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Abstract

In this note we establish that the probability that the simple random walk on Z2 returns to its origin before leaving a

strip of width L has asymptotically the same probability as the one for hitting the origin before exiting the centered box of

the same size. We also generalize this theorem for fairly arbitrary sequences of increasing sets in Z2.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Let ðX n; n 2 Zþ;Px;x 2 Z2Þ be a simple random walk on Z2 started at X 0 ¼ x. Throughout the paper, for
x 2 Z2 the pair ðx1; x2Þ denotes the coordinates of x. For a; b40 let

Ra;b ¼ fx 2 Z2 : jx1jpa; jx2jpbg

be a rectangle centered at the origin 0 ¼ ð0; 0Þ and

Sb ¼ fx 2 Z2 : jx2jpbg ¼ R1;b

be a strip of width 2b.
Let x 2 V � Z2. Following van den Berg (2005), we want to study the probability of exiting V before

returning to x, i.e.

qx½V � ¼ PxðtðZ2nV ÞotðxÞÞ,

where for any U � R2 we define the stopping time as

tðUÞ ¼ inffnX1 : X n 2 Ug.

This problem has links with other important problems: see van den Berg (2005) and references therein.
e front matter r 2005 Elsevier B.V. All rights reserved.
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It was shown in van den Berg (2005) that in the case when V is a square or a slightly elongated rectangle
centered around the origin,

lim
L!1

q0½RL;L� logðLÞ ¼
p
2
. (1)

Our purpose is to extend this result to a rectangle of any shape as well as to an infinite strip. The next
statement tells us that this probability essentially depends only on how fast the smaller side of the rectangle
grows, thus strengthening the results of Example 3 from van den Berg (2005).

Theorem 1. (a) Let i0 be a positive integer. Let ai and bi, i ¼ 1; 2; . . . ; be two sequences of positive integers, such

that

lim
i!1

bi ¼ 1,

aiXbi for all iXi0.

Then

lim
i!1

q0½Rai ;bi
� logðbiÞ ¼

p
2
.

(b)

lim
L!1

q0½SL� logðLÞ ¼
p
2
.

Note that by (1) part (a) of the theorem will automatically follow from part (b), since

q0½SL�pq0½Ra;L�pq0½RL;L�

as long as aXL.

The following statement is based on Lemma 22.1 in Révész (1990).

Lemma 1. Let

CðrÞ ¼ fx 2 Z2 : kxkprg,

where k � k denotes the usual Euclidean norm, be ‘‘a ball’’ of radius r in Z2. Then

lim
r!1

q0½CðrÞ� logðrÞ ¼
p
2
.

Following the lines of Lemma 5 in van den Berg (2005), we will prove:

Lemma 2. Let a and b be two positive constants. Then

lim
L!1

q0½RaL;bL� logðLÞ ¼
p
2
.

Proof. Without loss of generality suppose aXb. Exactly as in van den Berg (2005), observe that

CðbLÞ � RaL;bL � C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
L

� �
,

whence

q0½CðbLÞ�Xq0½RaL;bL�Xq0 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
L

� �� �
.

Now we multiply this by logðLÞ, take into account that logðaLÞ= logðLÞ ¼ 1þ oð1Þ and

logð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
LÞ= logðLÞ ¼ 1þ oð1Þ, let L!1, and finally use Lemma 1. &

The following proof uses combinatorial arguments, and though it may be obtained from a stronger
Theorem 2, we present it for the expository purposes.
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Proof of Theorem 1. As we mentioned before, it is sufficient to prove just part (b). Fix a42, b � 1, and a
positive eo1. Then by Lemma 2, there is L0 ¼ L0ða; 1; eÞ such that for all LXL0

q0½RaL;L�X
p

2 logðLÞ
ð1� eÞ. (2)

Let

Es ¼ ft Z2nSL

� �
otð0Þg

be the event of exiting the strip before hitting 0, and

Eh ¼ ftðZ2nRaL;LÞotð0Þg

\ ftðx 2 Z2 : jx1j ¼ baLþ 1cÞXtðx 2 Z2 : jx2j ¼ Lþ 1Þg,

Ev ¼ ftðZ2nRaL;LÞotð0Þg

\ ftðx 2 Z2 : jx1j ¼ baLþ 1cÞotðx 2 Z2 : jx2j ¼ Lþ 1Þg ð3Þ

be the events of exiting RaL;L before hitting 0 in such a way that the horizontal (vertical resp.) side of this
rectangle is crossed first. Here b�c denotes the integer part of its argument. Then

P0ðEsÞ ¼ P0ðEs \ EhÞ þ P0ðEs \ EvÞ þ P0ðEs \ ðEv [ EhÞ
c
Þ

¼ P0ðEhÞ þ P0ðEs jEvÞP0ðEvÞ ¼ P0ðEh [ EvÞ � P0ðE
c
s jEvÞP0ðEvÞ

Xq0½RaL;L�ð1� P0ðE
c
s jEvÞÞ, ð4Þ

since Eh � Es, P0ðEh [ EvÞ ¼ q0½RaL;L� and on the event ðEv [ EhÞ
c point 0 is hit before exiting RaL;L � SL.

Next we will show that P0ðE
c
s jEvÞ is close to 0. Indeed, on Ev, the walk must exit through the left or right side

of the rectangle RaL;L. Let

yð1Þ :¼ X tðZ2nRaL;LÞ
2 fx : x1 ¼ �baLþ 1c; jx2jpLg

be the point of this exit. Now consider the simple random walk started at yð1Þ when it exits the ð2LÞ � ð2LÞ

square

yð1Þ þ RL;L � fy 2 Z
2 : ðy1 � y

ð1Þ
1 ; y2 � y

ð1Þ
2 Þ 2 RL;Lg

centered at yð1Þ. Note that either the upper or lower sides of this square must not belong to SL. Let E1 be the
event that it exits this square via not belonging to SL side. By symmetry, Pyð1Þ ðE1Þ ¼

1
4
. Let yð2Þ be the point

where the walk exits the above square. Now consider another square yð2Þ þ RL;L centered at yð2Þ, and so on—
that is, recursively define Ek’s as the events that the walk exits the square yk þ RL;L via the side which does not
intersect with SL (for definiteness, if there are more than one, we set it to be the upper side only), and in any
case call the point of exit yðkþ1Þ.

Observe that the events E1;E2; . . . ;Ek are independent and all have probability 1
4
. At the same time, if an

event Ek occurs for some kpa� 1, this implies that 0 was definitely not yet hit and thus Es occurs. Therefore,

P0ðE
c
s jEvÞpP0

\ba�1c
k¼1

Ec
k

 !
¼
Yba�1c
k¼1

PyðkÞ ðE
c
kÞp

3

4

� �a�2

.

Consequently, from Eqs. (2) and (4) it follows that

q0½SL�X
p

2 logðLÞ
ð1� eÞ 1�

3

4

� �a�2
( )

.

By choosing a large and e small we establish that

lim inf
L!1

q0½SL� logðLÞX
p
2
.
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On the other hand, by (1)

lim sup
L!1

q0½SL� logðLÞp lim sup
L!1

q0½RL;L� logðLÞ ¼
p
2
,

which finishes the proof. &

2. Generalizations

For any set A � Z2 let

qA ¼ fy 2 Z2nA : ky� xk ¼ 1 for some x 2 Ag

be the discrete border of this set. Now, recall that CðrÞ is a circle of radius r, and let qCðrÞ be its discrete
border. Clearly, the number of points in qCðrÞ is of order r. The next statement is applicable to a sequence of
sets of arbitrary shape.

Theorem 2. Let V i be a sequence of subsets of Z2 such that there are two positive sequences faig, fbig with the

following properties:

lim
i!1

ai ¼ 1,

lim
i!1

logðaiÞ

logðbiÞ
¼ 1,

CðaiÞ � V i,

lim
i!1

j qCðbiÞ \ V ij

bi

¼ 0. ð5Þ

Then

lim
i!1

q0½Vi� logðaiÞ ¼
p
2
.

Before we proceed with the proof, we restate Lemma 1.7.4 from Lawler (1991).

Lemma 3. There are two constants c1 and c2, such that for the simple random

c1=rpP0ðX tðqCðrÞÞ ¼ yÞpc2=r

for any y 2 qCðrÞ.

The next statement is essentially ‘‘trivial’’.

Lemma 4. Consider a subset A � Z2 containing 0, and let qA be its border. If t	 ¼ tðqAÞ ¼ tðZ2nAÞ denotes the

time of exit from A, then

P0ðX t	 2 B j t	otð0ÞÞ ¼ P0ðX t	 2 BÞ (6)

for any B � qA.

Proof. By strong Markov property,

P0ðX t	 2 B j t	4tð0ÞÞ ¼ PX tð0Þ ðX t	 2 BÞ ¼ P0ðX t	 2 BÞ.

Since t	atð0Þ, (6) immediately follows. &

Proof of Theorem 2. Since CðaiÞ � Vi, we have q0½CðaiÞ�Xq0½Vi�, hence

lim sup
i!1

q0½V i� logðaiÞp lim sup
i!1

q0½CðaiÞ� logðaiÞ ¼
p
2

by Lemma 1.
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Next, let

Hi ¼ fX tðqCðbiÞÞotð0Þg

be the event that the simple random walk hits qCðbiÞ before returning to 0. Then

q0½V i� ¼ P0ðtðZ2nViÞotð0ÞXP0ðtðZ2nV iÞotð0Þ jHiÞP0ðHiÞ

XP0ðX tðqCðbiÞÞ 2 qCðbiÞnV i jHiÞP0ðHiÞ

(by Lemma 4)

¼ P0ðX tðqCðbiÞÞ 2 qCðbiÞnV iÞP0ðHiÞ

¼ 1�
X

y2CðbiÞ\Vi

P0ðX tðqCðbiÞÞ ¼ yÞ

" #
P0ðHiÞ

(by Lemma 3)

X 1�
c1j qCðbiÞ \ V ij

bi

� �
q0½CðbiÞ�,

since also P0ðHiÞ ¼ q0½CðbiÞ�. Now applying Lemma 1, we conclude that

lim inf
i!1

q0½V i� logðaiÞ ¼ lim inf
i!1

q0½V i� logðbiÞ

X lim inf
i!1

1�
c1jqCðbiÞ \ Vij

bi

� �
q0½CðbiÞ� logðbiÞ

¼
p
2
: &

Note that for the sequence of strips Si the conditions of Theorem 2 are fulfilled if we choose ai ¼ i,
bi ¼ i logðiÞ, since jCðbiÞ \ V ijp4i þ 2. Therefore, one can obtain Theorem 1 as a corollary of a more general
statement.

Another example where one can apply Theorem 2 is the following problem. Let

V ¼ fx 2 Z2 : x2Xx2
1g

be the interior of a parabola, the walk starts at xðiÞ ¼ ð0; iÞ, i40, and we are interested in the asymptotical
probability of exiting V before hitting the vertex where the walk has originated, that is, qxðiÞ ½V �. To solve it,
observe that qxðiÞ ½V � ¼ q0½V i� where

Vi ¼ fx 2 Z2 : x2Xx2
1 � ig

is the parabola shifted down by i. Now Theorem 2 applies with

ai ¼

ffiffiffiffiffiffiffiffiffiffi
i �

1

4

r
; bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i logðiÞ þ i

p
,

since an easy calculation shows that jCðbiÞ \ Vijp4
ffiffi
i
p

.

2.1. Exiting other sets

Not for all sequences V L of subsets of Z2 one can apply Theorem 2 directly, yet still the same result about
the asymptotical behavior of the hitting probabilities might still hold. An interesting example is the half-plane

H ¼ fx 2 Z2 : x2X0g,

where we start the walk at the points ð0;LÞ, L 2 Zþ. First, we shift the half plane down such that the walk for
any L starts at 0, and will rather study q0½HL� � qð0;LÞ½H� where

HL ¼ fx 2 Z2 : x2X� Lg.
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Clearly, the conditions of Theorem 2 cannot be satisfied, as for any increasing sequence of bi’s the limit in (5)
will be 1

2 and not 0 as required. Still, the following is true.

Proposition 1.

lim
L!1

qð0;LÞ½H� logðLÞ ¼ lim
L!1

q0½HL� logðLÞ ¼
p
2
.

Proof. Let

M ¼ML ¼ bL logðLÞc

and consider a circular segment which is a slice of a circle of radius M centered at ð0;�2LÞ:

C	 ¼ C	L ¼ fx : x2
1 þ ðx2 þ 2LÞ2pM2; x2X� Lg.

Then Theorem 2 applies to the sequence of C	i ’s with ai ¼ i, bi ¼ 2i þMi, hence

lim
L!1

q0½C
	
L� logðLÞ ¼

p
2
. (7)

Let t	 ¼ t	L ¼ tðZ2nC	LÞ be the time of the exit from C	, and also let

A ¼ AL ¼ fx 2 qC	L : x2 ¼ �L� 1g

be the border of the bottom flat side of C	.
Denote the cartesian coordinates of the walk as X n ¼ ð½X n�1; ½X n�2Þ. Let

xn ¼
logðð½X n�1 � aÞ2 þ ð½X n�2 � bÞ2 � 1

2
Þ if X naða; bÞ;

�1 if X n ¼ ða; bÞ:

(

Let Fn ¼ sðX 1; . . . ;X nÞ be a sigma-algebra generated by the first n steps of the walk. The proof of the
following statement is given after the proof of the proposition.

Claim 1. Suppose X nefða; bÞ; ðaþ 1; bÞ; ða� 1; bÞ; ða; bþ 1Þ; ða; b� 1Þg. Then

Eðxnþ1 � xn jFnÞp0.

Now set a ¼ 0 and b ¼ �2L. Since neither ð0;�2LÞ nor ð�1;�2LÞ nor ð0;�2L� 1Þ belong to C	, by
Claim 1 we conclude that xn^t	 is a supermartingale with respect to filtrationFn, and then by a corollary of the
optional stopping theorem (see Durrett, 1996, p. 273) and letting n!1,

Ext	px0 ¼ logð4L2Þ þ oð1Þ.

We will use this formula to estimate the probability that the walk exits C	 via the bottom flat side of C	. We
split the probability space into two events: X t	 2 AL and X t	eAL and recompute Ext	 :

Ext	 ¼ Eðxt	 j ½X t	 �2 ¼ �L� 1ÞPðX t	
L
2 ALÞ þ Eðxt	 j ½X t	 �2X� LÞð1� PðX t	

L
2 ALÞÞ

XðlogðL2Þ þ oð1ÞÞPðX t	
L
2 ALÞ þ ðlogðM

2Þ þ oð1ÞÞð1� PðX t	
L
2 ALÞÞ,

since when the exit occurs via the arc, xt	 ¼ logM2 þOð1=M2Þ, and when the exit occurs via the chord,
xt	X log½�2L� ð�L� 1Þ�2. Therefore,

PðX t	
L
2 ALÞX

logðM2=ð4L2ÞÞ

logðM2=L2Þ
þ oð1Þ ¼ 1�

2

log log L
þ oð1Þ ! 1 (8)

as L!1. Next, since Pðt	Lotð0ÞÞ ¼ q0½C
	
L�,

q0½HL�XPðtðZ2nHLÞotð0Þ and t	Lotð0ÞÞ

¼ PðtðZ2nHLÞotð0Þ j t	Lotð0ÞÞq0½C
	
L�

XPðX t	
L
2 AL j t	Lotð0ÞÞq0½C

	
L�
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(by (8) and Lemma 4)

¼ PðX t	
L
2 ALÞq0½C

	
L� ¼ ð1� oð1ÞÞ � q0½C

	
L�.

Combining this with (7) and an obviously inequality q0½HL�pq0½C
	
L� yields the statement of proposition. &

Proof of Claim 1. First of all, observe that we can set a ¼ b ¼ 0 without loss of generality. Suppose now that
X n ¼ ðx; yÞ 2 Z2, where x2 þ y241, so that xn ¼ logðx2 þ y2 � 1=2Þ, and compute Eðxnþ1 � xn jFnÞ as follows:

Eðxnþ1 � xn jFnÞ ¼
1
4
½logððxþ 1Þ2 þ y2 � 1

2
Þ þ logððx� 1Þ2 þ y2 � 1

2
Þ þ logðx2 þ ðyþ 1Þ2 � 1

2
Þ

þ logðx2 þ ðy� 1Þ2 � 1
2
Þ� � logðx2 þ y2 � 1

2
Þ

¼ 1
4
logQx;y,

where

Qx;y ¼ ð2x2 þ 4xþ 1þ 2y2Þð2x2 � 4xþ 1þ 2y2Þð2y2 þ 4yþ 1þ 2x2Þð2y2 � 4yþ 1þ 2x2Þ=ð2x2 þ 2y2 � 1Þ4

¼ 1�
64ðx2 � y2Þ

2

ð2x2 þ 2y2 � 1Þ4
p1.

Consequently, 1
4 logQx;yp0 whenever logQx;y is defined (iff Qx;y40). It is easy to check now that logQx;y is

indeed defined unless ðx; yÞ 2 fð0; 0Þ, ð1; 0Þ,ð0; 1Þ,ð�1; 0Þ,ð0;�1Þg. &

Finally, we present an open problem: what is the probability of hitting the half line before returning to the
origin? Namely, suppose that

VL ¼ Z2nfx : x1o� L; x2 ¼ 0g.

What is the asymptotical behavior of q0½V L�?
Note that it is clear that lim sup q0½VL� logðLÞpp=2 since CðLÞ � V L. Also, lim inf q0½VL� logðLÞXp=4,

since by Proposition 1 the probability that the walk hits the vertical line fx : x1 ¼ �Lg before returning to the
origin is approximately p=2 logðLÞ, and then by symmetry, the probability to hit ð�2L; 0Þ 2 Z2nV L before 0 is
exactly 1

2
. Thus, it is natural to guess that

lim
L!1

q0½V L� logðLÞ ¼ r
p
2

with r 2 ½1=2; 1�; however, we do not have a proof of this fact. From discussions with Ofer Zeitouni we
conjecture though that r ¼ 1 nevertheless.
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