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. Abstract

Many of the power systems of today are probably the largest MIMO-systems
(Multi Input Multi Output) ever built by mankind. A lot of research has been
done during the last twenty years about tuning of damping equipment in power
systems. Damping equipment of concern in this thesis are PSSs (Power Sys-
tem Stabilizers), SVCs (Static Var Compensators), and HVDC (High Voltage
Direct Current) links. A large number of design techniques have been presented,
from conventional SISO-design (single input-single output), root-loci design to
modern techniques such as LQ-design and MIMO-techniques (multi input-multi
output). Unfortunately, the existing control design techniques cannot cope with
large power systems, which models typically have more than 2000 states. Either
the techniques are too time consuming for the designer or the computational
demand is far beyond the capacity of modern computers. Another important
feature, which seldom is included in the models or the design procedures, is the
characteristics of the load. Especially the voltage dependence of the load has
a major impact on the performance and tuning of parameters concerning the
PSSs and the SVCUs. The frequency dependence of the load becomes important
in connection with HVDC links.

This thesis focuses on four major topics: (1) Modelling of a large power sys-
tem with respect to slow oscillations (two states/generator); (2) Aggregation of
large power systems with preservation of the slow dynamics; (3) Finding proper
feedback structures for the different damping equipment for the siting and tun-
ing analysis; (4) Formulation of an optimization problem for tuning of control
parameters applicable to damping equipment in a large power system.

Ounly slow and system wide modes are of concern i this thesis, i.e. modes
with a frequency less than about 0.8 Hz. Faster modes are rather well damped
due to the damper windings in the generators. At the most a three state concept
for damping is enough. For slow modes, though, a two state concept is enough,
which is also pointed out in this thesis. The optimization problem is tested for
200 parameters and the tuning works well. This amount of parameters covers
the need of tuning of slow modes in a large power system.
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Preface

The goals of this thesis were formulated during the first half of 1986. During this
period a guest professorship was funded by Sydkraft AB and Vattenfall. David
Hill from the University of Newcastle in Australia held this professorship. An
ultimate question, which we tried to answer, was how to tune damping equipment
with respect to slow oscillations in a large power system. This led to the research
results which are reported here.

During 1987 a research program was presented for-the:Nordic Fund for Tech-
nology and Industrial Research. The decision was that the project should go on
for another two years period. Most of the educational program was also planned
at this stage. Courses concerning control theory and mathematics were read at
Lund Institute of Technology. Power system theory was examined at the Tech-
nical University of Denmark, DTH. An essential period ef experiences shall also
be added to the basic knowledge. The author has worked 3 years at Network
Control, ABB, three years at HVDC, ABB, and eight years at Sydkraft AB, of
which five years at the operational department.

This thesis points out some interesting research fields concerning control of
large (power) systems, e.g. modeling with respect to interesting dynamics, anal-
ysis of inherent structures, application of modern numerical and mathematical
methods, synthesis of a MIMO-system. The universities have a great opportu-
nity to develop new methods and tools concerning large systems. Therefore the
industry of concern should make long term investments in this field and support
research institutes so new tools can be foreseen in the future. The joint research
between DTH, LTH and Sydkraft AB must be considered successful. Hopefully
the reader get interested in the combination of large power system and automatic
control.
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Introduction

1.1 Aims of the Thesis

A power system is probably the largest MIMO-system evér built by mankind. A
lot of control activities take place every moment. This thesis focus on control of
slow Electro Mechanical Oscillations (EMO) or power oscillations in large power
systems, e.g. several hundreds of generators.

The EMOs can be illustrated by the following mechanical analog. A number
of masses, representing the inertia of the generators in the electric system, are
suspended from a “network” consisting of elastic strings, the latter represent-
ing the electric transmission lines. The system is in a static steady state, with
each string loaded below its break point (corresponding to the fact that each
transmission line is operated below its static stability limit). At this point one
of the strings is suddenly decoupled and recoupled after a short period of time,
representing a breaker operation after e.g. a hit of lightning on a certain line.
As a result the masses will experience coupled motions, and the forces in the
strings will fluctuate. The system will settle down to the same equilibrium state,
characterized by the same set of string forces (i.e. the same line powers in the
electric case).

In a power system the machine angles will start to oscillate relatively to each
other. The amplitudes are regarded to be within the limits for linear analysis, i.e.
Small Disturbance Stability Analysis (SDSA). These oscillations can also start
spontaneously and are not due to elements with highly nonlinear characteristics.
When these spontaneous oscillations appear the damping will be the critical
factor for power transfer. The limit of the transfer capacity is set by damping
demands. In other cases the transfer limit of power can be set by transient




Chapter 1 Introduction

conditions or thermal demands of the components in the power system. The
EMOs are in general damped by PSSs. Also SVCs and HVDC links are used for
this purpose.

The dominant control activities in a power system are to keep the frequency
and the magnitude of the voltage within certain stipulated limits. The frequency
control is executed by the turbine regulators. These regulators change the active
power input to the generators dedicated for frequency control. The frequency de-
viation is the input signal. Also Automatic Generation Control (AGC) is used for
frequency control, higher up in the control hierarchy. The AGC control is mainly
used when several big power areas are interconnected, e.g. the Nordel power sys-
tem. The voltage control in a large power system is executed by several devices,
such as: shunt capacitors, shunt reactors, tap changers on the transformers and
thyristor controlled SVCs and AVRs.

The terminal voltage of the generator is controlled by changing the magne-
tization of the synchronous machine. This is arranged by an Automatic Voltage
Regulator (AVR). A lot of control activities are also taken place in the power
plants, such as: control of pressure, temperature and heat flows.

The EMOs caused large problems during the 1960’s when interconnection
of power system was a new challenge for power engineers. Many medium-sized
power systems were connected to large power systems using tielines. In order to
run the system with a reasonable stability margin it was necessary to set power
limitations on certain branches or cut sets. These limitations were determined
through simulations. In the early sixties an intensive research period started in
order to master the EMOs. Figure 1.1 shows the distribution of the EMOs in the
Nordel power system. After 1973 the EMOs occurred rather seldom. The expla-
nation is that the first 400 kV cable between Zealand and Sweden was installed.
In the early 1970’s also the ties between Sweden and Norway were strengthened.
Some serious EMOs have occurred during the 1980’s. Damping equipments of
concern at this time were PSSs (Power System Stabilizers) and HVDGCs (High
Voltage Direct Current links). Many different design techniques were presented
for the PSSs. The HVDC links had already been used for damping purposes (Pa-
cific Intertie). In the early eighties also SVCs (Static Var Compensators) were
taken into operation for damping of EMOs. The PSSs are added on devices to
the regular AVR systems of the generators. Some overall questions arise:

e Which are the important generators, i.e. generators which have a major impact
on the energy of the slow system wide modes?

e How to tune the parameters of different control laws corresponding to PSS-,
“SVC- and HVDC-equipment coordinated in a large power system?

Previous analytical methods of power systems concerriing EMOs are not appli-
cable to large power systems. The models are too detailed and demand super
computers for being used.

10
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Figure 1.1 Distribution of the EMOs/month in the Nordel power system.

Also the design techniques of today can not be applied to a large power sys-
tem, except the SISO-concept. The SISO-concept covers one generator swinging
against an infinite bus, but in slow and system wide oscillations the interaction
between the generators is significant. The formulation of-the optimization prob-
lem is also very crucial for successful selection of control parameters. In generally
all optimization based on linear quadratic theory (LQ) and pole placement are
not applicable to large power systems due to the computer time needed.

After an extensive study of state of the art concerning EMOs, it was clear
that the dynamic damping problem of large power systems need further research,
especially on the methodology side and development of new tools. These tools
must be tailor made for the EMO problem and with special attention to the slow
EMOs. The aim of this thesis can now be summarized in the following items:

1. Development of a model that well describes the slow dynamics of large power
system. The model must also include important characteristics of the load.
Only small disturbance stability analysis (SDSA) is considered.

2. A numerical reliable model is of great importance.

3. In a coordinated way include all kinds of damping equipment for siting and
tuning analysis.

4. The result will be graphically presented.

5. All methods used must be numerical stable and fast in terms of CPU-time.

11




Chapter 1 Introduction

6. Important results of the research will be verified against complex nonlinear
models accepted by power engineers throughout the world (PSS/E or SIM-
POW). In this thesis special attention is paid to the verification of the model
and the augmented damping introduced by the developed methodology.

1.2 Previous Work

Introduction to power system stability, nonlinear (transient) stability and steady-
state stability can be found in Anderson and Fouad (1977), Elgerd (1971, 1983)
and Akke (1989). A nice survey of dynamic stability problems and techniques for
introduction of damping is given in Yu (1983). This book also describes different
kinds of equivalencing techniques (dynamic equivalents based on coherency).

Generally it can be stated, that tools and methodology available today
hardly can be used for design and analysis of inherent quality of large power
systems. The methods are too time consuming.

Firstly, time simulations with nonlinear models is not a tool for synthesis of
control strategies of large power systems. Secondly, eigenvalue and eigenvector
analysis of a linear model, with all kinds of control devices included, of a large
power system is unrealistic with computers available of today.

Eigenvalue and eigenvector analysis, though, seems to be a successful way if
the number of non important states are drastically reduced with respect to slow
power oscillations. }

None of the modern MIMO-concepts can be applied ta a large power system.
The largest number of machines included in a coordinated design technique, in
the literature, covers 16 generators. See Akke (1989). Only PSSs are considered
and integrated with the AVR system. Intercommunication between PSSs are
also established. LQ-design is used in a MIMO-concept and three states per
generator is used. Twenty-two hours were needed for the LQ-design on a modern
workstation (SUN).

Other authors are using LQ- and pole placement techniques. The methods
are applied to a three-machine system in average. See, e.g., Arnautovic et al.
(1987), Lefebvre (1983), Siwakumar (1985) and Wilson and Aplevich (1986).
The SISO-concept can always be applied, but for slow and system wide modes
it can hardly lead to a successful design for a large power system, see deMello et
al. (1980). :

Generally, it must be emphasized that only important dynamics shall be
modeled due to the control problem and especially for large power systems. A
three-state model per generator (Akke (1989)) will cover most of the need for
EMO analysis. For slow modes it is enough with a two state concept, which is
pointed out in this thesis. Most of the designers of today use too many state. See,
e.g., Abdalla et al. (1984), Lefebvre (1983), Siwakumar et al. (1985), Vournas

12
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- et al. (1987) and Wilson et al. (1986). deMello et al. (1980) and in discussion
Abdalla et al. (1984) clearly points out that a two-state model is enough for
study of the eigenvectors concerning the dynamics of the generators.

A crucial thing is therefore to find a proper model describing the EMOs in
a large power system and allow nonlinear loads. Another important question is
how to include important system properties, e.g. load characteristics.

Important system properties to include are the frequency and voltage depen-
dence of the load. Especially the voltage dependence of the load is very important
to include. Power system stabilizers (PSSs) and Static Var Compensators (SVCs)
affect the voltage to introduce damping.

Modern numerical differentiation techniques used for linearization of the
systems, have the disadvantage that the designer loses insight of the modeling
and the structure of the system. Many of designers never talk about, e.g., voltage
dependence of load, see Castro et al. (1988), Chow et al. (1989), Abdalla et al.
(1984), Arnautovic et al. (1987), deMello et al. (1980), Lefebvre et al. (1983),
Nolan et al. (1976), Rudnick et al. (1983), Siwakumar et al. (1985), Vournas et
al. (1987), and Wilson et al. (1986). The siting of damping equipment depends
strongly on the voltage dependence of the load and actual load flow conditions.

The most common siting techniques of today use the sensitivity analysis of
the eigenvalues with respect to control parameters. See, e.g., Lefebvre (1983),

Nolan et al. (1976), Vournas et al. (1987) and deMello et al. (1980).

The author strongly recommend the use of sensitivity derivatives for siting
analysis, because the derivatives depend on the assumptions about the voltage
characteristic of the load and the actual load flow. Some.designers use the com-
ponents of the eigenvectors for selecting the most impd{‘tant sites for PSSs, see
deMello et al. (1980). The author do not believe in these techniques because it
doesn’t necessarily imply that the real part of the sensitivity derivative also has
the largest negative value for selected machine.

It is better to use the mass-scaled eigenvector in this case, but still the
last statement is not necessarily fulfilled. deMello et al. (1975) do mention
the properties of the load concerning dynamic stability but it is not used in
the design, deMello et al. (1980). This can be explained by the models used.
The most commonly used models are generator oriented (Anderson and Fouad
(1977)), rather than network oriented (Bergen and Hill (1981)).

To consider analytical aspects of power system dynamics and security, it is
of utmost importance to use a structure preserving model. A structure preserv-
ing model is used throughout this thesis. This model also gives a technique to
robustly site PSSs and SVCs with respect to the voltage dependence of the load.
No papers mention these robustness aspects of damping equipment. No overall
siting technique for SVCs in a large power system can be found. Only local cri-
teria are analyzed, see Ledwich et al. (1982), Ledwich (1983), Kinoshitu (1979),
Fujiwara et al. (1981) and Padiyar et al. (1986).

13




Chapter 1 Introduction

The HVDC links, in general, are not sited from a damping point of view.
Until now the links have been used to damp inter-area oscillations and improve
the transfer capacity of power in an AC-system.

This thesis presents a technique to determine alternative points for mea-
surement of the frequency deviation to improve the damping of HVDC-links. No
paper presented of today describes a model of a large power system and models of
PSSs, SVCs and HVDC links integrated. This implies that no one has described
a tuning procedure for these equipments.

Optimization techniques specifying constraints on the eigenvalues can hardly
lead to a successful solution, see Siwakumar et al. (1985). The inherent aim of
modern optimization routines is to take the largest possible step in the best
direction for reaching an optimal solution. The eigenvalues are, in general, also a
highly nonlinear function of the control parameters. The Jacobian matrix must
therefore be updated numerically, which will overload any modern computer.
From a numerical point of view it is also bad to calculate the eigenvalues.

The whole analysis is focused on slow and system wide modes of large power
systems. Many machines participate in the system wide modes. Therefore a
multi-input and multi-output concept must be used, see Brockett (1970), Fried-
land (1986) and Kailath (1980). The optimization technique must include tuning
of all damping equipments dedicated to damp system wide modes. In thls thesis
one way of a successful optimization is presented.

When developing new software for large power systems it is also of great
importance to have a technique to reduce large power systems. The aggregation
technique presented in this analysis preserve the dynamics in the low frequency
range of power oscillations. This method is based on finding coherent machines
among the chosen modes. A new definition is introduced. Another very impoz-
tant aspect of this new definition of coherent machines is, that the grouping of
the machines do not depend on any kind of disturbance. Only Geeves (1988)
uses a similar technique. The other authors (Gallai et al. (1982), Germond
and Podmore (1978), Wu et al. (1983), Young et al. (1988) and Zhou et al.
(1985)) use different kinds of performance indices. This index-technique is ap-
plied to reasonable large power systems (approximately 20 machines) and only
large disturbance stability (LDSA) is considered.

Oshawa et al. (1978) uses Liapunov-function analysis for definition of co-
herency. None of this methods can be applied to a large power system. Podmore
(1978), though, has applied his technique to 295 generators. The method seems
to be time consuming.

The coherency technique in this thesis only demands that the user specify a
certain frequency window in the low frequency range and then the computer will
present the coherent groups within a couple of minutes for a power system of 250
machines. The low frequency dynamics is preserved during the aggregation.

14




1.8 Contributions of the Thesis

. 1.3 Contributions of the Thesis

At an early stage it was clear that the development of a model for slow dynamics
should be an important factor throughout the research. After a serious analysis
of models, available in the literature, it could be stated that in general too many
states are included in the models in terms of computational time needed for our
research. A linear model was developed and verified against a detailed non-linear
model. The outcome was that a two-state/generator model is enough to model
slow oscillations. The AVR-system can be considered fast and the dynamics of
the governor systems can be considered as slow in comparison with slow power
oscillations. The frequency and voltage dependence of the loads are included in
the model. These properties are free to vary in the model.

During 1986 also an embryo to a siting program was developed, but this
program could not be applied to a large power system. Early in the start of
this project, it was clear that a tool for aggregation of large power systems was
needed. The states in the developed linear model are easy to interpret physically.
Using this insight into the physical interpretation and the analogy with coherent
light sources, it was straightforward to define a new coherency technique. This
technique doesn’t depend on any applied disturbances, which other coherence
techniques do. The need for aggregation was twofolded: *

s

1. Reduce the time for development and testing of programs.

2. Possibilities to reduce the number of free control parameters during the coor-
dinated tuning. ‘

The basic demand of the aggregation was that the ché’fééteristics of the slow
modes should be preserved during the aggregation. This is also shown in the
thesis.

In the early 1987 it was clear from the results, that it should be possible to
develop a program for siting of damping equipment in a large power system. At
this stage, it also was clear that graphical presentation of the result was the only
way to deal with the presentation of results. The siting program can handle 250
generators connected to a power system. A new and important insight of the
siting problem was how different load characteristics affect the result.

A cluster point of problems occurred when the optimization problem should
be formulated. For a large power system, it is a question of tuning about 200
parameters with constraints and other constraints functions. The Jacobian ma-
trix for the constraint functions must, in general, be updated numerically due
to incidents between the damping equipments. This implies that the introduced
constraint function must be reasonably easy to update. By investigation of pa-
pers written about this problem, e.g., specifying constraints on the eigenvalues,
can hardly lead to a successful solution. Reasonable demands on the values of
the control parameters may be:

15




Chapter 1 Introduction

1. The parameters of the controller must vary when the process gain varies, i.e.
(in our case) during heavy and light load conditions.

2. The characteristics of the load must affect the values of the parameters.

3. The tuning must guarantee specified damping at least for the slow and system
wide modes. *

4. The natural frequencies of the power system must be affected as little as
possible. Especially, the frequencies must not be decreased in low frequency
range during the tuning. The inherent damping of the generators are poor in
the low frequency range.

The computational time must also be reasonable from practical point of view.
The method must also be numerical stable. These demands were fulfilled by
introduction of a new constraint function aimed for large power systems. The
verification of the designed PSS-controller, clearly shows that the optimized val-
ues have a significant impact on the damping of slow modes. A multivariable
theory is used throughout the thesis, because many generators are interacting
during slow and system wide oscillations.

The analysis covers the following issues:

1. Design and verification of a model aimed for slow modes. The model is simple
enough to allow states for very large power systems, but includes nonlinear

loads, PSS, SVC and HVDC.
2. Qualitatively definition of slow and system wide and slow local modes.

3. Definition of a new coherency concept. This procedure-can reliably producé a
reduced order model within given bandwidth.

4. Sensitivity analysis of PSSs, SVCs and HVDC links with respect to slow and
system wide modes and voltage dependence of load. Theoretical insights into
network conditions favoring improved damping from various damping devices.
Also the speed of calculation is improved by theoretical insights. The left
eigenvectors are known when the right eigenvectors are known for the uncon-
trolled system.

5. Coordinated tuning of PSSs, SVCs and HVDC links with respect to slow and
system wide modes and voltage dependence of load. The optimization proce-
dure does not involve repeated calculations of eigenvalues and the procedure
is extremely fast. Two cpu-hours for tuning of roughly 200 parameters.

6. Robustness against load characteristics, change of load flow and topology.'

7. Improved methodology for presenting mode and sensitivity information for
very large systems by graphical means.

8. All results from the different sections are applied to the Nordel power system.

16
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Figure 1.2 The Nordel main grid, 1988.
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Table 1.1 Transmission lines in service 1988 (K M).

400 KV 220-300 KV 110, 132, 150 KV

Sweden 10 051 5 192 15 000
Norway 1 687 5231 9 600
Denmark 924 247 3 500
Finland 3 259 2 477 ' 13 650

Table 1.2 Installed net capacity (MW) in 1988.

(MW) Sweden Norway Denmark Finland

Hydro power 16 112 15 647 10 2 648
Wind power 8 0 200 0
Thermal power 17 561 314 7929 9 620
Total 33 681 25 961 8 139 12 268

1.4 The Nordel Power System
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Figure 1.2 shows a map of the Scandinavian countries with the Nordel main
grid included. The grid covers a huge area (1300 km in the east-west direction and
1740 km in the south-north direction). Iceland is excluded in this presentation
of the Nordel power system. ’ N ‘ ’

The trunk line system in service Dec. 31, 1988, is shown in Table 1.1. The
net installed capacity in Nordel was bout 80 000 MW during 1988. Table 1.2
shows the distribution of the installed capacity per country. The main idea
by the interconnection of power systems is to create the possibilities to utilize
the installed capacity more economicly and increase the availability of electric
energy. The transfer of power between the Nordic countries is therefore of great
importance. Table 1.3 shows the exchange of electric energy in 1988. All figures
in the tables are fetched from Nordel 1988, annual report.

The dynamic model of this huge interconnect power system in terms of
constants, states etc. is given in Case 3 below. More complex models are used
today for analysis of different stability phenomenon. At the start of this research,
the 224-machine case was a commonly used simulation model of the Nordel power
system.

All calculations in the different parts of the thesis have been applied to three
different cases. The original system consists of 224 machines representing the
Nordel power system. This system has been reduced with respect to preservation
of the slow dynamics. The new coherence technique has made this possible and
tv‘vo other systems have been created, 44 and 21 machines.
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1.4  The Nordel Power System

Table 1.3 Exchange of electric energy in 1988 (GWh).

Export from Import to

Sweden Norway Denmark Finland
Sweden - 1138 3 475% 3 058
Norway 4 466 - 2 287 5
Denmark 189 27 - -
Finland 409 - - -

* From southern Sweden to Zealand/reverse: 2814/156 GWh.
From southern Sweden to Jutland/reverse (HVDC): 661/33 GWh.

Data for the non-linear models including generators, governors, AVRs etc. and
the corresponding simplified model used in the thesis:

Case 1: 21 machines
766 constants
81 variables

265 states
Corresponding simplified two-state/generator model
consists of 42 states. i e
Case 2: 44 machines

1388 constants

88 variables :

480 states e
Corresponding simplified two-state/generator model
consists of 88 states.

Case 3: 224 machines
7329 constants
617 variables
2518 states
Corresponding simplified two-state/generator model
consists of 448 states.

If everything of interest should be presented for all three cases, the thesis should
be very thick. The result of interest will therefore be presented for a mix of all
cases. Due to the coherently aggregated models, it does not matter which case is
shown in principle. These cases are used throughout the thesis for exemplifying
the result of the developed methods.

The verification of the two-state/generator model in Chapter 2 uses Case 2 as
a reference. Especially the calculated eigenfrequencies of the two-state/generator
model are compared with resonances in the much more complex model of Case 2.
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Chapter 1 Introduction

To show the result from the new coherency technique in Chapter 3, all cases
are naturally used. The slow and system wide modes are compared in all cases.
The eigenvector components are compared and must describe the same swing
pattern in all cases. Otherwise, the dynamic properties are not preserved during
the aggregation. Only the two-state/generator model is used in Chapter 3 to
exemplify the developed method.

The robust siting technique in Chapter 4 is exemplified by the simplified
model of Case 2 and Case 3. The result from the coordinated tuning of control
parameters corresponds to the simplified model of Case 1 and Case 3 (Chap-
ter 5). Finally, the verification of the introduced damping by using the result
from Chapter 5 is simulated on the complex models of Case 1 and Case 3.

1.5 Outline of the Thesis

Chapter 2 describes the design of the model and special emphasis is paid to
important system parameters and assumptions behind the choice of model.

Through physical interpretation of the state representing the model, it is
possible to define a new coherence technique. Chapter 3 describes this subject.

Chapter 4 gives information about the siting problem associated to the dif-
ferent damping equipments. Important system parameters are varied in order to
get robust sites. The siting technique uses sensitivity analysis.

The coordinated tuning and formulation of the optimization problem was the
last, but not the easiest, crucial task to solve, Chapter 5 describes this subject.
The choice of a proper constraint function is motivated in terms of an example,
but it is also motivated to some extent in Chapter 4. Thé gradient of the trace of
the system matrix is related to the sensitivity derivatives as shown in Chapter 4.

Chapter 6 summarizes all knowledge found in the earlier chapters and the
theory is tested on complex nonlinear models. These simulations show that the
augmented damping is significant.
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A Structure Preserving
Multimachine Model

2.1 Introduction

The first goal of the thesis is to create a simplified linear structure preserving
model for slow oscillations of a large power system, i.e. a model for small dis-
turbance stability analysis, SDSA. A structure preservirig-model preserves the
to’pology of the network. P- and @Q-injections are used at the nodes when the
model is derived. This makes it easy to include non-linear loads. The basic
demands of the model are:

e The low frequency dynamics of the model must be well modelled.
o Possibilities to vary the load characteristics must be included.
e Possibilities to include control laws for PSSs, SVCs and HVDC links.

As earlier mentioned the model used for EMOs requires a system wide rather
than a single generator view. In Appendix A a general structure preserving
model is derived. For slow and system wide modes it is possible to make some
approximations or assumptions, which simplifies the model in Appendix A. The
validation shows that the assumptions are motivated. Generator oriented models
are described in Anderson and Fouad (1977), Elgerd (1971, 1983). Structure
preserving models are discussed in Berger and Hill (1981) and in Hill and Bhatti
(1987). -

More generalized models, including detailed AVR representation in a multi-
machine concept, can hardly be used to analyze a large power system.
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Figure 2.1 Changes of Uy, Iy and U caused by a load rejection.
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2.2 Assumptions for the Derived Model

The mathematical tools for small mechanical oscillationms are well known from
the theory of classical mechanics, see Goldstein (1970) and Uhlhorn (1986). The
model (KM) is derived below, where K stands for synchronous stiffness ma-
trix and M stands for mass matrix of the power system. The model (K M) is
the most simplified model we can use. It takes into account the inertia of the
generator/turbine and the stiffness of the network.

The basic assumptions are:
1. Constant mechanical torque.

2. Neglection of all electrical generator dynamics, i.e the dynamics of the voltage
control are fast compared to dynamics of power swings.

3. Lossless transmission network.

4. Algebraic (nonlinear) models of load with respect to frequency and voltage
from local quantities (mainly used for siting and coordinated tuning studies)
at generator/load buses. :

5. The rotor angles for each generator are stiffly connected to the angles of the
terminal voltage of each generator.
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2.2 Assumptions for the Derived Model

. 6. The network is in sinusoidal steady-state with transmission lines represented
by series impedances.

All assumptions except items 2 and 5 are natural to do when working with slow
power oscillations. Figure 2.1 shows three quantities, setpoint of the terminal
voltage (V.), field current (I;) and terminal voltage (U) as a function of time.
The load is changed by 10 MW and 150 MVar. The quantities are changed
according to Fig. 2.1. This is a real field test of a generator. We can see that
the transient is over after 5 to 6 periods, i.e. 100 to 120 ms. The AVR-system
is a very fast system. This is needed when a short circuit occurs close to the
generator in order to keep the generator in synchronism. We are working with
oscillations of a period time of 2 to 4 seconds. In this perspective it is reasonable
to assume item 2 above.

Item 5 is motivated by the knowledge that the load angels of the generators
vary little in the low frequency range when the amplitude of the disturbance is
less than 0.1 Hz.

It can be shown that the relative angle deviation (Ad) is:

A§ = =i tan(do)
fo ,

where /
fo = nominal value of the frequency
6y = the angle deviation of |E| and Vr at steady-state operation
Af = frequency deviation from nominal value - '
|Vr| = the magnitude of the terminal voltage of the generator
|E| = the magnitude of the emf of the generator

Typical values of the quantities:
fo = 50 Hz, §o = 30°, Af=0.1Hz

The calculation of A§ gives:
Af=~0.1°

Simulations show that normally the value of Af is less than 0.1 Hz.

When the stiff connection of the rotor angle to the angle of the terminal
voltage is introduced, an error in the relative angle is less than about 1% in the
operative range of the generator. In this perspective it is reasonable to assume
item 5 above. :
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Figure 2.2 No machine reactances included in the aggregation.

£y &
@i_m__!_m
x5 | Yz,

Retamed | Elminated s
bus buses SL;

Figure 2.8 =z, included in the aggregation.
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2.3 Basic Equations of the Nonlinear Model

. 2.3 Basic Equations of the Nonlinear Model

In this section the model used throughout the thesis will be derived. The struc-
ture of the system matrices are also discussed. As seen from Fig 2.2 all load
buses have been eliminated in a regular manner. A power system can always
be written in this way, even if nonlinear load is introduced. This is shown later
in this chapter. If z) (transient reactance) shall be included, it can be done as
shown in Fig. 2.3, which is equivalent to Fig. 2.2 after introduction of a new
loadbus for each machine. From now on we just consider the system structure as
in Fig. 2.2.

From the theory of power systems (Anderson and Fouad (1977), Elgerd
(1971, 1983), Lysfjord et al. (1982), deMello and Concordia (1969), Heffron and
Phillips (1952), Vournas and Fleming (1978), Hill and Bhatti (1987)) the model
used is derived as described below. List of notations is given in Appendix C.

Consider bus 7. We define the net injection .5; to bus 7 as:

S; 28, S, =P, —Pr, +7(Qg — Q1) i=1,2,...,n

The total active and reactive powers leaving the i:th bus via the transmission
lines can be written as (Elgerd (1983, Chapter 7)):

A

n ' 4

Pi=> ‘;V’ csin(6; — 6;) (2.1)
j=1 7Y

o ccos(6; — 6:) - : 2

Qs ; > cos(f; — 0;) . - (22)

where
Ti; = Tj; 7 ;é ¥)
2=
T..T — _—
(2
— i
j#i

z;; is the serial reactance of the line between buses 7 and j.

Motion of the i:th generator

dEk"N2E w,;-u'JiN 2E .
dt ~ kio * w2 -~ U-’_O kioWi
0

where w; is set to wy = 27 - f, rad/s. The nominal frequency is designated by f,.
According to Assumption 5 we get §; = ;. We define -,

Ey,
S,

1

H; =
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ie.,

. 2H; . S,. .
By, = =21 &
Wo

The differential equation of the motion in p.u. becomes

2H; - S,

s w; + Dyw; = Pp,, — Pg.‘. ’ (2.3)

From (2.3) and (2.1) we get
Py, = P; + Py,

i.e., (2.3) becomes

mii - @i + Diw; + Py(V,8) = P, — P, (V,®) (2:4)
where
V= (W, Vs a)y T = (01,0, ,00)
. . ZHi : Sr
—(D'T = (91702’ e 7011,)9 Mmii = wgk!s; '

For n generators the differential equation system can be written as

M@+ DGw+ P(V,0) +Pr(V,5) =P, (2.5)
M = diag(mll, e ,mnn)
DG = diag(D,. .., D)
Equation (2.5) is called the General Swing Equation (GSE). The algebraic equa-
tion for the reactive power is, according to Eqs. (2.1) and (2.2), @, = Qi+ Qu,.

For SDS analysis this equation is always considered to be fulfilled. The generator
never reaches any limitations.

2.4 Linearized Structure Preserving Model

The General Swing Equation for Small Oscillations

Assuming that P,, is constant and small disturbances, the general swing equation
becomes:

M AG + [DG + 04(Pro)| AT + 06(Po)AF = —8y(Py + P1,)AV  (2.6)
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2.4 Linearized Structure Preserving Model

D 2 DG +6,(Py,)
B £ —8y(P, + Py,)
K2 0s(Po) synchronous stiffness matrix

K, 2 —0v(Py) voltage stiffness matrix

i.e.,

MAG+DAG+ KA =BAV

Now we derive the Jacobian matrices

Pi = Z V;V’ sin (Hi — 91)
j=1 Y
OP; ViV;
T m..J cos(8; — 6;)
g Y
oP; _ ViVi

F T — cos(0; —0r); i £k,

i.e., the sum of the elements in each row of the K-matrix is zero and the matrix
is symmetric, because z;; = zj;.

8P, 8 (Vi -V, |
5, = BV { E > sin(6; — 01)} = E o sin(6; — 0;)
i=1 ]751
OP; 0 [ ViV; Vi . -
= 3 — U3 = i 6 )
oV, 0V {j.——l Tij sin(8 01)} T ik sin (8 i iAk

Vs V.
Z —-—L sin(Gj — 0,;) = — Z L sin(gi - 0]')

i#i g#i M

i.e., the sum of the elements in each column of the Kjy-matrix is zero and it is
skew-symmetric (off diagonal) if Vi, = V; V k and 1.

Assumptions of load characteristics gives

Pr, = Pp,(V;,w;)

2
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i.e.,
OPr, BPLlo BPLnO
ov ovy T 8V,
B?LO — dia 3PL10 BPL,,,O
w8 0w, 77 Bw,
D = diag Dz-l—aPL"); 1<i1<n
Ow;
BPi aPLi
B = - 21 — 9 1 <n,1<3<
() ~aoe(Te): 1sismigizn
Summary

The equation of motion for small oscillations is

{MA5+DA§+KAI9'=BAV @)
AT = AT
where ¢

K = 8¢(Py) ‘

B = ——BV(T)—Q) - diag<6§‘20> v |

, v C(28)
D = diag <Di + 8P’f°> ,
S,
M = dmg( w05>

The equilibrium condition is

The designations K and K, is according to Heffron and Phillips (1952). In this
paper, though, K is called K;.

The assumptions made for simplified implementation are: Equation (2.7)
can be obtained from Appendix A by setting § = 8 and |E’—’| = |V|. We can also

see that Ny = diag 2&'—?9 , Pye = 8,(PF,) and —B = P,. + Nj.
5V; 9 g
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2.5 The Model (KM )

.2.5 The Model (X)

We are interested in slow and poorly damped principle modes. Consider the

homogeneous part of Eq. (2.7) and introduce the approximation D = 0. Then
{M'A()—%KAO .y (2.9)

A9 = AT

D = 0 is motivated by the knowledge of that slow modes have relative damping

less than about 5% in a large power system. This is called the model (KM). M

is a positive definite matrix and K is a positive semi-definite matrix for stable

power systems i.e, |0; — 0;] < 7 (Appendix B).

By preserving the topological structure of the swing equation and by exclud-
ing the damping of load and asynchronous damping power of the generator we
have got a model suitable for linear analysis. Especially we can use the method
for calculating eigenvalues and eigenvectors of large power system. The compo-
nents of the eigenvectors can physically be interpreted as an approximation of
the angel deviations of the machines.

According to Assumption 5, data from a converged load flow can be used in
order to update the matrices in the model (KM ). This speeds up the analysis
considerably. For the uncontrolled system the equations become: ’

d{Ae_]_[ 0 I][M]
dt {Ag)  \-M*K o) lAd

: 2.
[ 0 I] L (2.10)
A= '
-M~'K 0
Eigenvectors and eigenvalues of A(2bn X 2n) are obtained from
AT = DT
=
_ Uiy
(A-XDu; =0; ;= [ _ ]
U4
-1 I ] [ Uin ] ~
=0
~-M-'K —X;1 U;
~
~ AT + 5 =0
—J\/I'_lKﬂ-iu —NTy = 0
=
s = Aiﬂ'-'r,u
— 2.11
{M‘lKﬂ'w—l—A;‘-"ﬁm =0 (211)
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. According to Appendix B we know that ’LZ;I;KTZW = K;;i6;; and ﬁ'};Mﬂiu =
Mi;6;5, i.e.
T T -
u, K ; K;;
N w1 << 2.12
T T Mu, My ='=T (2.12)

Now we get

. [ K .
A =47 —A—J-Té:t]-a,; (2.13)

Let the matrix U, contain all the eigenvectors #;,. Now we can write

UTM U, = diag(M:) 2 Mp (2.14)

Order now the left eigenvectors in a matrix, V,, of the model (K M) in the same
sequence as for the right eigenvectors in U,. We know that

VIU, =1 ie. VI=U]!

From Eq. (2.14) we get

R é

Vo= UD" =M .U, -M3" " (2.15)

A right eigenvector of the system (2.10) can be written according to Eq. (2.11)

as
— Uiy A
U; = . —_
J QG Uiy

and a left eigenvector can be written as

Ui =

[ —j ;- Mg, } (2.16)

M. Uiy

7; belongs to the eigenvalue, A}. By calculating the vectors %;,, the eigenvectors

for the expanded system and left eigenvectors are known. This insight is used
throughout the thesis, especially during the sensitivity analysis.

An interesting similar transformation of the system equations Eq. (2.11) to

do is:

i = (VM )ui,

i.e., ¢, are the mass scaled eigenvector for mode ¢. The system equations become:

Tyl = AiTiy
M7 E(VM) ey + A(VM) ey =0
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2.5 The Model (KM )

. Finally,

I = A Liy
{(V ﬂl)_lK(M)_lxiu + )\2.’13,;,,‘ =0
The matrix (VM) 'K(vVM)™! = K is symmetric and thls implies that all the

z;, can be chosen orthogonal, i.e.
XI(VM)*K(VM)™'X, = Kp

(diagonal matrix and positive semi-definite). The columns of X, are z;,. From
the equations above it is clear that

Kp(i,i) = =A? or M\ =+4j1\/Kp(i,i)=+]«;

i- { 0 I] (2.17)

The new system matrix is

K 0
Kz(\/]\’f)—l'K'(v )—1 Zn 1KD ‘T T ;F,ie K can be written as a

sum of orthogonal rang one matrices, if we order the elgenvalues so that the rigid
body motion is represented by Kp, = 0. "
A right eigenvector of the system (2.17) can be written as:

- Ty
T; =. .
J QT

The left eigenvector (7;) of A for the eigenvalue, A}, is obtained by

_ —J 0Ty
Y = —
L3y,

/

2.6 Separation of Slow and System Wide and
Slow Local Modes

The basic solution of Eq. (2.9) is of the form:
Agi(t) = e tﬁm

From Eq. (2.9) we can obtain the energy for the principle mode ¢ of the power
system.

bY: Y
gl M, = &> M (2.18)

T; = = (AG;)" M AF; = 5

b —
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where

n
y 2 .
M;; = E M5 Uiy, (generalized mass)
=1 |

i.e., v/ M;; equal to the euclidian norm of the mass-scaled eigenvector. By using
Eq. (2.18), it is possible to separate slow local modes and slow and system wide
modes. The different contributions from each group (machine), are ordered in a
decreasing sequence and the energy growth for each mode can be plotted.
The energy growth (TF) for mode 7 is defined as:
TikZTik—l -{—mkku? k=1,...,n, Tl0 =0

U

The ordering of mk;,,u?u‘,c implies that
K- K K
T + T+ < 2T,

The ordering of the machines (eigenvector components) will vary, but we are only
interested in the energy growth. The separation of system wide modes and local
modes is empirically defined as:

If more than 15% of the machines are needed for.the energy growth
to become greater than 80% of T, a system wide mode (i) is found.
Otherwise a local mode is found.

Figures 2.4 to 2.7 show the energy growth for four different modes concerning
Case 3. Figure 2.4 shows that 33 (15%) of the machines contribute with 80%
of the normalized value. This mode (0.248 Hz) is considered to be a slow and
system wide mode. Figure 2.5 shows that 53 (24%) of the machines contribute
with 80% of the normalized value. This mode is also slow and system wide.
Figures 2.6 and 2.7 show that 4 (2%) of the machines contribute with 80% of the
normalized value. These modes are considered to be slow and local modes.

Only slow and system wide modes are of interest in this thesis. These are the
troublesome modes to control and MIMO concept is needed. In the literature
different kinds of modes are described, but no technique for finding different
modes is described. For local modes a SISO concept can be used for design of
proper damping equipment.

2.7 Validation of the Model with Respect to
Slow Oscillations

The validation of the model (K M) is based on two basic questions:

1. How well are the machine angle deviations of a nonlinear model approximated
by the model KM in the low frequency range?
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2.7 Validation of the Model with Respect to Slow Oscillations

. 2. How close is the sinusoidal steady-state swing pattern of the nonlinear model
at resonance an eigenvector?

These questions are answered in the following procedure.

Only Case 2 is considered (44 machines). The model (K M) is validated by
excitation of resonances of a much more complex model. The nonlinear model has
428 states of which 88 states corresponds to the swing equation. The states which
describe the deviation of the machine angles, when a sinusoidal disturbance is
introduced, are of great interest. The eigenvector components of the model (K M)
is an approximation of the angle deviations of the nonlinear model. By comparing
the mass scaled angle deviations (max value) at sinusoidal steady-state condition
with the mass scaled eigenvector components for corresponding machines, the
swing pattern of the two models can be studied. No PSSs were installed and the
mechanical torque for each machine was constant during the simulation. Only the
AVRs were installed and a full nonlinear model of each generator was simulated.
This is an open system simulation. The nonlinear model contains, however, the -
natural damping introduced by the damper windings of the generators.

The simulation is done by using PTT’s simulations package, PSS/E. The
procedure for finding the resonances was executed in the following way: The
dynamic model of 44 machines (Case 2) was disturbed by a sinusoidal signal with
a frequency calculated by the model (K M). When the transient has settled (after
roughly 50 seconds, real time), the machine angles of each machine are compared
with corresponding eigenvector component of the model (KM). The disturbed
machine is selected by checking which machine has the largest component in
the mass scaled eigenvector. The AVR-reference of the selected machine was
disturbed by this sinusoidal signal. The amplitude was Seleécted in the range of
(0.1-2)% p.u. The eigenfrequency was varied around the K M-value until the
largest machine angle deviations were found in sinusoidal steady-state.

When the resonance had been found, it was of great interest to see how
close the machine angle deviations of the nonlinear system were corresponding
eigenvector components. The structure of the damping matrix of the nonlinear
model is very important. This can be understood for a general second order
system. The structure of the mass- and stiffness-matrix are the same as for the
model (K M). If the KM-orthogonal eigenvectors also diagonalize the damping
matrix, we have found an eigenvector. If the damping matrix can be written as a
linear combination matrix can be written as linear combination of M and K we
are through. Even when the original damping matrix is diagonal with positive
elements, it is not necessarily diagonalized by the eigenvector matrix of the model
(K M). With this background, it is hardly not believable that we have excited a
true eigenvector for the nonlinear system.

In order to check if the eigenvector components of ‘the machine angle devia-
tions in the nonlinear model (482 states) had been excited, the sinusoidal signal
was removed after an even number of periods when the transient has settled.
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Figure 2.8 Comparison of the machine angles of the nonlinear model (482 states)
and the eigenvector components of the model (K M) (88 states). Case 2, mode #1
according to Table 3.2, ) /
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Figure 2.9 Comparison of the machine angles of two opposite swinging generators
after the excitation signal is removed. Case 2, mode #1 according to Table 3.2.
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Figure 2.10 Comparison of an excited eigenvector of a nonlinear model (482 states)
and the eigenvector components of the model (K M) (88 states). Case 2, mode #2
according to Table 3.2.
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Figure 2.12 The machine angle for minor participating machine.

The result is shown in Figs. 2.8 to 2.12. Figure 2.8 shows the machine angle de-
viations for Case 2, marked with +, compared with the g;igeﬁirector ‘components
from model (K M), marked v7. The mode shown has a K M-eigenfrequency of
0.264 Hz. The resonance frequency was found to be 0.256 Hz. The sinusoidal
was removed and Fig. 2.9 shows the machine angles for two significant opposite
swinging generators. The damping for these two machines can be calculated to
be 0.1. The relative damping is less than 0.06. This implies that it is not un-
realistic to work with a model with damping matrix equal to zero. The method
used is the logarithmic decrement, i.e.

1 A;
Ai = Eln <Ai+k>

Td _ Tperiod

Aaverage

This is an experimental calculation for a damped sinus represented by
A.e /T sin(wt + ¢)

where Tperioa = 2m/w. The amplitude of the sinusoidal disturbance was 0.005
p.u. Figures 2.10 and 2.11 show the most significant opposite swinging generators
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2.7 Validation of the Model with Respect to Slow Oscillations

for the next system wide mode (0.346 Hz). The experimental calculation of the
resonance frequency was 0.329 Hz. The amplitude of the sinusoidal disturbance
was 0.005 pu.

Figure 2.12 shows the machine angle of a minor participating machine for
mode 0.264 Hz. The figure shows that a true eigenvector not is excited. But the
author has checked a lot of machines and the most important machines behaves
very well according to the eigenvector of the model (K M).

These figures show that the model (K M) describes the electro-mechanical
slow oscillations of a large power system accurate enough for design purposes.

2.8 The Model (KM) for a General Network

In Section 2.3 we assumed generator/load buses only. We can quite easily rewrite
Eq. (2.5) in a general way.

Order all machine/load buses and all pure load buses in a sequential order.
The P(V,8) for the machine modes is designated by P1(V1,Vs,81,8,). The vector
Vi contains the magnitude of the terminal voltage of the machine nodes. The
vector V¥, contains the magnitude of the voltage of the load buses. The vector 6,
contains the angle of the terminal voltage of the machine buses. The vector 6,
contains the angle of the voltage at the load buses. =« ¢

All matrices and vectors of the GSE-equation are spht in this way. The GSE
in the general case becomes:

[Mll o] [51] . [DG ,o] [51] . [E(Vl,vz,ol,oz)] .
0 0 4, 0 0 g, Py(¥1;V2,64,6,)
+ (FLl(‘/l’VZ)wlwaZ)] . [—-_P-’In]_]

FLz(Vl)VZawlyw2) U

Small disturbance stability is studied and from Assumption 1 we have

[M11 o] [Ai;"l] [DG o] [Ao‘l]
" + |+

0 0 Af, 0 0 AD,
ov, P, 0v, Py 0, P, 0,7, | AT,
[avlﬁz Ov,Py 89, P, 592752] A,
AG,

AV,

[BVI?LI avzﬁLl 3“,175[,1 sz?Ll] AVZ [

ov,Pr, Ov,Pr, 0.,P1, 0.,Pr, Ad,

A,

-+
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Chapter 2 A Structure Preserving Multimachine Model

We also assume that szﬁLl = 0, awz'ﬁLl = 0, 6V175L, = 0 and BWI—PLZ =0,
i.e. the loads only depend on local values of the voltage and the frequency. The
linearized model becomes:

[M11 o] [A§1] | [(DG+6W1'P'L1) 0 ] [A§1]+
0 0) | ag 0 8u, P, ) | AB
[ 06, P1 892151] [A'él] B

aol-ﬁz 892 ﬁz A-H_z
_ [ 6\/1 (?1 + FLl) 8Vz_p1 ] [ AVl ]
B dv, P, dv,(Py + 8y, Pr,) AV,

This is the correspondence of Eq. (2.6) for the general case.
The system equations above is now of the form:

[Mn 0] [A51]+[D11 0 ] [A51]+
0 0 Ab, 0 Dy A,

n [Kll K12} [Apl] _ [Bu 312] [Af/:l]
KL Ky AD, By, Bzz/ AV,

g, L&

(2.19)

The quadratic stiffness matrix is again positive semi-definite. It is well known
that the Schur complement of this matrix preserves the properties. It can be
shown for a general stable power system that the submatrix Ky, always is non-
singular (Lemma B.3, Appendix B)."

The equations can now be written as:

M11A§1 + DnAél - K12K{21D22Aéz + (Kn - K12K2"21K’irz) Af, =
= (B11 — K12K33' Ba1) AV + (Biz — K12K53' Bys) AV,

The generalized model (K M) is
M1 A8y + (Kiy — K12 K35 KD) AF; =0

This equation has the same properties as for the model (K M) in Section 2.5.
The eigenvalues and eigenvectors can now be calculated.

The sensitivity studies will be changed. If the weak coupling between angles
and magnitudes of the voltage is set to zero, it is possible to show that AV, is
a linear transformation of AV;. To show this, the reactive power equation also
must be used.

Further details is found in Appendix A. The general case is beyond this
thesis and is not more discussed.
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2.9 Compulational Aspects

2.9 Computational Aspects
Most of the computational features of the model (K M) are summarized below.

System Assumptions

e No load damping

e No asynchronous damping of the generators

Features of the Model (K M)

o Calculating A? instead of ) i.e., we gain roughly a factor of 8 with respect to
computation time.

e The numerical accuracy of eigenvectors and eigenvalues can be checked by the
quantity A? = K / M;;.

o Validation of the model (K M) can be done by reasonable amount of work.
e If more than two eigenvalues are zero, the network is not completely connected.

e The coherency of generators can easily be applied to this model and can phys-
ically be interpreted.

e For the uncontrolled system only the half of the right_eigenvectors need to be
calculated for sensitivity analysis. /

2.10 Conclusions
Modes faster than about 0.9 Hz are rather well damped due to the damper
windings in generators and load characteristics.

It is a difficult task to master tuning of e.g., PSS-equipment for slow modes.
The model (K M) is intended to provide a good base to continue with aggre-
gated models of power systems and do siting and coordinated tuning studies for
damping equipment in general. The nonlinear model includes governors, AVRs,
6 states generators, which shall be compared to 2 states for each machine in the
model (K M).

The electro-mechanical properties of slow oscillations in a large power system
are described well in the model (KM). Two states per generator are enough.
Especially the mass scaled eigenvectors carry information of sites with significant
impact on a certain mode. The sensitivity derivatives in the next chapter carry
more information about important sites because the voltage dependence of the
load is included.
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Aggregation of Large
Power Systems

3.1 Introduction

In general, large power systems demand a large amount of manpower for dynamic
studies. In many cases, it is therefore a need to reduce the order of the system
from different aspects. Many stability analyses concern only a local area of
the power system. The surrounding area is then regarded as external. The
external power system is then aggregated with different techniques. As long as
the interacting effect of the external system on the study system can be faithfully
represented, the behavior of the various machines within the external system is
of secondary interest.

The control problem in this thesis can not regard any part of the system as
external. Mainly two demands are the base for this new coherency technique:

1. Speed up the programming and testing of the developed methods in this thesis.

2. Give possibilities to reduce the number of the free parameters in coordinated
tuning procedure (Chapter 5).

The second item is not used, because the tuning procedure can handle the intro-
duced number of free parameters without any problem.

The slow and system wide modes of oscillation are quite tricky to stabilize
adequately by means of the available damping equipment (e.g., PSS). There are
also problems during the commissioning, especially to verify a suitable tuning of
the PSS equipment. That is why we pay attention to slow system modes when
we aggregate the generators.

42




3.1 Introduction

A new technique is described for aggregation of generators in a (very) large
power system. The technique of aggregation focuses on slow system oscillations
to be used in siting studies and coordinated tuning of control parameters for dif-
ferent damping equipment, particularly PSSs (Power System Stabilizers), SVCs
(Static Var Compensators) and HVDC (High Voltage Direct Current) links. The
equivalent parameters for the turbine governors and synchronous machines are
calculated as weighted mean values of the parameters of included governers and
machines in the coherent group. Model parameters for voltage control, power sys-
tem stabilizers etc., have the same control characteristics as the largest machine in
the coherent group according to Edstrom (1985). The primary advantage of this
procedure is that the definition of coherent machines within a certain frequency
window can easily be interpreted physically and the definition is disturbance in-
dependent, i.e. no disturbances are applied to the power system for coherency
analysis. Other definitions of coherency are shown in the references of papers
concerning coherency, aggregation and reduction of power systems. The defini-
tion of coherency in these papers is mainly based on the quantity |Ag;(¢)—Ag;(¢)]
in different performance indices, where Aé; is the angle deviation of machine 3.

Oshawa and Hayashi (1978) show another approach of defining coherency
using Liapunov-functions. These definitions are used for large disturbance stabil-
ity analysis (LDSA), as well as for small disturbance stability analysis (SDSA).
The coherency of generators will depend on where the disturbance is or distur-
bances are applied in the power system and will also depend on the frequency
spectrum of the disturbances. It is also difficult to inject enough energy in all
modes of the power system, because different modes require different amount of
energy to achieve comparable angular deviations. A modal:coherency technique
for grouping of generators is used by Geeves (1988). i

In Chapter 6 of Yu (1983) three different types of dynamic equivalencing
techniques are described. The techniques are:

1. The modal approach
2. The coherency approach
3. The estimation approach (Kalman filter)

These aggregation techniques are based on a two system concept. One of the
systems is the studied system and the rest of the power system is regarded as
external. The external system is then aggregated to one or several equivalent
machines.

In our case, we can’t consider any part of the system to be external, because
the generators interact in the slow system wide oscillations. That is why a new
approach for aggregation is introduced.

The key features of the coherence analysis in this thesis are:

e The characteristics of slow system wide modes are preserved during the reduc-
tions.
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Chapter 3 Aggregation of Large Power Systems

- o The aggregation of the generators is independent of the excitation.

e The slow and poorly damped system modes are considered only.

Easy physical interpretation of coherency.

Fast and reliable computational method.

3.2 Coherency and Aggregation Method

We know that the eigenvector components of the model (K M) are an ap-
proximation of the angle deviations of the generators. From linear theory we
know that a general deviation of the machine angles are, to a large extent, de-
scribed by a linear combination of the slow principle modes.

Now we are ready to formulate the definition of coherent groups of genera-
tors.

DEFINITION 3.1

The eigenvalues of the model (K M) and corresponding eigenvectors are ordered
in decreasing order,i.e. A2 > A2 > ... > A2_, > A2 = 0. Then cut out a certain
A-window, i.e. select a certain number of slow modes, and define the following
set: - /

S = {Sk | sri =sign(ur: )k =1,...,1, A, < || < A}

3.1
Ac = upper limit (rad/sec) (3.1)

uy; = eigenvector component (angle deviation)
for generator k and mode i € A-wiidow
n = number of generators

Let the number of modes within the A-window be p.

Two machines (I,m) are said to be completely coherent if the scalar product of
corresponding §; € § and S, € S has the following quality:

5 Sm=0p (3.2)
O

The definition is independent of time and excitation signals according to Egs.
(3.1) and (3.2). The definition treats all the machines equal, even if a machine
participates very little in a mode or the whole chosen spectrum. Naturally, it is
possible to define a concept: nearly coherent machines. In this case we will get
a “grey zone” of nearly non-participating machines. The aggregation will give
less number of groups, but the aggregation should depend on the order of the
generators. After a few tests, we find that the “harder” definition fulfilled our
demands and experiences from simulations of the Nordel system. The definition
above was finally adapted and the aggregation works well.
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3.2 Coherency and Aggregation Method

Table 3.1
Gen # A1} |Az| [As| | As] As =0
1 ~0.01 0.3 0.4 0.3 1
2 ~0.02 0.01 | -0.1 -0.2 1
3 0.7 —0.02 | —0.2 -0.4 1
4 ~0.2 ~0.03 0.3 0.1 1
5 0.01 | —0.9 0.1 0.1 1

We will now use the definition of coherency in an example: Assume a power
system consisting of five generators. Ten complex conjugated eigenvalues are
calculated by the model (K M) of which two eigenvalues are zero (the rigid body
motion). Let us also assume that two of the four principle modes are system
wide. The eigenvectors are shown in Table 3.1. The ordering of the modes is
done for decreasing imaginary value of the complex conjugated eigenvalues, i.e.
[A1] > |A2] > |As| > [A4] > As = 0. The assumptions above imply that the modes
(Az, A\g) are system wide.

In analogy with coherent light, we may say that we have five light sources
with a spectrum of four different frequencies. The electromagnetic vectors (eigen-
vector components) of these frequencies have different directions. This insight
leads us to say that for the two slowest modes ()3, As) the following coherent
groups can be defined:

Group 1 consists of Gen 1.
Group 2 consists of Gen 2 and Gen 3.
Group 3 consists of Gen 4 and Gen 5.

If we now include another mode (Az) the following coherent groups can be defined:

Group 1 consists of Gen 1.
Group 2 consists of Gen 2.
Group 3 consists of Gen 3.
Group 4 consists of Gen 4 and Gen 5.

If we only pick one mode (A4) we will get two coherent groups and so on.

The Aggregation Method Presented Step By Step

1. Given the necessary load flow data, i.e. bus data, generator data, branch data
and transformer data, a simulation package as PSS/E from PTI or SIMPOW
from ABB can be used for calculation of a converged load flow.

2. The necessary matrices for the model (K M) are calculated.
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Table 3.2 Selected system modes.

Case 1 Case 2 Case 3
21 machines 44 machines 224 machines
Mode # Hz Mode # Hz Mode # Hz
1 0.289 1 0.264 1 0.248
2 0.371 2 0.346 2 0.338
3* 0.468 7 0.654 8 0.604
7 0.753 8 0.679 9 0.645
8 0.822 11* 0.848 13* 0.826
9 0.979 12%* 0.866 14* 0.843
13* 0.875 15 0.855
14 0.901

* Modes not accepted as system wide modes

3. The eigenvalues and eigenvectors are calculated for the matrix MK or
(VM) *K(~/M)™1.
4. The coherent groups are calculated with chosen frequency window.

5. With given coherent groups and dynamic data for the power system, i.e. dy-
namic data of generators, AVRs, governors etc., a new reduced model of the
power system can be calculated according to Edstrom (1985) :

6. The outcome from above calculation is new reduced load flow data and dy-
namic data which are used for further reductions if necessary.

e
Ed

3.3 Application to the Nordel Power System

Reduction of Order of a Large Power System

Two dynamic aggregation levels are calculated. The method described in this
chapter is applied to the initial system of 224 machines (Case 3). The coherence
analysis gives 44 coherent groups (Case 2) with a frequency window of (0.1-
1.0) Hz. Seventeen modes are included in this window.

Another coherence analysis is done for further reduction of the 44 machine
system. The frequency window used was (0.1-0.67) Hz, which gives 21 coherent
groups (Case 1). Seven modes of the 44-group system was used. The dynamic
equivalent is calculated again of these 21 coherent groups. ,

At this stage it was considered not to do any further reductions. Only
the slow and system wide modes are considered, i.e. a majority of the coherent
groups (machines) participate with a non-neglectable contribution to the energy,
Eq. (2.18), of the principle modes. ’

46




3.3 Application to the Nordel Power System

_Aggregation Analysis of System Wide Modes

The chosen cases are organized according to Table 3.2. The modes are ordered
from low frequencies to high frequencies for each case. Some of the slow and local
modes are not presented in the table. The modes are marked with the ordered
sequential number. The eigenvalue corresponding to the rigid body motion is
excluded. ‘

The model (KM) is used for calculation of the mass-scaled eigenvectors.
Equation (2.18) shows that the components (deviation of machine angles) of the
mass-scaled eigenvector represents the contribution of the energy corresponding
to a certain mode.

The aggregation of the slowest mode will now be shown. The presentation is
done in two different ways. The first method is based on a more strict comparison
of the eigenvectors and the second method shows the geographical structure of
the modes in the Nordel system. The second method gives only a visual feeling
of the aggregation. Only the two slowest modes are shown. Further information
is shown in Eliasson (1989a). Modes of concern are according to Table 3.2:
Modes #1 and #2 for Case 1, Case 2 and Case 3.

Figure 3.1 shows the mass scaled eigenvector components of Case 3 and
Case 2 for mode #1. To each eigenvector component, from the Model (K M) of
Case 2, it corresponds a coherent group from Case 3. The etgenvector components
of each coherent group of Case 3 are scattered around a solid line, representing
the components of Case 2. Figure 3.2 describes how coherent groups of Case 2
are aggregated into equivalent machines of Case 1 for corresponding mode. These
two figures show that the slowest system wide mode in each aggregation preserves
its structure during the aggregation. This means that-the slow dynamics are
preserved. j

Figures 3.3 (Case 1), 3.4 (Case 2) and 3.5 (Case 3) show the mass-scaled
eigenvector components in a geographical form for mode #1. The larger arrow the
larger is the amplitude of the corresponding machine angle deviation. The largest
amplitudes in both directions are marked with a star and the sign (4, —) of the
arrows corresponds to the sign of the components of the mass-scaled eigenvector.

Figures 3.6 to 3.10 show the same sequence of figures for mode #2. The
figures clearly show that the system wide modes in the low frequency range
aggregate quite well, i.e. the physics is preserved during the reduction. The
coherent groups are marked on maps describing the different cases in the Nordel
power system in Appendix E.

3.4 Conclusions

The definition of coherency given in Section 3.2 can be applied to nonlinear repre-
sentation of a large power system, e.g. Case 3. There exist numerical methods for
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calculation of one eigenvalue and corresponding eigenvector at a time for large
systems. By picking the components of an eigenvector representing the angle
deviations of the generators for selected modes and store them in new vectors,
the definition of coherency can immediately be used. In general the slow and
system wide modes are poorly damped, i.e. the imaginary part of the eigenvector
component is very small compared to the real part. The real part is used for the
coherency analysis.

Many mechanical systems are poorly damped, e.g. the axis of the turbine
and generator. For more complex and poorly damped mechanical construction
the definition can be applied immediately to the states representing displacement.

The slow and system wide principal modes aggregates satisfactory, Case 1
describes Case 3 good in the low frequency range. In this frequency range it is
of great importance that damping equipment acts well when needed.

It was of principle importance to know how the slow dynamics were aggre-
gated, before using the equivalent dynamic models for further investigation of
siting and coordinated tuning of damping equipment of large power systems.

The computation time is drastically reduced for the aggregated models com-
pared to a full system model. Calculation of eigenvalues, eigenvectors, check of
orthogonality (Eq. 2.12) and back check of the eigenvalues (Eq. 2.13) takes about
55 CPU-minutes on a VAX 11/750 for Case 3. For Case 2 corresponding time is
a couple of minutes. '

Finally, and maybe most important, the coherence analysis doesn’t depend
on any kind of disturbance (excitation) signal. This method will give us a firm
base for SDSA analysis of (very) large power systems. The hierarchy of models
enables preliminary studies on smaller models to establish general ideas of siting
and coordinated tuning. The process can be then repeated with more insight on
the large models.

The cases and system wide modes shown in Table 3.2 will be the basis for
the siting and coordinated tuning analysis.
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Aggregation of Large Power Systems
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Siting Analysis of
Damping Equipment

4.1 Introduction

An earlier report (Eliasson and Hill, 1989) gave a technique for studying of accept-
able sites of damping equipment based on sensitivity studies of very large power
systems. Damping equipment of concern for siting studies are PSSs (power sys-
tems stabilizer), SVCs (static var compensator) and HVDC (high voltage direct
current ) links.

The mode] (Chapter 2) used in this thesis is further simplified than the model
given in Appendix A. This chapter will describe the robust siting technique used
in this thesis. Some interesting analytical insights will also be presented.

The sensitivity technique is used for searching of robust sites of SVCs and
PSSs within a chosen frequency window with respect to the voltage dependence
of the load. For HVDC links the sensitivity technique is used for searching of
best places of measurement providing overall good damping within a certain
frequency window. Special emphasis is given to handle large power systems,
voltage dependent loads and alternative measurement schemes. The techniques
are applied to the Nordel power system. Three aggregated models are used
(224, 44 and 21 machines). These models were obtained using the technique in
Chapter 3. )

The frequency and voltage dependence of the load is in general not known.
By measurements the load characteristics can be found. The loads seen from
the high voltage system is composed of different loads, from constant active and
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Chapter {4 Siting Analysis of Damping Equipment

- reactive power loads to impedance loads. A typical industrial load can have the
following composition:

Induction motors, 60%
Synchronous motors, 20%
Other “ingredients”, 20%

Such a load would have the following approximate parameters:

OvP =~ 1.0 p.u./p.u.
Ov@ =~ 1.3 p.u./p.u.
O0fP ~ 1.0 p.u./p.u.
0fQ is of less importance.

The voltage dependence of the loads will play an important role for siting of PSSs
and SVCs. These equipments affect the voltage (magnitude) at the siting buses.
If the control is done in a proper way with known voltage dependence of the
load, it is possible to damp EMOs. The loads increase in general with increasing
voltage.

Due to the reason that the voltage dependence of the load is not exactly
known, a robust siting technique must be used. The sites for PSSs and SVCs
must be good for different load characteristics. The téchnique presented in this
thesis is robust against the voltage dependence of the loads.

The frequency dependence of the loads will influence the impact on the
damping of EMOs by HVDC links. The control concept applied to the HVDC
link will act as a frequency dependent active load. The damping submatrix from
HVDC links will be symmetric and positive semidefirite. It is a well known
property that the symmetric part of a damping matrix will introduce positive
dissipative forces.

The frequency dependence of composite loads is in general positive, i.e. with
increasing frequency the load will increase. If the frequency dependence from
loads is added to the contribution from the HVDC links, it will always give
additional positive damping. In this thesis the links are not sited in the same
manner as for the PSSs and SVCs. Only alternative points of measurement of the
frequency deviations are calculated. At the points of injection for the link are the
frequency dependence of the load equal for all alternative points of measurement.
That is why the positive damping from the link only is considered.

To analyze the stability problem of a large power system, it is necessary that
the used method allows:

Presence of PSSs and SVCs
Presence of HVDC links
Different load characteristics
Possibility of alternative signals

Graphical presentation of results
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4.1 Introduction

. Existing techniques (deMello et al. (1980), Lysfjord et al. (1982), Larsen and
Swann (1981) and Padiyar et al. (1981)) do not cater for above features inte-
grated.

In Eliasson and Hill (1989) a simplified model for eigenvalue sensitivity anal-
ysis, which allows inclusion of these features, is presented. Realizing that we may
need to consider power systems of order of several hundreds of generators, the
basic models of components must be simplified in order to reduce computer time
as much as possible but not violate the properties of the slow dynamics.

Some new procedures will be introduced, such as:

e Method for siting of PSSs and SVCs with respect to slow and system wide
modes and different load characteristics with respect to voltage.

e Method for best points of measurement for given site of HVDC links with
respect to damping within a certain frequency window and loss of communi-
cation.

Some of the most interesting general findings are:

e The role of load modeling in siting turns out to be very important.

o Graphical presentation makes it very easy to study large systems.

e The new Fenno-Skan link (HVDC) has excellent impact on damping with cor-
rect site of measurement of frequency deviation. Also the effect of lost com-
munication is considered.

e Robust siting of PSSs with respect to load characteristics and within selected
slow and system wide modes are presented. '

e Robust siting of SVCs with respect to load characteristics and within selected
slow and system wide modes are presented.

4.2 Simplified PSS Control Structure

The model of the power system is basically described in Chapter 2. The control
is assumed to have the structure:

AVpss = KA + K,y A8
K, = diag (K,.;) (speed error) (4.1)
K,eq = diag (K,eq;) (speed error derivative)

If a PSS is placed at bus i, K,.; # 0 and/or K,eq; # 0, otherwise K,., =
Kyeq; = 0. K,., represents a feedback from angle velocity. K,.4, represents a
feedback from acceleration. This choice is motivated because the most common
input signals to the PSSs are angle frequency and angle acceleration. For the

57




Chapter 4 Siting Analysis of Damping Equipment

- second order concept presented in this thesis, it is of minor interest to include
Kgeq. From now on we consider K,.q = 0. The K,.-matrix is diagonal. This is a
consequence of that only local measurements are considered, i.e. no transmission
of signals between the PSSs is included. For a PSS installed at generator ¢ the
control is:

AVi = K,e, - A6 | (4.2)

4.3 Simplified SVC Control Structure

Alternative points of measurement of SVC- and HVDC-equipment are investi-
gated below. The approach is believed to be new. Consider a SVC equipment
placed at bus ¢ and remote speed transducer at bus [(+) and at bus k(—). The
control law becomes:

AV; = Ksvc, (A8 — Aby) (4.3)

The control law for a given number of SVCs can be written in matrix form:

4

AVsve = TSVC . Ksyo - (TSVO)T- A4 (4.4)

T3VC is the siting incident matrix with dimension number of buses times number
of SVCs.

T5VC is the measurement incident matrix with the same.dimension as T5VC.

Ksvyc is the gain matrix (diagonal) with the dimension number of SVCs times
number of SVCs.

Each column in 75VC and TSVC takes care of one SVC, e.g. if the SVC number
j is installed at bus 4, it will cause TSVC(4,5) = 1 and if measurement takes
place at bus k(+) and bus I(—) will cause 75" °(k,j) = 1 and TSVC(l,5) = —1.
Ksvc(J,7) contains the gain for SVC number j.

TSVC contains only 41 or 0 in each column. T5VC contains only +1 or 0 in
each column.

4.4 Simplified HVDC Control Structure
An HVDC link introduces a frequency dependent active load. Consider a link
installed with the rectifier at bus ¢ and inverter at bus j. The measurements are

taken at bus I(+) and bus k(—). The control law becomes according to Eq. (2.5):

APPC = Kpg, (A6, — Aby) (4.5)
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4.4 Simplified HVDC Control Structure

_ We also assume that control is executed by the rectifier and within the current
margin for the link, which will give

APPS = ~APPC = Kpc, (A8), — A6))
The control law for a given number of HVDC links can be written in matrix form:
DpcAd =TPC . Kpe - (TPO)T . A§ (4.6)

The only difference from the SVC concerning the incidence matrices, is that TPC
contains both +1 and 0 in each column, e.g. if link number k has its rectifier
at bus ¢ and inverter at bus j, it gives T°C(i, k) = +1 and TP°(j,k) = —1.
Otherwise everything corresponds with the SVC case.

4.5 Introduced Damping Structure

It is a well known problem that the inherent damping of the generators and
high AVR gain can give negative damping during heavy load conditions. This
problem is not included in the model used in this thesis, Bécause the second order
concept/generator wants to be investigated.

It is assumed, conservatively, that the damping from damper windings of
the generators can be neglected and the load doesn’t vary with the frequency, i.e.

i
Rt

D, =0
— (4.7)
0.P1L = Dpc
The voltage deviation obtained for the PSSs and the SVCs is
AV = AVpss + AVsve
System equations:
M-Af+ Dpc- A8+ K - Ad = B(AVpss + AVsvc) (48)
Ad = Aw

AVpss = Ko - A§
AVsve =TSVC . Ksve - (TSVC)T . AG
Dpc = TPC . Kpg - (TRC)T
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l.e.
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where

D=Dpc—B-K,.—B- TSVC Ksvo(TSVO)T 2 Dpc + Dpss + Dsve
K = 69(?0)

7 la) = (tw o) (88) 6

[Aa’ o { 0 I
Ag)TE A “ | MK _M-'D

the system equation becomes

In matrix form
With

T = A%
From Eq. (2.17) we saw that the system matrix A can be transformed to a new
system, matrix A. The similar transformation () is given by

°= [( Ag)'l WHO)-I]

and

- 0 I ;
A= -
[—NEI)*KWM‘ Ry
The eigenvectors for the two systems are different, but have the same property
for the uncontrolled system, Eq. (2.11).

4.6 Siting Analysis for Damping Equipment

According to Fadeev and Fadeeva (1963) and Wilkinson (1965) the differential
of an eigenvalue A; of a square matrix A can be written as:

— —
T

8\; = (4.10)

U

where -
; is the right eigenvector of A associated with \;

; is the right eigenvector of AT associated with A
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4.6 Stting Analysis for Damping Equipment

An interesting special case to examine is the derivatives when the feedback gains
are zero, i.e. the uncontrolled system. This corresponds to the initial direction
of movement of the selected eigenvalues when the controller is introduced. This
is used by deMello et al. (1980) too. To calculate the derivatives for zero gains
is motivated by the following: The PSSs and SVCs are restricted to a maxi-
mum change of the bus voltage to 5% and during normal operation the HVDC
links are restricted to change the active load to roughly 5-10% for damping
purposes. These restrictions will give sufficient damping but not increase the
relative damping for the slowest modes with more than approximately 0.1 for a
single equipment. For such small changes of the eigenvalues the eigenvectors do
not, in general, change much either. The analysis of the sensitivity derivatives
with the gains equal to zero will therefore give a good information of where to
site equipment before tuning. Also by varying important system parameters it
is possible to get robust sites. The derivatives above are calculated for each type
of damping equipment and for selected system wide modes.

In order to find robust sites for PSSs and SVCs, the voltage dependence
of the load is varied between two limits. Omnly the active power of the load
is considered. We assume that the load is proportional to |V|®, where |V]| is
the magnitude of the voltage at the load bus. The upper limit was chosen to
1.5 and the lower limit was chosen to 0. The upper hmlt corresponds to 50%
constant current and 50% constant impedance load. The lower limit corresponds
to constant active load. For the HVDC links the sites of the rectifier and the
inverter are considered to be known. Only alternative points of measurement of
the frequency deviations are investigated. The expression of Eq. (4.10) is now
calculated for each type of equipment. '

-

P

The sensitivity derivatives of each equipment are glven in two Ways The
first presented expression is valid for a general system. The second expression is
valid only when the feedback matrices are equal to zero. In the last expression
we know the left eigenvectors when the right eigenvectors are known. The mass-
scaled coordinates are also used for the “zero” case.

Sensitivity with Respect to K,.
For the system matrix as in Eq. (4.9) we get

0 0
0% 4 = [ 0 —9Ks M—1D) ]
5 e < } _ <8K,ED>
D = Dpc + Dkg,, + Dsve
8% D = 9%+ Dy, = 8% (~BK,k,)

—Blg,,
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Chapter {4 Siting Analysis of Damping Equipment

I, is a diagonal matrix with a 1 in position [ if a PSS is installed at bus [,
otherwise zero. Off-diagonal elements are zero.

Summary:

- [0 0 ] _
'vi Uuq
0 M-'BIg,,

i —
'vi u,

0K“’ )\.,; =

For the feedback matrices equal to zero we get

BKSG)\. — 333;( v ]\/I)——l ’ B i IKse : (m—)-—l : miu
T 2

(4.11)

Sensitivity with Respect to Ksyc

0 0
rreae ! )
o%ve (M~1D) = M~ (9% D)
3stcD = BKSVCDSVC

= —BT§" Isvo(Th 9)F

The matrix Isyc is is equal to the unit matrix with the dimension equal to

number of installed SVCs.

’

Summary:

e
e

0 0 _
o [o M—lBTSVCISVC(TgVC)T] ”‘

v;

astc ;=

Uj

For the feedback matrices equal to zero we get

gl (VM)™'-B-TSVC . Igyo - (TSVO)T (VM) ™ - 24y,

5stc X =
2

(4.12)

Sensitivity with Respect to Kpc

§Kbc 4 — [g _HKnc EM‘1D> ]

aKDc (M_1D> —_ _Z\J"1 (BKDCD>
§Epc ) — 6KDCDDC = §frc (T.?CKDC(TELC)T)

=T, Ina(T,°)"
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4.6 Siting Analysis for Damping Equipment

The matrix Ipc is equal to the unit matrix with the dimension equal to number
of installed HVDCQC links.

.

Summary:
— [0 0 ] _
Ui _ u-l
o), = _ 0 M ITPCIng(TRO)T
7T .

For the feedback matrices equal to zero we get

el (VM) TP . Inc - (T2O)T . (VM) - &4y
2

aKDc/\i _ (413)

4.7 Necessary Siting Condition for Positive Damping

The eigenvalues of A are either real or complex conjugated, i.e. the trace of A4,
tr A, is equal to the sum of the real parts of the eigenvalues. This implies that
the trace must decrease when a PSS or any other damping equipment is properly
installed. A necessary condition for positive damping is that the component of
the gradient of tr M 1D is negativé for all load characteristics (robust site).

We now want to make a physical interpretation of this condition.

PSS-equipment: The necessary positive damping condition gives for a PSS

installed at bus i:
0tr(A) B(7,1)

= 0
6Kse,' mi; < o~
Since my; >0V i =1,...,n, we get the condition:
L V. 8P,
B(z,1) = in(f; — 0;) <% — : 0
(2,1) Zsm( j )Xij v <
j#i
- vV, 0P,
= in(6; — 6;) <Z :
Zsm( 3 )Xij < EY7
J#i
= ZP” > -V BBV%‘ because P;; = ?{ZJ sin(f; — 6;)
j#i
Assume that
Py, = ove = v, 08k _ op (4.14)
L; = i BV = L; .
To fulfill the necessary positive damping condition we must require that
> P> —aP, (4.15)

it
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Chapter 4 Siting Analysis of Damping Equipment

For o = 0 it gives that
> Pij>0 (4.16)
j#i
A rule of thumb may now be stated. If it is attempted to install a PSS-equipment
in a coherent group of generators, the group should have a net surplus of power
for all load conditions. The site will then be robust against load characteristics
and different load conditions. If thisis not the case, the sign of the K,.-parameter
may ought to be changed or the PSS-controller should be turned off.
We are now going to extend this analysis for a chosen mode with the eigen-
value A,. Assume that we install a PSS at bus j and evaluate the semsitivity
derivative for A, at K,.; = 0 according to Eq. (4.11). We get

B(1,j)
Ve
6)\3 . :I:T . Lau;
8K.9ej e : 21 /mj
B(n,j)
Ve
s . B .7 . B .
Z——m 1 {IE.‘J'LL]_ B(l,J) +"’+$s-u,j (J J)+"'+$sun (n,])}
2, /m; ymy T /My

The damping matrix is /
D = (VM)"*D(VM)~', D=-B.K,.
where K,. = diag(0...0, K,.,,0...0). From Eq. (2.8) we know that
.- . . OPr;
B(]’J):Z—B('I,,])— BVJ

i#j

Now the derivative becomes

BA - Lou; * Loy mzu- mgu' aPL
' = . L 2 1B(l,7) | - 2 J 4.1
OK,e; Z((Z, 775 /T 2mj> ( ’])) 2m; OV; (4.18)

I#j

Since the feedback matrices are zero, it follows that this expression is real. Ac-
cording to Eq. (4.14) we know that 8P, /0V; > 0. This implies that the voltage
dependence of the load always has a good influence on the real part of A,. Nat-
urally, we always demand that dA,/0K,.; <0.

If the voltage dependence of the load is zero, Eq. (4.18) becomes:

6)\3 i <wsuj * Ty, m3u1>B(l )
. — yJ
0K e, oy 2,/mj/m; 2m;

64




-

4.7 Necessary Siting Condition for Positive Damping

This implies for negative sensitivity derivative that

(5 s o00) 2 o

ey

The site assumes to fulfill the necessary condition for @ = 0, which indicates that
a site can have negative sensitivity derivative for

Z:“WB,] 0 (4.19)

l;éJ

This is not good from damping point of view and especially when we are going

to use the trace of the system matrix during the optimization. We come back to

this problem, but first we look at the quadratic form of the damping matrix.
The equation (4.17) above can also be obtained by

5D XT.D.X
- lsu e 4.20
OK,e, 2 K, (420)

For 0),/0K,.; < 0 it implies that X};DXW > 0, because K,.; is considered to
be greater than zero. : 1

The following can now be stated. For all chosen system modes (A;) and
all acceptable sites of PSSs, it is equivalent to say that the quadratic form of
corresponding D:s and upper half of the eigenvectors is positive.

In the thesis we only consider slow and system wide modes. For these modes,
the statement above also implies that the introduced dissipative forces stabilize
the system for slow and system wide oscillations. For other frequencies we can
not say anything.

Finally, we will analyze the relationship between the sensitivity of the trace
and the eigenvalues with respect to the same parameter, K,.;. Equation (4.17)
gives:

A, Tou; [ o= Tou B(1, ] Th, L
aK - ! l ( 4 ) + 2 : B(]’])
se; 2, /TTL 5 1% /1T m;

We know that 5 B(.)
JsJ

trd) =

OK e, (br 4) ™m;

Now we get

O\ Tsu; T B(L7) | Ty "0
OK,e;  2,/m; = Jmy 2 0K,

(tr A) (4.21)
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Chapter 4 Siting Analysis of Damping Equipment

Equation (4.21) indicates that if

i B(l,5)
Z*"’w: i

I#3

is close to zero, it is a minor difference of the sensitivity with respect to A, and
tr A. The site (j) is selected according to the value of «,,;. From Eq. (2.8)
we know that the sites with large, but less than one, mass-scaled eigenvector
components has a major impact on the energy of the mode. It is even better to
demand that the sum is less equal zero, i.e.

n n

mS‘M' . mSU‘

where P;; is the power going from bus j to bus [. This is a consequence of that
it is always possible to choose z,,; > 0 and z,,; < 1.

Equation (4.22) will give a positive contribution to 2T, D z,, and the dissipa-
tive energy will increase. The expression (4.22) can be used as a search criterion
for selected modes in order to find even better sites than.the derivatives point out

according to the expression (4.19). For sites where Eq. (4.22) is equal to zero,
the derivatives of the trace are approximately the same as for the eigenvalues.

SV C-equipment: The positive damping conditions gives

Otr(4) _ B(hi) B(hi) _ O
0Ksve,  my Mkk

EXAMPLE 4.1
If i # [ and 7 # k, i.e. the measurements are outside the siting of the SVC,

Vi

B(l,z) = —Sin(ez - gl)y—
il

The relation above becomes

B sin(6; — 6;)V; - sin(6x — 6;) Vi o P _ B

muXi MkkXik my Mik

The control law is AV; = Kgvyg, (Aél — Aék). This relation is not dependent on
the voltage dependence of the load. ’ O
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EXAMPLE 4.2

Assume now the measurement at bus [ moves to bus 1, i.e.

Bk, 1)

B(i,i) _

L2

B(k,i) = —sin(ﬂ;c — Hi)

B(i,i) = ) sin(6; — 6:)
i3

Mkk

j#i

Vi

Xk
Vi

oPy,

ov;
)

N

4.7 Necessary Siting Condition for Positive Damping

1 VvV, 8Py, sin (0, — 6;) Vi
R in(9; —6;) =2 i -
™mi; ; sin ) Xi; oV Mk Xik
Vi 0Py, b
= Pi' . - —
mi; Z i my;  OV; ~ Mk
J#i
Assume 5P
a Li
Pr, =CV; ﬁVZaVi =aPr,.. . /
This gives
Z Pi; + aPr, > Py ;:ii = Z Pij > —aPp; + Py :nnii
vy e i . kk
mi;
= Z FP;; > —aPr,; + Py; <1 + )
-y Mk
J#
ik

O

In this case it is not easy to formulate a rule of thumb, but some statements can
be made:

1. If only one line is connected to the SVC-site, i.e.,

Zpij:0:>aPLi > Py <1+ mii)
i#i Thkk

i#k

Assume o = 0 = Py; < 0 & P;, > 0. This means that the SVC-site should
be in the sending end of power.
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Chapter { Siting Analysis of Damping Equipment

2. If Pr; < 0 & P;;, > 0. This means that the area can have a net import of
power and still have an impact on positive damping regardless of a.

3. If Pr; >0 & P <0, then the area can either need to have surplus of power
or import power depending on the relation between —aPp, and Py; —:nll—k“: for
positive damping.

HVDC-equipment: For the r:th link the positive damping condition gives

dtr(4)
BKDCT

= - (mz' +my') <0 e my’ +mj_lc1 >0

i.e., the best impact on the damping is obtained when the measurements are taken
at the stations. In that case the contribution to the damping is m;'! —}—m]-_jl. Then
rectifier is at bus 7 and the inverter at bus j. This might be somewhat surprising,
but the link introduces damping between two machines or groups of machines,
mainly. The measurement of the frequency of the oscillation must therefore be
related to at least one of the machines.

4.8 Siting Procedure | P

The calculations are performed according to Section 4.6. For each type of equip-
ment a certain frequency window is chosen. For the PSSs and SVCs the voltage
dependence of the loads are varied. The loads are varied from constant P (active
power) and @ (reactive power) to a load with 50% constant current and 50%
constant impedance load. The different load characteristics are called CLC and
BLC, respectively. This type of load can be approximated by a load described
by P = Py - V%, where a = 0 represents the CLC-case and a = 1.5 represents
the BLC-case.

For the PSSs and SVCs equipment a basic assumption must be fulfilled: The
derivatives are calculated only for the two load characteristics BLC and CLC,
which demands that the sensitivity derivatives with respect to K79 and K}5°
are monotonic functions of a, where Py, =~ V%, 0 < a < 2. Pp, is the voltage
dependent load at bus 3.

If Ov; Pr, is a monotonic function of a, then the sensitivity derivatives, (4.11)
and (4.12), are monotonic functions of e, because the B-matrix contains 8y, Py,
as an item of the diagonal elements.
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Chapter 4 Siting Analysis of Damping Equipment

_ Statement: Ov, P, is a monotonic function of a if (1 + aln|V;]) > 0 V a;
0<a<?2.

PL,':PO,'[x/‘L'ia; PL,’ZO

0Py, a
v, ‘
92 Py, o|Vi| =
daav, = PulVil"™ 4 ePo =2
= Py, |Vi|*™! + aPy, |Vi|* In |V
ﬁ“@+ahqvn

This implies that (1 + aln|V;|) must fulfill the condition (1 + aln|V;|) > 0 V a;
0<a<?2. O

For a = 2 = |V;] < 0.61 p.u. for change of sign. This value of |V;| is unrealistic,
because |V;| = (1.0 £ 0.05) p.u. for acceptable load flows and other limitations.
For reasonable load flows we can thus assume that the sensitivity derivative also
is a monotonic function of a. Therefore it is enough to calculate the derivatives
at the two extreme values of a. .

A site is considered to be robust if the real parts of the sensitivity derivatives
are less than zero for this two-load characteristics.

The HVDC links are not sited according to the values of the derivatives.
An HVDC link can hardly be installed for damping only. The best points of
measurement are of interest to find for a given site of the rectifier and the inverter.
It might also be of interest to look at what happens when a measurement is lost
for different configurations of measurement.

Robust Siting Procedure for PSSs

The procedure checks all machine sites in the whole power system in order to
find robust and acceptable sites for PSSs. A site is considered to robust and

acceptable, if the sensitivity derivatives are less than zero for the two load cases
BLC and CLC.

The procedure:

1. The slow and system wide modes of interest are selected using the procedure
in Section 2.6.

2. The derivatives are calculated for the BLC- and CLC-case for all possible sites
according to Eq. (4.11). This is repeated for all selected modes.

3. A site is determined to be an acceptable PSS-site if 0k, A; < 0 for all selected
modes and the load cases BLC and CLC.
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Chapter | Siting Analysis of Damping Equipment

4. The PSS-sites which have a negligible impact (small negative values of the
derivatives) on the damping of the selected modes are not equipped with any

PSS.

Robust Siting Procedure for SVCs

The siting procedure is more complicated for the SVCs than for the PSSs. The
freedom to choose points of measurement and the actual site of the SVC causes
this complication. The proposed technique assumes it is possible to transmit
measured frequency deviations freely throughout the entire system.

In Chapter 2 we show that the mass-scaled eigenvector carries information
about the energy distribution of a mode, Eq. (2.18). Let us designate the largest
negative and largest positive components of the mass-scaled eigenvector for I_
and I, respectively. To these components it corresponds a generator at a certain
bus. Lets call these buses for SI_ and SI;, respectively. These sites are important
for the measurement of the frequency deviations. The amplitudes of the frequency
deviations are large at these sites.

The SI-marked buses are used for siting of the SVCs. The procedure regards
that the frequency deviation of these SI-marked buses can be transmitted to any
other node in the system. The SI-marked buses varies from mode to mode. For
instance, for five selected system wide modes, ten signals need to be transmitted
at the most. )

The procedure:

1. The slow and system wide modes are selected using the procedure in Section
2.6. P S

2. The SI-marked buses are determined.

3. For each mode and associated points of measurement, the derivatives are cal-
culated for each site and for the two load cases BLC and CLC.

4. The information from item 3 is then used to determine all approved sites for
each mode. The sites are approved if the derivatives are less than zero for the
BLC and CLC cases. The approved sites per mode are then checked if they are
valid for all modes. By this procedure it is possible to calculate a maximum
number of modes for which the sites are valid. This number of modes is less
than or equal to the selected omnes.

5. The number of accepted sites are presented and the number of modes. If the
number of accepted sites are too few, it is possible to reduce the number of
modes, and recalculate the number of accepted sites.

6. When the number of acceptable sites have been determined, it is possible to
present the derivatives for the BLC case or for the CLC case for accepted sites.

7. In order to be able to simulate the selected sites for SVCs, the best point of
remote measurement is determined. This procedure is adopted, because all
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Chapter § Siting Analysis of Damping Equipment

SVCs of today can only measure the power on lines connected to the SVC
bus. The remote bus, which gives the least real part of the derivative less
than zero, is chosen as best remote point of measurement. The topological
distance from the SVC site is chosen to be one.

8. The Tie-line based control laws for PSS equipment (Eliasson and Hill, 1989,
page 11) are treated according to the SVC concept.:

9. The implemented procedure do not use item 7. The SI-marked buses and
selected modes are used for the robust siting analysis for SVCs

Siting Procedure for the Best Points of Measurement
for HVDC Links

The sites for the rectifier and the inverter is not determined according to any
siting procedure. This technique assumes that the rectifier and inverter for a
HVDC link is determined on other basis than pure damping purposes.

The best points of measurements of the frequency deviations, though, are
of great interest to examine. A realistic assumption is to limit the freedom of
topological distance for the points.of measurements. In our case we have the
limitation of topological distance of one. The conventional way of measurements
are to take the information from the inverter and rectifier sites. /

The procedure:
1. The sites of the rectifiers and inverters are given.

2. The slow and system wide modes of interest are selecied.

3. For each possible point of measurement within the topologidal distance of
one for the rectifier, the derivatives are calculated for all possible points of
measurement on the inverter side within the topological distance of one.

4. The procedure in item 3 is repeated for all points of measurement on the
rectifier side and for all chosen modes.

5. Then the best combination of points of measurement at the rectifier and the
inverter are determined for all modes or the largest possible number of modes
within the selected ones.

6. The items 2 to 5 are then repeated for all links.

7. It is also possible to block transfer of measurements between the rectifier and
inverter, in order to simulate a transducer fault or a communication fault.
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Chapter 4 Siting Analysis of Damping Equipment

4.9 Application to the Nordel Power System

In this section results from the previous described siting procedures are shown,
mostly in a graphical form. All cases and numbers of the modes are according
to Table 3.2. The results are organized in the following sequence:

e Presentation of sensitivity derivatives with respect to the parameters K,. and
variation of load characteristics for Case 2 (44 machines) and Case 1 (21 ma-
chines).

o Presentation of acceptable sites of SVC equipment with given best two points
of measurement for each chosen system wide mode (Case 2 and Case 1).

e Presentation of best points of measurement with respect to overall positive
damping for given site of HVDC links for Case 3 (224 machines).

e Analysis of PSS installed at non acceptable site for Case 2.

e Damping properties of the Fenno-Skan link with alternative measurement for
Case 3.

Robust PSSs Sites

Figures 4.1 to 4.5 show the result from the sensitivity (siting) analysis with
respect to the K,.-parameter. Figure 4.5 summarizes“tle robust sites for five
system wide modes according to Table 3.2, Case 2. Five robust sites are found
for Case 2. A site is considered to be robust if the sensitivity derivatives is less
than zero for the two load cases, BLC and CLC. Figure 4.6 shows the robust sites
for five system wide modes for Case 1. Five robust sites are found for Case 1.
The star-marked buses correspond to SI_ and SI, busés deﬁned in the siting
procedure of the SVCs.

The derivatives are marked near the buses (generators), Fig. 4.1. The cross
at middle of the bus is the origin of the associated complex plane. If the real part
of the derivatives are not greater than zero, the derivatives are shown on the left
side of the bus, otherwise on the right side, Fig. 4.2. Too small derivatives are not
shown, but if the real part of derivatives is greater than zero, the bus is marked
with a cross at the bottom end of the bus. This indicates that the concerned
eigenvalues may be moved in wrong direction, if an PSS is installed at this bus
(generator). The figures 4.3 and 4.4 show the second chosen system wide mode
for Case 2. The result is that the load characteristic is very important for siting
of PPSs. When the derivatives with respect to K,. change sign according to BLC
and CLC, it indicates that the value of the diagonal element of 8y (P,)-matrix
change sign when the 9y (P )-matrix is added (Eq. 2.8). Similar results can be
shown for Case 1 and Case 3 (Eliasson (1989a)).
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Chapter Siting Analysis of Damping Equipment

Robust SVCs Sites

Figure 4.7 shows approved sites for SVCs in Case 1 when a is varied from 1.5 to 0.
The dotted line between an accepted SVC site and a remote bus is the line used
for real time simulation, according to item 7 of the robust siting procedure in
the previous section. The star-marked buses correspond to the SI-marked buses.
Three sites are approved. ‘

The figures 4.8 to 4.11 show the results from the sensitivity (siting) analysis
with respect to the Kgyc-parameter (Case 2). Figures 4.8 and 4.9 show the
sensitivity derivatives with respect to Kgvc. The voltage dependence of the load
is varied from 1.5 to 0. Figure 4.8 represents mode #1 and Fig. 4.9 represents
mode #8. Figures 4.10 and 4.11 show what happens when the voltage dependence
of the load is varied from 1.5 to 1.0. The demand of robustness is decreased. That
is why number of possible sites increase.

For Case 1 only 3 modes out of chosen 5 modes fulfilled the criterion of
acceptable sites.

For Case 2 five modes fulfill the criterion, but only one site is acceptable for
this choice of depth of modes. In the program it is possible to choose the depth
of modes and with a choice of 4 modes, three sites are acceptable for o varied
from 1.5 to 0. Six sites are acceptable for o varied from 1.5 to 1.0.

For Case 3 the depth of modes is 5, i.e. equal to the’demanded number of
system wide modes. The number of acceptable SVC sites are 18. All derivatives
are less than zero according to the described procedure.

This technique to use the sen51t1v1ty derivatives for 51t1ng of SVC equlpment
is believed to be new.

P
o

Analysis of the PSS Control Law at Non-acceptable Site

A PSS is installed at bus #29283 (western Finland) according to the load con-
dition presented in Fig. 4.2. The site is not acceptable from the robust siting
analysis. The K,. was chosen to 0.1 p.u./(rad/s). A PSS at this site with con-
stant active and reactive power load will destabilize the system according to
Table 4.1. Five slow and system wide modes will have positive real parts of the
eigenvalues.

Best Points of Measurement from Damping Point of View
at the Rectifier and Inverter End Based on Sensitivity Analysis

The result is shown in Fig. 4.12. Only one configuration of an HVDC link is
considered. The link between Forsmark and Olkiluoto, the new Fenno-Skan link.

It is clearly shown in Table 4.2 that if the measurement (Aw) at the rectifier
side is taken at bus 17074 and at Forsmark for the inverter side, the derivatives
are more negative than for the conventional measurement. The improvement is
not significant but still an improvement.
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Table 4.1 Eigenvalues when a PSS is installed at a non-acceptable site, Case 2.

Mode # Eigenvalue
1 4.9.10-3 &£ 5 0.264
2 1.2.10~3 £ 5 0.346
8 5.7-10~% 4 5 0.654
9 2.9-10-5 4+ 5 0.679
15 5.3-107% £ 5 0.901 °

The Fenno-Skan Link with Loss of Measurement
at the Rectifier Site or the Inverter Site

What happens when the measurement at Forsmark is lossed, due to malfunction-
ing transducer? The result is shown in Table 4.3.

If the conventional way of measurement is used, it will destabilize the system
because the last mode (#15) becomes unstable. This means that the link has
to be blocked when the measurement not is available at Forsmark or cut out a
certain low frequency window. By using the alternative scheme, the link is stable
for all chosen system wide modes.

Both cases are stable when the measurement is lossed at the Olkiluoto side.
The alternative measurement has at the most a topologica‘l distance of one from
the converter stations.

The Fenno-Skan Link with Kpc > 0

The eigenvalues for KLgmme = 0.45 p.u./(rad/s), base = 100 MW are shown
below. The sequential number according to Table 3.2.

(—0.097, 5 0.248)
= (—0.023,+5 0.337)
= (—0.014, 5 0.604)
= (-
(-

0.000039, 5 0.645)

/\15 = (—0.011, £5 0.855)
The eigenvalues are moved nearly straight into the left half plane.

With this configuration the Fenno-Skan link has a good damping capability,
at least for the two slowest modes, for the whole chosen frequency range of the
Nordel power system.
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4.10  Conclusions

Table 4.2 Sensitivity derivatives with respect to Kpc of the Fenno-Skan link.

Mode # Conventional New alternative
measurement measurement
Derivatives (Kpg) Derivatives (Kpc)

1 -1.6-10-? -1.7-.10?

2 —1.1-10"? -1.2-10~2

8 -7.1-10-3 -9.3.10-3

9 -3.1-10-5 -3.3.10-°

15 —~8.3.10°3 —2.8.10~2

Table 4.3 Sensitivity derivatives for loss of measurement at Forsmark.

Mode # Conventional New alternative
measurement measurement
Derivatives (Kpg) Derivatives (Kpg)
1 -1.4-10"2 ~1.6-10~2
2 -5.3-1073 -6.2.103
8 —1.8.1078 -3.9.10°3
9 ~7.5:10"7 ~2.4-10"°
15 +1.4-1072 -5.8.10-3

4.10 Conclusions

el
-

The sensitivity study gives an indication where to place PSS and SVC equipment
in order to damp slow and system wide modes when different load characteristics
are considered. An acceptable PSS site is a site where the derivatives are negative
real and do not change sign when the voltage dependence of load is varied.

The robust siting technique concerning the SVC equipment is new and gives
stabilizing sites. The siting condition for positive damping gives nice analyt-
ical results concerning the chosen damping equipment, especially for the PSS
equipment, Eqgs. (4.15) and (4.16).

For HVDC links this technique can be used for searching of best points of
measurement of frequency deviation for the rectifier and the inverter.

This technique, i.e. sensitivity derivatives with respect to slow and system
wide modes and different load characteristics, can be applied to very large power
systems. In this thesis it is applied to a power system of 224 machines. When
the eigenvectors for the uncontrolled system are used, i.e. the control parameters
are zero, the left eigenvectors are known when the right eigenvectors are known.
For this special case a very fast analysis of robust sites can be performed.
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Coordinated Tuning of
Control Parameters

5.1 Introduction /
Chapter 4 gives the basis for the coordinated tuning and the verification study
(Chapter 6). The considered damping equipments are PSSs, SVCs and HVDC
links. In this chapter special emphasis is given to handle large power systems
from an optimization point of view. Techniques in the litérature do not cover
tuning of damping equipment in large power systems for slow and system wide
modes.

The ultimate aim of this chapter is to show how the coordinated tuning
can be performed in large power systems. The verification part also includes
suggestion of a new PSS design for slow and system wide modes in large power
systems.

The coordinated tuning put special emphasis on
e Formulation of the optimization problem.

e Importance of load modeling.

e Graphical presentation of results.

Previous techniques do not cover different types of damping equipment, influence
of load modeling and proper siting in large power systems. The coordinated and
optimized tuning of parameters have, in many cases, constraints on the real
part of the eigenvalues, which can hardly lead to a successful optimization in
large power systems. See, e.g., Vournes and Papadias (1987), Lefebvre (1983),
Sivakumar et al. (1984) and Dahlquist (1987).
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5.1 Introduction

Generally it can be stated that models used for generators, AVRs etc. con-
tains too many states for modeling of slow power oscillation. This will naturally
limit the size of the system from an optimization point of view. Important as-
pects, such as characteristics of load, different load cases and change of topology,
are not discussed in the papers mentioned above. ‘

A SISO (Single Input Single Output) concept for tuning stabilizers aimed
for slow and system wide modes can hardly lead to a successful design, which is
the weak part in the papers Larsen and Swann (1981), and deMello et al. (1980).
The design has to use a MIMO (Multi Input Multi Output) concept (Kailath,
1980; Brockett, 1970; Friedland, 1986). The author think that the most critical
part is to formulate a suitable optimization criterion for a MIMO-system of the
size of a power system. In this chapter a special constraint will be formulated
with respect to large systems. The formulated optimization problem with the
constraints fulfills the damping demands of slow and system wide modes.

5.2 The System Equation

We neglect the damping from damper windings of the generators, which is a
conservative assumption. Equation (4.7) gives the system equations: -

M-AG+D AG+K-AG=T0
Af = AT

¥

where

D =TP°Kpo(T2°)T - BK,. — BTSVC Kgyo(TSVO)T £ Dpo + Dpss + Dsvo
K = 84(Py)

The system equations in matrix form are

?c(li_t [ig} = [_MO-IK —MI—lf)] [ig] (5.1)

5.3 General Demands on the Optimization Procedure
All damping equipments (PSSs, SVCs and HVDC link:é) are operating with lim-

itations based on different reasons. The generators are specified according to
IEC 34, which means that the terminal voltage of the generator is not allowed
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- to vary more than +5% during normal operation. The generators equipped with
a PSS must operate under the same conditions.

The SVCs with thyristor control are allowed to change the bus voltage, at
the most +5%. The HVDC links can operate in different modes. We exclude
all emergency modes (SDSA analysis) and consider only small modulations of
the active power. The short circuit condition at the terminals is such that no
modeling of reactive power flow is necessary. The limitation of small power
modulations are normally set to about 8% of rated power of the link. The control
actions for damping purposes are then within the current margin, i.e. no delays
are needed to be modeled for slow EMOs.

These limitations of the operative actions must naturally be included in the
optimization procedure. Furthermore, the parameters (K,., Ksvc, Kpc) are
not allowed to be negative, i.e. only positive values of the parameters are allowed
regardless of the load characteristics and the load flow conditions.

Different load characteristics may affect the values of the parameters. Espe-
cially the voltage dependence of the load affects the values of K,.:s and Ksvc:s.
This is also pointed out in the thesis. In the thesis we determine the parameters
during high load conditions. For other load cases the parameters may change.

The imaginary parts of the poies of the uncontrolled system should not be
decreased, if possible, in the low frequency range. If a reduction of the slow modes
is inevitable in order to fulfill the damping demands, the reduction should not
be more than 10%. This demand is based on the fact that the inherent damping
capacity of the generators decrease when the frequency decreases.

The damping ratio of slow EMOs must not be less than (.1, i.e. the amplitude
of an oscillation of 0.1 Hz is reduced by 50% within 10 seconds.

From the specification above we can now estimate reasonable limits of the
parameters.

Estimation of Limits of the Parameters

PSS equipment: The maximum frequency deviation for small disturbance
stability analysis is not greater than 0.1 Hz. The control law of a PSS is (see
Eq. (4.2)):

AV; = Ky, Af -2
This gives the limit

Hm AV; _ 0.1
T Af-2r 0127

=0.16 p.u‘:/(rad/s)
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5.9 General Demands on the Optimization Procedure

SVC equipment: The control law of a SVC is AV; = Ksvc,(Ab; — Aby) (see
Eq. (4.3)). This gives the limit

Klim AV;

svVe; & m = 0.08 p.u./(rad/s)

HVDC equipment: A current margin of 10% means that 10% of rated power
(P,) of the link can be used for damping purposes. The rated power of the link
is given in per unit value of the system base.
From the control law Eq. 4.5 we get
0.1-P,

Kpg, = 501 9. = 008 P, p.u./(rad/s)

5.4 Qualitative Aspects of the Proposed
Optimization Procedure

As mentioned earlier, optimization based on linear quadratic theory or pole place-
ment technique is not feasible for large power systems due to the computation
time needed. Also methods, which put constraints on the eigenvalues, can hardly
lead to a successful design, because the Jacobian matrix must in general be nu-
merically updated. To put too hard constraints on the maximum step length,
destroys the performance of efficient optimization techniques.

To find analytical expressions for the eigenvalues as a function of control
parameters will limit the number of machines to less thap-10, even if a program
- for symbolic manipulation, e.g., Macsyma is used. ’

The intention of this section is to qualitatively explain the final formulation
in Section 5.6. The intention is to apply an existing fast method to the problem
for a large power system. Motivated by Eq.(4.21) we are going to use the trace
during the optimization. The aim is obvious, the calculation of the trace is fast
in comparison with the calculation of the eigenvalues. In this thesis we will
minimize the trace of the system matrix subject to a special choice of constraint
function instead of putting constraints on the eigenvalues. We come back to the
choice of the constraint function.

We are now going to see what happens, if we try to minimize the trace of
the system matrix, A. According to equation (5.1), the A-matrix is real. The
spectrum of the matrix, A, will therefore consist of complex conjugated and/or
real eigenvalues.

The sum of the eigenvalues will be a real number. This number is equal to
the trace of A, designated tr A. These words can be formulated as

tr A(©) = zn: A(0) =2 zn:Real (M(©) €R VOER
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. Table 5.1 The poles of the uncontrolled and controlled system (a = 1.5, Case 1 (21
machines)).
Mode #1 Mode #2

Uncontrolled +7-1.82 +5-2.33

Controlled —0.97+7-1.30 —-1.9745-0.97
w (%) —29 58

where
K., K,. SO, SVG  gDC DC
0= (@1 L 0K @$VC . esve, of -7@m3)

my -+ my + m3 = m (number of parameters)

n = number of generators

For the uncontrolled system, i.e. ® =0 = tr 4(0) = 0.

The siting analysis (Chapter 4) points out the most powerful sites for the
equipment with respect to load characteristics and selected system modes. These
sites are hopefully such that no mode moves into the right half plane when
tuning is performed. A qualitatively discussion in Section 4.7 has motivated this
statement. The eigenvalues of the closed loop system are calculated when the
tuning is finished. The result of the tuning is accepted only if the poles are in
the left half plane. ‘

The siting procedure points out robust sites where the Ve (tr A(©)) has only
negative components and especially the sites, which decrease the rea,l part of A;
for system wide modes. Therefore, formulatmn of the problem as:

Minimize tr A(©)
QcR™

Subject to 0 < ©; <wu;; 1=1,...,m

will lead to a solution of ®; = u; Vi. The solution is motivated in the following
example.

EXAMPLE 5.1
In this qualitative discussion we only consider PSSs sited according to Flg 4.6,
Case 1. The control law for each PSS is given in Eq. (4.2).

What has happened to the poles of the closed loop system? We are only
interested in the slowest modes in this discussion. The two slowest modes for
the closed loop system and the uncontrolled system are shown in Table 5.1 (see
also Table 3.2, Case 1). The eigenvalues of the controlled system show that no
unstable mode occurs. Some of the eigenvalues, though, are still on the imaginary
axes.
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The trajectory of the slowest eigenvalue shows that the eigenvalue in the

- beginning has a direction into the left half plane. When the values of the param-

eters increase, the trajectory of the slowest eigenvalue has an opposite direction.

The values of the parameters are about in the middle of range when the direc-

tion changes. For these small values of the limits of the parameters, though, the

eigenvalues are not moved into any unstable condition. Other eigenvalues with
larger imaginary values seem to move with a direction into the left half plane.

The trace decreases for increasing values of the parameters, which motivates
the above solution.

As discussed in Section 5.3, the changes of the imaginary values of the poles
are too large. Also the damping ratio is unrealistic for a power system. The
example illustrates that it is possible to introduce considerable damping, but
the swing of the control signals demands unrealistic reactive power swings of the
generators. Also the inherent damping of the generators is poor for such low
oscillations. O

In order not to affect the imaginary parts of the eigenvalues as much as in Table
5.1, we have to find a constraint function, so we can move the eigenvalues more
straight into the left half plane. For large power systems we need numerically
stable methods and constraint functions, which are fast to update.

We are now going to study the trace of AT A, which is equal to the sum of
squares of the singular values of A. Any matrix, especiaily A, can be written as

A=U.-2.vT (5.2)

where U and V are unitary matrices and ¥ contains the ordered singular values
of A. P o
From Eq. (5.1) we get

AT(©)A(0) = [ KM—K KM~2D(©) ]

DT(@)M~*K I+ DT(@)M-2DT(0)
The trace of AT A is
tr AT(0)A(0) = tr KM 2K + tr DT(O)M~2D(0) +n (5.3)
For the feedback gains equal to zero we get
tr AT(0)A(0) = tr KM 72K +n
It might be of interest to present the figures of tr KM~2K for Case 1, Case 2

and Case 3:
Casel: trKM 2K ~84-.10°

Case2: trKM 2K =~ 31.10%
Case3: tr KM 2K ~15.10°
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It is quite easy to show that

e KM72K =) " N* if (VM)TIX, = Xy (VM)
i=1 :
This is, however, not valid in our case. X, is defined in Section 2.5 and M is

the mass matrix of the system. In our case, we can only estimate the norm of
KM™2K, e.g. the 2-norm.

Mmin
Mpax

el < MK < P 255

Mpin is the smallest mass of the generators, My, is the largest mass of the
generators. From Eq. (5.3) we get with PSSs only

A(tr AT(0)A(0)) = tr(B Kye)TM%(B K,e)

Only a few sites out of the total number of sites are occupied by PSSs. If we
extract all PSS parameters for approved sites and store them in a vector ©, we
can reformulate the above equation as:

A(tr AT(©)4(60)) = 07Q(a)0

The parameter a is the voltage dependence of the load. The matrix @ has the
dimension number of PSS times number of PSSs. Since the structure of Q(«)
is Q(a) = diag(B;I'(a) . Bi(a)), the quadratic form of the @)-matrix is positive
definite. The diagonal elements of the -matrix consist of an inner product where

BT(a) = (B(l’i),...B(i’i)(a),... B“”“); z:l #Péss

b
: my m; My

The system structure and the property of the load imply that A(tr AT(Q)A(G))
will increase for increasing ©:s. We also know that

Atr AT(©)A(0)) = A (:V_n: a3>

where the o2:s are the singular values of A. The changes of the o?:s are caused
by the real part of the eigenvalues for small values of the ®:s according to the
siting procedure.

We are now going to use A(tr AT(®)A(®)) in the optimization procedure.
We know that

0P Uty aP
ZB i L _ L
J#1 j#
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5.4 Qualitative Aspects of the Proposed Optimization Procedure

Table 5.2 The poles of the uncontrolled and controlled system (a = 1.5, Case 1 {21
machines)).

Mode #1 Mode #2
Uncontrolled 47 -1.82 +j5.2.33
Controlled —0.77 +5-1.57 —0.41£j-246
Aw (%) —14 +6

The necessary siting condition in Section 4.7 implies that Z;;i P; > 0. We
assume that Pp, = CV®, where V; is the magnitude of the voltage at mode
1. For normal composite loads we know that 6;;" > 0. When we add the
voltage dependence, we increase the diagonal elements of Q(e). The worst case

for damping with PSSs occurs for a = 0, i.e.

n

B(i,i)=-) %-

I T

When o = 0 we need to use the largest control signals, i.e. @7** = 0.16 according
to Section 5.2. We can now calculate A(tr AT(©)A(0)) for all ©; equal to 0.16.
This will give an upper limit (u) of A(tr AT(©)A(0)).. .

Now we go back to a more realistic load characteristic, i.e. @ > 0 for all
loads. The upper limit, u, of A(tr AT(©)A(0)) is now used for all other values
of a > 0. Let us formulate the optimization problem as

Minimize tr A(©) -~ v
Subject to 0 < O; <u;; 1= 1,...,.m . (5.4)
Atr AT(©)A(0)) =

The reformulation of the optimization problem will now be shown in an example
based on Example 5.1 for a = 1.5.

EXAMPLE 5.2
From Example 5.1 we get the numerical value of A(tr AT(©)A(®)) to about 36
for « = 0. All the PSSs have reached their upper limits when a = 0. The
eigenvalues of the two slowest modes of the controlled system with all ©:s equal
to 0.16 p.u./(rad/s) and @ = 0 are not moved at all from the imaginary axes.
The values of the two slowest modes for the uncontrolled system are shown in
Table 5.1.
We do the optimization according to Eq. (5.4) for « = 1.5 and u = 36.
The parameters will now be less than 0.16 because the A(tr A(©)A(©)) grows
when the voltage dependence of the load increases. The result is shown in Table
5.2. The parameters are (0.045, 0.045, 0.050, 0.090, 0.061). According to the
specifications in Section 5.3 we have got a much better tuning.
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The relative damping of the two shown modes in Table 5.2 is
(1 =0.44 (2 =0.16

These values are considered to be very good for power systems. O

These two examples and the qualitative discussion in this section serve as an
introduction to a theoretical analysis in next section.

5.5 Theoretical Analysis of the Optimization Problem

Motivated by the discussion in Section 5.4 we formulate the optimization problem
as:

Minimize tr A(©)
@ ER"’l

Subject to 0 < ©@; <u;; 2=1,...,m
0<A(trAT(0)4(0)) <u
For the analysis we assume that only PSSs are installed. We also assume that no
©;:s reaches any limits and that A(tr AT(G)A(G)) reaches the limit u. Later we

will see that the adopted optimization procedure will confirm these assumptions.
According to Luenberger (1984, Chapter 10, page 301) we can write

1(0,)) = tr A(©) + A (A(tr AT(©)A(0)) — u)

where A is the Lagrange multiplier. The necessary condition for optimzﬂity is of
the form |

Vol(©,)) =0
VAl(©,)) =0

From Eq. (4.9) we get (only PSSs):
tr A(®) = tr(M B - K,¢)
Introduce now a new sequence of numbers ny,...,n; representing the index of

the diagonal elements, where a PSS is installed. Instead of K,., we use ©@,,. Now
we get the trace of A:

tra(9) =y —=r et

ni=1

k
A(tr4T(0)A©)) = > 0% BT B, 207.T.0

=1
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5.5 Theoretical Analysis of the Optimization Problem

where

gy
my my

BT (B(l,ni) B(n,n,-))
I' = diag (B}; + Bn;)

n = number of generators

k = number of installed PSSs
We know from Chapter 4 that

0Py,
Bnnnz (ZB],TL, (9V )

j#En

and v P
n:) = —sin (8 — L
B(j,n;) = —sin(8; — 0,,) % Va

The optimization problem can now be formulated as

Minimize ©7b
Subject to 0 < Op, <wup;; n; =174k
T . T.0—u=0

We have assumed that ©,, never reach the upper limits for normal loads. The
necessary conditions become

b+2X.T-0 =0
T . T - O—u=0

The parameter vector from the first equation is substituted into the second and

we get A:
-1\ _ /T
—\T —u =
( 23] ) ( %) ) u=0

(bTT-1p) '/

2\ =

Finally we get O:
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where
2

9k, (a) = (5TT-19)i7%

-

It is possible to show that (57T~15)!/? has a value in the range
0 < (5TT718)"% < (k)!/2

The value k is reached when no power is injected to any connecting lines for all
the PSS sites. All the power is delivered to the local loads. The value zero is
reached for constant P and @ load connected to all sites and the net export of
power is zero for all PSS sites.

The expression —I'"15/2 is the optimal solution of the quadratic problem

Minimize tr 4(©)+ tr AT(©)A4(0)

For a PSS installed at bus ¢ we get for the quadratic problem

(_ F—1b>i _ B(i,i):ni'_il' (5.6)

2

This implies that PSS-sites, where B(7,7) > 0 must be excluded. If these sites
are chosen, the optimization will come up with 8; = 0. Similar discussion for the
SVCs will impose restrictions on the SVC-sites.

In many cases it is seen from load flow data that the dominant item in the
B(i,1) expression comes from the partial derivation of theload (Py,) with respect

to the voltage (V).

. ) V; O0Pr, OPr,
B(i,1) = Zmn(@i - 9,') ij - 612' N — BVL}

i
oprg,?
n Bz [ B2 1 . Bz -,. BZ . ——.""
$2U0_ 20,260, 200, 3
j=1 13 11 i nn it
6PL¢ -1
N Iy av, E o my mEV; (5.7)
2 )," _rop,\° _, o OPL  2aPi, ‘
: 2 : m;, 2. '
( av; ) : oV

if we assume Pr; = CV®. On the other hand, if the load is assumed to be
constant P and @, i.e.

oPy,

ov: =0
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5.5 Theoretical Analysis of the Optimization Problem

“ the value of (—F—lb) becomes:
1

z
( F_1b> B B(i,1)m;
~—) ==

2> B*(j,iym};
j=1

where

B(i,i) = Y sin(; _e)v ==V, Py

j#d J#i

P;; is the power from node ¢ to node j.
<Z Pij)(miiVi)_
=1 i#i
2 T 2
i —2 2 -2 -2
2V; <Z Piymii +ma <Z Pif) ) (5.8)

i Iy
(miiV')_l o omil
mu 1. Z Pz] 2 Z Pz] /
i ji

Z#z P;; is positive according to the assumption, i.e., a net exporting site of
power. Equation (5.6) makes sense according to Larsen afid Swann (1981), Part
IT page 3026, which states:

“The plant has the highest gain and the least phase lag under conditions
of full load on the unit with a moderate to weak ac systems when bus
frequency is used as input for the stabilizer.”

This statement indicates that the PSS-parameter must be reduced, which also
occurs in Eq. (5.6). This strengthen the basic idea behind the formulation of the
optimization problem.

The general expression for the PSS-parameter can be written in terms of
power. The items in Eq. (5.6) becomes:

.. . V; 6PL; _ OP ;
B(z,1) :Zsm(ej—e,-)i,—’_—_— Y =V Z(—Pij)—vi avf
joti ij i i

Assume
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Substituting aPr, into the expression above gives

Bii) = V(S (-Py) -l

J#F
", B? 1,1 sin?(f, — 8,)V2 B%(i,1 sin?(6,, — 8;)V?2
Z (g): (; r2)1+___+ (2)+.__+ (2 2)n
— mi; mi, X7 : m2_ X}
j=i 7 1 i1 nn‘tin

2
=V (Pﬁmfﬁ ok mg <Z Pij + aPLi) ot anm;,3>
R

Now we define
piTé (Pil7'-'7 (Zpij+aPLi>""7Pin>
J#1

Now Eq. (5.5) becomes in the general case:

V(Z P+ aPLi>m£1

71 L e
szTAFJP.»’ gk, (@) (5.9)

0; = (—F~1b>i9me(a)\/§=

2

Similar expressions can be calculated for the SVC concept. Using this expression,
it would be possible to tune the ©;-parameter continuously by measurement of
power on lines connected to the site and knowing the equivalent a-parameter for
the site and the masses of the incident generators.

Remark. Only power lines connected to the site are included in the P;-vector.
Power lines with no incident on site, i, is represented by zero. O

Equation (5.9) explains to some extent the trade-off between the mass of the
machine and the load flow and the voltage dependence of load. This relationship
is natural to include in the optimization problem.

If the optimization problem is formulated as a quadratic problem with scal-
ing, it will give the same solution as for the introduced constraint function for a
proper choice of the scaling factor.

The quadratic optimization with scaling is

Minimize tr4(©)+ AA(tr A7(0)4(0))
The solution is equal to the solution of Eq. (5.5) with

=1

0=-—3
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where [ is:
‘ (bTT~1p)"/?
: - 2,/u
Similar expressions can be evaluated for SVCs and HVDC links. For the quadratic

optimization problem with 8 = 1 we get:

_(B(Li)my" - B(k,i)mg)

Ksvyg, = =y (5.10)
(7,9)
DD
j:]_ m?]
If one of the measurements takes place at nod 7 for the SVC,
(B(i,i)mg" — B(k,i)my,)
Kgve, = — Y ( )
Js
4
Z s
-1 -1
My +my
Kpg, = L (5.11)
A (mg" +my)
If both measurements for the HVDC takes place at the station,
1 1 .
Kpo, = myt +my . miimg; (mu- +mj;) (5.12)
4(m +m:1) 4 m; +m;

P
R

Summary

The theoretical analysis is now summarized. Generally it can be stated:

1. The siting procedure points out robust places. The system properties together
with normal load characteristics will cause the A(tr ATA4) to increase when
the parameters increase.

2. The procedure for finding the limit of tr AT 4 or the scale factor 3 is based on
system properties.

3. The theoretical analysis of the optimal values of the PSS parameters indicates
that the powerflow and the voltage dependence of the load (process gain) is
introduced in a natural way. It is also confirmed by discussion in Larsen and

Swann (1981).

4. The siting analysis points out robust sites for damping equipment (SVCs and
PSSs) with good damping properties for selected system wide modes. It can
not be proved that the optimization procedure favor these modes in terms
of damping. The setup and initial values of the sensitivity derivatives are,
however, such that good damping can be achieved for selected slow modes.
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5. The examples and the theoretical analysis make the formulation of the op-
timization problem reasonable for a large power system. Next chapter will
show that the values of the optimized parameters introduce augmented damp-
ing very well. A strict proof that the suggested method give better damping
according to the specifications is, however, not given.

5.6 Formulation of the Optimization Problem and
Numerical Methods

The optimization problem can now be stated in the following form:
Minimize tr A(©)
®eR™
Subject to 0 < 0O; <wu;; i=1,...,m (5.13)
0 < A(tr AT(0)4(0)) <u

my ? ma ?

K, K, SVC SVvC DC DC
@:(@1 e,...,@ e®1 ,...,@ @1 ,...,®m3>

my + my + m3 = m (number of parameters)

tr AT(©)A(O) is the nonlinear constraint function and tr A(©) is a linear ob-
jective function. A reliable method for solving this problem is the augmented

Lagrangian method (NAG, EO4UCF).

Remark. For the quadratic problem, with or without scaling efficient. methods
are available. See NAG, EO4JAF, Conjugated Direction methods and Quasi-
Newton methods. (See NAG, EO4NAF.) O

The EO4UCF-routine was used most of the time in order to maintain the possi-
bility to use a nonlinear objective function and/or a nonlinear constraint function
later in the project.

All necessary information about mentioned methods can be read in NAG
(1988). The mathematics and numerics about the methods are described in
Luenberger (1984), Dennis and More (1977), Dennis and Schnabel (1981, 1983),
Gill, Murray and Wright (1981, 1986), Powell (1974), and Fletcher (1981).

A lot of optimization procedures were tested before the optimization problem
was formulated as in (5.13). We know from Section 5.5 that an analytical solution

exists for this formulation. In this perspective it was convenient to use the routine
EO4UCF most of the time.

Estimation of the Limits of the Constraints Function

In order to get a robust operational swing of the parameters due to variation of
the voltage dependence of load the following procedure is followed:
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5.6 Formulation of the Optimization Problem and Numerical Methods

IMRGINRRY

CASE 1 ] mes
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REAL
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Figure 5.1 Eigenvalues for the slowest modes before (x)}-and: after (4) the tuning.
The arrows points on the chosen system wide modes, Case 1. ’

1. The voltage dependence of the load is set equal to zero, i.e. constant P and
@ load is considered.

2. Only approved sites from the siting are considered for PSSs and SVCs. During
normal operational conditions the HVDC links have no destabilizing affect.

3. The limit, u, of A(tr AT(©)A(©)) is then varied until almost all the parame-
ters have reached their limits by the opimization procedure. The PSS param-
eters use to reach their limits first. This limit of A(tr AT A) is then used for
the actual configuration of the damping equipment.

4. The characteristics of the loads are set to actual values, e.g. a = 1.5.

5. The optimization can now be performed.

5.7 Application to the Nordel Power System

The optimization procedure is now applied to the Nordel power system. The
augmented damping introduced by the optimization procedure will be presented.
Only results from 21- and 224-machines are shown to limit the number of figures.
Detailed information can be found in the report Eliasson (1989b). These config-
urations of PSSs are later used in Chapter 6 during the verification of augmented
damping.
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Figure 5.2 Eigenvalues for the slowest modes before (x) and after (+) the tﬁning
(e = 1.5, BLC, Case 1).
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Figure 5.3 FEigenvalues for the slowest modes before (x)and after (+) the tuning
{a = 1.0, Case 1).
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5.7 Application to the Nordel Power System

To do a complete analysis of siting and tuning of damping equipment in a
large power system takes at least a man-year. In this perspective the author only
will show some principle ideas applied to a large power system.

Result From the Optimization

The figures in this section show how the eigenvalues are moved into the left half
plane. When the tuning starts, the eigenvalues are all on the imaginary axes.
These eigenvalues are marked x. The eigenvalues after the optimizations are
marked +. The small arrows in the right half plane points out the modes that
are chosen as slow and system wide modes.

The text tells where the damping equipment is placed and the values of the
tuned parameters. The scaling is linear and the only way to get numerical values
of the eigenvalues is to measure the distance from origin to the “high omega”
line. The number at that position defines the actual scaling. The x- and y-axes
have the same scaling.

Case 1

Figure 4.6 shows the robust sites with respect to all load characteristics and for
chosen five system wide modes (Case 1, Table 3.2). The site 1254 is excluded
because a PSS at that site has a minor impact on the damping of the chosen
system wide modes. The site is approved though. ,

Figure 5.1 shows that the poles (eigenvalues) are moved into the left half
plane when four PSSs are introduced. Only poles up to the “high omega” limit
are shown. In order to get better damping for the three highest system wide
modes we add a fifth PSS at bus 1268. This site is not approved for the CLC-
load case for the second system wide mode. This is an extreme type of load
characteristics. For load characteristics of concern, the siting analysis points out
this site for the higher system frequencies. The result is shown in Fig. 5.2. It
shows the augmented damping introduced by five PSSs. The load characteristic
is BLC (« = 1.5). Figures 5.3, 5.4 and 5.5 show what happens when « is reduced
to 1.0 (constant current load), 0.5 and finally to 0 (CLC), respectively.

The following can be concluded: When a decreases, the K,. -parameters
increase until some reach the limit 0.16 pu/(rad/s). K,., follows the relationship
given in Eq. (5.7),1.e. K., increases if a decreases.

The augmented damping can be maintained rather good until @ = 0. When
the voltage dependence of the active load is zero it seems to be hard to add any
damping, at least in this case. ‘

An interesting property is that when o decrease, the pole for the rigid body
(the pole on the real axes) moves towards origo. One pole is always located at
origo. The explanation is as follows:
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Figure 5.4 Eigenvalues for the slowest modes before (
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Fig.ure 5.5 Eigenvalues for the slowest modes before (x)"and after (+) the tuning
(e =0, CLC, Case 1).
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5.7 Application to the Nordel Power System

The equation of motion of mode 7 is
(M/\? +D/\1+K> u; =0

One eigenvector can always be chosen as ul = (1,...,1), the eigenvector rep-
resenting the rigid body motion. The structure of K is such that Ku, = 0,
i.e.

A Mug + A\;Dug =0
)\i(AiM’lLQ -+ D'U,O) =0

The roots are A\; = 0 and Ay Muy + Dug = 0. To solve the last equation, we just
multiply with ul from the right:

'LLOTD'UO

Ay = —
u(f)FMuO

The expression ul Dug summarizes all the elements in D. If D contains contribu-
tion from all kinds of damping equipment, it is easy to see that when all elements
in D are summarized, the only elements in the sum comes from

T

OPr; OPr;
— K,e. d L Ksvo,
I K, an 5V, 1svo;

So the eigenvalue of the rigid body is

T,q' v
uf B (Ko + IV Ksvo (T57°)") uo

Ay =
2 uOTJ\/IuO

From Eq. (2.8) and the structure of B we get Ay = 0 when -%‘:—" =0 V 7. This
explains the motion and value of the left pole on the x-axis.

Now we continue to add one SVC and one HVDC link to the last configu-
ration. The result can be seen in Figures 5.6 and 5.7. The result shows that the
damping is improved for all system wide modes. The three highest are affected by
the SVC and the two slowest system wide modes by the HVDC link. Sensitivity
analysis shows clearly how the SVC and the HVDC link affects different modes.
The chosen site for the SVC is taken from Fig. 4.7.

It is interesting to notice that we still have rather good damping for three of
the system wide modes in Fig. 5.7 even if « = 0. The HVDC link adds damping
to the slowest system wide mode. The other two system wide modes are affected
by the PSS at 1268 and the SVC, which was already seen in Fig. 5.2 (only PSSs).
The HVDC-concept is not affected by «, so it is natural that the link can still

add damping regardless of a. An explanation of the result in Figures 5.2 to 5.7
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Figure 5.6 FEigenvalues before (x) and after (4) the tuning:;All damping equipment
is included (@ = 1.5, Case 1). ‘
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Figure 5.7 Eigenvalues before (x) and after (+) the tuning. All damping equipment
is included (a = 0, Case 1).
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- may be like this. The site 1268 is in the north of Sweden, Norway and Finland.
This area has relatively small load, but has a large surplus of power. Equation
(5.8) suits this assumption. The expression

my; Vs

23 P

j#i

might be of the same order as the limit of the K,,, i.e. 0.16 pu/(rad/s). This
means that it is possible to add damping even when a = 0. A check of this
statement shows that 0.04 < K,. < 0.25. The lower limit of K,. comes from Eq.
(5.7) and the upper limit comes from (5.8).

Case 3

Now we turns to the more difficult case with 224 machines. The sites are selected
from the siting analysis, Chapter 4. We only select a minimum configuration of
PSSs for damping of the two slowest system wide modes. Figures 5.8 and 5.9
show the result for « = 1.5 and a = 1.0 respectively. Only twenty-one PSSs are
chosen. The specifications are that the amplitude ought to, be halved within 7 to
10 seconds. /

The eigenvalues corresponding to the slowest modes are A\; = —0.16 &+ 71.55
and A; = —0.14 £ 72.15 respectively, after the optimization (Fig. 5.8). Initially,
these eigenvalues were A; = +51.56 and A\; = 4-72.12. The initial cycle times are
4.03 s and 2.96 s. This means that the amplitudes are halved within 1.1 period
and 1.7 period respectively. This result is considered very good from operational
people. The result fulfills the specification very well.

Further details can be seen in the report Eliasson (1989b).

5.8 Conclusions

The selected formulation of the optimization problem has excellent impact on the
damping of the system. The eigenvalues are moved nearly straight into the left
half plane, which means that the synchronous forces of the system are unchanged.
This result is based on the sensitivity analysis. This analysis points out robust
sites with respect to damping for selected slow and system wide modes. The other
slow and local modes are easy to handle with local measures (Larsen and Swann
(1981) Parts I, II & III). In Chapter 6 it is shown that augmented damping is
introduced by use of feedback from the bus frequency deviation. This strengthen
the need for using other signals than the conventional.

The optimization technique shows also that it is possible to tune roughly
100 PSSs, 20 SVCs and 10 HVDC links at the same time without running into
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Figure 5.8 Eigenvalues before (x) and after (+) the tuning (« = 1.5, Case 3).
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Figure 5.9 Bigenvalues before (x) and after (+) the tuning (o = 1.0, Case 3).
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5.8 Conclusions

- any computer time problems. A test was run for PSSs installed at all buses and
the optimization worked well for Case 3 (224 PSSs). The most time consuming
part is the calculation of the eigenvalues. The way it is implemented in the tuning
package there is the need for two eigenvalue calculations, one before starting
and one for checking that the system is globally stable after the tuning. The
first calculation of the eigenvalues is much faster than the last one, because the
squared eigenvalues are calculated (model (K M)). For a 224-machine case, the
eigenvalues consumes ~ 4 hours and the tuning of 100 parameters takes ~ 0.5
hour.

It is worth emphasizing that all specifications of constraints, concerning real
part, imaginary part or relative damping etc., can hardly lead to a successful
optimization for large power systems. The reason is that the Jacobian matrix
has to be updated in each iteration and it will take long computational time.
Even if the eigenvalues are ordered with respect to the real and imaginary part,
it is not clear what happens when two different trajectories are crossing.

To calculate the Jacobian matrix with constraints on the eigenvalues will
overload any modern computer in the world of today.

The good damping results show that it is possible to use a simple two-state
model for investigation of slow and system wide modes.

This choice of formulation of the optimization problen;ﬁ'a;s many advantages:

e Fasy to use.

Extremely fast for large power systems.

Easy to interpret.

-,

A nice trade-off between the values of the parameters with respect to
Pz,
(Z. Ps 7 ‘57‘)
it

and the mass associated to the bus i for PSS-equipment.

Robust design against change of load flow and voltage dependence of load.

e The tuning procedure adds positive damping to the low frequency modes.

Drawbacks:

e There is no guarantee that global stability is reached. A final check of the
eigenvalues has to be done. Fortunately this has to be done only once, because
it 1s very time consuming.

If unstable conditions should occur during the optimization, the upper limit u of

A(tr AT A) must be reduced. Also investigation of the symmetric part of D is of
interest to do according to Eq. (4.22).
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Verification of the
Siting and Optimization
Procedure

6.1 Introduction o~

The basic idea behind the model (K M), see Chapter 2, is that the bus voltage
can be used as input signal. The reason is that the properties of modern AVRs
(Automatic Voltage Regulator) are such that the rise time of the generator ter-
minal voltage for a step response in the voltage reference is much shorter than
the time of period of the interesting system modes. Simulations and verification
of the model (K M) in Chapter 2 has also shown that this assumption holds quite
well for slow and system wide modes. With this in mind, we investigate a PSS
design with an extremely simple structure. We will use a feedback controller
from the bus frequency deviation (Af;) and add the signal K, - 2 - Af; to the
voltage reference for the good sites pointed out by the siting analysis.

Many PSSs designs use the electric power of the generators as input to the
controller. If we assume that the mechanical torque is constant or changes slowly,
it is possible to estimate (Aw;) from the electrical power deviations. It is also
possible to estimate (Aw;), but the estimates are, however, influenced by rapid
changes in mechanical torque. The complexity of the controller increases and the
parameters are difficult to tune in a MIMO-concept for a large power system.

Operational people state that a power system is acceptable damped if the
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6.1 Introduction

amplitude of a slow oscillation is reduced by 50% halved within 10 seconds. This
" implies that the real part of the eigenvalue should be approximately 0.07. The
verifications given in this chapter put special emphasis on

e Design of PSSs dedicated for slow and system wide modes.

e Verification of augmented damping.

6.2 Verification of Augmented Damping

All real time simulations presented here are done with the power system simu-
lation package PSS/E from PTI. During the simulations a = 1.5 is used in the
whole power system.

Data About the Simulated Systems

All information for siting of PSS- SVC- and HVDC-equipment is fetched from the
siting analysis in Chapter 4 and the values of the parameters from Chapter 5.
All data about the Nordel power systems used in this thesis is presented in
Section 1.4, but below a summary is given:

21 machines (Case 1): 766

constants

81
265

1388
88
482

7329
617
2518

44 machines (Case 2):

224 machines (Case 3):

variables )
states '

constants
variables
states -

constants
variables
states

As in Chapter 5 we only present results for Case 1 and Case 3 and the siting of
the PSSs is according to Fig. 5.2 (Case 1) and Fig. 5.8 (Case 3).

The used PSS design is extremely simple. No such simple PSS-transfer
function is available in the library of the simulation package. A special software
had to be developed and linked to the simulation package. The value of K,.,
are taken directly from the optimization and then fed into the controller without
changing a digit.

Explanation of the designation of the curves showing the machine angles:

Solid line = Uncontrolled system.

Dashed line = Controlled system with optimized parameters.

Dotted line = Controlled system with parameters not optimized for
actual load specification.
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Case 1

The load, located in south-western Norway, at bus 1257, Gen_06, is decreased
with 100 MW. After 0.1 second it is increased again to its initial value. The two
swing centers for the slowest and system wide mode are bus 1257 and bus 1267,
Gen_18. The location of the buses can be seen in Fig.E.1, Appendix E.

The machine, 1267 (Gen.18), in southern Finland ought to swing with a
frequency very close to the slowest system wide mode. See the solid line in
Fig. 6.2. The eigenfrequency measured in Fig. 6.2 is 0.28 Hz. The nominal value
of the eigenfrequency calculated by the model (K M) is 0.29 Hz. The first five
figures, 6.1 to 6.5, show the angles of machines equipped with PSSs. Figure 6.6
represents angles for a machine not equipped with a PSS.

Figure 6.7 shows what happens if the values of the parameters of the con-
trollers are doubled. The dotted line shows the angle of the machine, 1267. The
solid curve represents the uncontrolled case and the dashed line represents the
angle with optimized coeflicients. The system is close to going unstable, when
the values of the coeflicients are doubled. The dominant angle frequence of the
oscillation in Fig. 6.7 (the dotted line) is about 3.9 rad/s.

The eigenvalue calculation by the doubled values of the parameters indi-
cates a poorly damped mode with the i imaginary part of the eigenvalue equal to
3.82 rad/s and with the relative damping of about 0. 007 This mode can also
be seen in Fig. 5.2 (the sixth mode from bottom). The result from Fig. 6.7
indicates that this poorly damped mode can not be controlled by the chosen
PSS-sites. But when the parameters are doubled the mode is energized. This
phenomenon is further discussed in Case 3. ~

Figures 6.8 and 6.9 concern only the optimal controlled case. Figure 6.8
shows the angle (solid line) and the voltage (dashed line) for machine, 1267.
Figure 6.9 shows the output signal from the PSS (solid line) and the voltage
(dashed line) for machine, 1267.

The result in general must be considered good.

Case 3
The load at bus 4100, Tonsta 11, is decreased with 100 MW. After 0.1 second

it is increased again to its initial value. The two swing centers for the slowest
and system wide mode are bus 4100 and bus 18006, OL4G1. The location of the
buses can be seen in Fig.E.3, Appendix E. This figure shows the aggregatlon of
224 machines into 21 machines.

It is worth to mention that the swing centers for Case 1, Case 2 and Case 3 for
all selected slow and system wide modes are aggregated into each other through-
out the hierarchy of models.

The estimated eigenfrequency in Fig. 6.10 (the first two swings) is 0.24
Hz. The nominal value of the eigenfrequency calculated by the model (K M) is
0.25 Hz. Figures 6.10 to 6.15 show the angle of selected machines in the Nordel
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system. Only 21 PSSs are used. The values of the used parameters are shown
“in Fig. 5.8. These PSSs cover only the two slowest system wide modes. It is
clearly shown in Figs. 6.10 to 6.15 that the introduced damping of the twentyone
selected PSSs is considerable. Only the best sites from damping point of view
are considered for the two slowest modes. It is also worth mentioning that the
siting procedure and the tuning procedure take about. the same time as doing
one simulation of 224 machines under 40 seconds. In other words, by knowing
good sites for PSSs the amount of work can drastically be reduced.

An interesting sequence of figures are Figures 6.16 to 6.20. Figures 6.16
and 6.17 show the uncontrolled (solid line), optimal controlled (dashed line) and
controlled (dotted line), but the value of parameters in Fig. 5.8 are doubled. It
is clearly seen that a poorly damped mode is energized. The frequency of the
oscillation is estimated to 1.3 Hz. This oscillation can also be seen by calculating
the eigenvalues of the used parameters.

The eigenvalue calculation of the closed loop system indicates too that an
oscillative mode occurs. Two eigenvalues of 448 eigenvalues have the values,
A2 = +J - 8.82, i.e. an oscillation of 1.40 Hz. This value of the imaginary parts
of the eigenvalues can also be estimated by the following simplified calculation.
From analysis of the load flow data and the involved machines, OL4G2 and
OL4G1, we get the following equations to solve. The model (KM) glves for the
two oscillating machines:

1 0
M =0.305
0 1
The machines have equal masses.
(0.99)? 1 -1 ] 1 -1 ]
= = 11-9
0.0823 -1 1 -1 1

The angles between the machines are zero. Define w? = -01—_%

of M~ 1K are

. The eigenvalues

A =0, A==%7vV2wy==%7-2r-1.41 rad/s

This rather simple calculation also gives a good result. The frequencies to com-
pare are the frequency from the simulation, eigenvalue calculation of a second
order model (448 states) and a simple K M-calculation (two states). The fre-
quencies are 1.30 Hz, 1.40 Hz and 1.41 Hz, respectively. k

Simulations show that even if the PSSs on these machines are taken away,
the oscillations are still there. This indicates that a proportional controller is not
sufficient to cope with this problem. A nice thing, though, is that we can use the
eigenvalues from a second order model to get information of troublesome modes
in a much more (six times in terms of number of states) complex model.
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To be able to solve the occurred oscillation problem we might have to es-
timate some states or transfer information between the machines. This type of
analysis is beyond the aim of this thesis. This thesis only treats slow and system
wide modes.

Figures 6.18 to 6.20 show what happens if the parameters from Fig. 5.9 are
used. The dotted line represents the values from Fig. 5.9. In general, the damping
is somewhat better, but for one machine, LOG2 at bus 18010, the angle starts to
increase in the end of the simulation. The solid line represents the uncontrolled
system and the dashed line represents the optimal controlled system with pa-
rameters from Fig. 5.8. The stable controlled case and the dynamic simulation
have the same load characteristics. The dotted line represents a mismatch in
characteristics. The optimization is done for constant current load (a = 1.0),
but the dynamic model represents 50% constant impedance and 50% constant
current load (o = 1.5).

The estimated angle velocity in Fig. 6.20 is about 9.5 rad/s. From the
eigenvalue calculation, it is shown that two eigenvalues are + j-9.55 rad/s. There
are several eigenvalues with the real part equal to zero in the high frequency range.
Presumably this mode is energized with this configuration of PSSs and chosen
values of the parameters. In general, it can be stated that the PSS control
law, Eq. (4.2), does not introduce any damping between the machines, if not
special conditions are fulfilled. The HVDC control law, Eq. (4.5), does introduce
damping between machines. The PSSs introduce mainly damping towards the
ground (reference) via the voltage dependence of the load. This tells us, that the
optimization is very sensitive to the voltage dependence of the load when only
PSSs are used. It also indicates that the formulation of the optimization problem
works very well. It takes roughly 8 CPU hours to simulate 40 seconds for the
224 machines case.

6.3 Conclusions

The simulations show that it is of great importance to choose proper sites for
damping equipment for the slow and system wide modes and tune the parameters
well. Only 21 PSSs sites are chosen to get the result. Today approximately 200
PSSs are installed in Nordel systems. Naturally, more than 21 PSSs are required
to get the Nordel system well damped in the low frequency range. In combination
with SVCs and the Fenno-Skan link maybe not more than 50 PSSs are needed: It
is also clearly shown that the voltage dependence of the load plays a crucial role.
The operational conditions are of great importance. This has to be considered
for a specific site or within a certain area of the power system.

This analysis shows that the bus frequence deviation is a good signal to use
in combination with a proportional controller for slow and system wide modes.
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Figure 6.1 Dynamic response for inactive PSS (solid line) and active PSS (dashed
line) for the disturbed machine, Gen_06, in southern Norway*(a = 1.5, Case 1).
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Summary

7.1 Model

The two-state model of the machines is enough to describe slow and system wide
modes. The dynamics of the field winding, magnetization system and automatic
voltage regulator were excluded from the model. The reason is that dynamics of
the voltage control are much faster than the dynamics of slow and system wide
modes. The dynamics of the governors are also excluded, because the dynamics
of the fastest governors are 3 to 5 times slower than the dynamics, of the slow
modes. The result of the verification of the used model was good. An important
advantage of the used model is the numerical checks of the value of eigenvalues
and eigenvectors.

The model provides a technique to define slow and system wide modes. The
model of the uncontrolled system matrix gives also an excellent fast procedure
to calculate the left/right eigenvectors for the sensitivity analysis. The models
also favors the slow modes because of the difference in stiffness for slow and fast
modes. For the 224-machine model the stiffness of the slowest mode is =~ 2 and
the stiffness for the fastest mode is &~ 10° according to Eq. (2.21) (diagonal
elements of K). With the control power available it will therefore only affect the
slow modes.

7.2 Coherency

The definition of coherency is believed to be new. It has good preservation of
the slow dynamics in large power systems. The major advantage is that the
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definition does not depend on any excitation of the system. The hierarchy of
models enables fast and reliable development and testing of programs.

Another basic idea was the possibilities to reduce the number of free param-
eters when coordinated tuning is performed.

7.3 Siting Analysis

The included damping equipments are Power System Stabilizers (PSSs), Static
Var Compensators (SVCs) and High Voltage Direct Current links (HVDC).

To enhance the inherent damping of power systems due to generators and
loads, a variety of stabilizer configurations can be used for the generators, SVCs
and HVDC links. A study is made of how the overall damping matrix is built up
from these contributions. This is used to develop a technique for systematic siting
of damping equipment in power systems with several poorly damped modes in a
given frequency window. This technique is applied to the Nordel system. Special
emphasis is given to handling very large systems, voltage dependent loads and
alternative measurement schemes.

The analysis also gave important information on where the damping equip-
ment should be placed. Analytical expressions for 51t1ng of damping equxpment
are presented.

The PSSs shall be placed at sites with a net e*(port of active power. In that
case, the site is robust against voltage dependence of the load. More comphcated
expressions are derived for siting of SVCs.

The HVDC link will give positive contribution of dampxng if at least one of
the frequency deviation signals are measured at either the inverter station or the
converter station.

The most important results of this study are:

1. The voltage dependence of load has a major impact on the robust siting of

PSSs and SVs.

2. The calculated sites of PSSs and SVCs only concern slow and system wide
modes.

3. Alternative measurement schemes are used for siting of SVCs and it is believed
to be a new technique.

4. Alternative measurement schemes are also used to find the best point of mea-
surement for a given site of a HVDC-link. This is also a new technique.

5. An analytical expression for robust siting of PSSs is derived according to the
equations (4.15) and (4.16).
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7.4 Coordinated Tuning and Verification of Augmented Damping

7.4 Coordinated Tuning and Verification of
Augmented Damping

In these parts special emphasis is given to handle a large power system from
optimization point of view. The verification shows the coordinated tuning result
for 21, 44 and 224 machines. Existing techniques described in literature do not
cover tuning of damping equipment in large power systems and especially not for
slow and system wide modes.

The verification shows a good result concerning introduction of augmented
damping in the slow and system wide modes.

The control law for the PSSs is very simple. A proportional controller with
the bus frequency deviation as input is used.

The formulation of the optimization problem includes an important trade-
off between actual export of power and the equivalent voltage dependence of the
load at the PSSs-sites.

When the process gain is increased the parameter for the PSS is decreased.
The optimization problem has no numerical instabilities and the used algorithm
is extremely fast. It is a real MIMO-concept used for coordinated tuning of
damping equipment in large power system.

The formulation of the optimization problem is new, at least when power
systems are concerned. The choice of the constraint fun¢tion was crucigl for the
damping of the slow modes. A qualitative explanation is also given.

7.5 New Contributions for Control and Tuning

The mathematical analysis of the structure of the system, minimum choice of
states and inclusion of important system parameters are the key to success in
doing this three stage analysis.

Many control people of today are working with ARMA models and are losing
insight to the physical behavior of a process. The physical analysis of the process
is the key point to do any tuning and design in large power systems.

This thesis only treats the slow and system wide modes. These modes are
known as the most troublesome to control and to damp. The verification of
the augmented damping of the PSSs shows that a simple proportional controller
using the frequency deviation as input is sufficient. For faster and local modes
the active power is probably a better signal to use as input to the PSS.

The design of the PSS is not treated in detail in this thesis. The most impor-
tant contribution from control point of view is the siting of damping equipment.
The sites of the SVCs do really contribute with positive damping to the system.
With conventional simulations it is a very time consuming thing to find proper
sites for SVC equipment.
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The formulation of the optimization problem works very well and the op-
timized parameters can be tuned for different voltage dependence of the load
and different loadflows. This guarantees robust tuning. In the formulation of
the optimization problem it is built in a natural trade-off between process gain
of different areas and affected parameters for different sites. The optimization
technique is new as far as the author knows.

7.6 Development of Software

Approximate 17 programs have been developed and tested. Fortran 77 is used
in all programs. Number of lines written are approximate 43700, i.e. 10 000 to
15 000 Fortran statements. The largest load module is 5.7 megabytes, which
cover 225 machines for siting of damping equipment.

The programs can be divided into three big groups:

1. Programs concerning coherency, mode presentation, verification of model, ver-
ification of coherency and graphic. Number of lines for these 7 programs are
approximately 13350.

2. Programs concerning sensitivity derivatives in general, optimal siting of PSSs
and SVCs, best points of measurement for HVDC links and verification pro-
grams. Number of lines for these 5 programs are approximately 22620.

3. Programs concerning the optimization. Number of lines for these 5 programs
are approximately 7720.

7.7 Future Work

The author believes that two operational modes have to be considered for a
robust PSS. In the high frequency range of oscillations it is also quite easy to
exclude the slow disturbance from the mechanical torque.

For local and slow modes probably a Kalman filter should be used for esti-
mation of the mechanical torque.

This means that a PSS with two input signals, frequency deviation and
electric power, should be designed. One control mode is taking care of slow and
system wide modes and the other control mode of the rest. The two modes can
work in parallel, but there ought to be also a choice of one of the modes. One
mode should take care of local oscillations, i.e. a certain frequency window has
to be defined. One mode should take care of slow and system wide modes. If
a machine participate in both slow local modes and slow system wide modes, it
should be dedicated for one of the tasks. Other machines have to take care of the
rest, because there always exist combinations of machines with opposite swing
directions.
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7.7 Future Work

This thesis shows that the bus frequence deviation is a good signal to use
- for slow and system wide modes. This is also indicated by Larsen and Swann
(1981), Part II. They also indicate that measurement of the power of the machine
is good for local modes (> 0.9 Hz). This is also emphasized by de Mello et al.
(1980). The troublesome part, though, is the variation in the mechanical torque.
The terminal frequency deviations at the machine might be a very good signal
to use in this case. At least it works very well for slow and system wide modes.
The structure and properties of the damping matrix, D, in the system equa-
tions (5.1) is of great interest to study. It must be of great importance to find
control structures and being able to show that the D-matrix is positive definite
for a chosen frequency range. Transfer of measured values between dedicated ma-
chines must also be introduced in order to have the freedom to choose appropriate
control structures.
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Basic
Multimachine Model

In this appendix, the basic multimachine model is derived. The steps taken in
deriving the model are similar to less general exercises carried out in Bergen and
Hill (1981) and Wu and Liu (1986).

Suppose there are m generators which are interconnected by a network of
transmission lines and transformers. The network has a total of n buses. The
n — m buses without generation only have power injection from loads. Let the
generator terminal buses be numbered as ¢ = 1,...m and the load buses as
t=m+1,...n. Let §; be the rotor angle of the j:th generator with respect to a
synchronously rotating reference frame. Then w; = ) ; is the frequency deviation
from the synchronous frequency.

The dynamics of each generator is given by the swing equation

dw;

M; —d—z— 4+ Diw; = P, — Pgi (Al)

where M; is the inertia constant, D; the damping coeflicient, P,,. the mechanical
power input and Fy; is the electrical power generated. To simplify calculation of
Py, we make a number of assumptions: '

1. The network is assumed to be in sinusoidal steady-state with transmission
lines represented by series impedances.

2. Each generator is modeled as an internal voltage source E; behind a transient
reactance Xj..
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3. The phase angle of the internal machine voltage E! coincides with the rotor

angle 6;.
4. The powers P,,; are constant.
5. The fransmission lines are assumed to be lossless.

6. The loads are modeled as real and reactive power demands which are a function
of the magnitude of the bus voltage.

7. Qe; is a known characteristic of the excitation system.

Assumptions 1-5 are standard in simplified models for power system stability
analysis, see Anderson and Fouad (1977). The generator model is often further
simplified to a constant voltage |E}| behind transient reactance. The present
model is motivated by problems which are caused by the use of fast excitation
systems. These attempt to regulate the terminal voltages to set values via fast
changes in |F}|.

Assumption 4 requires that the frequency control system occupies a different
(lower in practice) bandwidth than the voltage control system. This is not always
the case, but seems to be the preferred situation.

It is also common to simplify the model by assuming the loads are im-
pedances. In general the load powers are nonlinear functions of frequency and
voltage of the load bus. The frequency dependence of<loads is often neglected
This practice will be followed here according to Assumption 6.

From Assumption 1, there are four variables to consider at each network bus,
namely, the voltage magnitude |V;|, the voltage phase angle 6;, the real power

injection P; and the reactive power 1nJect10n Q;. Let § = [51,62, m]t, |E'| =

Tt -
[|EL), |ES, ..., | EL, [] 6= [01,02,...,0n] ,and |[V| = [|V1] Val, .. ,|vn|] It s
useful to write |V| = []V;ltﬂ/}ﬂ, where V, denotes generator terminal voltages

and V; the load bus voltages.

In the formulation of models it is sometimes convenient to regard the in-
ternal generator voltages E} as corresponding to fictitious network buses in
an augmented network (Bergen and Hill, 1981). These are then numbered
i=n+1,...,n+mand V; = E!__,1=n+1,...,n +m. We use the no-
tation |V,| := (|V],|E|) and §, := (6,6).

From Assumptions 1 and 5 all transmission lines are represented as pure
reactances. Thus in the overall augmented network all buses are conneted by
reactances. (Assumption 2 gives that each fictitious bus is attached to a generator
terminal bus through the transient reactance.) Let the bus admittance matrix for
the transmission network and the augmented network by ¥ and Y,, respectively.
Y, 1s obtained from Y in the form

Y, [Y O]+Y
a — 0 0 d
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where Y; has every row (and column) containing the terms =43 (1/Xc'ij) in the
pattern of an admittance matrix. Both YV and Y, are purely imaginary with ¥’
having elements Y;; = jB;;, where B;; is the susceptance between buses 7 and j.
At each bus, real and reactive power is exchanged between some of the
generators, loads and/or transmission lines. At an internal generator bus, we
have real power balance given by (A.1) with
_ BV

Pgi (6, 9, IV!) = T sin(5,~ - 91,) (A.Z)
“di

The reactive power balance is given by

Qgi(57 8, IVI) + Qei(lEz"!a leD =0 (A3)

where Qe; is the reactive power injected at the generator internal bus and Q; is
given by . o
!
Qi (8,0,[V]) = E’%‘TVI—] cos(8; — ;) — ”%l
“di “di
If we adopt the classical model where the |E}| are constant, the internal generator
buses become PV buses in the usual load flow sense. In this case, the reactive
power equation (A.3) is not needed. The terminal buses are PQ buses. For fast
excitation systems, it makes more sense to require the terminal voltages |Vy| to
be constant (Wu and Liu, 1986). The terminal buses are then PV buses (with
their reactive power injection to be determined).
The remaining network buses have no generation attached. The injected
powers are determined by loads and control devices.
At each network bus, the injected powers are balanted by powers entering
transmission lines. We use the augmented network view. Let Py; and Qp; denote
the total real and reactive powers leaving the i:th bus via transmission lines.

Then

(A4)

n+m
Pyi(8a,|Val) = D Vil [Vj] Baij sin(é; — 6;)
=1

(A.5)

n+m
Qbi(‘sm ‘Vm') = - Z [Vil [V;] Baij cos(8; — 6;)
j=1
For specific bus types, these compact expressions can be rewritten in terms of
6,8 and so on. For instance, at a generator terminal bus, the real power balance
is given by

P:(6,8,|E',|V]) = Py(8a, [Val)

BV . . .
= —5— sin(fi — &) + > Vil V5] By sin(8; — 6;)
“di

j=1

1=1,2,...,m (A.6a)
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where P; is the nett power injected into bus : from loads and/or control devices.
~ A similar expression for (); can be easily stated. At the remaining load buses,
we have

P;(8,0,|E'|,|V]) = D |Vil [Vj] By sin(8; — 6;) (A.6b)
=1 .
1=m+1,...,n

Combining (A.1), (A.3) and power balance at terminal and load buses, it is clear
that a model can be written in the form

Pn(6707|Eli7 1V|) = Pl

AT
Myw, + Dywg + Py (8,6, |E'),|V]) = P, (A7)

Qn(ﬁ,e,]Ell,‘VD = Ql
Qy(‘S,BalE,laivl) =@

where My = diag{M;}, D, = diag{D;}, P, = [P, P,,... ,Pm]T, and other terms
are defined in the obvious way. P,, @, refer to bus powers for network buses.

Now assume an operating point (§°,6°,|E|, Vo) is known. Suppose small
deviations occur under the influence of small disturbances. At such an operating
point, we have w) = 0 and (A.7), (A.8) reduce to standard load flow equations
(for the augmented network). Since these equations have translational symmetry,
it is standard to refer the angles to a reference which can be taken here as
6m(: 6an) == 0- P ! R

Small disturbance stability is studied via linearization of equations (A.T7),
(A.8) about the operating point. In setting up the linearized equations, we make
use of the Jacobian J of the load flow equations. We have

(A.8)

Pn6 Pn9 Pn,e an

Py P : P, Py

_ [Ju le] (19)
J21 J22 .

Qné' Qn@ Qne an
Qg& Qge Qge ng

where

0P,
0é

and so on in the obvious way. Then J°, P?

Pnéz

s etc denote these matrices evaluated
at the operating point. The components of the various submatrices in J are
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easily built up using (A.5) or (A.6). From (A.6), we see that elements of P,; are
. given by

B[V
Jij = Xgi
0 ; otherwisefor 1 <i<n,1<j<m

Now consider the block P.g. The corresponding elements are given by (A.6) as

| B4V

5 cos (87 — 8?) + Z V2| V}| Byjcos (69 — 69)

i=1
1<i1<m,57=1

D VAV Bijcos (69 - 82) 5 m+1<i<n,j=1

i=1
[V2IIV}| Bijcos (8] — 67) ; otherwise for1<i<mn,1<j<n

We should note that the nonzero terms in J are closely related to the network
structure. They correspond to a physical connection between buses. The ele-
ments of J can clearly be expressed in a more compact way using (A.5). For
instance, the submatrix Jy; which relates real power to{r:’a'xélgles is given by

n+m
3" [VPI[VP| Baijcos (62— 62,) 3 i=j

i=1

—IViOI |Vj0| B,ij cos (52i - 52]') ';; i#Ej | |

Jij =

The linearized version of (A.7) and (A.8) can now be written as

P56 + Prgl + Pre|E'| + Ppy|V| = P, ( )

Myirg + Dogwy + Prsb 4 Pl + Pye|E'| + Py |V| = P, ( )
Qns8 + Qnod + Qrel E'| + Qno[V] = Q1 (A.11a)

Qg60 + Qgo0 + Que|E'| + Qv |V = Q2 ( )

where 6,0, |E'|,|V|,wy now refer to perturbations from the operating values. (For
convenience of notation, we have not introduced new symbols for the perturbation
variables.)

We now include the effect of nonlinear loads at the network buses. From
Assumption 6, we can write

P, = —N{|V|+ P

(A.12)
Q1 = —N;|V|
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where P; refers to other real power sources at the buses. For example, suppose
. the load demand characteristics have the exponential form

Pi

Pr; = a;|V;
QrLi = b:|Vi|*

Then Ny = diag {a:pi|Vi[*~*} and N, = diag {bigi|Vi|%~'}.
Substituting (A.12) into (A.10a), (A.11a) gives

[PnG an+Nl] [ g ] :_[Pnﬁ Pne] [ 6 ]+ [Pl} (A.13)
Qne an + NZ |V| Qné Qne |E’| 0

We now consider the condition:

PnO an+Nl
Qne an +N2

Under this condition, (A.13) can be solved to yield 8,|V]. On substitution into
(A.10Db), it is straightforward to check that this yields the form

The matrix [

] is nonsingular.

Myisg + Dywy + K16 + Ky|E'| = Py + LP, := P} (A.14)
Note that the matrices Ky, Ky, and L can be readily obtained in practice from a
linear load flow solution of the network.

In (A.14), we have maintained |E'| as an independent input. Thus, it has the
general character of a PV bus and equation (A.11b) is not used. Sometimes, we
also need |V| as a controlled variable. Then equation (A.11a) is also redundant.
The condition of interest is then:

The matrix P,p is nonsingular.
The elements of Png were given above. From equations (A.10), we obtain
Mywg + Dywy + Pysb + Py |E'| + P} |V| = Py (A.15)

where .
P;é ZPgé"PgOPT:—anﬁ

P, = Pje — PyoP 5 Pre

P;v = Pgy — 99Pn—elpnv

P; = P, — PP} P

(A'16)

The use of the notation K, Ky in (A.14) is consistent with earlier discussion
based on reduced network models. See deMello et al. (1980).
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There are special cases of interest which simplify the models (A.14) and
(A.15). One which we use later is suggested by Lysfjord et al. (1982). Suppose
system reduction has been used and each M; represents several generators in
parallel. Then a reasonable approximation is to ignore the X}, relative to other
reactances. Further, each bus in the reduced system may have both generation
and load attached. Then we have § = 8 and |E'| = |V|. Model (A.15) can be
simplified with

Pr,=0 Py =P,

We henceforth refer to this case as the aggregation system model.

Of course, it may happen that some |E}| and some [V;| are controlled by
stabilisers. Then clearly parts of (A.11) and (A.10a) are to be solved. For
simplicity, we will only give details here for the cases given above.

A further case of interest is where we allow for load frequency dependence.
This has influence on the overall damping matrix. Then (A.12) are written

Py = —N1|V| = Dipw; + P
1 1V pwi + Py (A17)
Q1 = —Na|V| — Digwy

where Dy, Dy, are diagonal matrices corresponding to ?féquency dependence in
real, reactive loads respectively. Each element of these matrices is taken to be
nonzero. We suppose that load buses are not voltage controlled for simplicity.

Substituting (A.17) into (A.10a), (A.11a) gives

T
-

§ -

[Dlp an+Nl] [w1] [Pn6 Pre Pne] 9] +[P1]
Dlp Qnv + N2 |V| a Qnﬁ Qne Qe IE,I 0
(A.18)
The relevant solvability condition is:
Dlp Pn.v + Nl

The matrix [

] is nonsingular.

qu an+N2

Under this condition, (A.18) can be solved to give w;,|V|. We then have from
(A.10)

D1y + PXs6 + Plg0 + PL|E'| = L P, := Py

_ (A.19)
Mgisg + Dgwg + Pls6 + Plob + PL|E'| = Py + L, P, := P;

where P, other starred matrices, Iy and L, are all derived from solving (A.18)

and substitution. Clearly, 6 is now a part of the system state.
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If we need |V] as independent variables, then set Ny =0, Np = 0 in (A.17);
. only the frequency dependent component of the loads is relevant. Then we have

in place of (A.19)

Dip 4 Prsb + Prgl + Pro|E'| + Ppo|V| = Py

. (A.20)
Mgy + Dywy + Pys6 + Pyg + Pye|E'| + Pyo|V| = P,

Typically, these equations would accommodate some network buses as controlled
and others uncontrolled (regular load buses).
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Orthogonality of

the Eigenvectors of
the model (KM)

The matrices K and M are defined according to Eq. (2. 8) The following two

statements are now going to be proved: N

-

(1) K is positive semidefinite. ;
(2) The eigenvectors of the K M-model are K and M orthogonal.

LEMMA B.1
Consider the n X n symmetric K € R™*™ matrix, where
Vi
kijz VCOS(0—9)<O Vz#y:l,,n
T;;
and

==k
i#]
Then all the eigenvalues of K are real and greater than or equal to zero.

Proof: K is symmetric = real eigenvalues.

Let .
Pi = Zlkijla i=1,...,m
i#j
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then, by using Gersgorin’s theorem, every eigenvalue of K lies in a section
|z —ki| < piy i=1,...,m

This specific K => z > 0, because k;; = p;.
Thus K is positive semidefinite. ) O

Remark 1. The matrix, K, can be written as AT Kprim A, where A is the arc-
node incidence matrix of the net topology.

Kprim = diag(—kia,...,~kin,...,—kn_1,). Ground is the datum node. All
—kij, (i <j=2,...,n) are > 0 and € K, i.e. all eigenvalues of K are > 0. See
also Franksen (1967) page 94. O

Remark 2. The stiffness matrix, K, can be written as the Hessian matrix, with

respect to 8, of
j=1 i

The scalar function F(V, 8) can be interpreted as a generalized energyfunction
or Liapunov-function. For stable systems it holds that the hessian matrix must
be positive semidefinite. See, e.g., Andersson and Boiers (1984), Astrém and
Wittenmark (1984), Yu (1983). : O

F(V, ) =

N[ =

cos(6; — 8;)

1=1

LeMMaA B.2
The eigenvectors of Eq. (2.11) (u is dropped)

(A2M + K)u; =0 . (BY)

are K and M orthogonal.
Proof: The diagonal matrix, M, is positive definite according to Eq. (2.8). Let
8; = —A2. Thus
M"lKﬂizsﬁZi > KT; = 5; M ;
Define k(%) = 77 K% and m(%) = T M &, where m(z) is positive definite. Let
(my,...,my) be given positive real numbers. According to Cholesky decompo-
sition and the spectral theorem (Halmos (1958), Gene et al. (1983)) there exist
real constants (k1,...,k,) and an invertible n X n-matrix, U, so that
UTKU =k, k= diag(ks,...,kn) (B.2)
UTMU =m, m= diag(mq,...,my,) (B.3)

or

T 1r— ..
u; Ku; = ki, 1,7=1,...,n

W@ =
o

I ..
u; Ma; =m;bi5, 4,j=1,...,n
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which gives s; = —7’%‘:

According to Egs. (B.2), (B.3) and (B.1) the matrix U contains the eigenvectors
u; as columns. Equations (B.4) and (B.5) proves the orthogonality statement.
O

Properties of the Stiffness Matrix of a General Network

The matrix Kj; is nonsingular for stable power systems. According to Lemma
B.1 the stiffness matrix

K= [Ku K12 ] dim(K11)=m><m
KL K dim(Ky) =1 x 1

is symmetric and the quadratic form is positive semidefinite. Furthermore, the
sum of the elements in each row and each column is zero and the rank of K is
m + [ — 1 for a properly connected network. Only one eigenvalue is zero. These
properties of K imply that Ky, is symmetric.

The matrix Kj; concerns only the load areas, but all the load areas are
connected via power lines to one or several generators. Assume now that the
load areas are divided in ¢ different areas with no dire¢t interconnection. The
load areas are naturally electrically connected via the generator nodes.

If we now select a proper sequence of numbering of the nodes within the
load areas, we can block the matrix, Kj3, into q invariant blocks. All the blocks
have the same mathematical properties. The theory of invariant subspaces tells
us that, if the restriction of K55 to block j is nonsmgular, this 1mphes that Ky,
is nonsmgular _

The proof is therefore restricted to a general block (load area), KJ,, except
when all loads are radially connected to one or several generators. With radial
load, we mean that the load area has no internal network.

From above we can write:

K, =K§2€B---@ng
where dim(K3,) + ... + dim(KJ,) = I. According to the property of K we can
write each block of K5 as
Ki, = Ki + Z ol el (el )T
n;=1

The sequence n; (¢ = 1,...,r;) represents all the rows of Kz'z which have the sum

of the row elements greater than zero. The vector, e/, , has the n;:th element
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equal to one and all other elements are zero. The value of ¢ is greater than
zero for all n;. .

The matrix KJ has the same properties as the matrix K, i.e. rank = [; — 1
(for dim > 2), symmetric and positive semidefinite. We know that there exists
T7 such that

(TH)TKJT? = diag(K],,..., K] _,,0) (B.6)
From (B.6) we can define the range of Kg and the null space Kg as:
R(K}) = span {TY,.. l’;,_l}
N(K?) = span {T’} = span {(1,...,1)T}

where T/ is the i:th column of T7. Equation (B.6) implies that

I -1

= K. T/(T])"
i=1

Now we can write Kj, as

;-1
ng_ZK’T’ Za el (
i=1 ny=1
LEMMA B.3

For proper electrically connected and stable power systems the matrix, Ky,, is
nonsingular, where the stiffness matrix (K) of the general power system is

K K
e[ )
K12 K

Proof: If all loads are radially connected to certain generators, the matrix, K»,,

18
l
T
Koy = E oie;e;
i=1

where all o;:s are greater than zero. In this case we are through. In the general
case we can block Kj; into g invariant subspaces. For each subspace the following
is valid:

K;Z:‘K] Zo-n, n, ; o'zz,,->0vni7.7':1a"',q

n;=1
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Appendiz B Orthogonality of the Eigenvectors of the model (KM)

If we can prove that
. .. . -1
(K3 + ot eh, (e2,)7) " 3
we are through.
Take 7 € RY% arbitrarily. We can write

Jo— gl i
) =zt TN

where “’;z € R(Kg) and :va € N(Kg). We know from the property of Ky, that,
if ¢}, # 0, the quadratic form
(eh) ' Kheh >0 and  (af)TKfah =0
The interesting thing is the value of
(o) Koy for ajy #0
We can write
(a%)T Kyl = (a3 TKizd, + (w;.\’)T‘Tile](e{)ngyféO +(By)?0l >0

’

where _ o _

Tl = ﬂf\,Tl]j; BN € R
This implies that ,
() K,2? >0 Val£0 -~

i.e., all the eigenvalues of K 52 are greater than zero. This completes the proof.
O
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Notations

nd wEEAAAS
28 _S < © £ g

.

&

hnfaniain s @

)
P4

=3

n X 1 vector € R™

angular velocity of principle mode 2

damping internal generator 7

angle of machine 1

chroneckers delta

voltage behind transient reactance of machine %
kinetic energy for generator 7 at wp

inertia constant for generator :

2H;-S,. . . 7
= i mass of machine 1
UJUS

nabla operator with respect to @

= (5%—1-, 5%—2—, ceny 5%—-) nabla operator with respect to §

nabla operator with respect to V

= %%”— angular velocity at bus ¢

rated electrical angular velocity
mechanical power input to generator 7
system base

apparent power from generator i to bus i
= Py, +7 Qgi

apparent injection to the net at bus 4
=P +7Q;

complex load at bus 2

= P, + 7 Qr,

rated apparent power for generator 1
phase angle of voltage at bus 7
absolute value of voltage at bus 1

rad/s

p.u./(rad/s)
rad

p.u.
Nm

s ' N
s/rad

rad/s
rad/s
p-u. of §
MVA
p-u. of §

p.u. of S
pu. of §
MVA

rad
pu. of Vi,

145




Appendiz C Notations

X;; series reactance of power line between bus i and j p.u. ohm
Zbas base impedance Vi /S ohm
We define

O¢(a@) = %(—z—)- £ <ggl), Jacobian matrix
j

Subscript 0’ indicates the quantities evaluated at the equilibrium point.
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Calculation of
the Gradient and
the Jacobian Matrix

D.1 The Gradient of the Objective Function

In this section we derive the gradients analytically which are used by numerical
algorithms. Equation (5.1) gives

tr(A) = — tr(M—ID)

where

D = TP Kpo(TEC)T — BK,. — BTSVC Kgyo(T5VC)T
A variation analysis of tr A with respect to the parameters gives:
§(tr A) = —tr§(M D) = —tr M~ (§(D)) (15.1)
Finally,

§(D) = TPC§(Kpc)(TR)T — B§(K,e) — BT}VC§(Ksvo)(T3V9)T
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Appendiz D Calculation of the Gradient and the Jacobian Matriz

Equation (D.1) becomes
§(tr 4) = — tr(M—l (TPC8(Kpo)(TRC)T — B6(K,e)

_ Bvaca(stc)(TiVC)T)) (D.2)
The partial derivative with respect to K,,:

0 ... B(L,7) ... 0
=tr{ M~ | : (D.3)
0 ... B(n,i) ... 0

d(tr A(9))
BKsei

The gradient restricted to the HVDC-parameters: Assume that the rectifier is
placed at bus i and the measurement of Aw takes place at bus [. Furthermore,
assume that the inverter is placed at bus j and the measurement of Aw takes

place at bus k. The tuning parameter for this HVDC-system is designated by
KDCT.

(0 ... 0 1‘70 ... 0O
(ir 4(0)) 0 e
t . .
G}DC' D (:) S T P (; o
\ L0 0 0 0) )
k£, l£7

The gradient restricted to the SVC-parameters: Assume that an SVC is placed
at bus 7 and the measurements take place at bus [ (Aw;) and bus k (—Awy).

! ke
0 ... B(Li) ... —B(1,i) ... 0
oteae) LT . AV o
dKsvc, : : : :
0 ... B(nyi) ... —B(n,3) ... 0
14k
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D.2 The Jacobian Matriz of the Constraint Function

D.2 The Jacobian Matrix of the Constraint Function
The system matrix:

0 I
A= . ] . KT=K
~M~'K —-M-'D :

ATA =

(M- K)"M-K  (M~K)"M~'D ]
(MDY MK I+ (M-'D)"M-D
trATA = tr (M7 K) "M K) + e (M~D)"M~1D) +n

n = number of buses

A variation analysis of tr AT A with respect to the parameters gives (first order
approximation):

6(tr AT(0)A(0)) = tr (§(MK) "M K) +tr (M~ K)"§(M ' K))
+tr (§(M~1D)"M~1D) + tr (M~ D) 5(M D))

Let C' be a real general matrix, then it is easy to show that the first order
approximation gives:

§(tr CTC) = 2tr CT6C = 2t2((60)7C

This will shorten the calculations. The matrix §(M ~1D) is already calculated,
see the previous section. The matrix M ~1K is constant.

Summary of the variation analysis:

§(tr AT(©)A(0)) = 2tr (M“l (TP%(KDC)(T,BC)T
(D.6)
_ B§(K.e) — BTssvoé(sto)(T,iVC)T)>TM“1D

Now it is easy to calculate the Jacobian matrix. In this case, it is only a row
vector with dimension 1 x m (m number of parameters).

The partial derivatives are calculated in the same manner as for the gradient
of the objective function.
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Appendiz D Calculation of the Gradient and the Jacobian Matriz

D.3 Properties of the Optimization Problem

After some investigation of the general system, it become obvious that the influ-
ence on the damping from the K, 4-parameters was poor.

Variation of the K,.4-parameters mainly affects the imaginary part of the
eigenvalues. That is why this appendix is devoted to the optimization problem
with Kseq = 0 (matrix).

Both Ve (tr A(®)) and the Jacobian matrix of tr AT(©)A(©) will be as

follows.

PSS-equipment: Equation (D.3) gives:
8(tr 4(8))  B(i,9)

= o (D.7)
where m;; is defined in Appendix C.
M:diag(mii), 1=1,...,m
HVDC links: Equation (D.4) gives:
d(tr A(0)) 1
—-—E—K—];__:——( ‘Ll +m]k) ’ (D.S)

This means no damping, if the measurements are taken strictly outside the siting
of the rectifier and the inverter.
If the measurements are taken at the stations, then the

d(tr A(0))
0Kpac,

e
Ed

_~_~( —1+m—1

Finally, if one of the measurements are taken outside the station, e.g., the inverter
station, then

0
M e m',_,l
BKDCT e
SVC equipment: Equation (D.5) gives:
d(tr A(©))  B(l,i) B(k,1)
0Ksvo, - my Mk

(D.9)

If the positive Aw-measurement is taken at the siting bus, the partial derivatives
becomes

d(tr A(©))  B(i,i) B(k,1)
0Ksvo,  mi Mk

(D.10)

Similar expressions can be derived for the Jacobian matrix (vector) for the con-
straint function.
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PSS equipment:

s O 0 \
Otr(tr AT(0)A(O B ;l,i B(;w.,i) .
( 6K(3e.) O - i R el )
\ \ 0 RO O 7 y.

If no incident on other equipment in the system occur, then

d(tr AT(©)A(O)) " (B(j,i)”
T = 2K,e, Z s M (D.11)
z j=1 17
HVDC links:

1 j )

0 0 0 0

O(tr AT(©)A(O -1 ol .

(tr ()()):zml 0 M I{'l_,i, 015

0 0 0 0
¥,

If no incident on other damping equipment occur in the power system, then

8tr(AT(©)4(0))
(9.[(])(3r

= 4Kpc, (m;;® +m;}) (D.12)

SVC equipment:

[0 0\
I B(1,3) B(};,i)
8(tr AT(©)A(O o e
(1' ( ) ( )) =——2t1' : : D
O0Ksvc; Bl _BaD _ B(ny)
0 0
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Appendiz D Calculation of the Gradient and the Jacobian Matriz

If no incident on other equipment exists in the system, then

a(trAT(@)A(('D)) = B(],z)

0Ksvo, Z

(D.13)

From Egs. (D.11), (D.12) and (D.13) we get the va,lues on the diagonal of the
Hessian matrix by derivation. The diagonal elements (h;;) are for the different
equipments:

2 Z M with a PSS at nod 1

j
B = {4 (m3;? + m;’) with the rectifier at nod ¢ and
T T . .
the inverter at nod j

n .o\ 2
42 M with a SVC at nod 1

i=1 m?:’
j# 1] £
B(l,i) = —sin(8; — gi)XV_l
il
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Coherent Groups of the
Nordel Power System

The coherency technique described in Chapter 3 is used:for reduction of a large
power system, Case 3, into two coherent power systems, Case 2, and Case 1.

Figure E.1 shows Case 1. The generator names and bus numbers are marked
on the top of the buses.

Figure E.2 shows Case 2. The numbers within parenthesis are the desig-
nation of the group in Case 1. The groups are surroundéd by solid lines. The
generator names and bus numbers are marked on the top of the buses.

Figure E.3 contains four figures. The solid lines surrounds 21 groups, i.e.
the figure describes how Case 3 is aggregated into Case 1. The numbers within
the parentheses are the designation of corresponding buses in Case 1.

Figure E.4 contains four figures. The solid lines surrounds 44 groups of
generators, i.e. the figure describes how Case 3 is aggregated into Case 2. The
numbers within the parentheses are the designation of corresponding buses in

Case 2.
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Coherent

Groups of the Nordel Power System
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Figure E.2 Aggregation of 44 generators into 21 coherent generators.
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