration (feedback law) under consideration.
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EXAMPLE 4.2

Consider again the system (4.1) and suppose that the input
is white noise, uncorrelated with {e(t)}. This means that
the system is operating in open iloop. Let these experiment
conditions be denoted by XQ. Let the model structure M3_be
given by the set of models

y(Esl) + a y(t) = by ult) + b, u(t-1) + e(t+l) + & e(t) (4.5)

The maximum likelihood method, I is used to estimate the

2)
12 bQ and c. It can be shown that the method

gives estimates that converge to values satisfying

parameters a, b

a = yu

by = b

?2,= b

c = u

where y is any real number. $ is thus not PI(M o X 57+ How-

ever, the transfer function of eq. (4.5} for these parameﬁer
values is the correct one for any value of u. Conseguently,

S is SI(M, X ). In fact, for this experiment configuration,
KXoy (i.e. ch01ee of input signal), the system S is S%I(TQEXQ)
Remark: Parameter identifiability for systems operating in

open locp has been discussed by ‘a4 number of authors, see e. g

Tse and Anton (1972}, Glover and Willems (1873). Usually the
system matrices ave assumed to correspond to a certain- para-
meter value 8°fopr the given model parametrization. In such a
case the parameter 6°ig said to be identifiable w. p. 1 (in
probab111ty) if there exists a sequence of estimates that tends
to 8 w. P- 1 (in probability). This definition is given by |
Tse and Anton (19772). They use convergence in probability as
the convergence concept. Now, the sequence of estimates con-
'verges to §° w.p. 1 if and only if the set DI(S,M,I,X) = {69},
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Therefore the definition just cited is a special case of the

definition c) above.

Clearly, a system 8 can be PI(M,1,X) only if DT(S,M) = (8%},
This means that there exists a one to one correspondence he-
tween the transfer function and the parameter vector 8Y. This
one to one correspondence can hold gleobally or locally around
a given value. The terms global and local identifiability
have been used for the two cases, see e.g. Bellman and Astrdm
(1870). Definition ¢) clearly corresponds to global para-

meter identifiability.

The problem Lo obtain a one to one correspondence falls in
the field of cancnical representation of transfer functions.
This‘is a field that has received much attention. The spe-
cial questions related to canonical forms for identification
have been treated by e.g. Caines (1971), Mayne (1972) and
Rissanen (1973}.
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5. DIRLCT IDENTIFICATION USING PREDICTION ERROR METHODS

b1

¥hen direct identification is applied, the feedback is com-
pletely disregarded. The input and the output from the s5ys-—
tem are measured and treated as in the open loop case. In

this section the identifiability properties of direct iden-

tification are considered for various feedback cases,

It is assumed that a prediction ervor identification method
is used, and that either the loss function (3.6) or £3.7)

is minimized #ith respect to 8. In Ljung (1974%) it is shown
that for this identification method, 1,

1

N ~
61\5 f.DI(S,ﬁ-i,I,K) = {Bllim %1 Ei!y(t+lit;s} -

b3
N’a‘m 3 O
~ , - S t
= yltel M) |19 = o0} : (5.1)
It is straightforwanrd to show that DT also can be written
-1 -
Bp(S,M) = aleg T (z) Ag(z) = ¢y M (z,0) Aylz,8) and

Co ™ z) Bg(z) = ¢, M(z,0) By(z,0))

It fellows from (5.1), (3.3) and {3.4) that Dy © DI' Now, if
Dip 3 D;s the system is not. $¥(M,7,X), Assume that S*EDI

(5.2)

Denote
-1 S U | ~1, -1 ~1

Klg ) = K = Cg "{g™™) As(q ) - Cyi (g “,8%) AM(q s 8%)
-1 ' -1, =1 -1 ~1, =1 -1

L{g 7)) = L = Cq (q ™) Bs(q ) - CM (q ~,6%) BM(q ,8%)

'Tt is here assumed that the processes are basically stationary

80 that the limit exists. For very Special feedback laws
(linear ones that converge to low order regulaters) the set
' DI given by (5.1) may actually not be the smallest set into

which 6y converges. Buch laws, however, will not be considered

and these problems are overlooked.
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Then K and L are linear time invariant operators. Since S*EDI
lN“l 2
lim % % E({{Ky -~ Lul{["} =0 (5.3)
0
N-soo
If it is possible to show that (5.3) cannot be satisfied unless

0 and L = 0, then it follows from (5.2) that G*EDT(S,M).

This means that DT > DI’ and consequently that the system is
SI(M,T,X).

Consider the various feedback cases discussed in Section 2.

Clearly, in all cases K must be zero if L ig zero, Otherwise
- {2:3) would state that y(t) 1s not persistently exciting of
a certain order. This contradicts the fact that y{t) contains

filtered white noise.

The input signal can be aeccmposed as

ul{t) = ul(t) + uz(t) (see Fig, 2.1)

vhare uy is independent of e. If u. 1ls persistently exciting,
of sufficiently high order, the signal Lul will be non zero 5

A

for non zero L. Then eq. (5.3) implies that also the signal

Ky - Luz ig non zero. This signal contains a component that

is formed from e, and consequently cennot be completely corre-

ilated with Lul. Hence, L = 00 and K = 0 follows as soon as uy

is persistently exciting.

25
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&

Consider now the different experiment conditions X: {cleig,Z;l)

o

There ig an extra perturbation signal 53 at the experimant

designer's disposal. Then this signal can always be chosen

te be persistently exciting of sufficiently high order,
which implies that K = 0 and L = 0.

There ls extra noise vzkad&ed in the feedback loop, Sup-
pose that this noise, independent of vy {and ul), is added
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to each component of U, and is persistently exciting., Such
noise will be called non degenerate. Then ult) can be de-

compesed as described above and K = 0, L = § follows,

o Non linear regulator. The signal u = i, may or may not

be persistently exciting, depending on the number of in-
puts and how the non linearities enter. If it is per-
sistently exciting, both X and L are either zero or non
zero. In the latter case (5.,3) would imply a linear,.
time invariant and noise free relationship between the
input and output. This cannot be the case for a non
linear feedback, which is non linear in every component.
Such a non linear feedback yielding a persistently ex-

citing signal u, will be called non degenerate.

o] Time varying regulator. A time invariant relationship

(5.3) imposes important restrictions on how the regula-
tor may vary in time. These restrictions can always be
violated if the variation of the regulator is at the
experiment designer's disposal., Such a variation will
be called persistent. Then K = 0 and L = 0 follows.

In Section 7 it is discussed how the regulator can be

varied in order to achieve 8§51,

In all these cases 1t follows that X =8 and L = 0, which
implies System Identifiability for the chosen model struc-
ture M. This is true regardless of the model structure, as
long as D is non empty and the signals are persistently ex-
citing of proper order. Hence the results can be summarized

as follows:
IDENTIFIABILITY RESULT. 5.1
Let the identification method I be a straightforwardly ap-

plied predittion error method. Let the experiment conditions

X be such that either
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there is a persistently exciting perturbation signal uq
there 1s a non degenerate noise source in the feedback
locp
o  the regulator is a non degenerate non linear feedback
or
o the regulator is persistectly time varying
Then, for this I and X, the system is Strongly System Iden-
tifiable.

Suppose that the regulator is linear, time invariant and
noise free., Then (5.3) can be satisfied with non zero K

and L. It must then be examined, whether such K and L gan
be consistent with the model structure and the system ac~
cording to (5.3). Thus the conditions: for SI(M,I,X) will
cdntain relationships involving thé chos8i modal structure,
ag well as orders and other characteristics of the feedback
law and the system. It is quite clear that SSI cannot he
obtained in this case. For example, a model structure M can
be chosen, which allows both the true system and the system
which is obtained when the input=is eliminated, cf also Ex-
ample 4.1, In Section 9 the case with linear, time invariant
feedback 1is discussed at length for the gingle-input single-
output case,
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WTWEEN DIRECT AND INDIRECT IDENTIFICATION
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In Jection 2 two principally different identification methods
were described: direct and indivect identification. In this
sectior these methods are compared., Applicability, as well

as identifiability properties, are considered.

By Indirect identification is meant a variety of different

identification schemes. The open loop system pavameters are
determined in one or another way from the closed 1odp system
characteristics. In this section the following technique is
considered. The output of the closed loop system is modelled
as an auvtoregressive-moving average process. The parameters
of the open loop system are then solved for from-the parame-
ters of this closed loop system using tie knowledge of the
feedback law. It is thus required that the feedback law is
known exactly. This means that when there is noise in the
feedback loop this scheme cannot be gtraightforwardly applied.
If the regulator is time varying, it must egsentially be
switching between different constant regulators. Then the
data can be processed separately for each regulator. Spdeial
indirect identification schemes can be designed for other

feedback structures. These techniques are not considered here,

Direct identification can be used without any restrictions

on the regulators.

It is shown in this section that the two identification
methods are equivalent from the identifiability point of
view. The results hold for the asymptotic case. That is,
it 1s assumed that sufficiently many data are supplied so
that closed loop characteristics, as well as open loop sys-

tem parameters, can be estimated with arbitrary accuracy.

The case when there is no extra perturbation signal is
treated in the following:
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RESULT 6.1

Consider the multiple input, multiple output system (3.1)
-1 - - -1 ~1

AS(q Y oy(t) = BeCg ™) uw(t) + Cs(q )y e(t) (6.1)

with the feedback law(s)

r’ @™ v = e yen i 1,...,v
where
\ . ng . .
F(l}(z) = I 4+ zF{l) ... ezt F(1)
1 nfi
-. . . 1. » .
G(l)(z} = G(I) + zG(l) ¥ ... + oz gllf'(1>
i 1 ) ngi

The model is given by eq. (3.2)

-1 -3 -1
AM(q ];6) y(t) = BM((I 0) uft) + Cm(q $8) e(t)
In the case of divect identification (I;) the input output
data of the system (6.1.),obtained with the regulator switch~
ing between the v values, are treated as data from an open
loop system, A prediction error method is used to deter-

mine the parameter vector 6.

-In the case of indirect  identification (I,) the resulting
closed loop characteristics for each regulator is deter-

mined (with arbitrary accuracy) by any kind of time series
analysis of the output. The model parameter vector 6 is

then determined so that the model plus feedback i, 3 = 1,...,v
(which must be known) accounts for the estimated closed

loop transfer function with regulator i, 1 = 1,...,v.

Suppose that the number of input output data obtained for
each regulator tends to infinity. Let regulator -i be used

vy > 0 part of the total time. Assume also that the regula-
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TOr switches so seldom that initial effe

0

4]

-+
e

can be neg-

lected. Then the limits of the estimare

o

that may result

from the two identification methods are the same, i.e.

i1

DI(Saﬂ"[,Il,X) DI(Sgill‘{QI—Z,X)

Furthermore

NV 011325 o e S I R S (6.2)
PROOF

Cohsider first direct identification. It follows from (5.1)
that DI(S,M,II,X) is defined by

vy BT AT a3 ety L (et em 1R (r D)) g (D) T

(1 A

1=1

treea-c ety ety Lo lA e g r Py gy ) vy = 0
The set DI(S,Mﬂi;X) for direct identification is thus charac-

terized by (6,2)

In the case of-indirect identification the closed loop trans-

fer functions

y(t) = H(i}(q-l)é(t)

where

i - - - i - ~1 (1 -~ - -1’
1™ = agah-Bga™H (P (o7hyy e (71 Logq™h
corresponding te the various regulators are determined. To

obtain the open loop system parameters knowing the feedback

laws, the following equation must be solved for 8
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(A - S¢ptEdy=1g0y=1 & _ (D) % 1yl v (6.3)

{.-"4_.‘)

Here H s F(l} and G(i)

(i)

are known filters. Inserting the
expression for H it ig found that this equation is nothing

but (6.2).

The possible estimates for direct and indirect identification
are consequently identical. o
. (i3 (i) _

The set DI(S,HEI,X) clearly depends on F , G {corre
sponding to X), the true system £ and the model structure M.
The system is SI(M,7,X) if DI e DT’ and PI{M,7,X} if DT = {5%},
In the next section the solution set Dy of (6.2} is investi-
gated. Necessary and sufficient conditions for 88I are given

théree

When there is an extra (persistently excitlng) perturbation
signal ul, it can be shown, in the same way as in Result 6.1,
that ST is obtained alse for indirect methods, iFf the feed-

back is linear and noise free,

Since direct and indirect identification are aquivalent from j
the identifiability point of view, there is no reason for f
using indirect identification. Indirect identification canf
be used only when certain restrictions on the regulator are
satisfied. Also it requires a priori knowledge about the

feedback laws,
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T SUWETEM IDRNUYTIYIARTLITY IN THE CASE WITH SDVERAL LINEAR

The possible svstem parameter estimates, obrained from ex-
periments where the regulator switches between several
linear feedback laws, are studied in this section. These
estimates are given by (6.2), which can be written

CThA - eTha - @Bty eI et L s

on
[t - c™tag teCTiEIR = 0 L. 03 (7.1)
where
1 I ' Ce e I
R) = —

The dimensions of the matrices in (7.1) are ny](ny+nu),

(ny+nu)f(nyv) and nyi(nyv) respectively. Notice that each
element in the matrices is a function of z.

Suppose now that
rank R == ng *ony a.e. 2z (7.2)

Then (7.1) implies that

e RN

i
(e

c™lp - ¢71p

1
=

(7.3

i.e., that DI(S,M,I,X) = DT(S,M). This means that SI is
achieved if (7.2) is satisfied. It is important to no-
tice that this condition can be met by conditions on the
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regulators only. Thus (7.2) is a sufficient condition for
S51{7,X). A necessary condition for (7.2) to hold is obvi-

ously

Introduce Vo @8 the smallest integer z 1 + nu/ny. The .con-
dition can then be written

Voz v
O

L

i Consequently, if the number of regulators is at least vo’

it is always possible to choose them so that SSI is secured !/
That is, the true open loop characteristics can be estima-
ted regardless of model structure and the true system (as

long as DT(S,M) is non-empty).

In case n, = ny, it is sufficient to use two regulators.
These shall be chosen so that

detl(F (276D () - (12 (53) 6P (5)) 4 o (7.5)

This is quite a mild condition. It is e.g. satisfied with

two "proportional® regulators

ut) = 6§ ye) 1= 1,2

a2l

for which G Sg = 1s a non singular matrix,

(1)
0

Now, (7.2) is a sufficient but not necessary condition for
SI{M,1,X). If it is not satisfied, the null space of RE is

non-—empty. However, the null space may not contain any non

zero vector of the form

(c™ta - ¢™la, o7l - &7Lp)
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for the assumed structure M,so (7.3) may still Follow from
{7.1}. Notice that R,s 8¢ well as the vector above, are
functions of z. The relationships discussed must hold for

almost all z.

B

The condition that vectors of this form do not belong to
the null space of Rv is clearly quite complex and involves
relationships between the regulators, the model structure
and the true system. For sufficiently flexible M they can
always be violated. The conditions are derived for the
case n = ny = v = 1 in Section 9.

To surmarize, it has been shown that in the case where at
least v, regulators are used it is possible to guarantes
Strongly System Identifiability from conditions on the re-
gulators only. Each regulator must be used a non negligable
part of the total time., If fewer regulators are used, then
conditions for SI{M,1,X) contain also characteristics of
the true system,and the system is not Strongly System Iden-
tifiable.
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5. A POSTERIORI TzST OF IDENTIFIABILITY

In the previcus secctions criteria for a priori test of iden-
tifiability have been given. That is, from such criteria

it may be known that the system is Strongly System Identi-
fiable from conditions on the experiment configuration oniy.
For example, if it is known that the feedback is such that
Result 6.1 is applicable or that the condition (7.2) is
satisfied, then it follows that the system is SSI. 1In
these cases the conditions for 381 do not contain the char-
racteristics of the system. When the number of linear re-

gulators is less than 1 + nu!n the criteria are of a

»
different kind. Then the critZria for SI(M,7I,X) involve
both the model structure and the true system. The conditions
for B8ITIM,T,X) can be tested only if some characteristics of
the system is known. In case guch a.priori knowledge about
the system is available, SI(M,I,X) can be ﬁestaé before the
axperiment 1is performed, Otherwise the question of identifia-
bility cannot he resolved a priori. It is then relevant to
ask whether it is possible to btest identifiability after the
ldentification experiment has been evaluated; a posteridri.
That is, is it possible to decide if the system actually
was SI{M,I,X) e.g. from the number and character of the
solutions of (6.2) or from the estimated structure of the

system?
The answer is no. This ig seen as follows:

Consider the multivariable system S,

Ag (@™H y(o) = By (@ Hur) + Ce (a™h) elt) (8.1)
1 1 1

with the feedback law R

P(q™H) u(t) = aqg™) yet)




Suppoese that the system Sl ig SI(M,I,X) for a given model

structure M, but that this is not known a priori.

Consider the system 82
[:AS (a"h + L(q”1>eeq°l{]th> = [BS (@™t L(q“1>ch“1ﬂu(t> .
1 L

+ Cq (@71 el (8.2)
1

where L(z} is an arbitrary matrix polynomial.

If this system 32 is governed by the same feedback law R
as Sl’ the two closed loop systems have the same input

output relationship and noise characteristics; since
LG v = LF u

can be eliminated in (8.2). Hence from input output expe-
riments with the feedback R, the systems S1 and 32 cannot
be distinguished. Thus even if the system (8.1) is found
as a unique solution of (6.2) (for the given M) it is im-
possible to decide whether the true system actually is Sl
or S,. This means that it cannot a posteriori be estab-

lished that the obtained system is SI(M,T7,X), and hence

that the estimated model has the same tfansfar functicn as
the system. It also means that reliable ordef tests can-

not be performed in such cases.

Consequently, if no a priori inférmation about the struc-
ture of the system is available, the feedback case with a
linear, time invariant,noise free regulator is. not identi-
fiable, in the sense that the result of the identification
is not reliable. More experiments have to be performed to
check the validity of the model. However, as shown in Sec-
tion 7, using v, different regulators it is not only pos-
sible to Test identifiability but also actually to find the
true system, ‘ ‘ '
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The conclusions of this section and Section 7 can be sum-~

marized as follows:

IDENTIFIABILITY RESULT 8.1

Suppose_that.lineax, noise free feedback with no extra per-

turbation signal is
Assume further that
system than that it

To obtain estimates

to use vy different

They must be chosen

used in the closed loop configuration.
no other a priori knowledge about the
is linear is available.

that can be relied upon it is necessary
linear regulators in the feedback loop.
so that (7.2} is satisfied. The number

Ve is the smallest integer that is greater or equal to

1

With such regulators Strong System Identifiability ig guar-

anteed.

With fewer regulators Strong System Identifiability cannot

be achieved,
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9. NECESSARY AND SUPFICIINT COHDITIGHNS FOR IDDHTIFFARTILITY
OF SINGLE-THPUT STHGLE~OUTFUT SYSTEMS GPLRRATING WiTH A
LINEAR FEEDBACK

It was found 1in Section & *hat direct and indirect identi-

fication are equivalent from the identifiability point of
view and that the set DICSjﬂ,I,X} is givern by {assuming
that a time invariant regulator is used) eq. (£.2)

”

¢l a-pr ey = o Lea-mrt

G)

The purpose of this section is to analyse this equation in
detail for the specisli case of single-input single-output
systems. As before it is generally assumed that a predic-
tidn 2rror methoed, which in this case means the maximum
likelihood method, is used.  Tn the foregoing‘analysis of
multiple~input multiple-output systems an unspecified mo-
del structure has been assumed, i.e. it is not specified

how the polynomials depend on the vector 6. In the exami-
nation of single=-input single-cutput systems in this section

the following commonly used structure will be considered.

The system § is assumed to be given by, cf eqg. (3.1)

ala™) vy =q® Big™h uwie) + clg™ Vel (3.1)
where
A(zal) = A = 1 + a z-'i' + + a zpna & % 0
- 1 * n n
a 3
-1y _ 4 L -1 “hp i
| B(z ") = B = bz 7+ ...+ b = b, § 0, b, § 0
| b b
C(Z*l) = L =1 %+ c z*l + + o zwnc c E 0
N b 1 £t n n_ T

% There is no common factor to the three polynomials A, B and-
‘ r

Y :
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‘he feedback is pliven by

7Yy ult) = Glg Y y(t) ¢3.2)
where
~Tig
R I I tE w T f ko
f £
-1
- -1
G(z ]) = 6 o=z By t By2 o4 tE, 2 5 En i 0
g g

Some of the first coefficients of G may be zerc. F and 6

have no common racior.

The model structure M is assumed to be given by

~

A vyt = ¢ BT u(e) + SaTH (o) (3.3)
where
- " . -1y
Az l) = A =1+ a.z 1 + v a2z 2
1 n
a
. . -~ - -1
B(z %) = B = bzt o4, + brg P
L 81
b
-n
-~ "'l _ ~ . - __1 "‘A le]
C(z ~) = C = 1 + cz + + n %
n, s 0, ﬁb > 1, ﬁc 5 0, k 2 0

In order to guarantee that DT(S,M) is non-empty it is neces-

" sary and sufficient to assume that
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RN

Ay
27

¥ = omiy ﬁ -7 : ¥§' K, 1 3 4
17 mind Ly BNy, N n_ ) ]

Ir: order tc¢ treat the case k < Xk in a nice way in the analysis a new

N
polynomial B(z 1y is introduced through
-l o ,,:‘U -
z7¥B(z"Y) = 2 MBGzT

; w X
Clearly, degB = 1, =

Before going into details in the analysis two more integers
must be defined. The polynomial AF - £ ¥BG may not be of
degree max{n_+ng, k+nb+ng}, since some of the last coeffi-

cients can be zZero.

Assume that the true degree is max(n_+ng, k+nb+ng)~r. Note
that r > 0 implies that N #ng = k+nb+ng. Assume further

k

that the polynomials C and AF ~z “BG have exactly nP Common

factors. Introduce the three polynomials D, H and P by

C = DPF

(9.5)

AF - z ¥Bg = mP

where P is the common factor of degree np, Clearly, the

degree of H is

n = max(na+nf, k+nb+ng) - np -y

The egquation (6.2} can be rewritten as

~

. -*;:“ - -x _ N
C[AY - z TBG] - C[AY - 2z TBG] = 0O {(G.6).

or after use of (9.5)

»

DIAF - 2 "BG] - CH = 0 (9.7)
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Tne solutions of equation (%.7) describe the set BI(S’M’I>X)‘
Yhe remaining part of this section is organized as follows,
First, necessary conditions for SI(M.1,X) and PI{H,T,X)

are considered. Then szutfficient conditicons for the same
concepts are derived. It is proved that the necessary and
the sufficient conditions are equivalent. In the end of

the section the obtained resulis are discussed and com-
pared. The concept of 83I(7,X) is alsoc analysed. Finally,
as an illustration, the obtained results are applied to a

system with & minimum variance controller.

9.1 Necessary conditions for identifiability

Now, necessanry conditions for identifiability for. the model
structure (9.3) will be derived. The definition of SI(H,T,XD
is DI(S,M,I,X) < DT(S,M). It is thus necessary to express

the latter set. Tt is given by the solutions w. ». t. ¢ of

LA = ol

: (2.8)
P ~ i A V)
S B

It i1s shown in S&derstrdm (1873) that the general solution

of (9.8) is given by

A = AL
-~ L7
B = BL (9.8)
C =.CL
where
4

_ -1, . -1 i !

L= 1{2 ) =1 + 2q% R L Z

and the coefficients {zi} are arbitrary. By a direct inser-

tion of (9.9) inte (9.6) it is easy to see that
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DT(S,M) [ DI(S,M,I,X). If the system § is SI(M,T7,X) then
DR (S, M) = D (S,M4,1,%).

A necessary condition for SI{#,1,X) is derived as follows,
Collect the coefficients of the polynomials A - A, B - E

and C - C in the vector x of dimension (ﬂa+ﬁb+ﬂc}. Then
(39.8) describes a n*-dimensional subspace in the X-space.
Horeover, the equation (9.7), which describes the set

D, (S,4,1,X) is in fact a homogeneous system of linear
equations in x. Then a necessary and sufficient condition
for 5I(M,1,X) is that the corresponding linear transforma-
tion has a null space of dimension equal to n*. Since

DT e DI’ the dimension of the null space is always at least
rk.  The dimension is equal to the number of unknowns minus
the number of linear independent equations. Denote the lat-

ter number by p. Then the condition can be expressed as
- = o
I +nb+n o n_

But in view of (9.7) there is an upper limit of o, namely

g, nc—np+k+nb+ng, n,+n, 1

£ Max - ;
P % &, [I’lc np-rna

which after inserting n, gives the following necessary con-
dition for SI(H,71,X)

+n, + - + n_+ +n_-p
{na nytn | max[nf max(qarb, n+n r),

ng f max(k+nb+nc, k+nb+nc-r)} +np

< mlngna~na, ny tk=n; -k, nc*nc] (9.10)
From this calculation it is easy to get the necessary con-
dition for PI(HM,7,X). Clearly (9.10) must be fulfilled.
Moreover it is obvious that also n* = 0 is a necessary con-
dition for PI(M,I,X) since (9.9) gives solutions of (9.8),

Thus a necessary condition for PI(HM,T.,X) can be written as



49,

P

n_ o+ 0, + n_ < max{n.+ n_+n 140~
b ny - { £ max(na ng» notn ),

‘ vax (kin e - 1
g, + nax(x+1b+ncj k+nb+nC r)l qp (9.11)

Note that (9.11) just means that in the system of equa-
tions (9.7) the number of unknowns is less or equal the

number of equations.

9.2 Bufficient conditions for identifiability

Sufficient conditions for identifiability will now be con-
sidered. The solutions of the equations (9.7) will he con-
sidered. Conditions, ensufing that the solutions fulfil {3.9)
will be stated. Since D{z) and H{z) by construction are
relatively prime, all solutions of ($.7) must fulfil

C = DQ
. “ka i
AF - z7%Bg = mq (9.12)
-n
Q = Qz™ty = 1 4 qlz¢l Foeovq e 4
q
where

Ny = mzn{nc—nc+np, max(nﬁ+nf, k+nb+ng)—nh]

The second equation in (8.12) gives aftep multiplication
with P(z)

-~

PLAF-2"%BG] = q[aF-2KBg)

or rewritten

~

FIAP-8Q] = 2 Xg[Bpudq] _ (9.13)
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Assume 10r a moment that 1t follows from {%.10) that the
expressions in the brackets are zern. After mul tinmlica-

tion with D the following equations are obtained

[AP-AQID

i
fas)

3]
D

-~ <8
[BP-BOID

With use of (9.5) and (9.12) these e uations become
q

AC - AC = 0

{9.14)
~ A, A
BC - BC = (

which is nothing but (9.8) rewritten into a new form. Thus
if (5.12) implies (9.1u), then the system is SI(M,7,X). It
remains to give conditions sueh that (9.13) implies (9.14).
S solutlons of (9.13)
and_{B}zQQ is a fac-
or SI(M,1,X) is that
At least one of the following two inequalities is satisfied

Since F and @ have no common factors

i W cocoey

are such tha%ﬁ@F Aﬁ_lb a fdctor Q@

e

R R g .

tor of §§@klhus a suffigTent. 00nd1t10n

A

ne > deg[épng]

k o+ ng 3 deg [AP-AQ)
0r expressed in a more compact way

n, = max[nf*max(nb+np5 ﬂb+k~k+nq)5

-~

K 4 ng - max(ﬁa+np, na+nq)}a 0 (9.15)
Sufficient conditions for PI(M,T,X) can easily be derived
from the discussion above. Suppose that the sufficient con-
dition for SI(M,I S, (9.15) is fulfilled. Then, as mentioned
above, the solutions of (9.14) are given by (9.8}, Thus a
sufficient condition for PI(M,I,X) is

npoz 0 n* = 0 {9.16)



9.3 Egquivalence of necessary and sufficient conditions

The foregoing analysis is sumned up and extended in the

foilowing theorem.

Theorem G,1. Consider the system $ given by (2.1) with the

feedback (8.2) and the model structure # given by (9.3).
Assume that the condition (3.4) holds, Let the identification

method 7 be the maximum likelihood method.
i} If the condition

maX(nf~nb§ng+k~na) - np 3 0 (9.17)

is not fulfilled, then there is no model structure M

of the considered form, such that the system S is System

Identifiable in this model structure M with the iden-
tification method I and fhe experimental-configuration
X. HMoreover, if (9.17) is fulfilled, then there is at
least one model structure of the considered form, such
that the system Sis Eystem IXdentifiable, as well as
Parameter Identifiable, in this model structure M with
the 1dentification method T and the experimental con-
Figuration X, SI(M,7,X) and PT(M,7,X). One model

structure M of this kind is given by

n_ = n Iy = Iy, N, = ong k =k

ii) A necessary and sufficient condition for System Iden-
tifiability in the model structure ¥ with the identi~
fication method I and the experimental configuration
X, 831(M,1,X), is (9.10) '

+ - +an + +n -
Ena+nb nc} max[nf may(na ngs n_+n, r),

A

ng + max(k+nb+nc, k+nb+nc~r)] + np

~

g min[na“na, nb+k~nb~k, nc~n¢}
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iii)A necéssary and sufficient condition for Parametenr
Identifiability in the model struciure M, with the
identification method 1 and the expesrimental confi-
guration X, PI{(M,I,X) is (9.11)

~

+ - ma *x{n_+ +1i
n_ + n n x[nf+max(pa N, 0y

a L o x

oo

~

ng, + max (k+r, +0 k+nb+nc—-r)1~é‘€~ M? £ O

-~ ~

min - +k-n, ~k - = 0
,{na n,, Ny k Ny k, n, nc}

Proof: The proof of part 1i) consists of tedious calecula-
tions and comparisons showing that (9.10) and (9.15) are
equivalent. This part of the proof is given in the Appen-

dix.

Part iii) follows from part ii) since the necessary as well
as the sufficient condition for PI(M,I,X) are both obtained
from the corresponding kind of condition for SI(M,T.,X) by

adding n* = 0.

Part i)} is proved as follows. It follows from part ii} that
it is a necessary and sufficient condition for SI(M,I.,X)
that n., x 0, eg, (9.15).

It can be seen after some consideration that n, is a de=-

creasing function of n ny,> n, and ~k. Thus the most

>
favourable cholce of ties; integers is Ngs Ty D and -k.
Then PI{M;TiX3 and SI{M.,T,X) are eguivalent concepts. For
this specific choice the integer‘mq simplifies to np_and n,
becomes

n, = max{nf“nb—np, k+ng~na-np1

Thus 1if (9.17) is not fulfilled, then there is no model
structure M such that the system S becomes SI(M,71,X). On
the other hand, if it is fulfilled, the model structure
given by ﬂa =0, ﬁb 5 My éc = n, and § = k will give
SI{M,T,X), as well as PI(M,7,X). i
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Remark 1. The condition (9.17) is both necessary and suf-
ficient for existence of a model structure ¥ of the con-
sidered type (9.3) such that the system S is SI(M,T,X),

It is clearly not dependent on M,

Remark 2. As shown in Section 5 the system S8 cannot be
strongly system identifiable for the given identification
method and experimental conditions (i.e. SSI(T,X)). This
can be shown explicitly using the result of the theoren.
Choose especially hy = m =1, = nand k = k, which satis-
fiea (9.4) provided only that

n oz max(naanb, nc)

However, straightforward calculation simplifies (9.10)
to

-~

£ m + - - -
n axlng max{n_, n_-r}), ng +k o+ max(n,, n_-r)]

- Max[n ., ng, n,]

which clearly cannot be true if ﬁ is chosen large. This
means that (9.4) is true and that (9.10) is violated. Thus
the system is not SI(M,I,X) for such a model structure, i.e.
it is not SSI(I,X).

9.4 Application to gystems with minimal variance control.

r

Now the obtained results are applied to a system controlled
with a minimal variance strategy. Assume that B(z) has all
zeros outside the unit circle. Then the feedback law ie
given by, see Astrdm (1970),

F(g™") = 2B(z"Yy/p F(a7h)
— ‘-l‘b.— Eadl A —~—
cezty = Atz DyF(a"dy - R (9.18)
S - -k
F(z™1) = 1 + £ 2 L v g,
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For this feedback it can be found by trivial calculations

nf:nb—l-#k
ng = max(nc~k~l, na-l)
np = n, (.15

1

Hiz)y = B(z)z /b

1

The necessary condition (9.17) for identifiability becomes
for this system

n, < max{k-1, ncuna~l)

Since N, > n, - n, - 1, the following condition is in fact
necessary
kz2n, + 1 (9,20)

C

Assume that (8.20) holds. Then two of the expressions in

(9.19) simplify to ng = n,~1eandr =n, - n, +Kk.

The necessary and sufficient condition for SI(M,7,X) becomes

Ny, + ny + o s max[na+nb~l+k, k+nb+na—l, nc+nb—11
(9.21)

+ mi - -ken, - -
mln{na Ny nbak ny kK, n nC]

A necessary and sufficient condition for PI{M,7.X) is obtained
by adding the condition

to (9.21)




18. RUMERICAL ILLUSTRATION

In order o iilustrate the obtained theoretical results some
systems were simulated and then identified. The calculations
nave been carried out on a PDP/15. An interactive identifi-
cation pregram, IDPAC, see Gustavsson, Selander and Wieslan-
der (1973) was applied and the maximum likelihcod. method was
used in all the examples. The given accuracies of the para-
meter estimates are estimated standard deviations. The numn-
ber of data was for all the examples 1000 and +the noise e(t)
was generated as gaussian distributed with zero mean and

variance 1.0. In all the examples with exclusion of Example

10.4 direct identification hasg been used.

Examéle 10.1

The system is

(l+a1q_l+a2qh2)y(t) = q"l(blq"l+b2q"2)u(t) + e(t) - (10.1)

a) = -1.5, a5 = 0.7, by = 1.0, b, = ~0.45

Clearly n, = 2, ny = 2, n, = 0 and k = i. The feedback law is
(1107 M48,07Dule) = (g rgqa” Dy (o) (10.2)

£, 2 1.05, £, = ~0.675, g, = ~1.55, g; = 1.05

Consider the condition for identifiability (9.17). Clearly,
for this case max{nf—nb, ng+k~n§ = max(2-2, 1+#1-2) = 0.
Morecver, n, must be 0 since the C-polynomial is degenerated
to 1. Thus the condition {8.17) is satisfied. The model
structure was chosen as ﬂa S N, ﬁb = Ny ﬁc =N, and Q = Kk,
which 1s the most favourable case. The result of the identi-

fication is given in Table 10.1.



Parameter Theoretical value Cbhbtained results
a, | ~1.5 | ~1.502 + 9.032
a; 0.7 0.706 = 0,062
b, 1.0 1.014 * 0.046
b, ~0.45 ~0.433 3 0.085
v 500.0 525,015y

Table 10.1. Identification results of Example 10.1

Example 10,2

The system and the feedback are the same as in Example 10.1.
However, it is now assumed that k = 1 is not known a priori,

For this reason the model structure given by n o= 2, ny = 3,
o

n, = 0 and k = 0 was tried. Consider the condition (9.15).
For this example '

)
it

maxl2-max{(3+0, 2+1v0+nq), 0 + 1 - max{2+0, 2+nq)}

[ H

max{ 2-max (3, 3+nq), 1 - max(2,.2+nq}} =

"

max[-l-max{0, nq), - 1 - max(0, nq)} = =1 = n,

which is strictly negative irrespective of n,- Actually, the
value is -1, The process is thus not SI(4,7,X). Tt is pos«-
sible to obtain an‘expreséion for. the global minimum points
of the loss function by finding the general solution of (9.6)
for this case., After inserting the numerical values it can

be written as

F e 1 “ r .
Ay ay 1

?.2 r':'l2 “'6.89
bl =10 +u ~-0.65
?2 bl ~-0,73 -
“b3_ _b2‘ | 0.47“
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The result from the identification was

. - - . )
al £.33
a, -0, 54
bl = {-1.18
jugn -3.23
L
] bS“ 3 0.37_

and the loss function has for these parameter values the value
525.0154. A comparison withrTaBle 10.1 indicates that the
loss function has a valley in which it changes very little.

it was found from the identification that the matrix of second
order derivatives has one very small eigenvalue. Also this
fact demcnstrates the existence of the valley. By comparing
the identification result with Table 10.1 the following equa-

tion for the valley can be found.

";1" 1,50 " 1.0 ]
a, 0.71 -0.58
bl = G +u ~-0.65
b, 1.01 ~0.71
53 -0.43 0. 45

N . .. . L .

which is in good accordance with the expected result.

Example 18.3

The system considered is still the one given by. (10.1). The

feedback, however, is simplified to
ult) = g y(t) (10.3)

with g = -0.2., For this feedback ng = n, = 0, and it is

easy to see that the necessary condition (9.17) for identi-
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fiability is not satisfied. The model oprders were chosen as
n, = 2, Ny = 2, n, = 0 and k = 1. It is possible to calcu-
late the gereral solution of (9.8)., It is given by

oy
l»._.
]
o
)
+
ke

=
i
o
N

The result of the identification was that the loss function
has a valley of glebal minimum points. The loss function
changes less than 1G*H in the valley. The computer program

stopped in the pecint

~

a; = -1l.44 £ 0,02
a, = 0.76 £ 0.02
b, o= 0.34 & 0.21
52 = -=0.32 & 0,721

which shows that the system is not SI(M,T,X) for this combi-
nation of M, T and X.

_Exanple 10.4

For this example indirect identification has been used., Two
regulators were used as discussed in Section 7. Tﬁe system
is still given by (10.1). The feedback is given by {(10,3)
with g = -0.2 for the first 500 samples and with-go = -0.1
fer the last 500 samples. The closed loop system i& given by

M vy = <1+mlq”l+m2q“2+m3q‘3>y<t> = e(t)

with
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My F oAy
My =85 7 geby
Ty = ~8,by
The identification results are given in Table 10.2
Parameter g6 -0.2 g, ¥ 0.1

g ~1.45 £ 0.0Y4 -1 47 £ 0,04

m, .84 = 0.07 0.79 £ 0.07

Mo -0.065% 0,0y ~0.041 % 0.0Y4

Table 10.2. Primary identification results for Example 18.4.

In order to find estimates of (al, a,5 Dy bg} the following

overdetermined system of equations must be solved. The

superscript defines the part of the total experiment.

-
1 G
0 i
0 0
1 0
0 1
0 0

This system can be treated in several ways. A natural way

is to compute the least squares solution. After simple cal-

culations it is found to be
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&, 2
) J'fll ml
s 7
2 1 12
- —gémz t B M,
a %
2 1 2
go Eq
?
ﬁ o +
10 T T 2
By 7 By
11 2 2
. gy + gimg
b, = - -
2 (gi)z + {gg)z

From these expressions it is easy to compute the estimates

of the accuracies as well., The results are the following:
6. = o [//T
ay my

1.2 2.2:172; 1 ?
3, sz[(go) ¥ (g2)"] 7 lgo - ggl

Q
H

= 1 2
o) =0 Y2/ |g. - g°|
b1 m2 O O
. 1,2 2.2:1/72
sz = Gmg / [(go) + (go) }

Inserting the numerical values from Table 10,7 the result
given in Table 10.3 is obtained.

Parameter Theoretical value Obtained estimate

ay ~1.5 -1.46 £ 0.03
a, 0.7 .74 + 0,18
b, 1.0 0.5 % 0.5
b2 -0.,u45 -0.34% + 0.18

Table 10.3. Final identification results from Example 10.4.
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Example 20.5

The same system and the same time varying feedback as in
Example 10.4 were considered, but direct identification
was applied using all the measurements simultaneously. The
result is given in Table 10.4.

Parameter | Theoretical value Obtained estimate

+

a, ~1.5 : -1.47% 0.03
a, 0.7 : g.70 + 0.05
bl 1.0 0,82 + 0.28
b2 ~0.45 -0.80 = p.lg

Table 10.4. Identification results for Example 10.5.

Example 10.%

The system is given by

(ivaq D) vt = bg™M ult) ¥ (lreg™h) e(t) (10.4)

a=-0.8, b=1.0,8¢z0.7

and the feedback is the minimum variance control of (10.u4),
which can be calculated to be
2

L +f3g*3> uct) = g yCt)

(l+f1qﬁ.+féq"

£, 2 1.5, £, = 1.2, £4 = 0,96, g, = -0:768

It is easy to see that the necessary cgndition for identifi-

.ability (9.20) is fulfilled. The model orders were chosen
in the most favourable way, i.e. n, = n, = nc': 1 and k = 3,
This means that PI(M, 1, is'e2pected.AThé result of the i~

. dentification is given in Table 10.5. It confirms the theory.




Parameter Theoretiéal value Obtained estimate
al -0.8 -0.77 = 0.02
bl 1.0 1.01 = 0.04
Cl g.7 0.71 £ 0.03

Table 10.5. Identification results for Example 10.6.

Example 10.7

The system and the feedback law are the same as in Example

10.6. However, in this example the model structure given

~

by n_ = n, = n, = 2 and k = 3 was used. It can be seen

a , A ) ‘
from (9.21) that for this model structure the system is not
PI(M,I,X) but SI{M,I,X). The theoretical estimates can be

found from (9.9). They are ‘given by

1

1+ alg' ta,qg © o= (1+aq—l) (1+2q ™)
blqnl + bzq_2 = bqal (l+2q“l)
1+ Ciq— + ezq“Q = (l+cq"l) (1+2q-1)

which after insertion of the values of a, b and ¢ gives the
 theoretical values given in Table 10.6. The parameter § is

quite arbitrary. The obtained estimates differ very little

from the theoretical ones if the parameter & is chosen equal

to -1.0. This means that the obtained model gives an al-
most correct transfer function and that the system in fact
ig SI(M,TI,X).
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Parameter

Thecretical estimate

Obtained estimate

aq -0,8 + 2 -1,78 = 6.03
an =(.8¢ 0.806 £ .05
bl 1.0 0.96 £ 0,06
b2 £ -1.07 = 0.0%
cq 0.7 + 2 -0.28 £ (.03
Cy g.7% -0.70 £ 0.03
Table 10.6. TIdentification results for Example 10.7.
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T1l.  CONCLUSIONG

Tn this seotion the main resulis are summarized. The
assumptions made and the definitions of some of the con-
cepts used are repeated in order to reduce the need of
references to earlier sections and to make the secticn as

self-contained as possible.

The identification of multivariable, linear and time in-
variant systems under output feedback control has been
considered. It has been assumed that the system can be
described by a vector difference eguation. The feedback
law is allowed to be fairly general, In Fig. 11.1, which
is ddentical to Fig. 2.1, a block diagram of the closed
1069 system configuration considered is shown. The sig-
nal u, is a known injected perturbation, while v, and v,
are unknown disturbances acting on the system and in the
feeﬁback loop respectively. Several principally different

cases can be distinguished depending on the structure of

Y4

5,;“ | PROCESS Y

REGULATORj¢———

vy

Fig. 11.1. Block diagram of a closed loop system.
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the regulator and on the existence of the signals uy and

Voo (cf. Section 23}.

Two apﬁroaches to the identification of a system operating
under closed loop are possible. One way is to start by
identifying the closed loop behaviour. Assuming that the
regulator is exactly known, it may then be possible to de-
termine the open loop characteristics. This approach is

called indirect identification. There are several feed-

back cages for which indirect identification cannot be

used. In direct identification, on the other hand, the

measurements of the input u and the output y are used
straightforwardly as in the epen loop case without as-
suming that the system is in closed loop,

*
Most of the avaliable identification methods. can be divided
into twe principally different classes. Methods for which
cau;ality of the model is not assumed are called noncausal
methods. Such methods often fail, e.g. if the feedback law
is linear, time invariant and noise free and if no extra
perturbation is injected. - The other class consists of pre-

diction error methods using a model structure restricted to

models that can be physically realizable. In many cases
such methods can lead to a correct estimation of the open
loop characteristics also in cases where noncausal methods
would fail.

Identifiability concepts have been introduced in order to

be able to characterize the possibilities to obtain reason-
able models by identification. Identifiability depends on

" the system itself, the set of models considered, M, the
identification method used, I, and the experiment conditions,
X.

A system is said to be System Identifiable, SI(M,I,X} if the
estimated model and the system have the same input output

relationship (transfer function) and the same noise
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characteristics. In some cases it is desirable to estimate
certain parameters in a given model structure. If the para-
meters can be estimated consistently, the system is said to

be Parameter Identifieble, PI(M,1,X})., Tt is known that a sys-

tem in open loop is in general SI(M,I,X) provided the expe-
riment conditions are such that the input is persistently
exciting. An open loop system is sometimes not PI(M,T,X)
e.g. due to redundancy in the chosen parasmetrization of

the model structure. For systems operating in closed loop
the property of SI(H4,7,X) may be lost (Example 4.1} regard-
less of how the model structure ig chogsen. Therefore it
would be desirable to be able tc characterize identifiabi-
lity of systems by a concept that is independent of the
choice of model structure., If the only reguirement for
SI{M;IFX) on the class of models considered is that it in-
cludes the true transfer function and noise characteristics,

" then the system is said to be Strongly System Identifiable,
88I{I,X}. If a closed loop system ig SSI(I,X), the identifia-~
bility problem is of the same kind as for an open loop system,

In many cases the identifiability of a system depends ex-
plicitly on the systém configuration. This means that a
detailed knowledge of the system must be available in order
to test identifiability a priori. Such knowledge may, how~
ever, be lacking. It is then not possible to determine if
the system is identifiable by using experimental data
either. The assumed structure for the model cannot be vali-
dated from data, .(cf. Section 8). The only possible way to
. achieve identifiability is to change the experimental condi-

tions, e.g.‘the structure of the regulator.

The main part of the results are derived for direct identifi-

cation with prediction error methods. The main concern has

been to develop conditions for Strong System Jdentifiability.

The. conditions are summarized as follows {(cf. Section 5).
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o I the sysrtem is in open ioop or in closed loop with a

deliberately injected input or in closed loop wivth
noise acting in the feedbaok 100D, the system is SSI(I X)),
provided that the perturbation ~r roise is persistently

exciting.

If the feedback law is linear, time invariant, noise free

O

and 1o extra perturbation is injected, the system 1s not-
S5I(1,4). For this case necessary and sufficient condi-
tions on the system, the regulator and the model for
SIT{M,1,X) and PI(M,I,X) are given in Sectien ¢ for single-
input single-output systems. The conditions for SI(M,I1,X)
and PI{M,7,X) for the most Ffavourable choice of model
structure are also derived, eq. (8.,17). These.conditions
reveal that the question whether it is possible to iden-
tify a single- input Slngle output system depends only on
the structures of the system and of +he pegulator. A
large time delay in the system or a regulator of high
order is most often sufficient fop identifiability,

o If the feedback law is non liﬁear_or'time varying but-
noise free and if nq extra perturbation is injected, the
system is SSI{I,X) except in degenerated cases. A suit-
able and practically feasible way to guarantee SSI(I,X)
is suggested. It is shown to be sufficient to switch
between a number of different feedback laws. This num-
ber depends in a simple way on the number of inputs and
outputs (7.4),

The relationg between indirect and direct identification
have been analysed (Section 6). The results can be summa-

rized as follows.

© Direct identification with prediction error methods is
not restricted in its use. However, for certain expe-

riment conditions identifiability will not be achieved.
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0o Direct identification with noncausal methods cannot be

used for ciosed loop systems (cf. Section 2).

o Indirect identification can be used for closed loop sys-
tems only in certain cases. One such case is if the
feedback is noise free and time invariant. It can also
be used if the feedback is time varying in a special way,
e.g. if the regulator is switched between different known
feedback laws.

o Additional knowledge, viz. the regulator, is always nec-
essary for indirect identification. If the feedback is
noise free, time invariant and linear, this knowledge

_can, however, be easily obtained.

o Direct identification has the same identifiability pro-
perties as indirect identification in all cases when

indirect identification is applicable.

In order to exemplify the possibilities to identify closed
loop systems and to illustrate what .can happen in diffe-
rent situations some numerical simulations are shown {(S8Sec-
tion 190).

The best way to perform identification experiments is often in
open loop with an injected perturbation signal. If this is
not possible, there are in principle three different ways

to achieve identifiability of the system operating in closed
loop. Firstly to use an extra perturbation signal which,
however, may not be allowed e.g. because of the increased
output fluctuations. Secondly to use a very complex regu-
lator, which may be difficult to implement. Thirdly to

switeh between different simple, linear feedback laws during

the experiment, which seems to be an attractive alternative
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in many situations. This may often be possible without
violating the demands on the security and the production
quality. Several different regulators may control the pro-
cess with approximately the same result. In most applica-
tions in process industries the implementation of this
strategy would not be difficult either. However, for many
systems e.g. in economy and biology, it is clear that the
regulator is not disposable. It can often be expected that

the regulator is time varying.

Feedback is generally introduced in order to decrease output
filuctuations. The information content of the signal is

thus reduced. It iz then obvidus that in practice longer
data records usually are needed to obtain accurate models
for systems operating in closed loop during the experiments
than for open loop systems. - The accuracy properties are
under current study. Such a study would give valuable
information oh the applicability in practice of identifi-

s k] . .
cation of systems operating in closed loop.

The analysis in this report has shown that it is always
possible to use direct identification. Tdentifiability
properties cannot be Improved by using indivect identifi-
cation. Therefore it seems to be most attractive to ana-
lyse the data via direct identification with a prediction
error method since such algorithms often are available for
identification of open loop systems.
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APPENDIX
In this appendix the first part of Theorem 9.1 is proved.
The purpose is to show that (5.10) and (9.15) are equiva~

lent. The calculations will be somewhat technical,

Introduce the new variables

n’F:na-na
nb* = Sb + ﬁ Ty k
¥ o= ng -0,
Ngt T g T Mg

S
]

(nf=nb) - (k+ng~na)
Now (9.10) is rewritten as follows.

*' H o # L g -
max{ne+n_+n +max(n ¥, n_*-r), ngfk+nb+nc+max{nb s T *-r) ]

- mi * * % ¥n_*en, *-k+n, +k4n_+n %
np + 3.n[na s Myp¥, ong ] >N+ %y k 5 X ot

b
+
o
¥
A
Y

max[ng-n, +max{(n *, n *-r), k+ng~na+max(nb*, n,*-r)i+

+ min * # ¥] ~n, ¥-n,¥-n, ¥
{na » DR nc ] a.. nb s

n +kh£

s

- % * .. - L £ . +4
(k+ng n ) + max[x+max(n_*, n,*-r), max(ng*, n_*-rj]

* *

. *
+ min{n_*, n *, n ¥l -n -ny -ng (A L)

The expression for ndﬁis written as.
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=
¥
1

g

; % % * - -
mlnigjrnp, max{n_ +n_*+ng, k+ng +tnkm ) nh] ny

min. * ~n, +n_* +n_~n_+4n, *) -
n[nC ) max(nf nytn ¥, k Ry ny¥ny )

wmax(nf—nb, k+ng-na) +r]

if

min[nc*, max(x+n *, ng *) -max{x,0)+r] (A.2)
The sufficient condition (9.15) is rewritten as

- * - —x 5
maxinf max(nb +nb+k k+np, nb+k k+nq +np),

i -ma s * 5
k+ng max(n_ +na+np, na+ng inpﬂ z 0

e wXdkmn - % o < — =7y o * %
max[nf ny k+k np max(nb » g N k+ng I, np max(na > Ng J z 0

np+k~£ ¢maxn,- bnmax(nb*, nq*}, k+ng~na-max(na*, nq*)]

g

np+k~k 3 (k+ng~na) + max[x-max(n*, nq*), ~max(n_*, nq*}l (A.3)

Introduce the difference of the right hand sides of (A.1)
and (A.3) as

* %) = max{x-max * * - * *)i~
F(x, n ¥, ny )} fx ma}’(nb 5 nq ), -max{n_*, ng b3
max [x+ ¥ ¥ * ¥ )] ~
{x m@x(na s N ), max(nb . r)] -
-min * # *7 4p %41 Ken ¥ - ALY
[na 5 nb 3 nC ] na Hb HC ( )

I+ will be shown that F is identical to zero.

First it is noticed that F(x, ng*, n *} = F(-x, nj, nyk )

Thus it is no restriction to assume that n_*% ¢ n,.*.
a = b
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The general situation will be divided inte a number of
¢cases, The second and third argument in F(x,r%f, nb*)
are dropped for convenience.

Casg L. Assume » > 0. Then X = 0, and

1 ¥ = min * *p arn

" [nc > Ny r] and

¥ % Yy . * %o 1 # * ;
F(x) max(na y nq )} max(nb > n*-r) mln(na > 1, ) o+

+ %4 *
na nb +nc

Case 1.1 Assume further that nc* £ nb*+r. Then né* = n, and
( - * %Y oy %o " %Y apn Kap %ep ko
F(x) max(na > NL*) ny*-min(n_*, n,*} ngangFen 3]
Case 1.2. Assume instead nc* 2 nb*fp. Then nd? = n§=+r and
= =-mas * Bip ) —mp % ~n_%¥4p %k l*+ #
Fix) max(na ) Ty +1) N *4r-n_ ny¥eng#en

fi

-(nb*+r) +r+nb* = T
Case 2. Assume ¥ = 0. Then
nq* = min[ne*, max(x+na*, nb*)wmax(x,ﬁ)}

Flxd

it

max{x~max(nb*, gq*), ~max(na*, nq*)}
- max[x+max(na*, nc*), maxfnb*, nc*n
- min[na*, nb*, nc*]+pa*+nb*+nc*
This case will alsoc be considered in two subecases

Case 2.1, Assume further nc* Fe na*. Then
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F = maX[{x-n, ¥, -p *] - * g Elep Fap ¥ ® «
(%) Eony*, -n * ] emaxlxan ¥, ng *¥l1-n_ *on *eng *en

It

nax 41 % i * - 3 & 3 = 0
[x n s ny 1 -maxlx n ¥, ny 1
Case 2.2. Assume instead n ¥ na*. For this subcase

the analysis 1s further divided by considering x in two

different intervals. For this case
ke * : % #

n £ n < min{n,

a q 1 (nb » Mo )

Fix) = max{x~nb*, ~nq*] -maxﬁx+nc*, max(nb*, n *)}-

-T1 g.‘_{. *+ $+ £
a g TR TYAL

Cage 2.2.1. Assume especially X < mak(o, nb*wnc*). Then

n_ ¥ =z minfn * *
min( BT g )

b
—
-
e
it

—p % . F e # _y ..
ny *+max [x, ny*-min(n *, n, ]

-n F- max -n_*)] +n, *+n *
c max [x, (o, ny, - 3] BN,

]

max[x, m&x(nb*~nc*5 031 -max{x, max(0, nb*—nc*)}

Case 2.2.2. Assume especially x 3 max(G0, nb*-nc*). Then

x+n_ * = mi % * *
X nq m1n£x+nc , max(x+na s Ty %]
mi + # * = %
> min{x n, ¥, ny i 0y
This gives
= Vn- s r E 3 ¥ * *
F(x) X-ny¥-max {xin ¥, ny 1 oy kN

¥

= jpempy Ee - - a
X=n, ¥-xtng G _ B




