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ABSTRACT.

The consistency properties for a class of identifica-
tion methods, that includes the maximum likelihood
method are investigated. A general way of proving con-
sistency 1is suggested and sets into which the parame-
ters converge w.p.1 are determined., Vector difference
equations and state space models are used as specific
examples, but the results are valid for general systems,
No assumptions about ergodicity of the input and output
processes are introduced and the systems may be governed

by general feedback regulators.
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1. INTRODUCTION.

To apply the results of modern control theory on a given
system it is usually required that the system dynamics
are known. In many cases it is feasible to obtain the
necessary knowledge about the system dynamics from iden-
tification experiments. By this is meant that input and
output data are collected from the system and used to
estimate certain unknown parameters with statistical
methods, These parameters describe the process dynamics.
The question what happens with the parameter estimates
as the number of data used increases to infinity is the

problem of consistency for the identification method.

A large number of different identification methods exist.
A survey of the most important ones is given in e.g.
Astrdm-Eykhoff (1971).

In this report a certain class of identification methods,

prediction error methods, is considered. This class con-

tains, under suitable conditions, the maximum likelihood

method,‘ and also the frequently used method of least
squares.

The maximum likelihood method (ML method) was first in-
troduced by Fisher {1212} as a general method for statis-
tical parameter estimation. The problem of consistency
for this method has been investigated by e.g. Wald (1949)
and Cramér (1946) under the assumption that the obtained
observations are independent. The first application of
the ML method to system identification is due to Astrdm-
-Bohlin (1965), who considered single input single out-
put systems of difference equation form. In this case the
mentioned consistency results are not applicable. Astrodm-
~-Bohlin (1965%) showed one posgibility to relax the assump-

tion on independent observations.



pifferent ident

tification using state space models have been

ML iden .
considered by e.g. Caines (1970), Woo (1970), Aoki-Yue
(1970), and Spain (1971). Caines-Rissanen (1974) have

discussed vector difference equations. All these authors
consider consistency with probability cne (strong con-

sistency) *
bability for more general models., Balakrishnan has

Tse-Anton (1972) have proved consistency in

pro .
treated ML iden
Balakrishnén {(1968) .

tification in a number of papers, seec e.q.

In the paPers dealing with strong consistency, one main

tool usua
such a result, significant idealization of the identifi-

cation €¥ .
ities to treat input signals that are partly

11y is an ergodic theorem. To be able to apply

periment conditions must be introduced. The

possibil .
determined as feedback are limited, and an indispensable

condition is that the likelihood function must converge

w.p.l. TO achieve this usually strict stationarity of
the output is assumed. These conditions exclude many

practical identification situations. For example, to
igentify unstable systems some kind of stabilizing feed-
back must be used. Other examples are processes that in-

herently are under time-varying feedback, like many eco-

nomic systems:

In this report strong consistency for general prediction
error nethods, including the ML method is considered.
The results are valid for general process models, linear

as well as Pon linear. Also quite general feedback is

allowed.

A general model for stochastic dynamic systems is dis-
cussed iD Chapter 2. There also the identification method
is described:

ifiability concepts are introduced in Chap-

where a procedure to prove consistency is outlined.

ter 3.




In Chapter 4 consistency is shown in case a suitable mo-
del is to be chosen from a finite family of models.

The general case is treated in Chapter 5.

Chapter 6 is devoted to the application of the results

to vector difference equations and to state space models.



2. SYSTEMS, MODELS AND PREDICTION ERROR IDENTIFICATION
METHODS .

2.1, System Description.

A causal discrete time, deterministic system, denoted
by 8, can be described by a rule to compute future out-

puts of the systems from input and previous outputs:
y{t+1) = fs(t;y(t),y(t—1),...,y(?);u(t),...,u(1);yo] (2.1)

where VO, "the initial conditions", represents the ne-

cessary information to compute y(1).

Often y(t+1) is not expressed as an explicit function
of old variables, but some recursive way to calculate
y(t+1) is preferred. Linear difference equations and

state space models are well-known examples. The advan-
tage with such a description is that only a finite and

fixed number of old values are involved in each step.

For a stochastic system it cannot be required that the
future outputs be exactly determined by previous inputs
and outputs as in (2;1). It is then natural to consider
the probability distribution of y(?+1) given all previous

data. This can be expressed as follows

y(t+1) = E[y (£+1) 1Y ,S] + e(t+1,Y,S) (2.2)

where E[y(t+1)th,S)]is the conditional mean given all

previous outputs and inputs,
By (t+1)1Y,,S] = gg(t vy (t) seee,y (1) ult), o pu(1)3Vy) (2.3)

' Here Vt denotes the o-algebra generated by



{y(t),.r.,y(1);u(t),...,u(1);yo}, and Y, "the initial
condition”, represents the information available at time

t = 0 about the previous behaviour of the system.,

The sequence'{s(t+1,yﬁ,3)} is a sequence of random va-

riables for which holds

Efe{t+1 ,Vt,S)J Vt,s] = 0

It consists of the innovations, see Kailath (4970).

The conditional mean E[y(t+1)[Vt,S] will also be called
the prediction of y(t+1) based on Vt. Since it will fre-

quently occur in this report a simpler notation

y (£4118) = E[y (e+1) 1V, 8]

will be used.

Remark, With abuse of notation, random variables, like
y(t), will often be denoted by the same symbol as the
outcomes., When there is a risk of ambiguity, the argu-

ment w (the realization) is used for the outcomes, i.e.

y(t,w).

General stochastic systems can be described by (2.2),
just as (2.1) is a general description of deterministic
systems. The main results of this report will be formu-

lated for this general system description (2.2),.

For practical reasons, in the usual system descriptions
the output is not given explicitely as in (2.2). Various
recursive ways to calculate y(t+1) are used instead,

Examples are given below.



Example 2.1 - Vector difference equations.

Vector difference equations are frequently used as mo-

dels.of multivariable systems. They constitute a general
class of linear models. Consider a system S. Assume that
the input output relationships and the noise characteris-

tics can be described by

1

Agla™ Ny (t) = Bgla Nult) + Cgla Ve (t) (2.4)

where As(z) etc. are matrix polynomials in z:

- n
As(z) =1+ z AS,1 + s.. + 2 AS,n

— " n
Bg(z) = z Bs,1 + ... + 2z BS'n

— n
Cs(z) - I + Z CS,1 + LI I 1 + 2 CS’n

The operator q_1 is the backward shift operator:

gy = ye-1)

The variables {e(t), t = 0,1,...} form a sequence of in-
dependent random variables with zero mean values and co-
variance Ee(t)eT(t) = A, This matrix is assumed to be
nonsingular. The output y(t) is a vector of dimension

ny and the input u(t) has dimension n,. It has‘been as—
sumed that e(t) has the same dimension as y(t), which

can be shown to be no loss of generality in this case.

A sguare matrix polynomial D(z) is said to be stable if
‘all zeroes of det[D(z)] are strictly outside the unit
circle. If det[C¢(2)] has no zeroes on the unit circle,



CS(z) can always be chosen as a stable polynomial with-
out changing the second order noise characteristics, cf
the spectral factorization theorem. In the seguel it is

assumed that Cs(z) is stable.

From (2.4) we have
C?(q_l')AS(qﬂ)y(t) = C;1(q_1)BS(q-1)u(t) + e(t)

and

yer1) = [1 - cga haga™ iy +

+ cgMa DBga Nutern) + e(t+1) (2.5)

[Cs(z) is a constant square matrix for each given z.
The inverse ng(z) is therefore straichtforwardly de-
fined.) The right hand side of (2.5) contains only y(s)
and u{s) up to time t. The term e(t+1) is independent
of thesg variables, also in case u is determined from

output feedback. Hence
E(y (t+1) 1Y, ,8) = [T - cot@ ot Iyiesn) +
Y 7 8 g “g q% Y

+ cg ta hpg (™ uen) (2.6)

Dencte

H

E(y (£+1) 1V,,8) = y(t+118)

Eg. {(2.6) means that §(t+1!S) is found as the solution
of



1

cota Ny ts+118) = Egla

-1
gl ) - As(q. ) Jy (s+1) +
+ Bg(a u(s+1) (2.7)
Solving (2.7) requires knowledge of y(0),.,..,y{(-n),u(0),
...,u(—n),§(0),...,§(—n). This information is supposed
to be contained in information VO.
Notice that there is parameter redundancy in the repre-

sentation (2.4). All matrix polynomials A'(z)}, B'(z)
and C'{z) such that

[c'(z) ] 2" (2) = [Cqlz) ] Ag(z)

[c'(2)] '8z) = [cg(2) ] Bg(2)  a.e.z.
give, as seen from (2.6) the same function

E(y (t+1)1¥,;8)

Example 2.2 - State space equations.

The input output relation for the system S is defined
by

% (t+1) Asx(t) + BSu(t) + e(t)

(2.8)

1

y(t) Csx(t} + v(t)

where {e(t)} and {v(t)} are seguences of independent gaussian
. random vectors with zero mean values and Ee(t)eT(t) =

R, (£, Ee(t)v' (t) = 0 and Ev(t)v' (t) = R, (t).



The function

E(y(e+1) 1Y,,8) = y(£+118)

where Y, is the o¢-algebra generated by {y(t),...,y(1),

u(t),...,U(1),VO} is obtained as follows:

F{E+1[S) = CgR(t+118)

where the state estimate ﬁ is obtained from standard

Kalman filtering:

(2.9)

R(E+11S) = Agx(ElS) + Bgu(t) + Kg(t) {y(£) - Cgk(£18)} (2.10a)

KS(t) is the Kalman gain matrix, determined from A

BS’ CS’ Rq, and R2 as

_ T T
Kqlt) = ASPS(t)CS[CSPS(t)CS + R2]

Po(t+1) = [AS - KS(t)CS]PS(t)[AS -

' P
+ Ry + K (£)R K (t)

KS(t)CS] +

{(2.10b)

In many cases it is suitable to choose a representation

of (2.8) that is adapted to prediction:

x{t+1) = Asﬁ(t) + Bgu(t) + Kge(t)

y{t) = Cgx(t) + &(t)

~

where Ee(t)sT(t) = A{t)

Clearly, (2.11) is obtained ‘from (2.9) and (2.10a) di-

rectly.

(2.11)
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In case all matrices are time inwvariant, K¢ can be taken
as the steady state gain. This has no influence on the

asymptotic properties of the state estimates.

To solve (2.9) and (2.10) recursively from t = 0 requires
knowledge of x(0) and PS(O). [The latter one is not needed
in case (2.11) is used.) This information is supposed to

be contained in VO.

Notice as in Example 2.1 that there is parameter redun-
dancy in the representation (2.8) and (2.11). 2All matri-
ces A', B', C', K' such that

C'(zI—A')_1B' cs(zz—AS)'1BS

and

1

-1
XK' CS{ZI—AS) KS

C'{zI-A')

where the equalities shall heold for almost every z, give

the same input output relationships and the same function

B[y (£+1) 1Y, ,$]

A continucus time state representaéion can be chosen in-
stead of (2.8). In e.g. Astrtm-K3llstrdm (1973) and Mehra-
Tyler (1973) it is shown how E[y(t+1)lyt,S], where Vt is
as before, can be calculated. The procedure is analogous

to the one described above for sampled models.

These examples cover linear, possibly time varying sys-
tems. Clearly, also non-linear systems can be represen-

ted by (2.3). A simple example is
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y (1) = £(v () ,u(t)) + ofy(t) Je(t+)

It should, however, be remarked that it is in general

no easy problem to transform a non linear system to the
form (2.2). This is, in fact, equivalent to solving the
non—linear filter problem. It is therefore advantageous

to directly model the non-linear system on the form (2.2),

if possible.

2.2. Models.

Tn many cases the system characteristics, i.e. the func-
tion 9q and the properties of {s(t+1,yt,3)} are not
known a priori. One possibility to obtain a model of

the system is to use input output data to determine’ the
characteristics. In this report we will concentfate on

the problem how the function gg can be found.

Naturally, it is impossible to find a general function
gs[t;y(;),...,y(1);u(t),...,u(1);Vo}. Therefore the class
of functions among which g is sought must be restricted.
We will call this set of functions the model set or the
model structure. Let it be denoted by M and let the ele-
ments of the model set be indexed by a parameter vector

8. The set over which 6 varies will be denoted by Dy. A
certain element of M will be called a model and be de-
noted by M(g) or written as

E[y (t+1) |V, H(8) ] =

= Gy oy (YE) oy ()5 wle) v ult) Vo) - (2.12)

Hence
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4 =‘{M(e)ieEDM}

A complete model of the system also models the sequence
‘{s(t+1,yt,s)} so that it is described by

y(t+1) = E[y (£+1) 1y, M(0) ] + e(t+1,¥,M(8)) (2.13)

where {s(t+1,yt,M(e)]} is a sequence of random variables

with properties that depend on M(8).
For brevity, the notation

y(t+118) = B[y (£+1) 1V, 4 (0) ]

is also used for the prediction.

The case when DM is a finite set is treated separately
in this report. In such a case M is called a finite mo-

del set, and then it will sometimes be denoted by MF'

The model structures can be chosen in a completely ar-
bitrary way. For example, g can be expanded into ortho-

gonal function systems:

Such choices are discussed by e.g. Lampard (1955). If
there is no natural parametrization of thé model, such
an expansion may be advantageous. Tsypkin (1973) has
discussed models of this type in connection with iden-
tification of non-linear systems. However, the usual
choice is to take one of the models in Example 2.1 or
2.2 and introduce unknown elements 04 into the system

matrices.
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7. vector difference equation model, e.g., is then

described by

-1 -1 -4
Bygyla Dy (®) = By(gy (@ Nult) + Cyegyla ye(tsH(e)) (2.14)
where

- n(a)
AM(B)(Z) =TI+ A1,M(e)z + . An(e),M(e}z

etc.

{5(t;M(B)]} is a sequence of independent random variables
with zero mean values and Ee(t,M(8))e(t,M(8))T = My (o) *
The unknown elements may enter gquite arbitrarily in the
matrices Ai,M(B)' Some elements may be known from basic
physical laws, or a priori fixed. Other elements may be
related to each other etc. Generally speaking, M can be
described by the way the parameter vector 6 enters in

the matrices: the model parameterization.

2.3. Identification Criteria.

The purpose of the identification is to find a model
M(8) that in some sense suitably describes the measured
input and output data.

The prediction of y(t+1) plays an important role for
control. In, e.g., linear gquadratic control theory, the
optimal input shall be chosen so that E[Y(t+1)]Vt,S] has
desired behaviour., This is the separation theorem, see
e.g. Astrdm (1970).

Therefore, it is very natural to choose a model that
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h(A+B+C£) > h(A) + p(8)tr B where p(6) > 0 (2.16b)

for tr CSCE < &gy where £q depehds only on & and tr B,
o]

If h satisfies (2.16), it defines a well posed identi-

fication criterion by

v (e) = h[QN[M(e)),]

or (2.17)
1

vy(e) = n| & oy ()]

In particular, h(A) will be taken as tr A, which clear-
ly satisfies (2.16). This criterion is probably the
easiest one to handle, theoretically as well as compu-

tationally. Then
N - 2
e ay(H©) =] |y ) - vitte) |5y,

where lei(t) = xTR(t)x.
Another possible choice is h(A) = det(A), which is of

interest because of its relation to the likelihood

function, cf. Section 2.4.

Lemma 2.1. h(A) = det(A) satisfies (2.16).
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gives the best possible prediction. That is, some func-

tion of the prediction error

g (E+1) = B(y(e+1) 1V, H(8))

should be minimized with respect to é.

We will consider the following class of criteria. In-

troduce the matrix

0g(#e)) =

o
| ~12

1[y(t) - y(tle)IR(e) [y (t) - y{ele)1T (2.15)

Its dimension is nyxny, where ny is the number of out-
puts. {R{t}} is a sequence of positive definite matri-
ces. It is assumed that {IR(t})]} is bounded. The selec-
tion of the matrices naturally effects the relative im-
portance given to the components of the prediction., A
special choice of weighting matrices is discussed in

Section 2.4.

A scalar function, h[QN(M(e)]], of the matrix of predic-
tion errors will be minimized with respect to §. For the
minimization to make sense, some simple properties of

the function h must be introduced.

Properties of h. Let h have nyxny, symmetric matrices as

domain. Assume that
h{xA) = g(x)h(A), r,9(2) scalars and g(a) > 0 for » > 0 (2.16a)

Let 8T < A < 1/8I be a symmetric positive definite mat-
rix, and let B be symmetric, positive semidefinite and

non zero., Assume that then
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Proof. Condition (2.16a) is trivially satisfied.

Il
i

det (A+BHC ) = det 2l 2get (1 + A"1/2(B+CS)A'1/2]det al/?
n

Y
det A W (1+di)
i=1

I

where di are the eigenvalues of Ad1/2(B+CS)A—1/2.

Let » be the largest eigenvalue of B. Then X > tr B/n_.
Also, 2172537172 445 one eigenvalue that is iarger oi
equal to A&. (Consider A-1/2BA_1/2x, where A3~ /2% is an
eigenvector to B with eigenvalue A.) Now, adding C, to

B can distort the eigenvalues at most e/6 and

n ny-‘l
mo(1+d;) 2 m (1-g/8)] {1+8X-€/8) 2
1=1 i=1
n_¢t .
> P -—X—]{1 + 6t B e/é} > 1 + L trB
o}
ny 2ny
for £ < 2 tr B
2n [_Z + tr B]
Yig

which concludes the proof.

This report deals with the question when the estimate

6 that minimizes (2.17) converges as N tends to infini-
ty to values for which the model M(8) coincides with
. the system S. This is the problem of consgistency of pre-

diction error identification methods.
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To evaluate the criterion (2.17) it is required that
the initial wvalue VO is known. This value can be re-
garded as known, included in the parameter vector g,

or simply assigned an arbitrary value, say zero., It
will turn out that often the initial wvalue cannot be
estimated consistently. Therefore, as long as consis-—
tency of the model parameters is concerned, the initial
state can as well be taken as zero, c¢f. e.g. Astrdm-
Bohlin-Wensmark (1985).

So far we have only discussed how the function Efy (t+1) |
IVt,S] can be estimated. The properties of {e(t+1,Y.,8)}

can then be estimated from the residuals
v(t+1) = E[y(e+1) Ivt,M(e*)] = e[t+1;vt,M(e?“))

where 8% is the minimizing value. In particular, if’
{s(t+1,Vt,S)} = {e(t+1)} is a stationary sequence of
independent random variables with zero mean values and

we are only interested in the second order moment pro-
perties then A = Ee(t)eT(t) can be estimated as = QN{M(e*)J

N
where QN.is defined by (2.15) with R(t) = I.

2.4. Connection with Maximum Likelihood Estimation.

It 1s well known that prediction error criteria are in-
timately connected with maximum likelihood estimates.
This section contains a brief discussion of how the
formal relations can be established.

Consider the model (2.13)

y(t+1) = E(y(e+1) 1y, M(e)) + e(t+1;4(e))
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with
Ee (tsM(8))e” (£sM(8)) = A(t)

Let the innovations'{e[t,M(e)]} be assumed to be inde-
pendent and normally distributed. The probability den-
sity of v{(t+1) given Ve and given that (2.13) is true

then is

1
yZ2n det A{t+1)

£(

Xep 1Y) =

“lxgpq - v et 1) TR (e [x g - v(E+110) ]

e t+1
Here f(xlvt) = F'(xiyt) where F(x}Vt) = P[y(t+1) < xlvg.

Using Bayes' rule the joint probability density of y(t+1)

and y(t) given Vt_1 can be expressed as

£(RppqrXglVeog) = Elrg 17 (6) = xp Ve gJE G Ve g) =

il

Elx g VO E(x 1Y ) =

[2n det A(t+1)det’ A(t)] 172
R T
. exp{— [xt+1 - y(t+118) A (t+1)
[xt+1 - §(t+119)}} .
g To-1 -
g GXP{- [%, - y(el8) ] A (&) [z, - y(tle)]}
where y(t) in §(t+116) should be replaced by x,. In

. case E{y(t+11Vt,M(8)]} does not depend linearly on y(t),
the distribution of [y(t+1),y(t)] is not jointly normal.
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Iteration directly gives the joint probability density
of y(t+1),y{t),...,¥y{(1) given VO' The logarithm of the

likelihood function, givenAVO, then is obtainéd as

log £(y(t+1) ,eeusy (1) 1Vy) =

t Ll P ~
= - 7 [y(s+1) - y(s+1|e)]TA 1(s+1){y(s+1) - y(s+116)] -
s=0
t 1 & .
- 7 log 2n - 3 ] log det A(s+1)
s=1

The maximum likelihood estimate (MLE)} of & therefore is

obtained as the element that minimizes

c ) A_ ) .
Vo[y(s+1) - y(s+1[8)]TA 1(s+1)[y(s+1) - yis+118)] +

s5=1

Il o~ ot

1
toy

log det A(s+1)
s .

1

If the matrices A(t) are known, the MLE is consequently
obtained as the minimizing point of the loss function
(2.17) with h(a) = tr(a) and R(t) = A~ 1(t).

When R(t) are unknown, the minimization should be per-
formed also with respect to {K(s)}. In case K(t) does
not depend on t, the minimization with respect to E can
be performed analytically, Baton (1967}, yielding the
problem to minimize det[QN[M(e))] giving 8(N) [where
R(t) = I in Q (H(e))] and then take

=
i
Z| -

QN(M(G(N)]}
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Summing up, the loss function (identification criterion)
(2.17) which per se has good physical interpretation,
also corresponds to the log likelihood function in the
case of independent and normally distributed innovations.
In the analysis, however, this will not be exploited.

The results are therefore wvalid for general distribu-

tions of the innovations.
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3. CONSISTENCY AND IDENTIFIABILITY.

The gquestion of identifiability concerns the possibili-
ty to determine the characteristics of a system using
input output data. This question is obviously closely
related to the problem of consistency of the parameter
estimate 6. A suitable way to connect the two concepts

is introduced in this chapter.

The consistency of the parameter estimate 8 depends on

a variety of conditions, such as noise structure, choice
of input signal, model parametrization etc. One specific
problem is that there usually is parameter redundancy

in the models. It was demonstrated in Examples 2.1 and
2.2 that several sets of matrices give the same input
output relationships, and hence cannot be distinguished

from each other from measurements of inputs and outputs.,

Introduce the set

b, (S,H) = {ele‘e Dy E[y(£+1) 1V, ,H(0) ] = B[y (£+1) 1V,,S]
all Vt, t > 0} {3.1)

For example, with the model structure M given by (2.14)
and the system S described by (2.4) the set is

-1

_ -1 _

Dp(S, M) = {G’C,@{(e)(zm,@[(e)(z) = Cg (z)A (z)
and

C_1 (z)B (z) = C—1(Z)B {(2) a.e.z

M(e) M(o) s S e

The set DT(S,M) clearly consists of all parameters,
which give models with the "true" input output relation-
ships. The system § and all models (g}, 8 € DT(S,H)
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cannot be distinguished from input output data only.

Clearly, it is not meaningful to consider consistency

if DT(S,M) is empty. Therefore, unless otherwise stated
it will be assumed that M is such that DT(S,M) is non
empty. Naturally, this is a very strong assumption in
practice, since it implies that the actual process can
be modelled exactly. However, the theory of consisten-
cy does not concern approximation of systems, but con-
vergence to "true" values. This guestion is further dis-

cussed in Section 4.1.

The estimate based on N data, s(N), naturally depends
on § and M and on the identification method used, 1. It
also depends on the experimental conditions, like the
choice of input signals, possible feedback structures
etc. The experimental conditions will be denoted by X.
When needed, these dependences will be given as argu-

ments.

Suppose now that

8(N) > Dg(S,M) w.p.1as N » ' (3.2)

Remark. By this is meant that

inf (8(N) - '] - 0 with probability one as N =
G'EDT

It does not imply that the estimate converges.
Then the models that are obtained from the identifica-

"tion all give the same input output characteristics as
the true system. If we understand a system basically as
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an input output relation, it is natural to say that we

have identified the system if (3.2) holds:

Definition 3.1. A system S is said to be System Identi-
fiable (STI(M,I1,X)) under given M, I, and X, if g(N) -
> Dn (S, M) w.p.1 as N > o.

If the objective of the identification is to obtain a
model that can be used to design control laws, the con-
cept of SI is quite adequate. Since all elements in
DT(S,M) give the same input output relation, they also

give equivalent feedback laws.

However, if the objective is to determine some parame-
ters that have physical significance another concept is

more natural:

Definition 3.2. A system § is said to be Parameter Iden-
tifiable (PI(M,7,X)) under given M, I, and X, if it is
ST(M,T,X) and DT(S,M) consists of only one point.

Remark. Parameter identifiability is the normal identi-
fiability concept, and it has been used by several au-
thors, see e.g. Astrdm-Bohlin (1965), Balakrishnan (1968),
Bellman—Astrdm (1970), Tse-Anton (1972) and Glover-wil-
lems (1973). Usually the system matrices are assumed to
correspond to a certain parameter value 80 for the given
model parametrization. In such a case the parameter 8

is said to be identifiable w.p.1 {or in probability)} if
there exists a sequence of estimates that tends to 60
w.p.1 {or in probability). Now, the sequence of esti-
mates converges to 60 w.p.1 1if and only if it is PI (M,

1,X) according to Def. 3.2 and DT(S,M) ='{90}. Therefore
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the definition just cited is a special case of the De-

finition 3.2 above.

Clearly, a system S can be PI(M,T1,X) only if DT(s,M) =

= {90}. This means that there exists a one to one cor-
respondence between the transfer function and the para-
meter vector eo. This one to one correspondence can
hold globally or locally around a given value. The terms
global and local identifiability have been used for the
two cases, see e.g. Bellman and Astrdm (1970) . Defini-
tion 3.2 clearly corresponds to global parameter iden-
tifiability.

The problem to obtain such a-one to one correspondence
for linear systems falls in the field of canonical repre-
sentation of transfer functions. This is a field that

has received much attention. The special questions re-
lated to canonical forms for identification have been
treated by e.g. Astrém-Eykhoff (1971), Caines {1971},
Mayne (1972) and Rissanen {(1973).

From the above discussion we conclude that the problem
of consistency and identifiability can be treated as
three different problems:
I. First determine a set DI(S,M,I,X) such that
8 (N) = DI(SJ‘MIIIX) W.p.1 a8 N » o
This is a statistical problem. To find such a set,
certain conditions, mainly on the noise structure
_of the system, must be imposed.

1T, Then demand that

DT(S,M) > DI(S,M,I,X)
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i.e. that S is SI(M,I,X). This introduces regquire-
ments on the experimental conditions, X, choice

of input signal, feedback structures etc.
ITII. 1If so desired, require that

D, (S, ) = (6%

T

This is a condition on the model structure only,

and for linear systems it is of algebraic nature.

In this report we will mainly treat problem I. In Chap-
ter 4 Dy is determined for finite model sets and in
Chapter 5 the general case is considered.

Problem II is discussed in Chapter 6 for vector diffe-
rence equations and state space models. In Gustavsson-—
Ljung-Stderstrdm (1974) problem II is extensively trea-

ted for vector difference equation models.

Problem III is, as mentioned, the problem of canonical
representation and can be treated separately from the
identification problem. It will not be discussed in this

report.

Remark. In the following, the arguments S, M, I, X in
DI, DT’
risk of ambiguity.

SI and PI will be suppressed when there is no
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4, CONSISTENCY FOR FINITE MODEL SETS.

In this chapter a set DI(S’MF’I’X) such that g(N) -

- DI(S,MF,I,X) w.p.1 as N -» o is determined for finite
model sets MF' The assumption of a finite model set im-
plies a significant simplification of the convergence
problem. The relevance of such finite model sets is dis-
cussed in Section 4.1. The main result is given in Sec-
tion 4,2 and in Section 4.3 some applications of the

theorem are discussed,

4.1. Relevance of Finite Model Sets.

The limitation to a large (say 100100) though finite
number of possible parameter values naturally is of no
practical importance., The restrictive assumption is

that DT(S,MF) is non-empty, i.e. that a true descrip-
tion of the system is available among the finitely ma-
ny models. However, already when certain models are con-
sidered, . like those in Examples 2.1 and 2.2 important
idealization is introduced. No process in real life can
be exactly described as a linear system (2.4) even 1if
the parameter 6 can be chosen from a continuum of values.

What does now consistency mean, if the real life system
cannot be described within the chosen model structure?

It should mean that the identification methods are tes-
ted on artificial systems which can be exactly described
by, say, (2.4). The test can be theoretical as in con-
sistency theorems, or experimental as when simulated sys-
tems are identified. The experimental tests are most of-
ten performed on digital computers. In these only a fi-

" nite number of real numbers can be represented. There-

fore the model that can be simulated may take parameter
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values only from a finite set. Also, the minimization
of the loss function is performed over the same finite
set of parameter values. The theoretical tests of this

chapter are of the same nature.

4.2, Main Result.

In Chapter 3 it was described how consistency of para-
meter estimates can be shown in three steps. We will

in this section treat the first of these steps, to find
out which values are possible limits of the estimates

in case the model set is finite.

In Caines (1973) the consistency problem for the maxi-
mum likelihood method is treated for the case of finite-
ly many possible parameter values. When the prediction
error method treated here coincides with the maximum
likelihood method, Caines's results and the ones of this
section partly overlap. The conclusion in Caines (1973)

is, however, somewhat weaker, cf Example 4.1 below.

Te find a suitable set DI’ some conditions have to be
introduced. For finite model sets they are very weak in-
deed. It is merely assumed that the variance of the in-
novations is bounded. The innovations do not have to be
independent. Notice in particular that the result is va-
1id also when the system is controlled by any kind of
feedback law. The closed loop system does not even have
to be stable.
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Theorem 4,1.. Consider the system

g (£41) = E[y(t+1) [V, 8] + e(t+1,, ) (4.1)

where
E[k(t+$,yt,s)!2lyt] < C

Consider a finite set of models My = {M{s8) |8 € DM}, such
that DT(S'MF) is non empty. Let 6 (N) minimize the iden-
tification criterion tr Qy(Mp(e)) where Qy is defined by
(2.15). Let BV pe defined by

B{Y - {el o€ Dy, Flylels) - yiEle) [hgy <= } (4.2)

Then 6 (N) - B£1) w.p.1 as N = ¢,

Remark. The random variable §(tls) - §(tie) naturally
depends on the realization w. The set Bé1) may then al-
so depend on o under certain circumstances. Then the

conclusion should be interpreted as
g (N,w) - B£1)(m) for a.e.w as N - o

A common situation is that
\ (1) )
BI (w) = Dg Wep.1

where Dé1)'does not depend onw. It then follows that

8 (N) - D§1)

wW.p.1 as N » o
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The proof of the theorem is given in the appendix.

To obtain the same conclusion for the general criterion
(2.17), some additional conditions on the system are in-

troduced.

Corollary. Consider a general criterion h{QN(MF(e))],
where h satisfies (2.16). Assume, in addition to the

assumptions of the theorem, that

N N
lim sup % ¥ }y(tIS) - y{(tie) i(t) < o wW.p.1 all GEDM,
1 ‘

N
that

Ble (t4+1,Y,,8) e (£+1,Y,, ) 1Y, ] > 6T all t,

and that

B[ 1e(e+,v,,9) 11y, ] < C

Then ¢ (N} - BI“)

w.p.1 as N -» o,

The proof of the corollary is given in the appendix,.

The assumption on finiteness of MF is crucial to obtain
uniform convergence in & as N tends to infinity. It does
not seem to be easy to extend the result to infinite mo~
del sets using the same approach, even if the problems

seem to be merely technical.
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4.3, Applications.

N :
The set D£1) is analysed for some general model struc-
tures in Chapter 6. Here, we will just point out some

specific consequences of the theorem.

Consistency w.p.1 will be shown for a simple example,
for which previously given criteria all seem to fail,
although the criterion function converges w.p.1. Thus
it is not sufficient to analyse the asymptotic loss

function

1N

ly(e) - y(eie)|?
N0 1
to obtain full information about the convergence of the

estimates.

In Tse-Anton (1972) identifiability in terms of conver-
gence in probability is discussed. The conditional pro-
bability density is used in a similar manner as the con-
ditional mean is used in this report. To assure identi-
fiability the conditional probability density must be
"uniformly different" for different parameter values.
Also,if the densities are the same ‘for two parameter

values the system is not identifiable.

In Caines (1973) a "prediction condition" (condition AZ)
is postulated, that requires, loosely speaking, that the
predictions corresponding to different parameter values,
be uniformly different infinitely often (with a probabi-
lity arbitrarily close to 1).




Example 4.1. Consider the simple system

y(t+1) + ay(t) = bu(t) + e{t+1)
with the time varying feedback law
u(t) = £(£)y(t)

where f£(t) - f as t 5 w and

; (£(t) - £)?

diverges. Let the model set MF be

~

y(£41) + ay(t) = bul(t) + &(t+1)

31.

(4.3)

(4.4)

where 8 = (a Db} can assume a finite number of values.
Then
y{(t+118) = - ay{t) + bu(t)

and the limit of the loss function

N -
Lim & ) |y (e+1) - y(e+11H,(0))
N-aocN'I F

~

assumes the same value for a = a + uf, b =b +y

— e B < o,

For the particular feedback (4.4), condition A2 in

Caines (1973) is not satisfied, so that the consis-

tence result there cannot be applied.

~

(4.5)

Also, the system (4.3) with feedback (4.4} does not sa-



32,

tisfy any of Tse-Anton's (1972) conditions as cited a-
bove. The question of identifiability is therefore left
undecided by their criteria.

(1)
I

BHowever, the set D is given by

n,
D

M- {(5,5)[;[(a—é)y(t) - (b-blu(t))? < w} =

[ J((ed) - £ (o-5)) %y (612 < =}

and hence

. :
BIY = t(ap)y wept

Theorem 4.1 in this report therefore states that a and
b can be estimated consistently if £(t) approaches £ so

slowly that
$(£(t) - £)°

diverges. If, on the other hand this sum converges, the

estimates of a and b are not consistent.

The following numerical example may illuminate this con-
clusion. Let a = - 0.9, b = 1 in (4.3) and let {e{t) ! be
a sequence of independent N(0.1) random variables. Let
in (4.4)

£(t) = (-0.9)t ©

where o = 0.25 or 0.75. In Fig. 4.1 the estimates based
‘on 500, 5000 and 50000 data are shown for 10 different

realizations of {e(t)}.
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It is seen that for a = 0.25 the estimates tend to the
true values. For a = 0.75 the estimate of a tends to
-0.9, while the b estimates do not approach 1 as the

number of data increases. In fact, in that case B£1)

consists of {(-0.9, u), ¢ arbitrary!l.

Tt can be shown that in either case the estimate of b

converges w.p.1 to a random variable as the number of

data tends to infinity.
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¥ 1

10 -09- -08 -07 -10 -09 -08 -07

Fig, 4. 1. - Identification results for the system (4.3)

with regulator (4.4). Ten different.realizations are

- shown. The left column shows the case ¢ = 0.25 and the

right onea = 0,75.

The number of data used are, from above, 500, 5000 and
50000 respectively.
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5. CONSISTENCY FOR GENERAL MODEL STRUCTURES.

As was remarked in Section 4.2 the technical problems
to prove consistency for infinite model sets are more
difficult than for the case considered in Theorem 4.1,
Mainly, this is due to the fact that uniform (in &} in-
equalities for the loss function must be established.
In many of the previous works this problem has not been
treated with sufficient care, and those proofs are, in
fact, valid only for finite model sets. In this report
the problem is overcome at the expense of restrictions
on the noise and regularity conditions on the functions
E[y (£+1) 1Y, M(0) ].

The set into which the estimates converge will be shown

to be
v (2) N T . 2
DI = {G[BEDM éiﬁ inf g %]y(t+113) - y(t+1)telR{t) = O} (5.1)

u
Clearly the set D£1), defined by (4.2), is a subset of

U

Déz) Consequently the conclusion of Theorem 4.1 is

sharper. However, if the behaviour of the system basical-
Y] iy

ly is stationary the two sets D£1) and Déz) coincide. Al-

so, the additional conditions in this chapter are not ve-
ry restrictive. They are satisfied for most model sets,
and in particular for the models in Examples 2.1 and 2.2

under weak conditions on the feedback.

v u
(1) £2) may, under certain circum-

Like the set DI , also D
stances, depend on the realization w. In practice, it
may be desirable to define a set into which the esti-
mates converge that a priori is independent of the rea-
lization. It will be shown that under somewhat stronger

conditions on the system and possible regulator, the es-
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timates converge into

{2} = [oleep. 1im inf 3 3 Bly(t19) - vl ]2, ., = ol (5.2
1 T (0feePy Lin dnf i) ¥ y(e10) | ey = +2)

These convergence results are shown in Section 5.1. The

conditions that are imposed on the system are in Section

5,2 discussed for the special case of linear systems.

5.1. Main Results.

Tt will first be shown that the estimates converge into
the set Béz)(m). This is achieved by a similar approach
as in the proof of Theorem 4.1. An additional condition
on the prediction §(t|e) as a function 6 has tc be in-

troduced.

Theorem 5.1. Consider the system

y(t+1) = E[y(t+1) 1V ,8] + e(t+1, ¥, ) (5.3)

where E[is(t+1,V£,s)l4lyt] < C.

Consider a set of models M, such that DT(s,M) is non
empty. Let 8(N) minimize the identification criterion
vgle) = tr[1 QN(M(B)]], over a compact set

"

Dy. Let Dlzgw) be defined by (5.1). Suppose that"

z(t) = sup max 2. y(l)(tle) ((i) denotes i:th row)

1 s
6€D), 1<iz<n (28 .

where DlM is a connected, open set that contains DM’

satisfies the following condition
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) N
lim sup %,Z z{(t)® < = w.D.1 (5.4)
s A

N=seo

Then the estimate
p{N,w) - 5£2)(w) a.c. as N o o

The same results hold for the general criterion (2.17)

if, in addition to the above assumptions,

E[e(t+1, Y, e (t+1,V,, 971V, ] > 61  all t. (5.5)

The proof of this theorem is given in the. appendix.

[}
Remark. The assumption on connectedness of DM is not
essential. Another possibility is to take the supre-

mam over DM and to assume that

lim sup VN(e) < o w,p.1 for 8 € DM

Noco

To apply the theorem, condition (5.4) has to be satis-
fied. In the next section simple and weak conditions
that imply (5.4) are derived for linear models.

If convergence into a set that does not depend on w 1is

desired, this can be achieved by showing that

(3)

52 ) = 0 wepat or 812 (@) e bl w.p.s

(3)

Then 8{N) - DI

w.p.1 ags N - o,
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Tt is probably of more practical interest to show that
the estimates converge into the set Déz) defined by
(5.2). To achieve this result, some additional condi-

tions must be introduced. They essentially secure that

Déz) = nuéz)(w) a.e. {5.6)

by restricting the dependence between events that occur
at long time differences. In contrast to (5.4) they in-
volve only conditions on the second moments of certain

variables.

Theorem 5.2. Consider the system (5.3)

y({t+1) = E[y(t+1)th,S] + 5(t+1,yt,3)

Consider a set of models M such that DT(S,M) is non
empty. Let 8(N) minimize the identification criterion

VN(e) = tr[% QN(M(G)]] over a compact set Dgy. Let Déz)

be defined by (5.2). Let 6* be an arbitrary elenment of
Dy and introduce

B = B(e*,p0) = {el!e* - ol < p} p >0
and

n(t,e*,p) = igg{[y(t) - §(tje)]TR(t)[y(t) ~ §(t|e)]}
8EB

Assume that for all 8* € DM
a) E{sup maxIJL §(l)(t|e)12} < C(8%) for all t
= . 26 .
BEE 1

and some p = p1(9*) > 0 (5.7}
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) Cov{n(t,8%,p), n(t+s,0%,p)} < K(1+[s| ™)
a > 0; all t,s and 0 < p < p; (5.8)
K, o and pg may depend on pg¥*.

All expectations, including that in (5.2), is over the
sequence of innovations‘{s(t+1,Vt,S)}.

(2)

Then 6 (N) - Dy w.p.1 as N = =,

Proof. This theorem could be proved using Theorem 5.1
by showing that (5.7) and (5.8) imply (5.4) and (5.6).
However, a separate procf, which is ccmpletely diffe-
rent from the proof of Thecrem 5.1 will be given. It
shows how Wald's (1949) classical proof of consistency
of ML estimates for independent observations can be mo-
dified to be valid for the present case. The proof is

given in the ap?endix.

The reason why the limit inferior is used in the defini-

tion of BéZ) and Déz) is that no restrictions on time
varying components should be introduced, The limit of
the sum may very well fail to exist. In particular, when
an adaptive controller is used, it would require a prio-
ri knowledge of the overall system behaviour to state

that the limit exists.

To apply Theorem 5.2, conditions (5.7) and (5.8) must
be checked. This requires some analysis of the model
structures, which is the price for the general formula-
tion of the theorem. For the common case with linear
models, the conditions are discussed in the next sec-

tion.
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5.2. Linear Models.

A model M(s} is linear if

E[y (t+1) 1y, M(e) ]

is a linear function of y(s), uls), s < t. The models
discussed in Examples 2.1 and 2.2 clearly are linear.
If M is a set of linear models, the conditions (5.4),
{(5.7) and (5.8) of Theorems 5.1 and 5.2 follow from

criteria, which are easily checked.

Consider first a simple example. Let the system $ be
defined by

y(t+1) + ay(t) = bu(t) + e(t+1) + ce(t) (5.9)

where {e(t)} is white noise. Let the set of models be
defined by

y(t+1) + ay(t) = bu(t) + £(t+1) + oe(t) (5.10)

where {e¢(t)} is white noise.

~

The parameter vector 6 = [a b c]T is to be estimated.
As found in Example 2.1, y(t+1l8) is recursively de-
fined by

Ty (e+tie) = (d-e)y(t) + bult) (5.11)

(1+;q_
where qd1 is the backward shift operator.

The derivatives é% §(t+1le) are straightforwardly found

as the solutions of -
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(1+oq” 1) 2 y(t+1le) = y(t)
sa

(1req 1) L y(t+110) = u(t) (5.12)
ab

T - y(t) - y(tle)

il

(14cg ) L y(t+110)

As long as the set M contains only models with stable
C-polynomials, i.e. (¢} <1~ &, clearly g% y{t+1l8) is
a well defined wvariable.

Consider now é% §(tie). This variable depends only on

é, and let it be denoted by §é(t,é). Consider

sup

2 §[t|M(e))) = sup
8€D el

da

yo (£,0) |
51_6| a

The supremum means that for each realization w, the va-
riable ¢ = c{w) shall be chosen such that the real num-

ber ]§;(t,é(m),w]i is maximized. From (5.12)

o (=]

; ) (‘é)ky(t"k) < ) !;lkiy(t-k)l <
k=0 k=0

Yé(tfcrw) ’

A
le~18

(1-8)%1y (e~k) | for 8 € Dy (5.13)

k=0

Consequently the variable

sup ys(t,c)
lci<i-6

can be obtained from ly(s)! by exponentially stable fil-

tering. It is therefore reasonable to assume that con-
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dition (5.4) in Theorem 5,1 is satisfied if {ly(s) I}
satisfies a suitable regularity qondition. In fact, we

have the following lemma.

- Lemma 5.1. Consider the system (2.2) and the model set
(2.43). Suppose that y(tle) is linpear in y{(s) and u{s),

0 <s <t and in Vo, i,e.

h

R £
yitie) = t-k) + k£1 fk’tu(t—k) + HtVO

| t~3ct

y (

Suppose that the linear filter that defines gL §(l)(t|ﬂ)_

~

8
is exponentially stable for each component i of y(tle)

and for o € DM’ i.e.

2 héil(e) <ok, |2 féll(e) <o l—i Ht(i)(e) < ot
58 ! 30 ! 36
 for some A < 1, all &, all 8 € DM and 1 = 1,...,ny.
{.] denotes the operator norm of the matrices, and héli
I
denotes the i:th row of the matrix hk £* Let
!
z(t) = sup max 2. y(tle)
eEDM 1<i<n_i88
- -y
and assume that
1 ¥ 2 2
lim sup 7 ;[y(t) + u{t)°] < e w.p.1 (5.14)
N—oo
Then
N

lim sup

5 ; z(t)2 < o w.,p.l
N-soo




43,

i.e. condition (5.4) holds.
The procf is given in the appendix.

Condition (5.14) is a simple and most reasonable condi-
tion on the overall behaviour of the system to be iden-
tified. The restriction of DM to parameters that give
exponentially stable predictors (or rather derivatives)
is also natural. Therefore, Lemma 5.1 and Theorem 5.1
yield a consistency result for linear systems that is

valid under wvery weak conditions.

To check conditions (5.7) and (5.8) of Theorem 5.2, con-
sider again the simple system (5.9) with model set (5.10).

From (5.13) we obtain

Ely (t-k) |y (t=s) | <K —

g ~2 bt k+
E sup !yé(t,c)l < E {1-8) S >

BEDM s,k=0 &

if Ey(s)® < K

Consequently, condition (5.7) of Theorem 5.2 is satlis-

fied for this simple system.

Condition (5.8) means that the two random variables
n{t,8%,0) and n(t-s,8%*,0) are almost uncorrelated for

large s, where

n

inf (y(t) - y(tle)]? =
0EB(6%,p)

n{t,o*,p)

i

. n" - R 2
inf{y(t) - (—c)k[(a—c)y(t~k—1) - bu(t—k—1)]}

8 €B

e~ g

k=0
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If |c*]. + p < 1, the terms corresponding to large k,

say k > N, in the sum, will have small influence on the
variable pn(t,e*,p). Furthermore, the variable n(t-N,e*,p)
is defined using variables that have quite small influ-
ence on n(t,e*,p). Therefore, if y(t) and y(t-N) are al-
most uncorrelated, it should follow that condition (5.8)
of Theorem 5.2 should be satisfied.

This requires some conditions on the behaviour of the
closed loop system. We choose to require that the closed
loop system is exponentially stable with e(t) regarded
as input and y(t) as output. If part of the input is de-
termined as linear output feedback, then the closed loop
system is linear, i.e. y(t) is a linear function of e(s)

and exponential stability is well defined.

If the feedback is non linear, the closed loop system is
also non linear. Then the usual definition of exponen-
tial stability of ODEs , see e.g. Hahn {1967), can be
used after suitable modifications to include stochastic

disturbances.

Definition 5.1. Consider the linear system

y(t+1) = By (t+11V, ,8) + e(t+1)

where e(t) are independent random variables, and where
part of the input u(t) is determined as (non linear) out-
put feedback. Let the system and regulator be started up
at time t-N, with zero initial conditions, yielding at
time t the outputs and inputs, yg(t) and ug(t) respec—
tively. Suppose that '

|y (£) = yote) | < ey AN, Jule) - upe) | < eyt

-
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some » < 1, where C(Vt_N) is a scalar function of yt—N’

such that EC(Y )4 < C.

t-N

Then the closed loop system is said to be exponentially

stable.

jn]

Lemma 5.2. Consider the system (2.2) and the model set
(2.13). Suppose that E[y(t+ﬂlvt,M(e}] is linear in y(s)

and u(s), i.e.

E[y (£+1) 1y, #(8) ] =

Hew1 8

(o)y (£-k) +
k=0 t .

+ glelule-k) + H (6)V,

li~18

k=0

Suppose that the linear filters that define Ely (t+11Y,,
)] and g% Ey[t+1th,M(e)] are exponentially stable
for ® € DM’ i.e,

' k k t
'hk’t(e) < Cx 7y ! K t(e)‘ < Ca l He (8) g Ca
2 {1i) (1) t
- hk’t(e)l < ‘ (8) g Cx
38
}JL Hél)(e)l < ot
30

for some x» < 1 for all t and for all & € DM' and all
rows 1 = 1,...,ny.

Assume further that
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() < ¢ ana Bu()? < C

and that the closed loop system is exponentially stable.
Assume that the innovations'{a(t+1,Vt,S)} = {e(t+1)} are
independent random variables. Then conditions (5.7) and
(5.8) of Theorem 5.2, and condition (5.14) of Lemma 5.1,

are satisfied,

The proof is given in the appendix.

In the next chapter, the lemmas will be applied to the
linear models defined in Examples 2.1 and 2.2, and to-
gether with Theorems 5.1 and 5.2 this will give the de-
sired consistency results. Naturally, the results ob-
tained are applicable also to other more general sys-
tems.,

It follows from the proof of Lemma 5.2 {Eq. (A.24)) that
if the initial value is contained in the parameter vec-
tor B to be estimated; VO = Vo(e), then all & such that

Ely (¢+1) 1V, ,S,Vy = 0] = E[y(e+1) 1V ,M(8),¥q = 0]

belong to Déz). i

Consequently, all ¢ that differ from the "correct" va-
(2)

e
sy to show that under the assumptions of Lemma 5.1, the

lues only in Vo(s) belong to D It is also gquite ea-

initial values in fact cannot be estimated consistently.
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6. EXAMPLES.

In this chapter the results of Chapters 4 and 5 are
applied to vector difference equation (VDE) models and
to state space models. The set of limit points, DI’ is
determined for these models. The particular identifia-
bility concepts that were introduced in Chapter 3 are
also applied and special attention is paid to various
feedback configurations for VDEs. This is treated in
Section 6.1, while state space models are considered

in Section 6.2,

6.1. Vector Difference Equations.

Consider the VDE description of systems given in Example

2.1. Assume that the system is described by
=1 _ -1 =1
As(q Jy(t) = Bglg Jult) + CS(q Je (t) (6.1)

Let the input to the system, u(t) be of quite general

form:
u(t) = £ (y €)oo,y (0)5ult=1),..0pu(0)) + u_(t) + w(t) (6.2)

where ur{t) is a measurable signal that is independent
of y{(s}, u{s}), and where w{t) is obtained from a noise
source, that is independent of {e(t)}. The function ft
may be unknown to the experiment designer. The set of

models, M, 1s given by
-1 _ -1 -1
Birge) (@ ¥ (8D = By gy (@ Dult) + Cupgyla elt) (6.3)

where ¢ € D, which is assumed to be compact.

M



48,

Suppose first that DM = Dyp is a finite set, and denote
the corresponding model set by Mp. Then Theorem 4.1 can
be applied, and the set of possible limit points of ¢ (N)

is obtained as

(1 ., oA 2
= {glgenMF ;ly(tJS) y(th(e))[R(t) < “}

Introduce for convenience the notation

~

— -1, - _ -1
A= As(q ) A= AM(G)(q 1 etec.

Then according to (2.6}

[z - c'ajyey + ¢ Teue)

vy (t18)

1

ytle) = [T - ¢ TAly(e) + ¢ 1Bue)

which gives

B£1) = {e!eEDMF E'(é‘1ﬂ - ¢ Tayy(e) +

With the terminology introduced in Chapter 3, the sys-
tem § is System Identifiable under M, I, and X (SI(M,
I,X)] if Bé1) = Dp W.p.1. Suppose that the system is
not SI(M,I,X). Then there exists a 8, such that § € 8;1)

and 3 g DT' Introduce
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ey R
= CudmPun " Cg A

tie
1t

=
=

_ 1 _
= S Buy T Cs By

e
]
=
o

")
Since E ¢ DT at least one of I and ﬁ is non zero. Since
n
5 € Dg”there exist w.p.p. a relationship between v and

u such that

8

Y Y

LDy (£) - Mu(t) 12 < o

]

which in particular implies that
By (t) = Mu(t) (6.5)

asymptotically as t tends to infinity. Furthermore, -
(6.5) holds for each realization such that § is a pos-
sible limit point. The conclusion is that if the expe-
rimental conditions X are such that no exact linear re-
lationships (6.5) hold as t tends to infinity, then the
system S is SI(M,I1,X).

Example 6.1. Adaptive regqulators.

Suppose that the feedback regulator is given by
F{o(t),q Jutt) = 6(o(t),q My (t) (6.6)

That is, the regulator is linear and its parameters are
determined from the current system parameter estimates.
This is a simple adaptive controller, based on the as-
sumption that the control can be separated from the es-
timation. Such a reqgulator is considered €.9. by Kalman
(1958) and by Astrdm-Wittenmark {1971) in the single in-
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put output case and in case CS = CH(B) = I.

Suppose that DT(S,MF) is non empty and that for all

Fo(z) a.e. Z

Fle,2z)

I

Glo,z) Go(z) a.e. 2z

Assume that for some realization w, S£1)(m) is not con-
tained in Dp. Then there exists a § such that (6.5) holds
as t tends to infinity, This means that the regulator
(6.6) asymptotically is equivalent to a linear constant
one: (6.5)., For realizations such that g§1)(
tained in Dy, F{o(t),z) = Fo{z) and G(6(t),z) = Go(z) as

t tends to infinity. Consequently the adaptive regqulator

w) is con-

(6.6) always converges to a (regulator that is equivalent
to) constant linear regulator. Such a piece of informa-
tion is often valuable, since many results rely upon the

assumption of convergence, cf. Astr&m-Wittenmark (1973).
O

Infinite model sets.

Suppose now that DM is a general compact set, such that

B E DM = CM(e)(z) is stable,

The prediction y(t+118) is calculated from (2.7)

Cy(tie) = (C-A)y(t) + Bu(t) ‘ (6.7)

The derivative g% y(tl18) is defined by
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vi{t) + < Bu(t) -
a0

Since é = CM(B
equations (6.7} and (6.8) are exponentially stable, uni-

)(z) is stable, the linear difference

formly in 6 € DM'

Lemma 5.1 and Theorem 5.1 now give the following impor-

tant result:

Theorem 6.1. Consider the system S described by the vec-

tor difference equation (6.1). Let the model set be gi-
ven by (6.3) and assume that the matrix elements are
continuously differentiable functions of the parameter
8. Assume that DM is compact and that CM(Q)(Z) is stable
for all o € DM' Assume that

0 The fourth moments of e(t), y(t) and u(t) are uni-~
formly bounded.

0 The closed loop system is exponentially stable
(cf. Def., 5.1). '

Then the estimate 8 (N) that minimizes the criterion
(2.17) tends w.p.1 to the set

(2) 1 ¥ ~1
D = {ele € Dy, lim inf 5 % E’KM(O)(q Yy () -

N-sco
-1 2
~ Loy (@ Hue)| = o}

as N tends to infinity.

. 8)
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Here

1 -1

I
) = Cyey (e )

- 1y _ a1 1 -1

and

S TS B “1y a1 -1
Lye) (@) = Cyg) (@ DBy l@ ) = Cgla DBgla D)

The condition that the closed loop system is exponential-

ly stable is quite mild and very natural, Obvious examples
are open loop systems with stable As(quq) or systems with

linear feedback

Fig”ult) = ¢lg Ny (t)

such that the determinant of

A(z) - B(2) (F(2)) 'a(z)

has all zeios outside the unit circle. (The determinant

is a rational function of z.)

Example 6.2. Let the input be given by

a(t) = Rl@Hy(®) + viE)
where R(z) = [F(z)] 'G(z) is such that det[A(z)-B(z)R(z)]
has all zeroes outside the unit circle. The sequence

"{v(t)} does not depend on {e(t)}. Then

Cg(t) = H(g Het) + Hg hvie)
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where

H(z) = [A(z) - B(z)R(z)] Tc(z)
o -1
H(z) = [A(z) - B(z)R(z)] 'B(z)

are stable linear filters. Assume that Eie(t)l4 < C,

Then the conditions of Theorem 6.1 are satisfied.

Consider with K and L as in Theorem 6.1

2 N 2
E|Ky - Lu| E| (KH-LRH)e + (RH-LRH)vV + Lv|° =

E[(K—LR)He|2 + |(K—LR)§V + Lvl2

since Ee = 0 and {v(t}} is independent of {e(t)}.

* - * ’
Suppose 6% € D and denote K KM(G*)’ L LM(S*)'

I !’
Then
1 N 2
0 = lim inf g ; E|K*y - L*u]® >
N0
1 N 2
lim inf 5 ; E| (K*-L*R) He |
N0

which is possible only if (K*~L*R)H = 0 or K*-L*R = 0,

Hence

1 N 2 1 N
0 = lim inf & ; E|R*y - L*u|“ > 1lim inf 5 ;]L*v[
W= N0

2

Suppose now that v(t) 1s persistently exciting of suf-
ficiently high order, cf Mayne (1972). Then L* = 0 fol-
lows, which in turn implies K* = 0. Consequently, g* €

€ Dy and the system is SI(M,7,X) for this choice of in-



54.

put signal.
In Gustavsson-Ljung-S&derstrdm (1974) the identifiability

properties for a number of different feedback configura-

tions are discussed in detail. ;

6.2, State Space Mecdels,

Consider the state space representation (2.11) in Example

2.2, i.e.

% (t+1) Asi(t) + Bgu(t) + Kge(t)

H

y(t) = Cgx(t) + &(t)

Let the input u(t) be of the general form (6.2). The mo-
del set is defined by

]

x[t+1]M(0)]- BygyxitiM(e)] + B u{t) + K

M(8) (o) B () B

{ A (6.9) .
y(£) = Cyooyx[EIN(B)] + &0y ()

where 0 varies over a compact set Dy» If D, is finite
Theorem 4.1 can be directly applied as in Section 6.11.
The prediction E[y(t+1)lvt,M(a)] is determined from

u{s) and y(s), s < t, recursively as

x[t+1 M) ] = AM(G)X[th(e)] + BM(e)u(t) + KM(G)

C [y (8) =y XTEIN(8)]]

BIy®HIY, M(0)] = €, o X[ £+ 11(0) ]
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Thig recursive scheme is exponentially stable if the ei-

genvalues of A - KAMB)CﬁHB) are strictly inside the

M{8)

unit circle. Assume that this is the case for all g € DM'

Then é[t]hﬂe)] as well asig% ﬁ[th(e)] are determined
by exponentially stable filtering of y(s) and u({s) [for
]

6 %{tlaﬂe)} also of ﬁ[tlhﬂs)l]-

Hence, as in Section 6.1 we obtain the following theorem.

Theorem 6.2. Consider the system described by the state

space equation (2.41). Let the model set be given by
(6.9) and assume that the matrix elements are continuous-
ly differentiable functions of the parameter g§. Assume
that DM is compact and that AM(ﬁ) - KM(G)CM(G) has all
eigenvalues strictly inside the unit circle for all 6 ¢

€ DM‘ Assume that

o The fourth moments of e(t), y(t} and u(t) are uni-

formly bounded.

0 The closed loop system is exponentially stable
{(cf. Def. 5.1). ‘

Then the estimate $(N) that minimizes the criterion
(2.17) tends w.p.1 to the set '

N ~ .
p(2) _ {eie € Dy, lim inf & ] E|y(tl$) - Y(t‘e),z B 0}
1

N0

where

[C(A—KC)t"SB - é(i~§é)t“5§]u(s) +
0

I 2t

g(t18) - yltlo) =
S

t £ R P
"+ § [ca-rC) TSk - c(a-kC) %k ]y (s)

5=0 (6.10)
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etc.

, A=A
Mie) 5

Analysis similar to that in Section 6.1 can be applied

to this system description.

Example 6.3. Consider the system (2.11) and assume that
the input {u(t)} is independent if {e(t)}, i.e. the sys-—

tem is in open loop. Decompose the predictions y(tls)
and §(t!e) into the parts that originate from {e(s)} and
the parts that originate from {u(s)1:

1I

yiy1s) = v (E18) + y (£18)

go(E1e) + v (t]8)

g (£18)

Then {ye(tIS)} and {y, (t18)} are independent., This de-

composition is 90551b1e since the system as well as the

predictor are linear. If {e(t)} is a stationary stochas-
tic process, also {y (€18)} and {y, (£16)} are stationa-
ry processes (neglecting initial value effects). Then

E|y(tlS) - y(e1e)]? = |y (e1s) - §ru(t19)|2
v Ely, (£18) - v (e10) |2

Since the stochestic processes in the second term of the
RHS are stationary, this term does not depend on t. If

6 ¢ pi2)

1 consequently the term is zero and so

yo (£18) = yg(tle)  w.p.1

follows. This straightforwardly implies, cf Tse-Weinert
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{1973), that

| -1, -
Cglag=2I) "Kg = Cyeoy (Bygy = 2I) Ky(p) a.e. z

In the same manner follows, if {u(t)} is persistently

exciting of sufficiently high order, that

-1 N
Cy(Ag—zI) BS—CM(E)[AM(GJ zI} "B,y @-©- 2

Thus, all & € D£2}

functions from u to y and from e to y. Consequently,

give models with the true transfer

for this type of experimental conditions X i.e. open
loop experiments with a persistently exciting input sig-
nal, the system is System Identifiable, irrespectively
of the orders of the models in M, as long as they are

not less than those of the system.
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7. CONCLUSIOGNS,

In this report consistency and identifiability proper-
ties for prediction error identification methods have
been investigated. The problem has, in various forms,
been treated by several other authors, but the first
entirely correct proof of consistency w.p.1 seems to
have been published only recently, Rissanen-Caines (1974).
That proof concerns the case with vector difference equa-
tions without an input signal. Like most other previous
results, it is based on an ergodicity result. This means
that when an input signal is present, restrictive condi-
tions on it must be imposed. Feedback can usually not be

allowed, and the system must be time invariant.

The main concern of the discussion of this report has
been to remove such restrictions. Thus guite general

feedback structures and adaptive systems can be handled.

The approach taken also allows quite general system de-
scriptions and model structures. The results are there-
fore not limited to a certain class of systems, even

though vector difference equations and state space mo-

dels have received special attention.
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APPENDIX.

PROOFS OF THE THEOREMS,

For easy reference, a list of the notation used in the
proofs is given at the end of this appendix,

A.1. Proof of Theorem 4.1.

Theorem 4.71. Consider the system §

y(t+1) = B[y (t+1) 1Y, ,8] + e{t+1,Y,,3) : (A.1)
where

E[1e(t+1,¥,,9) 1°|y,] < C

Consider a finite set of models Mp = {M(0) 10 € DM}'
such that DT(S,MF) is non empty. Let 6(N) minimize the
identification criterion tr QN[MF(G)) where Qy is de-
fined by (2.15). Let Di') be defined by

V(1) T S 2 -
D = {ele €Dy, %ly(tls) - y(tfe)[R(t) < } (A.2)

~ (1)
Then 8 (N) - DI w.p.1 as N = o,

Proof. Let the loss function be denoted by

Vg (8) = tr QN(MF(B))

The idea of the proof is simply to show that for a gi-
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ven realization w there exists a Hi(w) such that
n :
VN(ei) > Vﬁ(e) N > Ni(w) (A.3)

’ N
(1)
for al} ] ¢ Dy (w)}

. .
where 8 is an arbitrary element in DT‘

Then the minimizing element for

t

N > max Ni(w)
i

must belong to Bé}%). The inéquality (A.3) will be
established using the convergence theorem for martin-
gales, Doob (1953). With no loss of generality R{t)
can be taken as I. Denote for brevity s(t+1,vt,s) =

= e{t+1). Consider for an arbitrary ei € DMF‘

N | - ‘2
V,{e:) = y{t) - y(tie,) =
N t£1- i
N 2 N TN ~
= Lle®)|”+2 Joe(t) [y(d8) - y(tre)] +
t= =
N . .
s 5y ®) - yeeiep)
£=1
Here
5 = § lew)?
v,.{8) =. e{t)
N £=1

Introduce
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o652 = |yt 18) - v(els) 2

and
£ 2
s(t) = ) o(r)® + 1 s(0) = 1
r=1
Then
N oor o e
L e(t) [y(ele)-y(tlo,)]
Vgle) = () = san|1 - —— 4 2 £
s (N) s (N)
{(A.4)
It will be shown that the term
1 N T~ n ~
}ooe(t) [y(elg) - y(tlei)] -0 as N » e (A.5)
s{N) t=1

for any realization such that -6, g B£1)(w}. This and
(A.4) clearly imply (A.3).

To do so, consider the random variable

em) [y (I¥) - yxis;)], ,

(0) =0
s(r)

Let Vt be the o-algebra generated by {y(0),

ASIN
u(O),...,VO}. Clearly e(t) € Vt. Then

E{[e<t)T(§(tE3)~§(t1ei))lzlVt_1} =

A ) . )
= [y(el®) -y (tlo,)] E(e(t)e(t)TlVt_1)[y(tla)-y(tfei)] <

< U(t)2C
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The -sequence {z(t),Y, } is a martingale since

il

1l

Elz(64) Y] = 2(t) + e[y (en §) - P(e10,) /s (4D 14, |

!
il

2(t) + E[e(tH) 17 ] [y (A1) - y(t+110;)1/s (EH)
= z(t)

Consider the variance of z (N}, i.e.

N
Ez(N)2 = J E{z(t)2 - z(t—1)2} =
t=1
N
2 2
=E ) E{ z{t)" - z(t-1) Vo _ } =
oL [ Yeoy
N 2
=E E{[z(t) - z{t-1)] ‘Vt—1} =
t=1
Trl v ) 2
N elt) [y(t)g) - y(tie)]
=E ] E lyt~1 <
1 s(t)
ce ) a(6)? oy sl) Zistem1)
- 1 s(t)z - 1 s(t)s(t-1) -

A

N
052[1 - 1}=CE 1. < C
1ts (t=1) s (t) s (0) s(NY| ~

Since z{N) has bounded variance, it converges w.p.1 due
to the martingale convergence theorem. It now follows

from Kronecker's lemma (see e.g. Chung (1968)] that
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1 X Tpx . |
- Je(t) [y(et®) - y(tleg)] -0 as N o>
s {N) 1

for those realizations for which s(N) + was N - w, i.e.

for those realizations, for which 65 ¢ DI

Consequently (A.5) has been established, which via (A.4)

implies {A.3) and the proof of the theorem is concluded.
=]

A.2. Proof of Corollary to Theorem 4.1.

Corollary. Consider a general criterion h{QN[MF(e))],
where h satisfies (2.16). Assume, in addition to the
assumptions of the theorem that

N - ~
. 1 _ 2
lim sup N Zly(tiS) y(t|8)|R(t) < o W.p.1 all 8 € DM'
Nosco 1
that

Bl (t+1, Y, She (41, 8) 7|V, ] > 6T all t,
and that

4
E[|5(t+11yt13)| [Vt] < C

Then 8 (N) - Béq)

w.p,1T as N ~» .

Proof. The matrix of prediction errorxs can with 5 € DT
be decomposed as [take R{t) = I]
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5 v g T
My (e) - ylete) J{y(t) - y(tle) ] =
1 .

Q (Mz(8) )

N m N - n, - T
7 elt)elt)” + Z{e(t)[y(tie) - yi{tie)]
1 1

+ [§(t;5) - §(tle)}e(t)T} +
N . "y -~ ~ ny - T
+ ;[y(tle) - yelo) Iy (e18) - y(tle) J” =
= A1 (2) {3)
QN + QN (8) + QN (@)

£1)(m). Then

tr Q(3)(ei) - o as N - oo, Con31der first

Choose {(for a given reallzatlon)e ¢ D

(1)
QN

tr 91% (s;)

Let E[e(t)e(t)TIVt_1] = S,. According to the assumptions

St > &I for all t.

BEach element of the matrix

t T
z(t) = J[e(kle(k)” - s, 1/k
1

clearly is a martingale with bounded variance, from which
follows that
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andA

s

]
2/8" > q

t
Qé1) > S T for n > N0
-2

where &' = min(6,1/CQ).

From the additional assumptions of the corollary also
follows that

1 Q(1)
er oi¥ (o) T

]
> & T for n & NO
T2

As in the proof of the theorem follows that

(2)
0 (6,)
N = -0 as N -» =

ex 00> (8;)

for those realizations for which Bi ¢ DI {w),
According to (2.16)

nlog, (Mg (8,))7 = gler of*) (o1 -

(1) ()
o\ ol?) (8
o D6y o oy
tr QN i v QN i
(3)
03 (e,)
+ i (3)1 > g[tr QéB)(ei)] .
tr QN (ei)

ol

ot o (ey)

=n({") + peygler of* (6]
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‘

where the ineguality holds for sufficiently large N,

yielding the matrix

(2) :
O {eay)

tr Qé3)

(64)
sufficiently small. Hence
hloy(Mp(ey) )] > h[QN[MF(E)]] N > N (o)

and convergence follows as in the theorem.

A.3. Proof of Theorem 5.1.

Theorem 5.1. Consider the system

y(t+1) = E[y (e+11Y,8] + e(t+1,Y,.,S)

where E[[e(t+1,Vt,S)|4|Vt] < C. Consider a set of mo-
dels M, such that DT(S,M) is non empty. Let 6 (N) mini-
mize the identification criterion vy (e) = tr[% Q. (M(8)) 1,
over a compact set Dy. Let Déz)(m) be defined by (5.1).

Suppose that

2 ¢ epo)
38

z{t) = sup max [(i) denotes i:th row]

6EDy 1515ny

1
where D y is an open, connected set that contains Dyir

satisfies the following condition

1 ¥ 2
lim sup g J z(t)" <o w.p.1
N-eo 1

Then the estimate
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: v(2)
6{N,w) - Dy {0) a.e. as N - <

The same results hold for the general criterion (2.17)

if, in addition to the above assumptions,

Ele (641, ¥, e (841, ¥, )71y, ] » 6T all t

Proof. The technique to achieve inequalities like (A.3),

that are uniform in e, is to consider

inf VN(e)

over open spheres ¢ € B(6*,p) = {8llo - e*] < p},
If it can be shown that, for some p* = p¥8%*) > 0,

inf Vi (8) > v (8)  for N > N, (0%,0%(8%),0) (A.6)
9€B(B*,D*)

Y
where 6 is some element in DT’ then it follows that the

minimizing point, 8(N) cannot belong to B(8*,p*) for
N > NO(B*,p*}m). This result is then extended to hold

(2)
I

. Y
for the complement of any open region containing D ’

by applying the Heine Borel theorem.

To show (A.6} consider first VN(S) = tr % QN[M(G)] and

take, with no loss of generality, R(t) = I. Let 6% be
an arbitrary point in DM'

Introduce for brevity

e(t) = e(t,V + S}

-1

Then, with inf taken over B(¢*,p) and with 3 € D
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N

inf Vi (s) = inf & gly<t) - yitie)]? =
‘-]‘N - n, - Y -
= inf & J|y(t) - y(tie) + y{t16) - y(tle*) +

1

+ y(tie*) - §(t!e)|2 =

- ¥

4 N 2 N - 2
= inf{ﬁ gle(t)[ + 5 gly(t|9) - y(tle*)|” +

+
2 |-

R - 2
Tly(tle*) = y(tle)|™ +
1 .

2N Tren N ~
+5 ) e®) [yitre) - yv(tle*)] +
1
2 ¥ Tp > .
+ 5 ; e(t) [y(tle*) - yvitle)] +
N . . .
+ % ;[y(ti%) - yetex) 1My ele%) - y(tle)]} (A.7)

The mean value theorem gives
¢ ero) - yBwien = (e By ere

where £ is a point between 8 and e*. If 6 € B(6%,p) N DM
and p is sufficiently small, say o < p(6*), this implies

- that ¢ € DM' Hence
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|§(t!e) - f'(tls*)[ < |8 - e*|sup | max 2 §(i)(tle') =

0'€D; i 39

= |o - e*|z(t) (A.8a)

Since Dh is a connected set, any two points in D say

M
g% and 6, can be connected by a train of such estimates

which gives
ly(tie) — y(tle*x)| < Mz(t) (A.8h)
where M is the maximum distance in DM.

Inserting (A.8a) in (A.7) yields for p <.;

N . ~
inf Vo(8) > Vo (8) + & T|9(t1d) - vitlex) |2 +
B(ex,0) N N ]
2N T " n, ~ 2 N
t L e Iye® - yieien] - o Jletofz(e) -

1

N . )
o Ty (el®) - y(tle*)|z(t) (A.9)
1

= [N

i

Consider the different terms of the RHS of (A.9):

N

Z ) e () T[y (18 - y(tlo%)]

Exactly as in the proof of Theorem 4.1, Egn. (A&.5), it
follows that

N “ ~
) e(t)T[Y(tlg) - y(tiex*)]/s(t) converges w.p.1 as N-w (A,10)
1
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where s(t) is defined on P. And so (Kronecker's lemma)

N

LY ee) [y e1d) - YEI6¥)] 5 0 as ¥ - w (2. 11)
]

s {N)

for any realization such that

N . " . 5
s (N) =21Y(t!8) “Y(t!@*)l - as N o w
1

b In particular, for realizations such that 6% ¢ 5;2)(w),
” i.e.

s(N) > &8(e*)N
(A.11) holds. Furthermore, using (A.8b) we obtain

N
s(N) x M2 ) z(t)?

If

% 3 z(t)2

is bounded it now follows from (A.11) that

N ~ ' ~
) e@TITEIH ~ 7(t10%)] » 0 as N o « (a.12)

2 -

for realizations for which g% ¢ Béz)(w).



le(t)lz(t)

I
. e A

From Schwarz's inequality, this term is less than

=z

N _ N 1/2
1 2 2
[ﬁ Jle@i® - 5] z(t)}

Consider first

N 2 _ 2
r(N) = ;[Ee(t)l - E{le(t) 171V, _ 1]/t

17,

Clearly [r(N),VN_1) is a martingale with bounded vari-

ance. Hence r (N) converges w.p.1 and from Kronecker's

lemma,

N 2

1 1 2
N ;Ie(t)l N

E{le(t)!

e ! I

which implies that

N

§ ;Ie(t)l2 < 2C for N » No(w)

[ A

Hence

N

N
% ;le(t)lz(t) < v2C « I = ; z(t)2 for N > Ny (w)

th“1} - 0 w.p.1 as N - =

{A.13)

(A.14)
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No.o o o
L}y eid) - yeron fz ()

Since

»~ q" A .

ly(£16) = y(t16%)| < Mz (t)
the sum is less than

N

} z(t)?
1

1
M N

Now introduce a countable subset of DM’ that is dense
in Dy Let it be dencted by ﬁﬂ. Also, introduce a sub-

set % of the sample space such that

a* = {(A.13) holds} n {(A.10) holds for all 6* ¢ SM} n

1§ 2
n {lim sup g Y oz(E)° < m}
N-soo 1

Clearly, P(Q*) = 1. Consider from now on a fixed reali-

zation w € O* and introduce the set

Dm(sfw) = {SIB € DM; inf,.u(2) (w)le i el! > 5}

'
] EDI

Choose 6* € Dm(s,w) n BM.l)

Suppose that

% z(t)2 < H(w) N> N, (0) (A.15)

=

1) If this set is empty for any ¢ > 0, the assertion of the

theorem is trivially true.
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Since 6% ¢ Béz)(m)

—;I“ |y (e13) - sﬁf(t[e"‘)|2 > &(8%) N > N, (w)

=

Then from (A.9), (A.14) and (A.15), it follows that for
N > N3(w) = max(NO(m),N1(m),N2(m))

N ~ ~
inf vile) > vig(®) + o0 + &) e Iyer®) - yeron] -
BEB(8%,p) 1
- 2p Y2C YH - 2pMH (A.16)
Choose
o*(B%) < min[m__iigtl__ , pl(a*)
(MH+/2CH) 8

and N4(w) such that

N T o
Voe(t) [y(ti8) ~ y(tlex)] <
1

5 (8%*)

1

which is possible in view of (A.12). Then for N > Nc(w) =

= max[N3(w),N4(m))

inf v (8) > V. (§) + &6(8%)/2
seB(o*,p) » N

which is the desired relation (A.6).

The case with a general criterion is treated analogous-

ly to the corollary of Theorem 4.1.



80,

The .family of open sets
{B(e*,p*(a*)), 6* € DE(e,0) N BM}

clearly covers the compact set Df{e,w). According to

the Heine Borel theorem there exists a finite set
{B[ailp*(ei))f i = 1'--0’K}
that covers Dﬁ(c,w). Let

NO(M;E) = ma}.{ No(airp*(ai)ftﬂ)
1<i<K

It then follows from (A.6) that

inf VN(B) > VN(BO) for N > No(w,e)
eEDﬁ(a,w)

which means that the minimizing element 68 (N) cannot be-

long to Dﬁ(s,m) for N > No(m,s), i.e.

A (2)
le(w) - B;] <& for N > Ny(w,e&)

which, since €& is an arbitrary small number, is the con-

clusion of the theorem.
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A.4. Proof of Theorem 5.2,

Theorem 5.2. Consider the system (5.3)

y(t+1) = B[y (t+1) 1V, 8] + e(E+1,V,S)

Consider a set of models M such that DT(S,M) is non
empty. Let 6{N) minimize the identification criterion

2
Vy(e) = tr[% QN(M(G)]] over a compact set D,. Let Di )
be defined by (5.2). Let 6* be an arbitrary element of
DM’ and introduce

B = B(e*,p) = {e||e* - 8] < p} p >0
and

n{t,e%,p) = inf{[y(t+1) - y(E+11M08) ) 1TR(E)
i3:

- [y (e+1) - §(t+1lM(e)]}}

Assume that for all o* € DM

o 2
a) E{sup max |+ y(l)(t+1|H(e))‘ } < C(8%) for all t
0B 1 ;
and some o = pq(8%) > 0
b) Cov (n(t,8%,p), n(t+s,o%,p)) < R(1+]s]™%);

a > 0; all t,s and 0 < p < p§
K, a and pg may depend on g%,

All expectations, including that in (5.2}, is over the
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sequence of innovations {s(t+1,yt,s)}.

w.p.1 as N - co.

Then 6 (N) " Déz)

Proof. The proof of this theorem is inspired by Wald's
(1949) proof of consistency of maximum likelihood esti-
mates. As in the previous proof a relation like (A.6)
has to be established. Since the observed variables are
not independent in this case, the strong law of large
numbers cannot be applied as in Wald's case. Instead
the following result by Cramér-Leadbetter (1967) is

used:

Let'{fi} be a seduence of random variables, with zero

mean values such that

P . P
mf £, <k — 1 0<2p<q<1
J 1+ 11 - 319
Then
N
% ; fi »+ 0 w.p.1 as N = = (A.17)

We now turn to the proof of the counterpart of (A.6},
i.e. that for any e* € DM’ g* ¢ Diz) there exists a
- p¥ = p*(9*) and a Ny = No(e*,p*,m) such that

inf vy (e) > v (§) for N > Ny (A.18)

B(68%,0%) "
where § is an arbitrary element in DT‘

‘Consider, for e* € D¥(e) = {e|inf le - 8'| > &,0€D
I




83.

the guantity

—

inf V(o) = inf g J[y(£) - v(elo) I"R(E)[y(t) ~ y(tie)]
1

where inf is taken over ¢ € B{8%,p).

Introduce for brevity the notation

£(t,e) = [yt - y(eie) ]TR(E [y (8) - v(tle)]
i.e. n(t,8*,p) = inf £(t,q)
B(B*,p)
x(t,0) = [y(el®) - §r(tfe)]TR(t)[§r(tl'é’) - f;(tle)]; § e D,
y(t,8%,0) = sup max| —9— §(i)(tle)
6€EB(o*,p) 1 198
Then
1 N 1 N
inf Vi (e) > ﬁ; n(t,e%,p) = -N-g Eg {t,0%*) +
1 ¥ ~
t g L E[n(t,0%,p) - £(t,8%)] +
1
4 N
+ﬁ§[n(t19*19) - En(tle*lp)] (A.19)

The three sums in the RHS of (A.19) will be considered

separately.
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The- term } Ee(t,0%).

z—=

Ee (t) "R(t)e(t) + 2Be(t)TR(£)[¥(t1¥) - y(tio*)] +

I

Eg (t,0%).
+ Ex (t,0%)

The middle term is zero, since

E[e(t)lyt_1] = 0

Since 6* ¢ Dézl

N

lim inf &} Ex(t,0%) = 6(6%) > 0
N-yco 1

Then

1 ¥ 1 ¥ T 1 ¥
N ) BE(t,0%) =5 ] Be(t) R(tle(t) + g | Ex(t,0%) >

1 1 1
> BV, (§) + 800%)  for y > N, (8%)
2

Consider

v, (§) - 5 =17 Tr - Tr

 (6) BV (8) = 5 ; e(t) "R(t)e(t) - Ee(t) R(t)e(t)

According to (A.17) and assumption b) with 6* = 8 and
p = 0 it follows that

VN(E) - EVN(Q) -0 w.p.1 as N - «

""Hence
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N
19 Ee(e,0) > vg(H) + &L for W s N, (6%s0) (8.20)
N 4 N ,
N
The term g ) E[n(t,8*%,p) — g(t,o%)]
1

Choose first p{e*}) = min[p1(8*),p2(8*)J

where o, and p, are defined in {5.7) and (5.8). Clearly
ly(ele) - y(elox)| < [o - e¥[v(t,0%,0)

for & € B(9*,p)

where E‘P(t,e*,p)2 < C(06*) according to assumption a).
Consider

Ee,8) - £ct,e0 ] = [y(t) - ye1e) ITREI[v(e) - y(elo)] -

- Iyt - velen) 1TRee) [y(e) - y(elex)] =

2y (1) TR(E) [¥ (E16%) - y(eio)] +
vyl TRE) [ (El8) — y(elox)] +
v y(tle®) TR(e) [y(tie) - y(elen)] =

o (ele) - yiele®) | [R(E)] [y (Ele) + y(klox) = 2y(¥)| <

il

1§(tle) - §(tle*)|[R(t)|[|§(tta) - §(tle*)| +

I A

y 2y(t) - ylele®)]] <

v (6% ,0) |R(E)] [p¥ (£, 0%,0) + 2|y(t) = y(tlo%)]]

1A
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Notice that the bound does not depend on 8, as long as
68 € B{g*,p). Therefore, since n(t,e*,p) = inf ¢ (t,e)

E]n(tpe*;p) - E(t;e*)l fple(t)fE‘F (tre*:p)z +

+ pE¥ (£,0%,0) Y4B} y(t) - y(tle%)]? <

< pC1C(e*)
where
c; =plR(E)] + 4B[y(t) - y(e1e%)|? < o[R(B)] + 4K(o%)

according to assumption b).

Now choose

p* = p*(8*) = min le*) , o (6%)
8C,C (6%)
Then
Eln(t,o%,p%) - &(t,0%)| < 28X
8
and
19 5 (8%)
N L Eln(t,0%,p%) ~ g(t,0%)] < 2L

1 8

(A.21)
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N
Y n(t,e*,0) = Enlt,e%,p)

The term L
) 1

N

According to assumption b) and (A.17) this term tends

to zero w.p.1. Hence

N

l% ; n(tpe*;p) - En(t,e*,p) < élﬁil

for N » N3(8*,p*,w) (A.22)

Inserting (A.22), (A.21) and (A.20) in (A.19) gives

. & 5 (%) *
inf VN(B) > VN(e) + N > Ny(e¥,0%,0)
where

N4(6*Ip*rw) = max(Nz(e*,w), N3(e*fﬂ*rm)]
which is the desired relation (A.18).

The proof is now completed using the Heine Borel theo-

rem as in the previocus proof.
[w]
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A.5. Proof of Lemma 5.1.

Lemma 5.1. Consider the system (2.2) and the model set
(2.13). Suppose that y{tle) is linear in y({(s) and u(s}

0 <s <tandinV,, i.e.

£
1

y(tle) =

. hk,ty(t-k) +

k,tu(t_k) + tho

I c~3ct
Il e~10t

1 k

~

Suppose that the linear filter that defines g% y{l)(tle)

A

is exponentially stable for each component i of y(t]e)
and for 8 € DM’ i.e.

k

< CAS, 2

(1)
2 f (8)
5 Kt

k

< Cx

2 ) g <k |2 gt )

36 kit

for some * < 1, all t, all 8 € Dy and i = 1,...,n¥. Lo
denotes the operator norm of the matrices, and hé % de-
. ¥
notes the i:th row of the matrix hk g Let
[

2 gitle
o6

z(t) = sup max
8€D 1§1§ny

and assume that

1 X 2 2
lim sup Tv(e) + u(t)®] < »  w.p.1
N-»o 1
Then
1 X 2
lim sup g Jz(t)° > o w,p.1
N-so 1 '

"i.e. condition (5.4) holds.
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Proof. As in the simple example on p. 41 we have

z{(t) = sup max -2 §(i)(t:6) =
36
t
= sup max| § 2 h{T) o)y (e, k) +
k=0 38 !
L (1) 3 (1)
+ ) — £ (plul(t-k) + = H (8) Va| <
k=0 38 <% 29 °© o -
t 5, (1)
< ] {sup max|—— h, " (8) |y (t-k)| +
k=0 36 !

+ sup max ft féfi(e) |u(t—k)[} +

+ sup max 2 Héi)(e) ]VOI <
o8

1A

£ ok t
cl 7 ALy (e=k)1 + Jule=k) 1] + 271yl
where sup is taken over g € DM' and max over 1 < i < ny.
Introduce for brevity the notation
n(t) =cliye)l + lu(e)i]

and define

t
(t) = ;_xkn(t—k) + 251y,

v
Z

Then z(t) < #(t) and

B(e+1) =a%(8) + n(t)  Z(0) = 1yl
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or

27

% (t) 2

Y(e+) 2 = ) F o) + 223 (1) n(t)

Sum over ¢t = 0,...,N and divide by N:

N N - ‘ N
1 2 .21 2, .21 1 2
= ; 2(8)° < 2 g ; 2(8)° + 2 FlYl +§ g n(t)” +
1N
2N 5 g z(t)n(t)
or

1/2
N N N N
1251 ] ze)? < 1 ! n(e)? + z{"ﬁg n(e)? . % ) %ft)ﬂ +

1 .2
+ N A ‘yol

According to the assumptions of the lemma,

is bounded w.p.1, from which directly follows that

1 % 4, 2
-ﬁ Z(t)

> 2

is bounded'w.p.1. Since z(t) < %(t) this concludes the

proof of the lemma.
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A.6.. Proof of Lemma 5.2.

Lemma 5.2, Consider the system (2.2) and the model set
(2.13). Suppose that E[y(t+1)l%;ﬁ(6)] is linear in y(s)

and u(s}), i.e.

E[y(t+1) 1V M(8)] = 7§ hy ((8)y(t-k) +
k=0 7

oL edult-k) + H ()Y,
k=0 7

Suppose that the linear filters that define E[y(t+1)th,
M(8)] and J% E[y(t+1)|yt,M(e)] are exponentially stable

for 6 € DM’ l.e, )
k K t
\hk't(a) < cA, (fk’t(e) < Ca ’ H, (8) | < )
3 ., (i) k |8 (1) K
Znitlor] cof |[E et [ <a

HOW(8) | < Cx

for some X < 1 for all t and for all 8 € DH’ and all
I

rows i = 1,...,ny.

Assume further that

Ey(t) < C and Eu(t)4 < C

and that the closed loop system is exponentially stable.
Assume that the innovations {s(t+1,vt,S)} = {e{t+1)} are
independent random variables. Then conditions (5.7) and
{5.8) of Theorem 5.2, and condition (5.14) of Lemma 5.1

are satisfied.
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Proof. The conclusion about condition (5.7) follows im-
mediately as in the simple example on p. 41.

Let the variables y%(t) and uo(t) be defined as in Defi-

N
nition 5.1. They are the input and the output to the sys-
tem at time t, if the system and the regulators were
started up at time t-N with zero initial conditions.

Clearly yg(t) and ug(t) are independent of {e(s); s<t-N},

Let the prediction based on yg(s) and uﬁ(s) be denoted
b ~0 .
y vyftle), i.e.

0

k,tIN £

1

h {(t-k)

1

Il 12

(t-k) +

0
. k,t N

e~

~0 B

Then §g(tie} is independent of {e(s); s < t-N}.

Introduce also
£(t,0) = [y(t) - v(ele) 1TR(E) [y () - y(tle)]

0 ; _ 00 T _ 50
gt 0) = [y(t) - yg(elo) I'R(e) [y (k) - yy(tie)]

n(t,B*,p) = inf E(tre)
BEB(B*ID)

no(t,0%,p) = inf £n (£,0)
6EB(6%,p)

The ldea of the proof is quite simple. In view of the
exponential stability of the closed loop system, the

variables n(t,06*,p) and ng(t,e*,p) will differ little
for large N. Since n{t-N,6*,p) belongs to the c-alge-
bra generated by {e(s); s < t-N}, this variable is in-

dependent of ng(t,e*,p).
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Then n (t-N,e8*,p) will depend only to a small extent on
the variable n(t,e*,5), which is the conclusion that

condition b) holds.

To formally prove the first claim, introduce

G .
\)N(trﬁ*:p) = n(trﬂ*rp) - nN(tpe*:p)

From the obvious inequality

|iif £4(x) - iif £,(x)] < s§p|f1(x) - £,(x)|

we have

|.\)N(t,8*,p)| < sup lz(t,8) - Eg(tfe)l

6EB(6*,p)

As in the proof of Theorem 5.2 we obtain by straight-

forward calculation

|g(t,e)‘“ Eg(t,e)l < |§r(t|e) - §g{tla)] |R(t) |
C[lytele) = yotere)| +

v 2ly(e) - y(ele)]] (A.23)
Hence

vN(t,G*,p)z < 2|R(t)[sup|§(t[e) - §§(tie)|4 +

+ 4 suply(tle) - yo(tlo)|[%suply(e) -
- yitio) |2
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Consgsider first

t

sup|y (£18) = y9(t18)| = sup k_}21+1[r5{,t(é>y(t—k) + e (oultk)] +

N
0
+ { ) [yltk) -y (ek) ] +
oL U, e @1 N

+ fk't(e)[u(t“k) - ug(t—k)]} +

t

+ H (8)Y.| < {sup (8) |« |y (t=k) |+
g0 "kﬁéﬂ ‘hk’t | |

+ sup[fk’t(e)l-[u(t—k)l} +

N
+ ] {swlny @ lyeosdet] +
Lol e g
+swlf  (0)]-|utk) - yy(t-k) }} + suplH (0) [ [V, <

. ‘ N ]
sc[aAﬁwwﬁﬂ+3Mbmﬂ+;ﬁﬁku%m)+wa}
N+

Hence
~ ~ t t
E suply(tle) - yg(t!8)|4 < 16E C4[. ¥ .
k., =N+1 k ,=N+1
1 4
k1+...+k4 4
- A i {]y(t-ki)] + Iu(t—ki)l} +
i=1

4N 4 4 4t
FATUNCYL )+ A [VO@
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But, by applying Schwarz's inequality twice,

E

1

[ s % -8

1{[y(t—ki); + ]u(t-ki)[} <
[E{]y(t—ki)l + ;u(t—-ki)[}4]1/4 <c

1

A
= o
—

according to the assumptions of the lemma. Furthermore,

4
t t k1+...+k4 [ AN+1J
A ooy :
k1= +1 k4= +1 1 -
and N4AN < C for sufficiently large N. Consequently
- ~ A
E sup|y(tie) - yo(t1o) [ < &N : (8. 24)

Consider now the other term in (A.23), E sup|y(t) -
~ 2
- y(tie)]

suply (£) - y(tie)|® < 8 suply(t)? + y(x10)%] =

1

= 8 y(t)4 + 8 sup §(t;e)4

It follows directly from the exponentially stable, 1li-
near expansion of y(t}6) into y(t-s) and u{t-s) that
E sup y(t]e)4 is bounded. Hence

E sup|y(t) - y(t|e)|4 < C ' (A,25)
From (A.23), (A.24) and (A.25) it follows that

EuN(t,e*.-p)2 < CAN where A < 1 (A, 26)
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Consider now

COV(T].(t‘}‘N,e*rp) 7 'Q(tie*-'p)J =

COV(ng(t+Nf8*:p) + v (BN, 8%,0), n(t,8%,p)) =

= Cov vy (E+N,0%,0), n(t,0%,0)) <

[EVN(t+Nr G*,p) ZEH (tfe*fp)2]1/2 = CAN

A

where the second inequality follows since ng(t+N,6*,p)
is independent of {e(s), s < t} and hence of n(t,s%,p).
This concludes the proof (5.8). Condition (5.14) is
shown analogously.
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A.7. List of Symbols Used in the Proofs.

DT.= DT(S,H) : set of 6 giving models with the same

"transfer function" as §.

DM : set of 6 over which the minimization
is performed.

DMF : as above: for finite model sets.

§ : arbitrary element in Deps

ei : arbitrary element in DMF'

8 : arbitrary element in DM'

o * : arbitrary element in DM’ center of

spheres,
B(6*,p) = {8]]8 - %] < p}

M : maximal length of arc connecting two

elements in DM'

z{t) : sup max lg% g(i)(tie)?
. 6€DH 1<i<n
O 4

¥{t,0%,p) = sup max !{% y(l)(tle)i

BEB(B*,p) 1515ny

£(t,0) = [y(t) - yt10) TR [y(t) - y(tle)]

n(tre*rp) = inf E(t,e)
GEB(0%,p)

x(e,0) =[y(e1®) - ye10 "R [y£18) - y(e19)] ¥ € p,

e(t) = e(t,¥, 4,8



