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KALMAN FILTERS FOR PROCESSES WITH UNKHOWN INITIAL VALUES.

Y. Hagander

ABSTRACT,

A Kalman filter needs an & priori statistics for the ini-
tial state. It is shown how the filter should be started
if some part of the initial state is totally unknown. The
duality with optimal control with end point constraints

is very useful both for proofs and intuition.

The usual way of starting with a very large covariance

has very bad numerical properties. The optimal discrete
time filter ig determined by two "Riccati equations™, one
matrix to keep track of the bias until the unknown initial
value is ocbservable, and one matrix for the error covari-

ance.,

In contintous time the estimation is more complicated. The
whole system becomes observable at once. After an initial
discontinuity a usual Kalman filter could be started, but
the gain would be almost infinite. It is therefore sugges-
ted how the estimate should be caleculated using a separa-
tion into iwo estimates. The optimal linear stochastic

control is also discussed.
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1. INTRODUCTTION.

State estimation for linear stochastic systems is a well
established theory, see e.g. {2, 5]. The Kalman filter
requires, however, a known statistics for the initial state,
which is often not available. The suboptimal solution re-

commended for instance by Sorensen [9] seems to be the most

accepted substitute. The covariance of the initial

state is assumed to be a unit matrix times a scalar, which
1s large compared with all other covariances. The resulting
estimate and especially the assumed error covariance may,
however, deviate considerably from the correct values. A
serious fact is also that the Riccati equation (discrete or
continuous time) will be 11l conditioned if the initial co-

variance is vepry large.

Here it will be shown how to obtain the best linear unbiased
estimate, i.e. the minimal variance estimate under the con-
straint that the expected value of the error should be zero
for all initial states. Of course, it is only possible to ob-

tain such an estimate for observable systems.

Such estimates were discussed by Kalman [51 for the case with
only measurement noise, but they do not seem to have received
mich attention since, probably because the algebra is repellent.
In the context of least squares parameter estimation, there

has appeared some related work, e.g. 11,

In the following section the problem will be defined rigorous-
ly, and the sclution for discrete time is obtained by letting
the initial covériance reach infinity. The bad numerical pro-
perties of large covariances will be obvious, and the neces-
sity of two Riccati equations is demonstrated.

In order to give a better understanding of .the estimate and

the necessary matrices, another “Jerivation is made using a se-




paration into two estimates. In Section 3 the separation is
ghown, giving one filter for the stochastic terms and one

for the unknown initial terms that has only measurement hoise.
The latter case is treated in Sectdon 4, where recursive equa-
tions are given also before the system has become observable.
It is shown in Section 5 how the two filters combine to one,

the same as obtained in Section 2.

The filter is a time variable "dead beat' filter, which
is especially simple in the single output case. Two mat-
rix recursions are needed to get the filter gain. One
matrix is the error covariance, and the other spans the
bias of the estimate. As soon as the unknown initial
value is observable the bias is zero, and the filter will

continue as the usual Kalman filter.

In Section 6 the separation principle is applied, and

the linear stochastic regulator problem is discussed.

Fiﬁally, it is shown that the problem is the dual of op-
timal contrel for fixed end state, and the solution for

continuous time is obtained in this way. The difficulties
with the diffevential equation formulation are discussed

for time invariant systems, and a smoothing type algorithm

is recommended for continuous time.




2. PROBLEM FORMULATION AND MAIN THEOREM.
Consider the discrete time system

K{t+1) = dx(E) + wi(t) x(to) = X
(2.1)
y(t) = ox{(t) + e(t)

where v and e are uncorrelated white noise sequences with
covariances R1 and RQ. For the initial state probability
will be introduced in various degrees:

.S,
Xp T Xg T X

The only assumption about x§ is that it is restricted to
a subspace spanned by the full column rank rectangular
. T '
matrix N
x§ = NTg_ ¢ arbitrary

3 . ;

Xg 18 uncorrelated with v and e and has zero mean value
. S . . .

and covariance Rj. A very natural assumption, which will

nowhers be used, 1s that xg is restricted to & subspace

disjoint from the range space of e

Best linear unbiased estimate:

Introduce Y, as the function y(s), s € &h”'°’t]' It is
now interesting to express Y, as a linear function of &

and &, & process into which all introduced random variables

-t}
are collected. ¢y has zero mean value and covariance
Qt‘
= U 2.2
Y‘{: i,tl‘; + oy ( )




A linear unbiased estimate of £ iz a function Ft of ‘,fJc
such that

EFth = £
for all values of £. The minimal variance unbiased esti-

mator is given by the well-known Gauss-Markov Theorem,

see e.g. [1, 7], provided that Q. is nonsingular

” ~ T o I
gty = (Wioy W) WL Y, (2.3)

It should be noted that if £ is assumed to be a random
variable independent of all other introduced random va-
riables, with covariance A‘QI and zero mean value, the

Projection Theorem, e.g. [7], gives

~1

- S
1) wa Ty (2.3a)

twTsq) ¥ = (WiQ twe?

b= RRYTY = 7P

2

and (2.3) is obtained as the limit when » » 0, infinite

initial covariance,

This demonstrates the equivalence between the minimal va-
riance estimate for infinite & priori covariance and the

minimal variance unbiased estimate.

If the system (2.1) has only white measurement noise,
(2.3) directly solves the linear unbiased estimate of
x(t). Since x(t) is a deterministiec linear function of

£, 1t Follows that

XCE]) = ¢ 0, TN ECH) | (2.4

where




$E,ty) = 1 e(s+,9)

Eq. (2.3) is also much simpler than in the general case
because o and thus Q are especially simple. The inverse

required in (2.3) is an observability Gramian.

In the general case (2.1) it is more complicated to ob-

tain i(t{t). The system can be written as

Y = W E 4+« .
{ vt v (2.5)
Cx(t) = ¢(t,t0)N £+ p{t) '

where o and 8 are covrelated, and the state estimate will
be

XCE[E) = (e, tON £ + ACE) (2.6)

Operator formulas like in [u] could be used to evaluate
(2.6), or the problem could be converted to a problem

with only measurement noise, see Section 3. A third pos~
sibility is to use the limit argument of (2.3a) applied

to the usual Kalman problem.




Phe infinite covariance limit of the Kalman filter.

If again xg

5 . . ~2..7 . . .
of Xgs V and e and with covariance A "N'N, a minimal variance

of (2.1) is a stochastic variable independent

unbiased estimate for the original problem could then be ob-
tained by letting A go to zero. The usual Kalman filter gives

the minimal variance estimate:

)(t]t) = x(t]t-1) + KCO[y(t) -~ ex(r}t-1)] (2.7)
XCEH 1) = gx(t]t) X(tglty=1) = 0
K(t) = P(t)e (eP(t)e® + RQ)“"t
P(t+1) = ¢[P(ty - K(t)eP(t)]¢T t Ry
S L, -2.T |

P(to) = Ry = Ry + & “N'N

Theorem 1: The minimal variance unbiased linear egtimate

for (2.1) is obtained by (2.7) and K(t) from

K = aoTconeTY [T - (op_oTer,) [aCoR 8 +R,DATTT #

+ PmBT[A(er8$+R2)A]+ (2.8)
with
A =1 - (enoy*eers’) | _ (2.9)
At+1) = ¢fn = AGT{BAGT)+6A]¢T A(tO) = NON (2.10)

- T T{,T
Pm(t+1) = Ry ¢{(I—K6)Pm(I—K8) + KR2K }¢

S ' _ ' )
P (tg) = Ry | (72.11)

M' denotes the Moore Penrose pseudo inverse of M.




The estimate will be unbiased only if A(t) = 0.

Proof: Use induction in t to show that

PCty = a72a(t) + Po{t)

which is true for t = tp.

Introduce the full rank decompositions

en(t)el = uTy 5P, (t)8T = Ty vy + Rp = HTH
and consider the inverse

[PeT+Ry 171 = [A-2uTysnTa]

which could be rewritten using a pseudo inverse formula
given by Cline [31, see alsec [11}.

= [(ATH + a2¢r-I*m) (wly)yt(r-irmT -
o A (T-EE) (UTU Y FHTQMOO QU UTD ) * (T-ATHY T ]
with B
A=T-U H=HA 0-=71-fAF" w = [Tea2euuTurETel !
Note also that
ua = o  U[ETEIY = 0 u(I-fitH) = U
so that

K = PelfereT+ry "1 = peTuTud*(r-BrmyT+p 6T (ATHYT +

..l..

22p 8T (T-FHH) (uTuy (11T -

!

A2aaT Ty tHTQM COoRWTH F (I-BHT + o)

and

It

KoP = 2 2asT(uTud*en + aeTTuy+(I-A+m Topy +
+ Prol (@Y ver P (T-HTHY(WTUI Yo -
- aeTeuTuyraToua yerUTUYaa + 0(a2)

Thue for very small A, P{(t+1) could be written

POE+1) = A7Z2A0E+1) + P (t+1) (2.12)




with A(t+1) from (2.10)
ACE+1) = ¢{a - reT(snaTyten)eT
Po(t+1) = Ry + ¢(Pp - asTUTW*+(I-AtDHTeP -
- PpaT(r-BrHy (UTUY Yo - PReT(ATEYYep), +
+ selcuTuytTQMOn yQr(UTUY FanteT
and
ket = aaTuTuyr(r-a+mT + p o T(HTHI*
which directly gives (2.8).
The induction is completed. |
It is also clear from (2.12) that P will be large if %
is not zero. In the limit this means that the system 1s

not unblased.

In order to prove (2.11) note that

(1-K8)Pp(1~Ke)T + KR KT = P - kP - P oTkT + K(aPaT+R,)IKT

So it remains to show that

PReT (AT *ap_ + aeT(uTu)*ETQM(o)Qu(UTUY*on = kuTHKE

But rewrite the right hand side using:

p e (ATH) *HTH(ETR) *opy, = PLaT(ETA)Yop,

P 0 T(AT*ATHIT - (ATH)y*RTulwTu)*ten = o

reTuTw* I - gTa@ETHH* ITHIT -~ (ETH*ETHI(UTU) Fed =
= aeT¢uTu)* [HTH - ETHETH) *uTrluTu)tea

and the seéond term of the left hand gide:

HTQu(o)on = HT(I-BA*)E = HTH - HIAHETEH*ETH =

= uTH - BTr(ATE) *uTH

which completes the proof of (2.11) and the whole theo~
ren.

]




Example 2.1:

1 1 @
$ = {0 6 = [1 0 0] R, = 0 R, = 1
0 o 1
0 0 1/2
P{3) = 1 G K(a) = {0
0 A2 0
142 0 ’ 3/2 1 0 b 0 d
P-KeP=l0 1 0 P(1) = |1 1 + 2720
| 0 0 a7 8 0 0 11
[3/5 0.8 0. 0 0 o
K(1) = {275 P - KeP = |0.4 0. 2% 9
| 0 0 0 1 1
2 1 0 1 2 1
P(2) = 0.6 + 2722 2
0
(2 1 K
Ke2y = {l1] + 272 2]} - 1 + |2
3 4 A_Q
0 1 - K
1 ™ 1
P - KgP m (A 2-2"2)|2\[1 2 11+ {2 8.6 & A > 0
1 1.5 3
which implies subtraction of very large numbers. This is
avoided by theorem 1. The two terms of P - KgP are stored
separately in A and P
In order to be able to use caleulation by hand the example
igs very much simplified, and the illconditioness might




i0.

seem reasonable, but for a real system there is no signi-
ficance left after a few such subtractions. The gain K
will contain sericus errors, and the real error covariance

will not decrease although P does.

Example 2.2: © is changed to

Then
1/2 0 0
K(Q) = 8% » 1/2 P - KBP = |0 1/9 0
| 0 G =2
2 1 0 o o o
P(1) = % 1 ol + 2" %o 1 1
0 0 0 0 1 1
21 0 0 -1
. oy 2 177 0 0
K(1) = '-?-"] 4 + A G 1 + - -+
0 o - 177 377 0 2
2
> 1 0 1 v o+ 0 *
by
-1 1

after very illconditioned operations!

Comments: The new formula (2.8) may be seen as a way of
improving the numerical condition of the calculations by

keeping track of the large terms using the new matrix A.

When A has become zevro the filter is identical with the
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usual Kalman filter, and the error covarisnce is P = me
Note that (2.11) is the form of the covariance updating
formula that is valid for any K. It is not possible to

rewrite (2.11) as a simple Ricecati equation.

The interpretation of the optimal gain K in (2.8} is most
obvious in the single output case. Then A is either 1 or
0, and

he(ene ) if A= 0
K = (2.13)

T T -1 .
Pmﬂ (ﬁPmS +R2) if A = 1

If A = 0 the measurement contributes to the observabili-
ty of £, and if A = 1 the information is only used to i~

prove the current estimate just as in a Kalman filter.

0ften the whole X is unknown, i.e. N is a square matrix.
Then A = 0 and K = A&T(6A6T3_1 until © = n and A(n) = 0,
where n is the order of the system. ALl the first n med-

surements contribute to the observability. The filter
could be called a dead-beat filter with time varying gain
in analogy with dead-beat -controllers. The influence of
the unknown initial value on the estimation error at

t = n is zero. The estimate ;(nln;1} is unbiased. In this
special case there are in fact no other unbiased esti-
mates at t© = n. Even the time constant dead-beat filter
would have given the same ;(nlnfT), It can be sheown that
the gain of the time constant filter is K_ = K{n=1) =

= A{n"1)9T(€ﬁ(n*1)6T)“ﬁ. When the dead-beat filter is not
unique, there is freedom left to minimize the error co-
variance. This is why the more complicated expressions
(2.8) and (2.13) 'should be used in the multi-output case
and when only part of the initial state is unknown. The

filters are still time variable dead-beat filters!
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The simple formulas (2.13) can be used also in the multi~
output case, if the noise of the elements in the output vector
are uncorrellated, i.e. if R, is diagonal. The elements can

2z
be used one at a time to update the estimate.

In order to give an interpretation of A and of the esti-
mates for times before A(t) = 0, the theorem will be re-
derived using a separation into two estimates, one for

the stochastic terms and one with only measurement-noise

for the unknown initial value.
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3. SEPARATION INTO TWO ESTIMATES,
The formula from Section 2

~ _ TJ\ ~

x{tft) = ¢(t,ta)N £ + g(t)

showg that x can be written ag a sum of two estimates.
It seems reasonable to separate the state into a stochas-

tiec term and a deterministic f-term like in (2.5):

X = ox, tox, (3.1)
xCEHT) = gxy (1) + v(E)  x,(£,) = xg (3.2)
y1<t) = 6x1(t) + el(t)
X, (t+1) = ox,(t) xalta) = xN = wie (3.3)
2 2 2N g7 0 - ‘
yZ(t) = sz(t)
The Kalman filter for (3.2) would be
%1{t+1|t) = é%i(t]t~1) + ¢Kn(t)[y1(t) = e§1(t[t—1)]
x1(t0]t9-1) = 0
T T -1
Kp(t) = nle)e” {sn(t)e” + R,) | (3.4)
i ' T s
n(t+1) = ¢fn(t) - K omty]e + Ry mltg) = Ry (3.5)

or in operator form

X, (t+1[t) = R rR2Y v

x1(t¥1)Y 1t

1+ 11t




1u.

Since Y4 15 not available for measurement it is interes-

ting to define x_ as the same linear operator applied to

i
¥y instead:

x, (t41]€) = R R, ¥
i x.j(t+1)Y1t Y.t
or
x, (t+1]t) = ¢§n<t|t—1)+¢1<n(t>[yct> - ox (£ ]t=1)]
xn(t0[t0~1) = 0 (3.6)

Assume for a moment that £ is a stochastic variable inde-

pendent of v, e and xg. Then by the projection theorem

-1
R, ¥
x(t+1)Yt Yt t

x(t+1[t) = R

which will be expressed in xn(t+1lt). Drop the time indices:

-1
¥4

-1
Y

. -1
x = (R +R R, Y = R
szg) Y XTY

-1 _
[RY R Y =

-1
1 1 Ry Ry v + R, vy R

¥y 2¥5

~ ""i

R, R
®2Tp Xq¥q Yy

"
=
+
o—
=s)

~1
RYQ)RY_Y

by linearity. Since (3.2) and (3.3) are independent
RxpY, = Ry,y and Ry, = RY2Y and since

%, - %, = R R, 'Y
I 1 XTY1 Y1 2

it follows that

R ., rRR.-. =R

R - - .
sz x_,}Y1 Y Y,Y zY
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if z is defined as
z(t) = %, (£) = x (t]t-1) + x (v]t-1) (3.7)

The projection theorem gives z = RzyR;QY so that

3

rR:y (3,8)

X 2 X + oz o= + R
% z¥Y Y

I I Y

Introduce alsc the eguivalent measuremsent n
no=y - 8xg (3.9)
It can be shown that z and n satisfy a simple dynamic sys-

tTem:

Theoren 2: z and n defined by (3.7) and (3.9) satisfy the
system '

N . wTe (3.10)

z{t+1) = ¢(I~Kn9)z(t) | z(to) = Xy

n(t) s sz(t) + (t)

where e is white noise with covariance {Bﬂ(t)GT + RQ).

K, and I are defined by (3.4) and (3.5).

Proof:

z{t+1)

I

xo(t+1) - ;n(t+1|t} + ;1(t+1(t) =

i

o[ () = xplt]t-1) + Rq(tft-1)] -

- ¢Kn(t)[y(t) - e%n(t]t~1) - yq(t) + 9;1(tlt-1)] =

p2(t) ~ oK (t)[yo(t) + 8z(t) - exo(t)] =

bt

{6 - ¢KH(t)e]z(t)

z(tg) = x9(tg) - ;{n(’tg.lto'-?) + ;(-;(t{}lto-'l) = xo(tp)
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n{t) = y(t) - ein(tlt—i) = yq(t) - 8%1(t[t-1) + 8z(t)

The innovations e{t) = y4(t) - 6%4(t|t-1) are white with
covariance Ry + en(t)sT,
o

~

If the covariance of § goes to infinity, X is not affec-
ted. The original problem with unknown £ could thus be
resumed. ; is the minimal variance unbiased estimate of x,
if ; is so of 2. Theorem 2 is not influenced by the dif-

ferent interpretations of &,
. . . y v “u ;
Define the estimation errors x, Xy and z. Then
Ln * - A A
X2 X m X E Xy b Xy~ X, -~z =Xy o+ (3.11)

\ A 2y . .
~ Since X4 and z are uncorrelated, define ¢ as the covari-

ance of % so that

Cov ¥(t]t-1)

P(t) = cov X,(t]t-1) + cov Z(t[t-1) =

n(t) + (%) (3.123

i1

A

In order to get recursive formulas for the estimate x,
formulas must be obtained for ;. The system (3.10) con-
tains only measurement noise. z is deterministic, but £
is unknown. Such systems will be discussed in the next

section.
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4, MEASUREMENT NOISE ONLY.

The estimation problem is now brought back to the special

case, v = 0, xg = 0.

In Section 2 the Gauss Markov Theorem was used to express
£, given Y. The relations (2.2) and (2.3) are now simple

gince

y(t) = 09(t,tIN € + e(t)

and

T -1 £t T_~1 T T

WeQ, W, = I Ne (s,t5)0 R, 6¢(s,tyIN" = NM, N (4.1)
=t .

0
t .
Tl __ T T, =1 .

WiQp Yy E sjt Ne (s,tq)0 Ry y(s) = Nap g (4.,2)

]

by obvious definitions of M and i, so that

- ~ T, =%
g(t) = (NMt+1N ) Nxt+1

Minimal bias estimates: It is possible to get an unbilased

estimate £ = FY only if (4.1) is invertible. If not it is
only possible to estimate some linear combinations of &
without bias. Those components of £ that lie in the null-

space of W cannot be estimated without bias. There is, how-

ever, freedom left to decide, without knowledge of &, in

what .complementary subspace the estimate should be unbiased.
Any such estimate is called a minimum bias estimate. If the
rows of W are linear dependent, the freedom should .be used to
minimize the variance of the estimate. A minimal variance mini-
mal bias linear estimate is thus obtained by the orthogonal

pseudo inverse, see also [§].
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Thus

H

T ,
g, = QIMNT)YTNAL (4.3)

for which the components of & in the range space of WT

will be estimated without bias.
By (2.4) a good state estimate is
x (t]t) = ¢(t,t )NTE ()

m >T0 m

For the degenerate case when Qt is not invertible similar
formulas exist [1] but they will not be considered here. The
proofs and the Interpretation in the sequel would be more

complicated although the final result may be similar.

The estimates can also be obtainéd by some minimization of
the mean square error V in some norm |] !Lq induced by a qua-

dratice form qux

. 2 2 2
3 . : R - - Ell F
vV = E|| &-FY Hq E|} e-FWg-Fe Hq | e~Fwg Hq + Ell Fe Hq

which, of course, cannot be done directly if nothing is known
about £. The min max estimate is

£ = a NN N ) T (4.32)

V is minimized for the worst £. The bias term is first mini-

mized, then the variance term.

il

Note that gq

Em if g = I. If § is observable gq % Em for all q.
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Tt is easily verified that ém is the minimal variance un-
biased estimate of NMNP(NMNT)+£, and Em defined by

"

v T Tyt _
Eoo= NMNC(NMNO) g - £ (4.1)

) + . - .
has covariance (NMNT) . The bias of Em as an estimate of

£ is

BCe-£ ) = [1 - mar w7 e | (4.5)
a

Introduce also x

v - T
;{m(t[ﬂ = ¢lt,t )N E (1) (4.6)

with covariance #(t,t )N (NI e (£, t0),

Example:
y = WE + e = ['! ?]E + e Ee = 0 Eez = 1
101 1 1 " 1
M = [ Mt = % £, = uruly = % y
11 T !
1 1 1
v +,. .o ] i v +.._']_
E = MM & €, = 5[.}e cov £ = M =g
1 1 1
1 -1
¥ o= (a-mye =4 :
mb 2 -4 1

f1

. 2 . 2 2}
- r ~F -
mln_El[E FY H m%n{lii we fl¢ + Ell Fe ¥

< Ml eg 12+ min{ il eppiey 17+ WEAGH
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where Wgo = 0, <E1’£D>q = g;qgo = 0, qgy € R(WT),

I|E ] = 1/2

IF Iy = /9

Recursive equations: The pseudo inverse (NMNT)+ can be

evaluated recursively using formulas derived by Cline
[3}, and both £, and x. satisfy difference eguations like
the Kalman filters. ‘

Theoram 3: The minimal variance linear estimate of the
state x of (2.1) obtained from the minimal variance, mi-

nimal bias, linear estimate of &

;m(tlt} = ¢(t5t0)NT£(t)
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satisfies the recursion:
x (T = x (Fle=1) + K(e) [y (e - ox (t]t-1)] (45.7)

x (t+1]t) = o (t]1)

where
X = ABT(BhﬁT}+{I - (ereT+RQIA(eraT+R?)A]+} +

+ PmeT[A(aPmeTJrRz)A]+ (4.8)
A= T - CeholdCanot)? (4.9)

An alternative expression for K is

T 1

.1 ———
4R2) +

; T T - +# T
K = {ne (8P 6 +R,) "6} ho” (0P8

Ty ' T + .
+ P e [A(e?me +R2)A] (4.8a)
Pm(t}, the covariance of

T T T+ ~

%m(t]t~ﬁ) 5 g (t, TN [NM N M) g - g (t=1)]
satisfies
P (£41) = o[ (I-X6)P (I-Ko)T + KR K Jo*, P (t,) = 0 (4.10)
m = ¢ m : 2 4 m- 0 ‘
The matrix A defined by

ACE) = ¢t e INT[T - NMtNT(NMtNT)+]N¢T(t,tU) (4.11)

gsatisfies

alt+1) = obn - AeT(eAaT>+eA]¢T, A(to) = NN (4.12)
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Proof: Introduce some notation:

rlp = Rﬁq, oy = Nel(t,tgrefeT

30 that
=1 ) e
N, = E e ry(s) My o= NMNT = -; e g
s-tO s—to
£ (t-1) = ®O0 £ (1) = [(Wo4e, ol 1IN +e, oy () ]
m B S n t Tt 7Y

Now use the pseude inverse formula and delete indices +t:
(MteeT) = {(DeeTD)* + [T - (TD)teTy -

(Mt - M+eGBEe ™* [T - c(De)*])
where D = I - H'f, @ = T - (De)*De, B = [T+GcTH+ea]”]

Note that D is the projection on R(M)L so that Diyeg = 0,
s < t giving DNi¢ = 0. Thus

Em(t) = [T - (eID)TeTI(it - ftepecTH I +
+ {((DeeTD)*t + 11 - (eToy+eTy(f* - i*ceBeelity .
« [e - e(De)eltry(t)

but ¢ - c(Do)+c = ¢ - c(De) Dc'* cG and (Decip)¥e =

= (DccTD) De = (o Tyt = peteTpe)t and (Mt - Htcepgelftics -
= MYeB[I ~ BGeTH'cE16 = HtcGBR. Hence

o

En(t) = MTNO + {Dc(eTDe)t + {1 - Dc(cTDc)+CT]ﬁ+cGBG} .
fry - cTMtN)]
Introduce X!

K' = {DclctDe)* [T - cTiiteGBG] + MTcGBG)Ir =

t

{DeleTpe) I - (T+elittcroBal + M*eGBGIr

En(t) = EpCe=1) + X' Iyt = aplt, 1IN Ep(t=1)]  (4.13)
The pseudo inverse algebra collected in Appendix takes
care of the correlation Ry = r~1r~T in the expression

of KV, so that from (A5)

K'Y = Dcr“T(P”1cTDér”T)+{I ~ (R2+r'ﬁcTﬁ+cr-T) .

c [ARgerTeTH er AT + Ftor=TIA(Ry+r~ 1Tt cr~T)A]
(4. 14)




N
4

where A =1 - (r” 1 rlDcr T}(P 1 TDCP T)+

Now (2.4) applwﬁd to (4.13) gives (4.7) with K(t) =
= ¢ lt, g INTKY (1),

A defined by (4.11) can be written A(t} = g(t,tgINTDLNeT (£,tg)
and the covariance Pg(t) = ¢(t, tg)N MtN¢ t to) by (4.4),
This directly proves (4.8) and (8.9).

It remains to prove (4.8a) and the recursions (4.10) and
(4.12). Since Ry > 0 eq. (4,8a) is a rather direct conse-
quence of Lemma 3 in Appendix. Now vegard

L - Dgsq = BfaqBpsr = (T - (ToyteTy(RY - AtcoBecTR* il +

+ (T ¥ el + [T - (eToytel)iMteeneeT =
= [T - (ToyteT3[1-D] + (Toytel -
- [T - (TD)*eTHI*caBGeT(1I-D) ~ fAteapeel) =

I -0+ (cToyteTp + (1 -~ (CTD}+CTIQ+CGBGQTD

But Bc'D = 0 so Diyq = D - Dc(cTDc)%c D. The algebra in
Appendix gives

Dele™pe)*e™ = De@-6)r T(r TeTper Ty v 1 (1-6)eTD =
= Dor™ T 1 pep - Tytp=1oTp
and {(4.12) follows immediately.

: - ‘ . . - Yy
The recursion for Py is derived from recursions for X
and gp-

Em(t) = ﬁ%+1Mt+1g = Em(t} = Mtiie + Dc(cTDc)+cTDg -

- Ep(t=1) = KU [y (6) - eplt,t)En(t=-1)] =

i

Em(t~1) - K‘(t){eQm{t]t—1) + oe(t) + aelt,tgINTREY +
s De{elbe)*teTne

But since GelDh = 0

K'oglt,t)INTD = Ko~ 1eTD = (DelcTDe)*[T-cTH*cGBR) +

+ ®7eGBGlelD = De(eTDedteld

and thus

X (tet]e) = plI-KCE)I¥ (2] t-1) = ¢X{t)elt) Co(4,18)
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Polt+1) = ¢{[I-Ko)PyIT-Ke1T + KRoKT}T

which concludes the proof of the theorem.

Comments: In the considered special case Theorem 1 and
Theorem 3 give the same estimate. Theorem 3 also gives the
%nterpretation of Pm as a covariance matrix a?d shows that
X is obtained from the minimal bias estimategm of the un-
known initial value., It is very natural toc assume that NTN
is a projection, which means that the unknown parts of the
initial value are "equally unknown'. For instance by direct
verification of the pseudo inverse conditions it then fol-

lows that
NN Y T = vttt

and

T T

Nt w o T T = NN eI

so that

T

NTon = NPT - T omn )TN = T T-met N T

b}

ACED

t

é(t,tU)NTN[I-MtM:]NTN¢T(t,ta) (4.16)

Thus NIDN is the projection on the unobservable part of
the unknown initial value. & is the projection transformed
to x(t). '

In the next section the full problem with also xg and v
will be treated, and the interpretation of the estimate

and the matrices Py and A will be similar.
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5. COMBINATION OF TWO FILTERS.

Now return to the original problem (2.1) and to the sepa-

ration made in Section 3. It was there shown that

>

~

X = ¥, + =z
i

where ;H was the stochastic term (3.5) and 2 the bias term.
According to Theorem ? =z was the state of a system with
only white measurement noise. Such systems were treated in
Section 4, and a good minimal variance estimate of z is
obtained from the minimal variance, minimal bias linear

estimate of ¢,

- t-1 " -
zm(t]t) = { 1 (¢ - ¢Kn(s)e)}gm(t) = ¢(t,t0)gm(t) (5.1)

S:tg

which satisfies
2 (E1t) = 2, (t]e=1) + K, (O [y(6) = ol (t]t-1) -
-0z (t{t-1)] | (5.2)
2 (E+11E) = [4 = oK (t)e]a_(t]0)
K, = ﬂeT(BAST)+{I - (ezmeT+eneT+R2>[A(ezmeT+sneT+Rz)A]+} +

T ‘ T T, ., +
+ L0 [A(azme 810 +R,IA] (5.3)

A=T - srelcaneyt

it

ACE+1) =-¢(I=KH9}[A - ABT(8A8T3+BA](I-KH6)T¢T

hlty) = NTN T (5.
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~ _ i T
zm(t+1) = (I Kﬁa){(i Kze)zm(l KZH) +

3 + KW(R2+eneT)KE}(I~KRa)T¢T (5.5)

. , v o
where I 1is the covariance of zm(t[t—1}

T T T, + - -
2 (tle-1) = $ (Lt )N [NM N (N N T - £(t-1)] (5.6)
with
1o T 7 -1
My o= ) v (s,tgder {emls)e + R,) epls,ty) (5.7)
g=%

0

It can now be proven that (3.8) gives the same estimate as

Theorem 7
Theorem 4: The minimal variance linear estimate of the

state x of (2.1) obtained from the minimal variance, mi-
nimal bias, linear estimate of the unknown initial state
£ by

x (t]T) = x Cele) + 2z (t]t) | (5.8)

with kn defined by (3.6) and ;m by (5.1) satisfies the

recursion

% (t]t) = x (t]t-1) + KO [y(t) - ox, (t|t=1)] (5.9)
X Ctr1]e) = g (£] )

where

K

T T, + T T, +
pre-(ens) {I —‘(aPme +R2)[A(9Pme ;REDA] } +

T T 4 -
+ P8 [ACeP 6 +R2)A] (5.10)
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A =TI - (ensy(ansly? (5.11)

An alternative expression for K is

T 1 T )—1

K = [AeT(era +R2)" BA]+ABT(erB R, +

+ PmeT[A(ereT+R2}A]+ (5.10a)
P (t), the covariance of %m(t|t~1)
K (H[E=1) = ¥, (eft=1) + Z (t]t-1) (5.12)

with %m from {5.6) satisfies

Pm(t+1) = R, # ¢[(I~K9)Pm(I~Ke)T + KRQKT]¢1

R
P.lty) = Ry o (5.13)

and A, the transformed projection on the unobservable

part of the unknown initial value satisfies

ACt+1) = ¢fa ~ ABT(GABT)+8A]¢T Altg) = NIN (5.14)

Proof:

Xp{t]t) = xg(t]t) + 2,0e]t) = xqCtlt=1) + fyCt]t-1) +

+ Kgly-exg) + (I-Kp0)Ky(y-oxg-08y) =

il

xCEle=1) + KO Iy (1) - ekt |t=1))
with X = Ky + (I~K;8)K;. Note that (I-Ke) = (I-Kye)(I-Kze),

The covariance Py of ¥, is Py = I + Ip so that by (5.5)
and (3.5)

i

Pp(t+1) = Ry + ¢L(I~Kgodm + (T=Ky6)(I-X,0)zq(I-Kz6)7T

¢« (I-¥Kpo)T + (I-Kpo)K,(Ry+emeTIKL(I-K 6)T)e =

It

Ry + ¢{(I-KO)Pp{I-Ke)T + KRoKT}¢
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Since (T-Ke)n - (I-Ke)m(I- KedT + (K-Kp) (RoteneT)(X-KpT -
- KRQK = () which follows from:

(1-Xe)u(I~xe)T = 1 ~ Kem - neTkT + KomeTK™
(K=K Y (Ro+omeT) (K-KpT = KRokT + KoneTxkT - (K-Kp) -
(Ro+om8TIKE - Ky (Ry+eme®)KT =
= KRoKT + KemeTkT - (K-xpyen - meTxT
L defined by (5.4) also fulfils (5.14), since
s{n - aeCereT)*en) = 0.
It remzins to prove that K = Ky + (I-Kp8)Ky can be eva-

luated by (5.10). Then (5. 10a) follows 1ike in Theorem
3. Denote Ry + enel + azpeT by R:

11

K = Ky + Kp(I-8Ky) = zpeT{aRAT* + peTConsT)¥(X ~ RIARAIYY +

+ Ky{l - ezp0l[ARATF} - KgponeTCenoT) [T - R(ARAIT] =

H

(n+sy)oTIARATY + aeT(eneT) (1 - RIARATF} +
+ Kg{I - [CemoT+Ry) + o5, 0T11ARAI*} + Kyl = ConoT)!-
« (eneTYYHI - RIARAIF} ~ Kp{I - R(ARA)*) =

PLoTIARALY + aeT(sneTi™{x - rIARAT!}

1t

since A{I - R(ARA)T)

Comments: In order to get a correct interpretation of A
in (5.14) and (5.4%) it must be noticed that the unobserv-

able subspace is the same for the z-system of Theorem 2
and the original system (2,13, so both I- MM and A are
the same! Thus 1f N N is a projection

R I T, T ‘
AltE) = ¢(t,tG)N N(iﬁﬁtmt)N N¢ (t,to) (5.15)

t=-1

Myo= )¢ (sjt Yo op(s, ty) _ (5.16)
: 0 .
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In the same way with ém(tlt"TJ = w(t,tD)NTEm(t-T) and

. Y Ay n, . R
with Xy 5 %y + Zm the bias term can be writien

5 Ny - a,
E(x~x) = xmb(t]t—f) = x{t) -~ xm(t]t—i) - xm(t{t~1) =
’ . T 4y T
=z -2 - Em = b (e, T M NCI-M NN =
- e+ Tagrvow wtan?
= $UE, b N N(I-M MON ¢ (5.17)

~

so that A spans the bias. Pmris the covariance of x - X,

since

~ I 2
Pm = E{x~x Xon

)
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6. LINEAR STOCHASTIC CONTROL.

An applicetion of the above Filter results is the con-
trol of a linear stochastic system for which e quadratic

loss function:

Nt T T
J=EF 3 {x (£)Qyx(T) + u (t)Qzu(t)} + x (NQyx () (6.1

‘t‘—‘“to

should be minimized with respect to u(ta),...,u(N) sub~

ject to the constraint

+ N ¢
(6.2)

X(e41) = px(t) + Tule) + vit), x(ty) = x5 = x5 + N

v{t) = 8x{(t) + R(t)

with v, e, X defined in Section 2. The expectation in
(6.1) is taken with respect to the introduced statistics
v, & and xg. The choice of u{t) is restricted to linear

maps of Yt-?‘

Rewrite J as in [2] using S and L defined by

1

L) - (q, + rTs(tH}F)~ rs(ea1)e (6.3)

S(£) = 6 8(t+1)¢ ~ ¢7S(t+1)ITLIE) + Qq, SN = Qq (6.4)
T N-t g T
J = ExpSltgdxy + {v (D)8t Iv(t) + W) + Liox(t)) -
t=t
0

¢ (QQ-%IJé(t+1)F)ﬁﬁt¢)'+ L(t)x(t)) -

N1 N-1 T
It RGOS+ + B § ()™ -

't:‘to 'i::tﬂ

T

T T .8
£_NS(tD}N E+ tp ROS(tO) 4

© QST ) (uLa) (6.5)
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Now consider the terms

- 2
T, = Elfult) + Llt)x(t) || @, + I‘TS(tH)I‘) (6.6)
for u(t) being a linear function of LA
u{t) = G.Y (6.7)

Tt t-1

In order to minimize (6.5) Gt shoﬁld lie in R(L), since
no component orthogonal to R(L), in the scalar product

<’>Q2+PTSP’ would decrease T. Thus
u = LHY
and

T = Bl x + Y ||%, .
L (Q2+P ST)L

If the minimum is evaluated for the worst &, this is just
the problem of minimal variance, minimal bilas linear es-
timates discussed in Section 4. The norm, || ”q’ in which

the errar should be measured is here induced by the matrix
q = LT (Q+rTsmyn (5.8)
Rewrite x as

X = X + X + X
g Tqa “ap

where the estimation error is given by.the zero mean term
~ . . . . .
xq and the deterministic bias term is xqb. T 1 then mi-
nimized for .

u = - Lx _ (6.9)
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and the minimal T is

][kqb Hé + tr(g-cov ;q) =
TR 2 T T
= | X Hq 3 tr{PqL Q4T SP)L}

Now Qq(t[t~1) and also qu(t}t~1) do not change with dif-
ferent u(s), s < t, restricted to linear functions of
Yo_4s & fact that is fairly easy to show using for in-
stance innovations. Thus the last sum in (6.5) is mini-
mized, starting with the term TN~1’ by u from (6.9). The

minimal J is thus

. . . . N-i
JU o= ETNS(E,INTE + tr RES(t.) + ] tr R, (tIS(t+1) +
0 0°'%p et 1

0

This concludes the proof of the following theorem.

Theorem 5: The loss function (6.1) for the system (6.2)

is minimized for worst possible £ by the input
u{t) = - L(t)Kq(t.]t-—‘l) ‘ (6.10)

in the class of linear functigns of Yt~ﬂ’ (6.7)., L{t) 1is
defined by (6.3}, (6.4), and *q is the minimal variance,
minimal bias linear estimate of x(t) with the error mea-
sured by the matrix q in (6.8). The minimal loss, which

depends on the unknown constant &, is
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g0 - EENS(t )NTg + tr RSS(t Yo+ ) tr R,CEIS(E+1) 4
0 07" "0 Y 1
t=t
a
N-1 N-1 ,
+ §J tr P LT(QQ-E-I‘TSI‘)L £ 7 % e (6.11)
t=t, 4 tatg 9 "4

Comments: The bias terms Eqb will be zero as soon as £ is
observabie. The restriction (5.7) on u is rather natural
since all the random variables have zero mean valua, but
it can be argued that it implies that possible values of
£ are assumed to be centered around zero. If a bias term
is allowed in u, it is no longer meaningful to minimize

the bias of x. The estimate ém of Theorem 1 would be as

~

good as any xq, since the estimates will become unbiased
at the same time. Since q is time varying there seems to
be no hope to obtain simple general recursive formulas

f X«
or q
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7. CONTINUOUS TIME, DUALITY.

In the continuous time case it is not possible to obtain
recursive estimates by letting the covariance increase
1ike in Section 2 or by some pseudo inverse formulas like
in Sections % and 5. The minimal unbiased estimate will

be obtained by duality. Consider the system

X = Ax + v x(tg) 7 X = xg + xg (7.1)
y = Cx + e

where v and e are uncorrelated white noise with covari-
ances R16(t) and stft), R, > O. xg is uncorrglated with
e and v, has zero mean value and covariance RO. The only
thing known about xg is that it is restricted to a sub-

space spanned by the full column rank rectangular matrix
T -

Xg = Nfg, £ arbitrary

It is a celebrated fact that the filter problem is the
dual of an optimization problem [2, 5, 2] and that was
used for the proof of the continucus time filter

problem in  [2]. There is also a well-known duality bet-
ween observability and controllability, i.e. reconstruc-
tion or unbiased estimates and fixed end-point problems

[2, 6, 91. '

These two dualities will, here be shown to combine.

Consider the minimal variance unbiased estimate for the
system (7.1).It is convenient first to estimate an arbi-

trary linear combination of x(t), say aTx(t). Thus the

variance




(48]
(4]

Vo= E[a:x(t) - aTx(ey]? (7.2}
should be minimized for linear functions of Yt’ say

rl'xﬁ
£

Lo

«(ty = ~ [ u(s)yls)ds (7.3)
8

under the constraint of being unbiased

Ealnlt) = alPx(t) (7.4)

A

The notation aTY(t) will be justified later. Theve is

really an y(t} such that aTx(T) is the best estimate for

all =.

Theorem 6: The unbiased filter estimate problém for (7.1)

is dual to the restricted end-point optimization problem,
with the loss function

fI’] S t T T
Vs 2 (egdRgalty) + [ [27(s)Ryz(s) + uw(s)Ryuls)]ds  (7.5)
to
an«d the constraints
{ “i o= ATz o+ CTu5 z(t) = a _ (7.6)
} ’ )
1 Hz&to): G . . (7.7)

troof: Use z defined by (7.8), a Y% from (7.3) and the
tystem equation (7.1) in the same way as in [2] to re-
wirite the eqtlmat1on error

= = ) T R o
alx(t) - atx(t) = Zj(ta}x(to) + 2 (s)v(s)ds + f uT(s)e(s)ds
t : t
0 0




36.

In order to fulfil (7.L)
Bz (tgdxlty) = 2T mTe = (Walrg))Te = 0

for all ¢, which is equivalent to (7.7). V can thus be
expressed as

v = ElaTs(+) - aTﬁ(t)]z z
i " .
= zl(t )Rsz(t Yo+ f zT(s}R z(s) + uf(s}Rru(s) ds
p/Rpgz2lty £ 1 2
using the covariances of %%, v and e.

03

The solution of the optimization is well-known, cf. [6,
8}, but reguires controllability of the restricted end-

state, i.e. observability of Nig.

uls) = - joc[ﬂ(s}z(s) + ¢(s,tD)Ni[NM(tO,t)NT)h?wat,tD}a}
(7.8)

= it T =1 55
o= AN+ WAT + R, - NICTR, CH, W(t,) = Ry (7.3)
L ouit,s) = (A - neoe RITC)ule,s), wis,s) s T (7.10)
37 () = (A - w(e)e 5 Clult,s), ¥(s,s) = I .

, E g T -1 .
M{ty,t) = tf¢=(sﬁt0)c R, C¢(s§t0)ds (7.11)

0

M is an observability Gramian for (7.1). Now solve (7.5),

(7.8) for z giving x independent of a:

z{g) = [¢T(f,s) - M(s,t)&(t,tg)ﬁi[Nﬁ(tb,t)NT]“1N¢T(t,tU)]a

. t T Ty~1
x{(t) = f[@(t,s)ﬁ(s) = plt, N [NM(tO,t)N }
)

. N¢T(t,t05M(s,t)ﬂ(8) ¢ opCt, N (g, N )T

: NwT(t,tGchfR;7y<s)as - (7.12)
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Note that the minimal V is
!:[1 —
a [nCe) + gl N (Wcey, N ) iy (e, Ja =
A ,
= a [ty + =(x)]a
defining the error covariance P(%) = n{(t) + z{).
It is now possible to state the theorem
Theorem 7: The best linear unbiased state estimate for
(7.1) 1is
» ~ T Ty -1
x(t]t) = xn(t!t) + Ut )N (MMt t)N ) Nalty,t) (7.13)

with ¢, M and 1 from (3.9}, (3.10) and (3.8) and x_ and

I
3 from
d > L T -1 i’ g
a5 *ypltle) = Axn(t}t) + MCEICTR, [ytt) - Cx (t]1)],
x, (tglty) = 0 (7.14)
! Ty
—&¢m¢>=m—nmmR2Quaﬂ+
T.-1 o
: + CTRy [yls) - Cx (s]s)] (7.15)
Alt,t) = 0
The error covariance is P{t) = n{t) + ().

Proof: Integrate (7.14%) and (7.15)

» t T -1
xﬂ(tlt) = fw(t,s)ﬂ(s)C-Rz.y(s}ds
1T .

g



t g T -1 -
rAs,td = [ wilg,sdC R, [ylq) - Cxﬂ(q]q>}dq
: ; .

and combine {7.12) with

L T
fw"(s,tO)M(s,t)ﬁ(s)C R2 y(s)ds =
T

0
€ - q -
- fwT(q,tQ)CTquc{ jw(q,s>n(s)cTR2?y(s>ds}dq
T t a]
0 a
Example 7.1: A = 0o, Ry = ozﬁ R2 = 1, x(0) = & unknown,
Cc = 1.
g 2 N
=0 - 1%, 00) =0 = B{t)} = o tanh ot
t
¥(t,s) = exp{/ - ¢ tanh 0q dqt = cosh os/coesh ot
S
. 1 C _ds .. o/{sinh otrcosh ovt) + > 0
B(t) 2 e /] )
cosh ot 0 cosh”os
PCt) = R(t) + 2(%) = ¢ coth ot t > 0

~ t .
x (tlt) = o | sinh s y{s)ds
0 cosh os

s ~ t — .
x(eft) = x (tlt) + g f yls) xplsls) 4o .
sinh ot O cosh os
t
A [ cosh ss y(s)ds t >0

sinh ot 0
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This could be obtained analytically using P(t)

N it t
x(tlt) = | exp["o | coth quq]c coth osy(s)ds =
0 g
. T
z wmmle | eosh ssy(s)ds
sinh ot 0

but to use a numerical algorithm for the Ricecati equa-
tion started with a large variance would lead to enor-

mous difficulties.

Example 7.2: A = -a, C =1, R, = 0, R

T(t) = 0, wlt,s) = $(t,8) = exp{~ a(t-s)}
~2at, 5 -7as ~2at ~2at
P(t) = s(t) = e /7 [ e ds = 2a e /{1-e ) t >0
4]
] et 3
x(tlt) = 2a e at [ e 2Py (s)ds/(i-e Zaty 4 5 o0
o]

The initial estimate in both the examples is

lim  x(t]t) = y(0)
0%

which has infinite covariance.

Comments: The best unbiased estimate obtained by Theo-
rem 7 is a sum of two estimates, similar to the discrete
time case. The last term consists of a transformed

smoothing estimate of the initial constant &.
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It must be emphasized that it is not possible to cbtain
+he estimate from a recursive. filter. From (7.13) and
the examples it can be seen what happens at the initial
point. The estimate may very well exist but with infinite
variance. For time invariant systems-the whole state be-
comes observable after am infinitely short time, so even
if a pseudo inverse is used instead of P, it is infinite

and the gain required in the differential equation at

to= oty is infinite. The discontinulty in x and P must be

calculated in some other way, preferably from Theorem 7,
N

if a Kalman filter is to be started at t = t,.

. . . +
However, any observability index is very small at t, and

P is very large. It is suggested that the Kalman filter
should not be started until a little later for numerical
reasons. In fact, A(tO,t) of (7.15) can be obtained by

Lo

integration in the forward direction:

d T T =1 -
3¢ Mgt =y, t)C R, [v(t) - CXH(tlt)],

A(tn,to) = 0 (7.16)

The differential equation is not asymptotically stable,
but it does not matter since it is only needed a short
time. Thus x can be obtained by (7.13) from ;H and X,
until P(t) is small enough to start the Kalman filter.

It should also be noted,Athat it is impossible to get
any unbiased state estimate with a constant gain Kalman
filter in the continuous time case. "Dead-beat" filters
must have time varying gain. Compare the dual problem

with dead-beat controllers.
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B, CONCLUSIOHNS.

It has been shown how the Xalman filter should be star-
ted if part of the initial state is totally unknown. The
formulas can be obtained formalliy by letting the covari-
ance of that part go to infinity. The common way of star-
ting a Kalman filter with a very large covariance is thus
almost optimal, but the numerical properties of such a

solution are bad.

The optimal discrete time sclution uses two “Riccati
equations", one to keep track of the bias from the un-
known parts of the initial state, and one for the error

covariance,

The interpretation of the estimate is provided by a se-
paration into two filters. Before it is possible to ob-
tain an unbiased estimate, the obtained estimate mini-

mizes the mean square error of the unknown initial value
in the Fuclidian norm. The linear stochastic regulator

problem 1s, however, shown to reguire an estimate that
minimizes the error in another norm. The minimum of the
loss function will contain additional terms coentaining

the unknown initial value.

The continuocus time case is more complicated. The whole
system becomes observable at conce. After an initial dis-
continuity in estimate and covariance a usual Kalman £3l-
ter could be started. This5 however, implies almost in-
finite Kalman gain and poor numerical properties. It is
suggested that the estimate is caleulated using separa-
tion intc two estimates. The "noise term" satisfies a
simple filter of "Kalman structure", while the “bias
term"” should be calculated from a recursively updated
smoothing estimate of the unknown initial state. When
the error covariance has become reaspnable, the usual

Kalman filter should bBe started,
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APPENDIX

Although pseudo inverses are conceptually simple some of
the necessary algebra tends to chscure the ideas. Some
lemmas will be shown here to simplify the proof of Theo-

rem 3. A good general rveference is [ 1],

Lemma 1: Let M be a symmetric matrix and ¢ a rectangular

. . . e
matrix, let D and G be the projections D = I - M M, G =

I - (Dc)+Dc, and let v be an invertible matrix, then

the projection A = I - p 1cTDer (r 1CTDCP E}+ can be ob-
tained by

A = vler(eler)t ' (A1)

Proof: If the matrix X spans the subspace orthogonal to
that spanned, by eTh, i.e. Gx = x, thenrixtr~1eTD. R(A) =
R(rTx) = R(xTG) so that rTer(rTar)* is the unique ortho-
gonal projection A.

Lemma 2: With v, D, 6, ¢, ¥ and A as above and with B =

= [T+ce i ]’
T ~ T +
r GBGr = [A(VYV +R,IA] (A.2)
if plp = qu and v Tetiter T < wyT

Proof:

i1

rLGBGr rTGr[Rﬁi + PTGPVVTPTGP}ijTGP =
= rTerRry - RyrTerv@vTeTerryrTery)  WTrTerr, JrTor =

= vTer - plerv(T+vTnTery)~TyTlsnTop




by the inverse lemma and the fact that 6 is a projec-
tion, With F = »IlGr, the right hand side of (A.2) gives
using Lemma 1 and the pseudo inverse lemma:

it

[aqvvT+r, 940" = [prrvyTeptaptret)t -

F - pErEV(T+vIFRtPEtEY ~TyTRptE -

t

F o~ Fy(r«viey)y-TyTe

it

Nete the simple form of the pseudo inverse lemma since
Ry invertible and thus AV € R(AR;)}.

0
Lemma 3: With <, D, 6, A and r» as above
6= A e Tar T = 2 Tar e Ayt (A, 3)
(e per’ = (1-@)r T T o ner Ty e (1-0) (A.4)

Proof: The first equality of (A.3) is the inversion of
Lemma 1, and the second follows . from Ar~t(r TAAr~ 1)+ =
= (r~TAY* = (Ar~ 1o Tara1, Direct verification of the
Moore Penrose conditions, B = AY if AB and BA symmetric
and ABA = A, BAB = B, can be used to show (A.4):

cTDc(I-G)r“T(r“1cTDCP"T)+p“1(I—G) =
= r(r“qCTDCP”T)(P'icTDcr"T)+r“1(IﬂG} =

r(T-A)r~1(T-C) = T - @ - prl(r TAp~13(I~G) = I - @

1

which is symmetric and (I-8)eIDe = eTDe, (I-G)r~T .
» (e teDer=Tytp=1(1-6)? = (1-8)e~T(r~1eTDer-T)tr=1(1-0).
: o

Lemma Y¥: The matrix K' defined by (4.13) can be expressed

as

Kt

1]

{DC(CTDC)+[I - (T+e fterene] + ﬁ+cGBG}r -

Dcr"T<r“1cTDcr“T}+{I - (R2+VVT)[A(R2+VVT)A]+} s

3]

+ rer ARy rvv a1 (A.5)

L3,
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in quantities definsd shove.

Proof: Since DeG = 0, (A.4) and (A.2) give
Dele™de) T[T -~ (I+cTH*c)eBGIr =
= Der” T(r™1eTDer T (I-271Gr){T = (Rop+VVT) [A(R,+¥VT)IATT)

From (A.3) r~16r = (AR,A)*, and since Ry has full rank
AV € R(AR9) soc that

(AR2AY'{T - (R,+VVT) (AR, A+AVYTATTY =
= (ARoAIH{I - A(R2+VVTIA[AR,A+AVYTAT*) = 0

which proves (A.5).
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in quantities defin=d adbove.

Proof: Since DeG = 0, (A.4) and (A.2) give
De(eTDe)* (T - (I+eTHic)erelr =
= Dee” Te™1eTDer ™) (T-r~TGr) {1 ~ (Rp+VVT) [A(R,+VYT)ATH)

From {A.3) »~16r = (ARyA)*, and since Ry has full rank
AV € R(AR9) so that

(ARAYT(T = (R, +VVT) AR A+AVYTATT} =
2 2
= (ARQAIF{I - A(Rp+WT)A[AR,A+AVVTAI*Y = ¢

which proves (A.5).
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