LUND UNIVERSITY

Analysis of a Self-Tuning Regulator in a Servoloop

Astrt')m, Karl Johan; Gustavsson, lvar

1978

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Astroém, K. J., & Gustavsson, |. (1978). Analysis of a Self-Tuning Regulator in a Servoloop. (Research Reports
TFRT-3150). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/5a8f5fa6-7010-49ec-8dc0-2cc574a62aa6

CODEN: LUTFD2/{TFRT-3150)/1-058/(1978)

ANALYSIS OF A SELF TUNING REGULATOR
IN A SERVOLOOP

K J. ASTROM
| . GUSTAVSSON

Department of Automatic Control
Lund Institute of Technology
October 1978



ANALYSIS OF A SELF-TUNING REGULATOR IN A SERVOLOOP

K J Astrdom and I Gustavsson




ii

Dokumentutgivare Dokumentnemn Dokumentbeteckning

kund Institute of Technology REPORT LUTFD2/ (TFRT-3150)/1-58/(1978)
Handldggare Dept Of Au'tomat.ic _C()ntY‘O.l Utgivningsdatum Arendebateckning

D6YD 0ctdber 1978 (STU: 76-3804

Fbrfattare . o .

Kied tAstrom
I Gustavsson

Deokumenttitel och undertitek
THTH

Analysis of a self-tuning regulator in a servoloop

Referet {tammandrag)

Soe’ unexpected phenomena have been observed when a self-tuning regulator
is used in a servoloop where only the error is available for feedback.
Ana1ysis is giQen which gives insight into the observed phenomena. The
ané?ysis shows that it is in general not feasible to use the self-tuning
regulator in this way. Tools for analysing adaptive systems with
deterministic inputs are obtained as byproducts. "

Referat skrivatav
Authors

F&rslag till ytterligare nyckelord
44770

A

K.ias.sif.lk.atlor{ssystem och -k.lan(.er)
SOT

Indaxtermar {ange kalla)

AT

Omfang S §I6Wia.blbliogrqfiska uppglifter

58 pages R

Spri OSSR et

English ;

"S'ak,et.,;',;,',;,;.'gm'ar e SR sen i Son
60T o BOTA L lelie
Dokumentet kan erl'.l.ﬁllas.frén S . Mpttagarans uppagifter

Department of Automatic Control - _ GeTa

Lund Institute of Technology
Box 725, $-220 07 Lund 7, Sweden
Pris

STER Y

Blankett LU 11:25 1976—07

515-
DBt

DOKUMENTDATABLAD enligt 51562 1012




Table of Contents

1. INTRODUCTION
2. PROBLEM FORMULATION

3. ANALYSIS
Preliminaries
Stationary Solutions
Piece-wise Deterministic Signals
Prediction of Piece-wise Deterministic Signals
Characterization of Stationary Solutions
Local Properties of Stationary Solutions

4, EXAMPLES

5, BETTER REGULATOR STRUCTURES
6. ACKNOWLEDGEMENTS

7. REFERENCES

APPENDIX




1. INTRODUCTION

The self-tuning regulator discussed in Astrom and Wittenmark (1973)
was originally developed for steady state regulation where the major
disturbances can be described as stochastic processes. Some theory
has been developed for this case. There is also some experience from
industrial process control. See Astrdm et al (1977).

In this paper we will discuss the application of the self-tuning
regulator (STR) in a servoproblem. The main task is thus to make a
system follow deterministic command inputs. It will also be assumed
that only the error i.e. the difference between the command input and
the output is available for feedback. Such a system is called a
single-degree-of-freedom (SDF) system by Horowitz (1963).

Simulations by Wittenmark (1973) indicated that the self-tuning
regulators in a single-degree-of-freedom configuration would converge
to dead-beat 1ike regulators when subject to deterministic command
signals. Experiments by Andersson (1977) also indicated that the system
could in some cases oscillate with-a very long period. The purpose

of this work has been to gain insight into the observed

phenomena.,

The closed loop system obtained with a STR in a feedback system is a
nonlinear system. If the command signal is deterministic the problem
is to analyse a nonlinear difference equation. This problem formulation
is given in Chapter 2. In Chapter 3 the standard procedure of
determining the stationary solutions and their local properties is
persued, A major problem is to find a suitable characterization of

the command signal. A class of signals called piece-wise deferminisiic
are introduced. Using this notion a convenient characterization of

the stationary solutions is given. The results show that the
stationary solutions do indeed correspond to dead-beat 1ike regu-
lators. The analysis makes it possible to conclude that it is in
general not feasible to use a self-tuning regulator in a servo 1oop

in a single-degree-of-freedom configuration. This is of course not
surprising because a single-degree-of-freedom configuration is known




to have certain limitations. See e.g. Horowitz (1963, p. 239-245).

To investigate the local properties of the stationary solutions the
nonlinear equations are linearized. This Teads to linear time-varying
difference equations. Such equations are dealt with in detail for
specific examples in Chapter 4. In particular it is found that the
experimental results obtained by Andersson (1977) can be explained.
Since the difficulties encountered are due to the fact that a
single-degree-of-freedom configuration is used they can be avoided

by using a two-degree-of-freedom configuration. It is shown in
Chapter 5 that this is indeed the case.




72. PROBLEM FORMULATION

Consider the closed loop system shown in Fig. 2.1, where the self-
-tuning regulator STURE described in Astrom and Wittenmark (1973) is
used in a simple command servo loop.

v

STURE ——® Process

Figune 2.1. Block diagram of a self-tuning regulator
in a single-degree-of-freedom. configuration,

It is assumed that only the control error e is available and that Yy

and y are not available separately. This case is called a single-degree-
-of-freedom system by Horowitz (1963). It is well known that the

system shown in Fig. 2.1 is not the best way to handle command inputs.
See Horowitz (1963, p. 239-245)., It is, however, the only possibility if
only the error e is measured. Because of its simplicity the system shown
in Fig. 2.1 is also quite common even if both y and Y, can be measured,

The behaviour of the system shown in Fig. 2.1 is well understood if

the reference value Yp is zero and if the process disturbance n is a
stochastic process. In this report we will develop the theory for the
case when the reference value Yy is a deterministic signal. The analysis
also applies to the case when the process disturbance is a deterministic
signal.



3, ANALYSIS

The properties of the closed loop system shown in Fig. 2.1 will now
be analysed.

Preliminaries

It is assumed that the process disturbance n is zero and that the
process can be described as

-1
yit) = B y(e-k), (3.1)
Alg ")
where A and B are polynomials
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in the backward shift operator q'T.

The k step prediction model which corresponds to (3.1) is
JlErk) = Ag(a™!) y(t) + Bola™h) u(t) (3.2)

where the polynomials
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are the solution to the polynomial equation
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B = ABO +4q BAO.




The prediction model (3.2) can also be written as

Jlerk) = au(t) + ' (t) 8 (3.3)

where

o(t) = [-y(t) oo -y(t-r+1)  u(t-1) ... u(t-s)]"

The self-tuning regulator STURE discussed in Astrom and Wittenmark
(1973) was originally derived for the case y,. = 0. It can be
described as follows. The parameters of the prediction model (3.3)
are estimated by recursive least squares. The control signal is then
determined from the condition that §(t+k) =0, j.e.

T

Bu(t) = - o' (t) B(t) (3.4)

where 68(t) are the estimates of the parameters at time t. For simplic-
ity it is assumed that By = bO is known. This is not essential. See
Astrom and Wittenmark (1973) and Ljung and Wittenmark (1974). The
estimate 6(t) is given by

o(t+1) = 8(t) + P(t+1) o(t-k+1) e(t+1)
e(t+1) = y(t+1) = §(t+1) = y(t+1) - Bou{t-k+1) - o (t-k+1) 0(t) =
= y(t+1) + o (t-k+1)[8({t-k+1) - B(t)]

where the last equality follows from (3.4). The matrix P{t+1) is given
by
P (t+1) = AP7T(t) + o(t-k+1) o (t-k+1).

This implies that the matrix P must be regular which in essence is an
identifiability requirement.

When the self-tuning regulator is connected as shown in Fig. 2.1 the
above equations hold if y is replaced by y-¥, =-e. The regulator
is thus described by the equations




(o(t) = [e(t) ... e(t-rt1)  u(t-1) ... u(t-s)]

o(t+1)

1t

o(t) + P{t+1) o(t-k+1) (t+1)

1}
1

{ e{t+l) e(t+l) + wﬁ(t~k+1)[e(t—k+1) -8(t)] (3.5)

Pl (te1) = a7 (L) + o(t-k+T) @ (t-k+1)

o (t) 6(t).

\ Bgu(t) =

It is well-known that the matrix P also satisfies the following
recursive equation

P(t+1) = {P(t) -

S () o(t-ke1)[A+ o (t-kt1) P(t) o(t-k+1)]™" @ (t-k+1) P(t)}.

The equation (3.4) can be written as

B(a™) u(t) = A(g7) e(t) (3.6)
where
- -1 -1+
AGGTY) = - 8y(t) - 0p(t) g -l -8 (t) QT
-1 -r+1
Bag(t) + ap(t) ¢ ... ta(t) g r (3.7)
and
-1, _ -1 -5
B{q ') = Bg*+ Opq(t) g F...¥0,. () q
A -1 -
Ly + By(t) @ +.u. +B(t) g7 (3.8)
The definition of the control error e gives
-1
B
e(t) = yp(t) = y(1) = y(t) - 2L u(e-k).
Alg )
Combining this with (3.6) we find the following equations
A1) e(t) + B(aT)) ut-k) = A(@" )y (t)
(3.9)

A(q™) e(t) - B(a!) u(t) = 0

which describes how u and e evolve if Yy and 8 are known. Notice that
the difference operators A(q"]) and B(q‘]) are in general timevarying




because they depend on the parameter estimates. Compare (3.7) and
(3.8).

The closed system obtained when the self-tuning regulator is
connected to the process can thus be described by the difference

equations
[ B6(t+1) = o(t) + P(t+1) @(t-k+1) g(t+1)
e(t+1) = - e(t+l) + @ (t-k+1)[0(t-k+T1) - 8(t)]
p T ee1) = a1 () + o(t-k+1) @ (t-k+1) (3.10)

A1) e(t) + B(QT) u(t-k) = A(Q7T) y,(t)

LA(Q™) e(t) - B(q™Y) u(t) = 0.

These nonlinear difference equations are fairly complex. It is not
possible to obtain analytical solutions. To get insight into the
properties of the closed loop system the standard path of investigating
the stationary solutions and their local properties is used.

Stationary Solutions

The state of the system (3.10) can be chosen as 8, P, the statevector
of a realijzation of the dynamical system (3.9), and the delayed values
of e(t) and u(t), which are necessary to determine @{t-k+1}. The
system is driven by the reference signal Yyr For a given reference
signal Yy it will first be investigated if there are some stationary
solutions. Since there is a time delay in the process there-will always
be a control error for at least k sampling periods after an unpredict-
able change in the reference signal. It is thus not possible to have
stationary solutions in the sense that all variables are constant
except in the trivial case of y,. = 0. It will therefore be explored

if there are stationary solutions in the sense that the parameter
estimates are constant. Introduce '




DEFINITION 1

A solution to the equations (3.10) is called stationary if 0(t) =
= constant. o

Let 6, be a constant parameter vector. If 8(t) = 6, the closed loop
system is described by (3.9). Assume that 6j is such that (3.9) is
stable. Let ey and ug denote the solution to (3.9) corresponding to
8g- Similarly let @ and Pg be the functions defined by (3.10) with
eg and ug substituting e and u. It follows from (3.10) that 6, is a
stationary solution if and only if

Po(t+1) wO(t-k+3) eo(t+1) =0, Vvt (3.11)
Since Po(t) was assumed to be regular this is equivalent to
mo(t-k+?) eg{t+l) = 0, Vv t.

1t follows from the definition of ¢ that the stationarity conditions
can be written as

0, vt and T

Kooy kir-l

eO(t+1) eg(t)

(3.12)

0, vt and T = k+l,..., k+s.

eo(t+T) uo(t)

Stationary solutions will not exist unless special conditions are
jmposed on the reference signal. Such conditions will now be
introduced.

Piece-wise Deterministic Signals

It is convenient for analysis to use signals that can be described as
solutions to linear difference equations. Such a description covers a
wide range of signals. It follows, however, from the description that
the signals can be predicted exactly for all future, which is not
desirable for our purposes. In stochastic control theory the problem
is overcome by introducing random processes which naturally can not be
predicted exactly. Since we want an essentially deterministic descrip-
tion a different approach will be taken. It will be assumed that the



signals can be described as solutions to linear difference equations
over certain time intervals but that there are isolated points where
the signals change in an unpredictabie manner. Certain restrictions
are also imposed on the changes. It is assumed that there are
discontinuities only in the highest difference which appears in the
difference equation.

Let Ti(z) be a set of discrete integers

such that

min{t - ti) =L > 1

i+]
and let T (&) be the complement of T:(%2) with respect to all integers.
The points in T.(2) are obviously isolated. Introduce

DEFINITION 2

Let Q(q'1) be a polynomial of degree n < & in the backward shift
operator. A signal y is called a plece-wise deternministic signal of
degree n and index & if

0a™!) y(t) =0 if teT (%) (3.13)
and
0™y y(t) £ 0 if teT.(e). (3.14)

The polynomial Q(q']) is called the generator of the signal. The set
T.(%) is called the set of xregular points and T:(2) is called the set
of .inegulan points. The irregular points are at least £ units apart,
where £ is the index of the signal. The index is thus a measure of how
irregular the signal is. The smaller % is, the more irregular is the
signal. It follows from (3.13) that a piece-wise deterministic signal
can be predicted exactly in an interval that does not contain any
irregular points. This is shown in detail in the following.




10

The name piece-wise deterministic signal is chosen because its
resemblance to the notion of a completely deterministic stochastic
process. In the early literature on stochastic processes a process
was called completely deterministic or singular if (3.13) holds for
all t. See e.g. Wold (1954). Piece-wise constant signals and piece-
~wise linear signals are examples of piece-wise deterministic signals.

In analogy with the terminology for random processes the signal v
defined by

w(t) = Q(a" ") y(t), (3.15)

is called the .nnovations.

EXAMPLE 3.7

A piece-wise constant signal has the generator
g=1- q'T.

The set of irregular points are all the points where the signal

changes Tlevel, o

EXAMPLE 3.2
A piece-wise linear signal has the generator

Q=1-2¢"+q7%

The set of irreqgular points are all points such that the change of
slope is immediately to the left of the points. See Fig. 3.1. o

Prediction of Piece-wise Deterministic Signals

A piece-wise deterministic signal can be predicted exactly in an
interval which does not contain an irregular point. A k-step predictor
can be constructed as follows. Let F(q_1) and G(q_]) be polynomials
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= f | A
10 15 20 25
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Figure 3.1. The set of irregular points for a piece-wise
linear signal.

of degrees k-1 and deg Q-1 which are the unique solutions of the
equation

1=F(q") Q@™ + 97X a(q7)). (3.16)

If deg Q + k < & it follows from (3.13) that

[-a % eI vt) = Fiah @) yit) = o

for t; + kst <t,,, where tis Ty €T(0).
The k-step predictor is thus given by
¥(t) = 6(a7) y(t-k)
and the prediction error is
e(t) = y(t) - §(&) = F@ )o@y y(t) = Fl@ Ty wr).  (3.17)

Since Q(q_]) y(t) is a sequence which is different from zero at the
irregular points only, it follows that the error of the k-step predictor
is different from zero at the irregular points and their k-1 right
successors.
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A periodic signal with the period p has the property
(1-4P) y(t) =0 vt

This means that a periodic signal is deterministic and that it can
be predicted exactly provided that a predictor with sufficiently
large memory is available. Certain periodic signals can, however, be
considered also as piece-wise deterministic signals. This is iilu-
strated by the following example.

EXAMPLE 3.3

Consider a square wave with period 2p. The signal can be predicted
using the predictor

y(t+1[t) = y(t).
This predictor gives the correct prediction except of those points
where the square wave changes level. The square wave can thus be
regarded as a piece-wise deterministic signal with generator
Q=1 -q_l. The square wave can, however, also be predicted exactly
by the predictor

Y(t1]t) = y(t) - y(t-p+l) + y(t-p)

which requires that p+1 past values of the signal are stored. This
means that

(1-q ) (1+qP)yy(t) =0 vt

The square wave can thus also be regarded as a purely deterministic
signal.

Characterization of Stationary Solutions

The stationary solutions were previously characterized implicitly by
the equations (3.12). A more direct characterization can be given if
the command signal is a piece-wise deterministic signal. To obtain the
result it is necessary to assume that there are enough parameters in
the regulator and that the unpredictable changes in the command signal
are sufficiently far apart. To be precise the following notion is
introduced.
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DEFINITION 3

A self-tuning regulator is called compatibfe with the process model
(3.1) and the command signal if

deg A > deg A + deg Q - deg lcd [A,Q1 - 1 (3.18)
deg B = k + deg B + deg Q - deg lcd [A,Q] - 1 (3.19)
where 1cd(A,Q) is the largest common divisor of A and Q and

deg A + deg B < & - 2k, (3.20)
The following result can now be given.

THEOREM 1

Let the system (3.1) be controlled by a self-tuning regulator which is
compatible with the system and the piece-wise deterministic command
signal Yyr Assume that there is a stationary solution. Then

(1) Q divides A, B divides G

and the stationary solution is such that

(i) A= A6

B BFQ a

Prood

Let 6, be the stationary value of the parameter estimate. Let the
signals obtained for 8(t) = 6g be indexed by the subscript " O"' When
the parameter estimate is constant the closed loop system is
characterized by (3.9). The operators A and B are time invariant
because 6 is constant. See (3.7) and (3.8). The closed loop system
is thus Tinear and time invariant. The characteristic equation of the
closed loop system is

~1 k

Ay Bz Ny + 2K A Bz = 0. (3.21)

The parameter estimate 09 must be such that this equation has all its
zeros inside the unit disc. It may happen that the polynomials A and B
have common factors. Let A} and B be the polynomials obtained when
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the Targest common divisorof A and B is cancelled. Solving {3.9) for
&g and Uy we get

-k

(A8, + g% AB] ug = AA (3.23)

1 Yy

The solution associated with the possible common factors of A and B
will vanish in steady state. Introduce the signal Vo defined by

-k
[AB; +q " AB] vy = Ay,. (3.24)

Then

e

-1
0 B] (q ) Yo i
1 {3.25)
ug = Aj(a ) vy

Since 0q is a stationary point it follows from (3.12) that

n

eo(t+t) By(a71) vo(t) = 0 for T=K,..., k+r=1 and a1l t

1 (3.26)
eg(t+T) Aj{q °) vg(t) =0 for t=k+1,..., kis and all ¢
where r - 1 = deg A and s = deg B.
The equations (3.26) can be written as
( 0‘ o oy ...ar1 Y[ eg(t+k) vq(t) )
en{t+k) vy{t-1)
0 oy Oin ari 0 0
0 o Oty ar]
=0
1 B - le
T By...8B
. 1 51 .
\ 7\

for all t, where r -1 = deg A] and Sy = deg B]. The parameters of

A](q']) and B}(q‘]) are here denoted by 04 and B;. Notice that
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ryts = sy+r. The matrix on the ieft is the resultant of the
polynomials A, and By. See van der Waerden (1966). Since A1 and B
are relatively prime the columns are Tinearly independent and it
follows that

eo(t+k) vo(t-i) =0
for 1 =0,..., ryts -1 and all t. Hence
eO(t+r) vo(t) =0 (3.27)

for all Lt and T = k, k+l,..., k+r3+s-¥.

The signal Vo has the property
vplty) + 0.

This is shown by contradiction., Assume VO(ti) = 0. Let Q = QTQ2 and
A= A]QZ, where Q, is the largest common divisor of A and Q. Equation
(3.24) gives

008 a7 ABT Vg = 0y, = QA = Apv.

The right hand side is different from zero for t = ts because the
leading term of A is nonzero. The polynomial operator of the left hand

side has the order
ng = deg Qy + max[deg(AB,), k+deg(A;B)].

It foilows from the compatibility conditions (3.18) and (3.19) that

ng € rp+s. It thus follows that vy(t) can not be zero for all t in an
interval of length ng between two irregular points. It then follows from
(3.27) that eqy(t) is zero for tiytng+k < t g t;. Equation (3.22)
gives

-k

The left hand side is zero, but the right hand side is not zero. A
contradiction is thus obtained and it is proven that vp(t;) + 0.
Equation (3.27) then implies that

egt; +1) = 0, T =k, kil,..., kirq4s-1.
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Furthermore ey satisfies (3.22). Then
Q.[AB; + q-k AB] eg = 0)ABY,. = 0
for ty+ng <t < tiy Hence
eg{t; +T) = 0, t=k, kKtlyouns 50— & - 1.
The signal ey can thus be represented as
elt) = W@ ™) v(t) (3.28)

where deg W = k-1 and v is the innovation of the command signal. It
follows from (3.22) that

AB q_kA B
e = ] y = [‘i - _..—-E«-__-—-—] y =
° g, +qTEA}B AB, +q A8
A:B
- 1
AB}—rq A1B

1]

Fv + ¢ { - - — ] y
AB, +q EA}B r

where the last equality follows from (3.16) and deg F = k- 1.
A comparison with (3.28) shows that

W=F (3.29)
and

AB

ABI-bq‘kA]B '
Hence

AB[1 - q7¥G] = AB,G
or

ABQF = AGB,. (3.30)

Since A] and By are obtained by cancelling common factors in A and B
condition (ii) now follows.
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Proceeding in an analogous way it can be shown that
vglt) = V(@) v(t) (3.31)
where deg V = k- 1. Equation (3.23) gives after some calculations

A-B
VO=—£V+q_k [G——"-——}-Tk—‘] yr‘.
By AB, +q AB
If this should be compatible with (3.31) By must divide F, Since A and
B are relatively prime and Q and G are also relatively prime it follows
from (3.30) that B divides G and that Q divides A. This proves part (i)

of the theorem. a

Remanl 1

It follows from the theorem that there will not be any stationary
solutions unless specific conditions are satisfied. The condition
that Q divides A implies that the dynamics of process which

generates the command signal must be part of the process dynamics.
This can be achieved by introducing a precompensator which, however,
requires a priori knowledge of the command signal. To have stationary
soTutions when the command signal is piece-wise constant the process
must contain an integrator or else it must be cascaded with an
integrator. This is an example of the "internal model principle”.

Remask 2

The condition that B divides G can be relaxed. By back-tracking the
arguments used in the proof it can be shown that if B does not
divide G then

eg(ttt) ug(t) + 0

for t = ti’ t1+],..., ti+r-1 and T = k+1,..., k+s. This means that

the stationarity condition (3.12) is violated. Since the signal ugy is
governed by

A AG  AG

uO=B—]eO“—“BF—Qe—'E‘6\)
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it follows that if Q divides A, if B is stable, and if & is suffi-
ciently large then uo(ti'T) will be arbitrarily small for t=1,2,...,5.
This means that the products eo(t+T)u0(t) can be made arbitrarily small
and there will not be any noticable change in the parameter estimates
at the irregular points. This explains the simulations presented in
Example 8.2 in Wittenmark (1973, p. 108} where B = 1+0.5 q'] and

% = 25. The magnitude of the product en(t+t)uy(t) will be of the
magnitude v(t;)? - 272% w 3:10"8 y(t,)2 which is not noticable in the
simulations.

Theorem 1 can be used to give further insight into the properties of
possible stationary solutions. We have

THEOREM 2

Consider a system according to Fig. 2.1 with a selif-tuning regulator
which is compatible with the process and the command signal. If there
is a stationary solution then the open loop transfer function is such
that

-9 G
% = "R (3.32)
and the input - output relation of the closed loop system is
y(t) = 6(a"") y,(t-k). (3.33)
=}

Proog
The open loop transfer function is
M) Bz
G "] _ "k -l
olz ) =2 Ik
By(z71) A(z™),

Equation (3.32) now follows from Theorem 2 (ii). The closed loop
transfer function is

2~k iz

- kg1
Fiz7ly gz7!) + z7ke(z ) 2 6z )

The last equality follows from (3.16). The result (3.33) is thus also
proven. o



Remark 1

Theorem 2 explains the empirical observation that a self-tuning
regulator connected as in Fig. 2.1 gives a dead-beat 1ike response if
the parameter estimates converge. Compare e.g. with the simulations
in Examples 8.1 and 8.2 in Wittenmark (1973).

Remank 2

Notice that stationary solutions correspond to closed loop systems
whose properties are determined by the command signal only. A few
examples are given below.

EXAMPLE 3.3

A piece-wise constant command signal has the generator
aay =147,
Compare with Example 3.1. It follows from (3.13) that

1+ q_l et q-k+]

Fla™!)
a7y = 1.

The possible stationary solutions for piece-wise constant command
signals are thus such that the closed loop system has the property

y(t) = y(t-k)

EXAMPLE 3.4
A piece-wise linear command signal has the generator

- - -2
Q(q})=1-2q]+q .

Compare with Example 3.2. It follows from (3.13) that

1 -2 ~k+1

1+29 +39° +...+ kg

Fia™)

(k+1) - kq_1.

6(q™")

The possible stationary solutions for piece-wise Tinear command
signals are thus such that the closed loop system has the property

y(t) =y (t-k) + K [y, (t=k) = y(t=k-1)]
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Remarnk 3

Notice that it follows from the proof of Theorem 2 that if 8 is a
stationary solution then the corresponding regulator is such that the
poles and zeros of the process are cancelled by the regulator. It can
thus be expected that the regulator will not work well unless the
process is stable and minimum phase.

Local Properties of Stationary Solutions

Having obtained parameters &g which correspond to stationary solutions
it is natural to investigate the local properties by linearizing the
equations around the stationary solutions. The linearized equations
can be written as

1]

(88(t+1) = 80(t) +Pg(t+1)e(t+1)80(t-k-1) +Py{t+] Yoy (t-k+1)6e(t+1)

Se(t+l) = - 6e(t+1)-+¢%(t-k+})[68(t~k+1)-Se(t)] +

+ [0 (t-k+1) - 67 (t) Js0(t-k+1)
~ (3.34)
A(g Vyse(t) + B(q )su(t-k) = 0

Aola™1)se(t) - By(q™1)eu(t) +6A(a Jeg(t) - 8B(a™ ug(t) = O

L [PTT(t41)] = as[PTT(8) ]+l (t-kt1 )60y (k1) + By (t-ke)op(t-k+1)

where e denotes the deviations from the stationary solution i.e.

de = e-eq.

Notice that the equations for &8, 8e, and Su are decoupled from the
equation for 8P. This means that the stability of the stationary
solution can be investigated without considering the perturbation
equation for P. The Tinearized equations will be investigated further
for specific examples in Chapter 4,
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1, EXAMPLES

An experimental study of u-processor self-tuners was carried out by
Andersson (1977). The purpose of this study was to find simple and
robust algorithms which could be used in a variety of industrial
applications. Andersson found that a self-tuning regulator in a single-
degree-of-freedom configuration as in Fig. 2.1 could give unsatis-
factory behaviour in some cases. The motivation for the work done in
this report was partly to explain the empirical results found by
Andersson. The examples presented in this section correspond to some
of the simple cases investigated by Andersson. The examples were
simylated in SIMNON using a special package for adaptive control
developed by Gustavsson (1978).

EXAMPLE 4.1 {A finst onden process with square-wave cotmand )
Consider a process described by (3.1) with
Ol 1
B(q™')
k = 1.

1-0.75q

1

Assume that it is desired to obtain a regulator which works well for
piece-wise constant command signals. Since the process does not contain
an integrator it would be desirable to have a regulator with integral
action. A simple regulator structure which admits this is given by

u{t) = - 8, e(t) - 85 e(t-1) - 6, u(t-1)

Hence r=2 and s=1. To have integral action the parameter 64 should
have the value 83=—3. There are two choices of values of the parameters
8 and 6o which give dead-beat 1ike responses, e}:-1.75, 82=0.75 and
e}=—1, 62=O.75. This example was originally investigated in order to
find out if a self-tuning regulator would tune in on any of these
parameter values. An interesting problem was for example if the self-
tuning regulator in the configuration in Fig. 2.1 could introduce
integral action when desired. In Fig. 4.1 through Fig. 4.5 are shown
what happens when the self-tuner in the configuration of Fig. 2.7 is
used. The behaviour shown is very unsatisfactory. The parameters do
not converge and the response is poor. The amplitudes of the
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fluctuations in the estimates will depend on the forgetting factor
and the period of the command signal.

The command signal is piece-wise constant and has the generator
-1 -1
Q@ ) =1-q .
Since @ does not divide A it follows from Theorem 1 that there will not
be a stationary solution in the sense that the parameters are constant.
The analysis of Chapter 3 thus allows us to conclude immediately that

the self-tuning regulator in the configuration in Fig. 2.1 does not
have the desirable properties.

It is not straightforward to show that (3.9) has a periodic solution
1f the command signal 1is periodic. Knowing that the solution is
periodic the amplitude of the parameter fluctuations can, however, be
estimated crudely. A phase plane of the parameters 04 and 6, for a
typical simulation is shown in Fig. 4.6 to illustrate what happens if
A<l, If A=1 the corrections of the parameter estimates will tend to
zero. In Fig, 4.7 a phase plane of the parameters 6, and 83 is given
to examplify how the parameter estimates evolve for the case A=T,
Notice that without the analysis made in Chapter 3 this simulation
might have been interpreted as if the parameters converge to the point
eT=-O.971, 82=O.695 and e3=—0.936. The period length influences on the
position of this point. As the period tength increases the point tends
to 6}=—1, 82=O.75 and 83=-].
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Figure 4.1, Results obtained when using a self-tuning regulator with

r =2 and s =1 on a process with the pulse transfer function

H(z) = E?i%i“?g' The square wave command signal has the period 40

and the forgetting factor is 0.98.
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Figune 4.2. Results obtained when using a self-tuning regulator
withr =2 and s = 1 on a process with the pulse transfer function
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and the forgetting factor is 0.98.
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2
0,724 //
0.70-
/‘—\ \\—/
0.687
0.66 T 1 ) B3
-0.96 -094 -092 -0‘90 -0.88

Figune 4.7, Phase plane of the parameter estimates when using a self-
tuning regulator with r=2 and s=1 on a process with the pulse transfer
function H{z) = E_?lﬁf7§ . The square wave command signal has the period
80 and the forgetting factor is 1. Notice that each curve corresponds

to approximately 20 000 time steps.
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EXAMPLE 4.2 (An {ntegrator with square-wave command)
Consider a process described by (3.1) with
-1 -
A(g) =1 -q7
-1
B(g ) =1
k =1.
Assume that the main task is to make the system follow a piece-wise
constant command signal. Since the process has integration a propor-
tional regulator will suffice, i.e. r=1 and s=0. It is shown in
Fig. 4.8 what happens when such a self-tuning regulator is used. The
behaviour of the system is excellent. The parameter estimate converges

quickly to the correct value and the output then follows the command
signal with one unit time-delay.

The analysis presented in Chapter 3 can be applied to get insight into
the problem. Since the command signal has the generator Q(q-1) =1-q
it follows from (3.16) that

Fla™') =1
6(q7")

Since Q divides A and B divides G it follows from Theorem 1 that there is
a stationary solution characterized by

1

1}

1

A_AG 4
B - BFQ

The parameter value associated with the stationary sclution is thus
9-1 = _]-

To investigate the local properties of the system around the stationary
solution the linearized equations (3.34) will be explored. In this
particular case the closed loop system is described by

g{t+1)

o(t) + P(t+1) o{t) =(t+1)

e(t+l) = - e(t+l) = yr(t+1) - y(t+1)

Pl (e+1) = A PTV(E) + () @ (t)
(-7l e(t) +u(t-1) = (1 - a7} y.(t)

81(t) e(t) +u(t) =0
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Elimination of u(t), y(t) and o(t) from these equations gives
{1+ 8 (t)] e(t) + [yr(t+1) - Ye(t)]
8(t) - P(t+1) e(t) e(t+1) (4.1)

e(t+l)

i

O(t+1)
Pl (t41) = A PTI(t) + e(t)
The variables 0(t), P_](t) and e(t) can thus be chosen as the state
variables of the closed loop system. If the command signal is periodic

with period 2£ then the set of irregular points is Ti ={... tO-E, tO’
t0+£,...} . The stationary solution is

eo(t) = -}
0 st
e(t) = V() = Yun =t
2(t,)
-1 : H.EO { i
- k-1, -1
Po  (tirk) = AKTIR TN (1) 2eket

Linearization of (4.1) around the stationary solution gives

Se{t+1) 0 eo(t) 01 {se(t)
s0(tt1) | =[-Py(t+]) egt+l) 1 - Py(t+1) e (t) O |se(t) (4.2)
P (t41) 2e,(t) 0 Al (s ()

The transition matrix of the equation {(4.2) is denoted by A(t). Intro-
duce the notations

A= eo(t1)
P = Po(ts) = A
a o 0Vrid o AZ-lAZ
£
_ 1= A
Py = PoltiH1) =~
Then
(0 0 0]
A(ti-1) = |-P,a 1 0
0 0 A
0 A 0]
2 0
A(ty) = | 0 1-Pa
2A 0 k_
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0 0 0
A(t;+) = 0 1 0 for 1<kef-2 and £+1<k<2£-2
0 0 A |
0 0 0
A(t;+2-1) = |P.A 1 0
0 0 X
0 -A 0
2
At +L) = 0 1-PA° 0
-2A 0 A

The Tinearized system (4.2) is a periodic system with the period 2£.
In order to study the stability the time invariant system

Se(ti o) et +2L) e (t;)
§8{t;,0) = | so(t;+2L) = A |s8(ty)
-1 -1 -1
8P (t5,0) &P (ti+2£)J §P7 ()
with
2£-1
A== A(ti+k)
k=0
is formed. Simple calculations give
0 0 0
B 2,2 2.2
A= PaA(?—PbA ) (1—PbA ) 0
0 0 A2k
The stability is determined by the eigenvalues of A. Inserting the values
2t and Azz. For A<l

of Pa and Pb we find that the eigenvalues are 0, A
the solution eo(t)=—1 is thus Jocally stable. If there is a perturbation
from the stationary solution the parameter estimate will return to the
stationary value. Notice that one element of the matrix A depends on the
sign of A. This means that a disturbance in e{t) will influence on 6(t)
differently depending on the sign of the disturbance,
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In this example the equation for SP"] is always stable if A<l. Also notice
that the matrices A(t) have the structure

X X 0
A{t) = | x X 0
X X X

which means that the equations for 88 and e do not involve 6P_]
This is generally true as was discussed in Chapter 3.

It was shown in Example 4.1 that the self-tuning regulator in the
configuration of Fig. 2.1 could not introduce an integrator in the
Toop. In the next example it will be shown that the regulator could

be made to work satisfactory if an integrator is introduced into
the system.
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Figure 4.8, Results obtained when using a self-tuning regulator with
r=1and s =0 on a process with the pulse transfer function

H(z) =~247T. The period of the command signal is 40 and the for-
getting factor is 0.98.




EXAMPLE 4.3 (Same as Example 4.1 but the process 4is cascaded with an
integhaton)

Consider the process in Example 4.7. Assume that an integrator is
added to the plant. The process is then described by

Mgy =1 - (al) o wa g

B(q"') = 1

k = 1.
Let the command signal be a piece-wise constant signal with the
generator

Q) =1-q .

The simulation results are shown in Fig. 4.9 and Fig. 4.10. Solving
the equation {3.16) for F and G gives

Fg™l) = 1
6(q"') = 1.
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Since Q divides A and B divides G it follows from Theorem 1 that there

is a stationary solution given by

A AG 4 _ . -]
BoBrg - T2

Thus r=2 and s=0 and there will be two parameters to estimate with the

stationary values
ﬁ-l :-.E
82 = a.
The following difference equations describe the closed Toop system

B(t+1) = 0(t) + P{t+1) @(t) e(t+1)

1]

e(t+l)

- e(tHl) = y. (1) - y(t+1)
PV (EsT) = A PTI(E) + oft) o (t)
A(QT1) e(t) + u(t-1) = A(a™) v (t)
8y e(t) + 6, e(t-1) + u(t) = 0

o(t) = le(t), e(t-1)1N.



Elimination of u(t), y(t) and ©{t) from the equations gives
e(t+1) = Ee](t) + 1 + al e(t) + {ez(t) - al e(t-1) +v(t+1)
e](t+1)

6}(t) - P]l(t+1) e(t) e(t+l) - Plz(t+]) e(t-1) e(t+l)

82(t+1) 6,(t) - PZ](t+1) e(t) e(t+1) - P22(t+¥) e(t-1} e(t+1)
Pl (ee1) = A PTH(E) + w(t) @ (t)

where
v(t) =y (t) - yu(t-1) - aly (1) - y.(E-2)].

For a square-wave command signal v(t)#0 only for t=t1 and t=t1+1. As
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discussed in Chapter 3 the GP_] does not influence on Se(t) and &6(t).

The‘SP;Lequation will be stable if A<1. To study the stability only

the equations for 8e(t) and 86(t) thus have to be analysed. Let el(t)=

=e(t) and ez(t)=e(t—1). The stationary solution will be

Byp(t) = -1
t) = a

0 elsewhere

= IPBAE R
P(ty) = Polty) = —p 5 32
-

80!

eg(t)

ATA

0
—_— ] £ Aﬂ 0
P(t;+1) = Py(ti+1) = 77 |0

%

n

- £ £-1
— 1 -2 A 0
P(t,+2) = Pylti+2) = 7 [ . xﬂ}

Linearization around the stationary solution gives

[se, (t+1)] [ a 0 e(t) e(t-1)] [oe,(t)]

6e2(t+1) i 1 0 0 0 6e2(t)

56 (£+1) N R 56,(t)

68,(t41), P Rz O Ay | 80,(t)]
with __

AS] = - P]1(t+1)[e(t+1) +a e(t)]

Agy = 1= Fpy(ts1) e? (1)

A41 = = P22(t+]) a e(t-1)

App = - P22(t+1) e(t+1)

Aag = 1= Pop(t41) €4 (t-1)

44
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The transition matrix of this system is denoted by A{t). Then

a 0 0 0
] 0 0 0
A(t=1) = |
Ppq(ti)a 0 1 0
] 0 “Po(ti)d O 1 |
[ a 0 A 0
] 0 0 0
Alty) = | ; B )
-aP]](ti+1)A 1-P}](ti+})A 0
0 0 0 1
i a 0 0 A
1 0 0 0
A(t,+1) =
0 0 1 0
= — 2
[ a 0 0 0
1 0 0 0
A(t.+k) = k=2,...,0=2
! 0 0 1 0
0 0 0 1
Thus
af‘-3 0 0 0
27 a2t 0 0 0
n A(t.+k) =
k=2 ° 1 0 0 1 0
0 0 0 1

For k=£-1,...,2£~2 we have
A(ti+k) = A(ti+k-£)

with A replaces by -A.
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As in Example 4.2 a time invariant system can be obtained for the
perturbed equations by Tooking at what happens between points that are
2€ steps apart. The system matrix for this time invariant system will
be A, where
2£-1
A= = A(ti+k)

In this case it is not easy to get analytical expressions for the
eigenvalues, It is easy to see, however, that one eigenvalue is zero.
The other three eigenvalues must be computed numerically. As an
example the eigenvalues were computed for different values of A when
a=-0.75. The resuits are given in Table 4.1.

A Eigenvalues
0.75 6.715  0.266  5.63-10°°  2.36.1077
0.76 3.548  0.304 9.31-10°% -2.97.1078
0.77 1.653  0.398  1.53-107°  4.59.1078
0.78 0.513¢0.3761  2.49.107°  1,02-10°8
Table 4,1

A more detailed examination shows that the system is Tocally stable
if A>0.7744. Simulations verify these computations. A typical be-
haviour in the unstable region with 2=0.75 is shown in Fig. 4.11,
The parameters and the covariances have been initialized to the
expected asymptotical values. A small perturbation has then been
introduced in the initial value of one of the parameters. But if A
is chosen for example as 0.78 the parameters converge to the expected
values. The simulations also show that the region where local sta-
bility holds is quite small close to the computed boundary 1=0.7744,
i.e. the perturbation must be small to obtain convergence to the
stationary point. But if A is chosen Tlarger, e.g. A»0.82, then the
system is stable in a large region including for example the initial
value e](O)=62(0):O. o
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Figure 4.9, Results obtained when using a self-tuning regulator with
r =2 and s = 0 on a process with the pulse transfer function

H(z} = Eré%jjfg cascaded with an integrator. The square wave command
signal has the period 40 and the forgetting factor is 0,99.
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Figure 4.10, Phase plane corresponding to Fig. 4.9.
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Figure 4.17. Results obtained when using a self-tuning regulator
with r = 2 and s = 0 on a process with the pulse transfer function
H(z) = Ejf%f75cascaded with an integrator. The square wave command
signal has the period 40 and the forgetting factor is 0.75, Notice
the different time scales.
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Example 4.1 illustrates that very poor results may be obtained when
tracking a piece-wise constant command signal if the process does
not contain an integrator. It was also shown that the self-tuning
regulator was unable to supply the desired regulator. In Example 4.2
it was shown that good results could indeed be obtained if there was
an integrator in the process. An example which illustrates what may
happen if the process contains too many integrators is given in the
following example.

EXAMPLE 4.4 (A double integratorn plant)

Consider a process described by

Ag Yy = (1-qhH?
B(g™') = 1
k = 1.

Solving (3.16) for F and G gives
Fa™)
G(a7') = 1.

1

Since Q divides A and B divides G it follows from Theorem 1 that
there is a stationary solution. This solution corresponds to a
regulator with the transfer function

% =-§¥% =1 -gq }.
This corresponds to a regulator with r=2 and s=0. Notice that this
regulator has a zero at z=1 which cancels one of the process poles.
This means that the stationary solution corresponds to a closed loop
system where the mode z=1 is cancelled. The analysis in Example 4.3
is still valid. Numerical calculations indicate that the matrix
A is unstable for all choices of A. Simulation results are shown in

Fig. 4.12 through Fig. 4.14,
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Figure 4.12. Results obtained when using a self-tuning reguiator
with r = 2 and s = 0 on a process with the pulse transfer function
H{z) = 1 cascaded with an integrator. The square wave command

signal has the period 40 and the forgetting factor is (.99,
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Figure 4.13. Phase plane corresponding to Fig. 4,12, The dashed 1ine
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Figure 4.14, Elements P(1,1) and P(1,2) of the P-matrix for the
simulation shown in Fig. 4.12.
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5. BETTER REGULATOR STRUCTURES

It is well known that single-degree-of-freedom configurations are
often unsatisfactory for the servo problem. It is therefore not
surprising that the self-tuning regulator in the configuration of
Fig. 2.1 also works poorly. The difficulties found in the previous
sections can in fact be avoided simply by using a two-degree-of-
freedom structure as the basis for the design. This means that both
the command sighal Yo and the output signal y must be separately
available. It will be shown by a few examples that the difficulties
can indeed be avoided by such structures.

STRUCTURE 1 (Clarke and Gawthiop)

Clarke and Gawthrop (1975) suggested that the model structure used in
the estimation part of the regulator should be

y(t) = y () = —oqy(t-k) - ..o - oy (tkordl) +
+ Bo[u(t—k) + B1u(t-k-1) + ...+ BSU(t—k—s)} -

= Yoyr(t) - Y]yr(t“1) Toess T ’Yp-yrs(t_p) + 59
where & is an estimate of a level. The control law is then given by
1
u(t) :’EB loqy(t) + ... ay{t-r+1)] - B]U(t—1) = .o. - Bgu(t-s) +

1
+ Bafvoyr(t+k) + Yy (trk=1) 4+ o+ vy (trkep) -6,

p

{m

STRUCTURE 2 (Wittemmark)
Wittenmark (1975) suggested a somewhat different structure,
y(t) = ¥ (t) = - oqly(t-k) - y (LK) - ... - o Dy(t-k-r+l) -
- yr(t—k—r+})] + Bolu(t-k) + B]u(t—k—l) + ...+
# BU{E-k-8)T1 = vy (t) = vqy(t-1) - ... - Ypyr(t-p),

with the control law given by

att) = g { o8] -y (001 + o o Dy(eore]) -y (ter -

]
- B1u(t-]) - e - Bsu(t—s) +-§6 { yoyr(t+k) + y1yr(t+k-1) +

+ ...+ ypyr(t+k-p) } D
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Remarh 1

The essential difference between the two structures is that the optimal
controller will in general contain less parameters if Structure 1 is
used (p will be smaller).

Remarh 2

The structures above are the original suggestions. They differ also in
the approach to steady state errors. Wittenmark proposed that the pro-
cess should be cascaded with an integrator (using differences of the
input signal instead of absolute values). Clarke and Gawthrop on the
other hand have inciuded a level parameter to be estimated. This
difference is not fundamental since both approaches to steady state
errors can be used with any one of the structures.

Remasrk 3

In the basic self-tuning algorithm used earlier in this report there
is a choice whether Bo should be estimated or it should be given a
fixed value. An estimation of By may result in identifiability pro-
blems and also in problems with the control if the estimate is close
to zero. On the other hand the guessed fixed value must be sufficient-

1y large to guarantee convergence, see e.g. Astrdm and Wittenmark (1973).

In the algorithms above there is a choice between using a fixed Bg Or
a fixed Yo+ It has been decided to fix Yo to 1 and estimate Bo in case
the a priori guess is uncertain.

EXAMPLE 5.7 (A finst order process)

Consider the system in Example 4.1 with

A@y =1 -0.75q)
B(g™!) = 1
K=1.

Fig. 5.1 shows what happens when Structure 1 with r=1, s=0, and p=0
is used and the command signal is a square wave. & was not estimated.
In order to handle a more general situation, e.g. if Bg 18 unknown
and must be estimated or if there are level disturbances in the



input or output signals, the structure with r=1, s=1, p=0, and an
estimate of & should be used instead. The behaviour of this
regulator is also quite excellent,

Fig. 5.2 shows the results for the same system when Structure 2

with r=1, s=0, and p=1 is used. Again the behaviour is very good.

As above, however, By must be estimated and an integrator cascaded
with the process or the number of parameters increased to handle

the different cases mentioned above. Notice that the basic structures
used gives one more parameter for Structure 2.

These regulator structures have also been used for the process in
Example 4.2, a pure integrator. The behaviour of the closed Toop
system was very good,
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Figure 5.1. Results obtained when using a self-tuning regulator
with Structure 1 and with r =1, s = 0, and p = 0 on a process with
the pulse transfer function H(z) = 57:%r7§-. The square wave command

signal has the period 40 and the forgetting factor is 0.95.
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Figure 5.2, Results obtained when using a se?f—tuning regulator

with Structure 2 and with r = 1, s = 0, and p = 1 on a process with
the pulse transfer function H{z) ='ZT%TTﬂ§' The square wave command
signal has the period 40 and the forgetting factor is 0.95.
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APPENDIX

The examples in Sections 4 and 5 were simulated using a program
package for simulation of self-tuning regulators, Gustavsson (1978).
This program package is found on disc No. 9. A1l the necessary
commands for each simulated example are Tisted in this appendix.

EXAMPLE 4.1
Case a) With parameterns giving the result of Fig., 4.1

External systems reqguired: REF, SCON3
Macro's required: GLOBL, EX41

GLOBL

SYST SYS1 REG REF SCON3

EX41

Case b) For simulation of Fig. 4.6

External systems required: REF, SCON3
Macro's required: GLOBL, EX41A

GLOBL

SYST SYS1 REG REF SCON3

EX4TA

EXAMPLE 4.2

External systems required: REF, SCON3
Macro's required: GLOBL, EX42

GLOBL

SYST SYS1 REG REF SCON3

EX42

EXAMPLE 4.3
Case a} For sdimubation of Fig. 4.9

External systems required: REF;iINT, SCON
Macro's required: GLOBL, EX43

GLOBL

SYST SYST REG REF INT SCONIT

EX43
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Case b) Fon simulation of Fig. 4.12

External systems required: REF, INT, SCONI
Macro's required: GLOBL, EX43A

GLOBL

SYST SYS1 REG REF INT SCONI

EX43A

EXAMPLE 4.4

External systems required: REF, INT, SCONI
Macro's required: GLOBL, EX44

GLOBL

SYST SYST REG REF INT SCONI

EX44

EXAMPLE 5.1
Case a) Structune 1

External systems required: REF, SCON4
Macro's required: GLOBL, EXHIA

GLOBL

LET ISA.=4

SYST SYS1 REG REF SCON4

EX51

EXAMPLE 5.2
Case b) Structunre 2

External systems required: REF, SCON3
Macro's required: GLOBL, EX51B

GLOBL

SYST SYST REG REF SCON3

EX52
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External Systems

DISCRETE SYSTEM REF

TIME T
OUTPUT Y
TSAMP TS

OUTPUT
Y=IF MOD{T,PER)<(0.5%PER-EPS) THEN NIV1 ELSE NIVZ

DYNAMICS
TS=T+DT

PER:40
NIV1:1.
NIVZ:-1.
EPS:0.00001

DT:1
END

DISCRETE SYSTEM INT

TIME T

INPUT DU
QUTPUT Y1 Y2
STATE UOLD
NEW UNEW
TSAMP TS

QUTPUT

D=UOLD+DU

F=IF D>B THEN B ELSE IF D<A THEN A ELSE D
Y1=F

YZ2=F-UOLD

DYNAMICS
UNEW=F

TS=T+bT
DT: 1
A:-10
B:10

END
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CONNECTING SYSTEM SCONT
TIME T
UTTREG]=Y[SYS1]1-Y[REF]
US[REGI=Y[REF]
DULINT]=UR[REG]
ULSYST}=YT[INTI+ULEV
U2[REG]=Y2[INT]

ULEV:0

END

CONNECTING SYSTEM SCON3
TIME T
UT[REG]=Y[SYS1]-Y{REF]
U3[REG]=Y[REF]
ULSYS11sURTREG]+ULEY
UZ2[REG]=UR[REG]

ULEV: O

END

CONNECTING SYSTEM SCON4
TIME T
UT[REG]=Y[SYS1]-Y[REF]
U3[REGI=Y[REF]
U4[REG]=T.
U[SYST]=UR[REG]+ULEV
UZ[REG]=UR[REG]

ULEV:O

END
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Macro's

MACRO GLOBL
LET ISA.=3

LET IVR.=6

LET ISB.=6

LET TVS.=3

END

MACRO EX41
PAR NSA:1
PAR NSB:1
PAR A1:-0.75
PAR B1:1

PAR LAMB:O
PAR REG:1
PAR NT1:2

PAR N2:1

PAR WTI:0.98
END

MACRO EX41A
PAR NSA:1

PAR NSB:1

PAR A1:-0.75
PAR B1:1

PAR LAMB:0

PAR REG:1

PAR Ni:2

PAR N2:1

PAR THO1:-0.97
PAR THOZ2:0.72
PAR TH03:-0.95
PAR P01:0.005
PAR P02:0.005
PAR P03:0,005
PAR PER:80

END

MACRO EX42
PAR NSA:1
PAR NSB:1
PAR Al:-1
PAR B1:1

PAR LAMB:O
PAR REG:1
PAR N1:1

PAR WTI:0.98
END

MACRO EX43
PAR NSA:1
PAR NSB:1
PAR A1:-0.75
PAR Bi:1

PAR LAMB:O
PAR REG:1
PAR N1:2

PAR WTI:0.99
END

MACRO EX43A
PAR NSA:1

PAR NSB:1

PAR Al:-0.75
PAR B1:1

PAR LAMB:O

PAR REG:1

PAR N1:2

PAR WTI:0.75
PAR THO1:-1
PAR THO02:0,7499
PAR P01:0.1869
PAR P02:0,1402
PAR NIV1:0

PAR NIV2:;2

END

MACRO EX44
PAR NSA:1
PAR NSB:1
PAR Al:-1
PAR B1:1

PAR LAMB:O
PAR REG:1
PAR N1:2

PAR WTI:0.99
END

MACRO EX51A
PAR NSA:1
PAR NSB:1
PAR Al1:-0.75
PAR B1:1

PAR LAMB:O
PAR REG:]
PAR REF ;2
PAR NT:1

PAR K3:1

PAR WTI:0.95
END

MACRO EX51B
PAR NSA:1
PAR NSB:1
PAR A1:-0.75
PAR B1:1

PAR LAMB:0
PAR REG:1
PAR REF:1
PAR N1:1

PAR N3:1

PAR K3:1

PAR WTI:0.95
END
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