

InAs/GaSb vertical nanowire TFETs on Si for digital and analogue applications

Memisevic, Elvedin; Svensson, J.; Lind, E.; Wernersson, L. E.

Published in:

2016 IEEE Silicon Nanoelectronics Workshop, SNW 2016

DOI:

10.1109/SNW.2016.7578029

2016

Document Version: Early version, also known as pre-print

Link to publication

Citation for published version (APA):

Memisevic, E., Svensson, J., Lind, E., & Wernersson, L. E. (2016). InAs/GaSb vertical nanowire TFETs on Si for digital and analogue applications. In 2016 IEEE Silicon Nanoelectronics Workshop, SNW 2016 (pp. 154-155). Article 7578029 IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SNW.2016.7578029

Total number of authors:

4

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 • You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

InAs/GaSb Vertical Nanowire TFETs on Si for Digital and Analogue Applications

E. Memišević, J. Svensson, E. Lind, and L.-E. Wernersson

Department of Electrical and Information Technology, Lund University, Lund, Sweden elvedin.memisevic@eit.lth.se

Abstract

Vertical InAs/GaSb nanowire TFETs with diameters of 20 nm and 25 nm have been fabricated and characterized. The influence of diameter, gate-placement, and nanowire numbers have been studied. The best device shows a subthreshold swing of 68 mV/dec at $V_{\rm DS}=0.3$ V and 26 μ A/ μ m at $V_{\rm DS}=0.3$ V and $V_{\rm GS}=0.5$ V. It achieves a self-gain larger than 100 with high transconductance efficiency.

Introduction

Tunneling Field-Effect Transistors (TFETs) is a leading contender steep slope transistor for future low power VLSI applications. In low-power digital and analogue applications the TFETs need to provide high currents at low drive voltages [1-2]. A structure with desirable properties is a vertical InAs/GaSb nanowire, which can provide high on-currents (I_{on}) due to the broken band gap and the low channel effective mass [3-4], and additionally the gate-all-around geometry provides good electrostatic control [5]. In this work, we vary the transistor layout using inorganic spacer technology and characterize the performance with a particular focus on analog applications.

Device fabrication

InAs/GaSb nanowires were grown directly on a 200-nmthick n⁺-InAs buffer layer on a highly resistive Si (111) substrate (ρ =5.5 k Ω -cm) using MOVPE [6]. The number and diameters of the nanowires were defined using Au-seed particles prepared with EBL and lift-off. After growth, the InAs segment of the nanowires have diameters of either 40 nm or 45 nm. The length of InAs-segment and GaSb-segment is 300 nm and 250 nm, respectively. The bottom half of the InAs is n-doped by tetraethyltin (TESn) with an estimated concentration of 10¹⁸ cm⁻³. The upper half of the InAs, which is the position of the channel region, was unintentionally doped with an estimated background carrier concentration of 10¹⁷ cm⁻ 3. The GaSb segment is p-doped with an estimated concentration of 10¹⁹ cm⁻³ using diethlyzinc (DeZn). The number of the nanowires in each TFET is varied from 1 to 8. The InAs diameter is reduced to 20 nm or 25 nm by utilizing digital etching. The nanowires are covered with a high-k bilayer of 1 nm Al₂O₃ and 4 nm HfO₂ with an estimated EOT of 1.4 nm. The drain-gate spacer is fabricated using EBL exposed hydrogen silsesquioxane (HSQ), where the final thickness of the HSQ spacer (0-170 nm) is defined by the used dose [7] for different devices avoiding organic spacers [8]. As the HSQ thickness is increased, the overlap of the gate-metal on the drain-side decreases while it increases on the sourceside overlapping the GaSb. Reactive sputtering is used to deposit a W gate metal. The physical gate-length, approx. 300 nm, is set by spinning on and etching back an organic film with O₂-plasma and reactive ion etching of W using SF₆. A gatesource spacer is fabricated using organic spacer. A Ni/Au topmetal is finally defined. The final structure and process-flow can be viewed in Fig. 1 and 2, respectively. A SEM image of a nanowire with gate is shown in Fig. 3.

Experimental results and discussion

In Fig. 4 and 5 the output and transfer characteristics for a 20 nm diameter TFET with the best subthreshold swing (S) is presented, achieving a S and I_{on} of 68 mV/dec at $V_{DS} = 0.3$ V and 26 μ A/ μ m at $V_{DS} = 0.3$ V and $V_{GS} = 0.5$ V. This device shows also the lowest DIBL of 5 mV/V. Output data from a 25 nm diameter TFET with the highest *I*_{on} is presented in Fig. 6, achieving a S of 138 mV/dec at $V_{DS} = 0.3 \text{ V}$ and 127 $\mu A/\mu m$ at $V_{\rm DS} = 0.3 \text{ V}$ and $V_{\rm GS} = 0.5 \text{ V}$. In Fig. 7 the devices with the best subthreshold swing for each HSQ thickness are compared for the two diameters, where the best S is obtained on the nanowires with 20 nm diameter for every HSQ thickness. The improved electrostatics for the 20 nm TFET is confirmed in Fig. 8, with a lower S for these devices independently of the number of nanowires in the device. The lowest S is measured for a TFET consisting of one nanowire only, and although the number of the nanowire increases from 1 to 6 the S increases only from 68 mV/dec to 81 mV/dec for the best devices. Similarly the I_{min} only weakly increases, Fig. 9. The R_{on} for the TFETs with 20 nm and 25 nm diameter is decreased, as shown in Fig. 10, when the HSQ is thinner and the gate position is lowered, reaching a lowest R_{on} of 1.6 k Ω µm. In Fig. 11, the self-gain (g_m/g_d) of the devices with the best currents for 20 and 25 nm is compared. The device with 20 nm nanowires exhibits higher self-gain, but at lower g_m verifying the improved electrostatics and the lower drive current. In Fig. 12 the selfgain of the device with best S is presented, demonstrating that the improved electrostatic control enhances both on- and offstate performance, reaching a self-gain of 100. In Fig. 13 the 20 nm device with the best I_{on} is compared to the 20 nm device with best the S. The TFET with the best S, shows a higher transconductance efficiency (g_m/I_{DS}) at higher self-gain. At V_{DS} 0.3 V, a self-gain of about 100 can be obtained at g_m/I_{DS} up to 35 for g_m up to 120 μ S/ μ m as demonstrated in Fig. 13. The fabrication technique used allows fabrication of operational TFETs with 11 nm diameter as shown in Fig. 14, demonstrating an S of 123 mV/dec at $V_{DS} = 0.3$ V and an I_{on} of $1.8 \,\mu\text{A/}\mu\text{m}$ at $V_{DS} = 0.3 \,\text{V}$ and $V_{GS} = 0.5 \,\text{V}$. In Fig. 15 the device with best S is benchmarked against [9], achieving lowest slope at higher I_{DS} and higher I_{on} .

Conclusion


Diameter scaling has a strong impact on the electrostatic control in vertical InAs/GaSb TFETs verified by better S, DIBL and g_m/g_d . Furthermore, increasing the number of nanowires does not considerably impact S. The TFETs with the best S, achieve an S and I_{on} , of 68 mV/dec and 26 μ A/ μ m at $V_{DS} = 0.3$ V. It shows a self-gain >100 with high transconductance efficiency.

Acknowledgment

This work was supported in part by the Swedish Foundation for Strategic Research and in part by the European Union Seventh Framework Program E2SWITCH under Grant 619509.

References

[1] A. M. Ionescu et. al., Nature, (2011). [2] A. C. Seabaugh et. al., Proc. IEEE, (2010) [3] D. Mohata et al., EDL, (2012) [4] U. E. Avci et. al. IEDM, (2013) [5] K. J. Kuhn, IEEE Trans. Electron Devices, (2012) [6] S. G. Ghalamestani et. al., J. Cryst. Growth, (2011) [7] E. Memišević et. al., J. Vac. Sci. Technol. B, (2014) [8] E. Memišević et. al., EDL, (2016) [9] Dewey et. al., IEDM, (2011)

35 40

 g_m/I_{DS} (1/V)

between 20 nm TFETs with best

subthreshold slope and highest

Comparison of

effeciency

100 120

Fig.

13

on-current

transconductance

 $g_m (\mu S/\mu m)$

Fig. 12 Self-gain for the 20 nm

TFET with best subthreshold

slope.

Fig. 15 Benchmarking best device against Intel data from IDEM 2011 [9].

 $V_g - V_{g,off} = 0.3V$

 $V_{DS}(V)$

Fig. 14 Output data for 11 nm

diameter TFET.