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NUMERICAL MODELBUILDING ’

K. Eklund

ABSTRACT

This paper describes a systematic modelling technique which
makes it possible to avoid many of the tedious elements that
always are involved in the modelling of industrial processes.
The technique is based on the nonlinear equations which are
usually obtained from basic physical laws. It gives a syste-
matic procedure to compute steady-state solutions and linea-
rized equations from the nonlinear physical equations. The
procedure is based on wellknown methods for solving nonlinear
equations and numerical differentiation. The final result is

a system description on standard form S(A,B,C,D). The essential
difficulty is to find the smallest number of state variables
and to assign these to the linearized model. A method for sol-
ving this problem is the main fesult of the paper. The paper
also contains a FORTRAN program for the assignment of state

variables as well as an application to the modelling of a boiler.

TThis work has been supported by the Swedish Board for Technical
Development under Contract 68-336-f.




TABLE OF CONTENTS

Page

1. Introduction 1

A systematic model reduction technique 2
3. Reduction of the linearized system equations to standard

form u
4, The check of conditions 7
5. The choice of state variables 7
6. A description of the reduction program 10
7. Application to a boiler model 10
8. TIllustration of the implications of the conditions of

theorem 1 13
9. Acknowledgement 15
10. References 15

Appendix A. The pseudo inverse

Appendix B. Program




1. INTRODUCTION

Tt is a very tedious work to establish a linearized mathematical
model of an industrial process of some complexity. Even if basic
physical laws are applicable it can be extremely laborious to
compute the steady¥state values and to linearize the equations.
In particular if we take into account that it is often highly
desirable to develop linearized models for different operating
conditions and to investigate the sensitivity of the model to
basic physical parameters. It is also very difficult to check the
linearized equations even if the basic equations themselves often

are quite easy to check.

T+ thus seems rather attractive to develop an algorithm which
enables a digital computer to perform all the tedious work. Such
an algorithm is proposed in this report. We start with the basic
nonlinear equations and proceed to compute steady-state values
and linearize. The final result is a system description on stand-
ard form. The standard form is convenient because a large amount
of control theory uses the state representation of the system as
a starting point and since important physical variables can be
retained as state variables in the final model. The procedure is
based on wellknown methods for solving nonlinear equations and
numerical differentiation. The only difficulty is to assign the
smallest number of state variables to the linearized model. A

method for solving this problem is the main result of the paper.

The procedure is outlined in section 2. In section 3 we give a
procedure to find the smallest number of state variables for the
linearized model. The main result theorem 1 is contained in this
section. In section 4 we give an alternative formulation of some
conditions of theorem 1. The assignment of state variables is not
unique. In section 5 we discuss how this nonuniqueness can be
exploited to choose state variables that are physically signifi-
cant. A digital computer algorithm for the reduction is described
in section 6. In section 7 we give an example of the application
of the procedure to the modelling of a drum boiler. Some examples
which illustrates the implications of the conditions of theorem 1
are given in section 8. Appendix A covers some material on pseudo
inverses that are needed in the proof of theorem 1 and in Appendix

B we give a FORTRAN listing of the reduction program.



2. A SYSTEMATIC MODEL REDUCTION TECHNIQUE

To establish a mathematical model of an industrial process it

is often convenient to divide the process into a number of com-
ponents. These components are treated separately. A set of equa-
tions which describe the dynamic and static relations between the
inputs and outputs for each component are derived. The components
are linked up with a number of internal variables which might be
of secondary interest. This technique simplifies the derivation
of the basic equations but introduces a number of auxiliary vari-
ables, ref {5}. The resulting mathematical model is usually a set
of nonlinear equations which include both ordinary and partial
differential equations. Partial differential equations are appro-
ximated by finite differences in the space coordinates. We also
assume that the system has constant coefficients. The system be-
haviour for small disturbances about an equilibrium state is of-
ten of great interest. This behaviour might be described by the
linearized system equations. Thus if we require the resulting mo-
del to be a set of linear ordinary differential equations the

following systematic approach is proposed.

® The process is described by basic physical laws such as the
laws of conservation of mass, energy and momentum. The resul-
ting set of equations is

f 0 (2.1a)

0 (2.1b)

where f is an f-vector whose components are nonlinear functions

1

Ef(ﬁ,v,u)

gly,v,u)

of the variables v, their time derivatives and the process in-
put variables u. g is a k-vector whose components are nonlinear
functions of the variables v, u and the process output variables
v. The input vector u and the output vector y are identified

and treated separately already at this stage. All other vari-
ables are included in v. The set of equations is consistent 1if
the number of variables v equals % and if y is a k-vector. We
can always assume that the vector f does not depend on du/dt

because we can then introduce a new input variable u = du/dt.

® The steady-state values are obtained if we put time derivatives

equal to zero in equation (2.1) viz.




f(v,u) = 0 (2.2a)
g(y,v,u) =0 (2.2b)

Given the steady-state values u® of u equations (2.2a), (2.2b)
determine the steady-state values v® and yo of v and y respec-
tively. The zero solutions of the nonlinear equation (2.2) are
obtained by standard techniques e.g. a Newton-Raphson method.
Other methods are found in ref {1}, {2}, {6}, {7}.

® Linearize equation (2.1). We get

Ev + Fv + Gu = O (2.3a)
Py + Qv + Ru = 0 (2.3b)
where

E = f\-](O,vo,uo) (e x ¢]

F = fV(O,vO,uO) [2 x 2]

6 = £,(0,v7,u) [v x 2]

P =g (y7,v7,u®) [k % k]|

Q = gv(yo,vc,uo) [k % 2]

R = gu(yO,vO,uO) [k x m]

The perturbed variables viz. the differences v-v", y—yo and
u-u® are denoted as the variables themselves. The matrices of
first partial derivatives of the vectors f and g with respect
to v, v and u and y,v and u respectively are obtained by nu-

merical differences.

® The linearized set of equations (2.3) is reduced to standard
form S(A,B,C,D) viz.

{Qﬁ = Ax + Bu

'fdt (2.1)
%y = Cx + Du

where x 1is the state n-vector, u is the input m-vector and y
is the output k-vector. A,B,C and D are matrices of proper or-

der.

The problem of reducing equation (2.3) to standard form is to
introduce a proper number of state variables. A method which
solves this problem is the main result of the paper and is pre-

sented in the following section.

® If the transfer function representations are needed these are
easily obtained from equation (2.4) using standard methods,

see e.g. ref {8}.




3. REDUCTION OF THE LINEARIZED SYSTEM EQUATIONS TO STANDARD FORM

Before the theorem is stated it is convenient to have a look at
the structure of equation (2.3). It is immediately clear that the
number of state variables at most equals the rank of E. If the
rank of E equals & the number of state variables is & and equation
(2.3a) can be solved directly using the inverse of E. The reduc-
tion to standard form in this case is trivial. However, in general
the rank of E is less than ¢ and greater than zero. This is a con-
sequence of two facts. Static relations between the variables v
and u create rows of zeros in the matrix E.The number of time deri-
vatives introduced might exceed the rank of E. That is we have |
additional static relations between the variables v and u which

are not quite apparent.

If the inverse of P does not exist one or several of the outputs
are a linear combination of the others. The linear dependent out-
puts may be excluded by computation of the linear independent rows
of P. However, physical insight usually permit us to avoid this
problem and there is no loss of generality if we assume that the

inverse of P exists.

The proof of the theorem requires elementary knowledge of the con-
cept of pseudo inverses. Some relevant properties of the pseudo
inverse are given in Appendix A. A detailed presentation is found
in ref {3}. Before the theorem is stated we introduce the follo-
wing notations. R(T), N(T), p(T) and " denote the range space,
the null space, the rank and the pseudo inverse of T respectively.
The rank factorization of E used in the theorem gives E = KL and
réquires o(E) > 0. If p(E) = 0 there is no reduction problem and

consequently we assume p(E) > 0.

Theorem 1

Given a linear dynamic system with constant coefficients des-

cribed by
jE& + Fv + Gu = 0 (3.1a)
|Py + Qv + Ru = 0 (3.1b)

where v 1s an f-vector, u is a m-vector and y is a k-vector and

E,F,6,P,Q,R are matrices of proper order. If




o ((I-XkHT) = ¢ - n (i)
R((I-KK")F) NR(L) = 0O (ii)

then the standard form of equation (3.1) becomes
-

fx = Ax + Bu

-,

%y = Cx + Du

where the state n-vector 1is

x = Lv

and

A= - ke o+ pTroxkypy T

o= Kt + rler-xkhHhey T roxkty - 136
c = - p it ¢ FlroxktyEy LT

p = pleonTL + Flr-xxkHFr tE (1o He-R?

Proof

The rank factorization of the matrix E is

E{sz} _ K{an} ) L{nxz} (3.2)
where the matrices K and L both have rank n. Combining equations
(3.2) and (3.la) we get

KLv + Fv + Gu = 0 (3.3)
Introduce the state n-vector x and set

x = Lv (3.4)

Notice that the rank of L is n. Equation (3.4) together with equa-
tion (3.3) yield

Kx + Fv + Gu = 0 (3.5)

If the vector -(Fv + Gu) lies in the column space of K a unique

solution is obtained using the pseudo inverse of K.

% = -k'rv - xteu (3.6)
where
e kTt KT

Combining equations (3.5) and (3.6) we get

(I-xx"yrv + (1-¥K")eu = 0 (3.7)




Combine equation (3.4) and equation (3.7) to one equation. Hence

L X
R (3.8)
(I-XKK )T -(I-XX )Gu
or
T = g (3.9)

The vector x by definition lies in the column space of L. If con-

dition (i) holds then

R(I-KK') = R((I-KK')F)

since the rank of (I—KK+) is 2-n (see Appendix A). Thus we have
R((I-KK")G) C R((I-KK')F)

Then it is clear that the vector z lies in the column space of T
and a solution exists. If also condition (ii) is satisfied the
rank of T is £ and the solution is unique. This implies in par-
ticular that there exists a unique solution to equation (3.7). Re-

writing equation (3.7) we get

(1-xk" ) (Fv + Gu) = 0

then

(Fv + Gu) € N(I - KK')

We also have

(T - XKHK = 0

then

k., € NI - kK™ i=1, ..., n

where ki is the column vectors of K. Thus the existence of a
unique solution of equation (3.8) also implies the existence of
a unique solution of equation (3.5). The solution of equation

(3.8) is N

L pld

(I-xK")T —(1-xx"Heu

. . + . . . .
Using that the matrix (I-KK ) is a symmetric projection (see &

and 6 Appendix A) we get




v = (LT o+ PTeroxxkmHyey T o nTn ¢ rTezoxxkHey ek hyou

(3.10)
When equations (3.1b), (3.6) and (3.10) are combined the standard

form of the original set of equations are obtained and the theo-

rem 1is proved.

Notice that the theorem does only supply a solution of the re-
duction problem when the number of state variables equals the
rank of E. This i1s not necessarily the case which is demonstra-
ted by a simple example in section 8. All static relations bet-

ween the variables v and u are given by the equation (3.7).

4, THE CHECK OF CONDITIONS

An algorithm which performs the rank factorization of the matrix
E is a necessary subroutine of the reduction program. It is then
convenient to formulate the conditions as rank conditions. Condi-
tion (1) is already on a suitable form. If condition (i) holds

condition (ii) is equivalent to that the rank of T equals ¢. Hence

o ((I-KKHF) = 2 - n (i)
o(T) = 2 (ii)

The conditions are checked in this order. The implications of the
conditions are illustrated in section 8 by simple numerical ex-

amples. The matrix T is defined by equation (3.9).

5. THE CHOICE OF STATE VARIABLES

The state variables are determined by

x = Lv

The matrix L is not uniquely determined but L is chosen to satisfy
E = KL

where the column vectors of K form a basis for the vector space
generated of the column vectors of the matrix E. First let us
consider the case when K is simply chosen as the n linear indepen-
dent column vectors of the matrix E. Let E be arranged so that

the n first columns are the linear independent ones. Then
E = KL = K[Lq|L,] (5.1)

where




Ll = 1 n x n

L2 n x 2&-n

The matrix L, gives the coefficients in the expressions which
constitute the %-n linear dependent column vectors € s10 0%y

of the matrix E. Hence if

n
e . = AL .e. i = 1 2-n
+ . 5 e e ey
n+ti 521 3173
then
(L )-7= Ao s A -]T i =1 L-n
)i [11 ..... - , e e s

where (L2)i denotes the i:th column vector of the matrix L2'

The variables Vi i =1,...,% often have a simple physical inter-
pretation. Then it is naturally of interest to retain the variab-

les v. as state variables if this is possible viz.

Xlzvl

X, =V S £ n
S =)

The form of the matrix L then is

|

L | L
T L

L21 } L22
where
Lll = I S X S
L12 = 0 s X -8
L21 n-s x S
L22 n-s x 4-s

However, in general it is not at all possible to have it this

way. Suppose

E = [el s € €+l e ezl
where
n
e 41 - 'Z xji ej , 1 =1, s, A-n




and
Aji 0 ¥ oi,]
Further no directions of vectors coincide. Let kl “e kn be an
arbitrary basis for the column space generated of € ... & .
Then we may write
! [ |
. I | 0 K | K I 0
_ [ [ S S 572 I D
[él cee ©L ©pyq e eg] = [kl cee ké]—i— t 3 = y T-K L .TL
21{ 29 21% 29 21{ 29
where
Kll S X S
K12 S X n-s
KZl 2-8 X S8
K22 -3 X n-s
or
|
+
_ Kyp ¥ Kooy 1 Kyp Doy
e ...e_le ,....e_ e coee, | o=
1 s! s+l n n+l %] X KL | X L
21 22721 } 22 22

Identify the last &-s column vectors of the two matrices above.

Hence
[%s+l R N TR eé} = [ks+l “ee ké]LZZ
Since we assumed that xji # 0 ¥ i,j and that the vectors e, are

in pairs linearly independent, there are still n linear indepen-
dent column vectors in the left hand matrix. The right hand matrix
has n-s linear independent column vectors and thus the identity
implies that s=0. Since in general no especial favorable choice

of the state variables is available we may choose the form of the
matrix L given by equation (5.1). If the coupling between the
column vectors of the matrix E is not as elaborate as indicated

above but e.g. only one vector, say e is needed to establish

l?
the linear dependent ones, then this choice creates rows of zeros
in the matrix L, except in the row corresponding to the vector

el.




6. A DESCRIPTION OF THE REDUCTION PROGRAM

The reduction program RESTAF (Reduction to Standard Form) is pre-
sented in Appendix B. The program just computes the standard form
matrices according to the formulas given in the theorem and checks
the rank conditions. The subroutines used are MIART and DMATPROD.
MIART computes the rank of matrices and inverts asymmetric matri-
ces by the method of Gauss-Jordan with row-pivoting. DMATPROD per-
forms matrix multiplication using a double precision scalar pro-
duct. In order to avoid too cumbersome program listings auxilary

subroutines concerned with standard matrix operations are omitted.

The program input is the linearized system matrices. The output

is the result of the rank fagtorization, the standard form matri-
ces and some intermediate results. For further details is referred
to the program listing and the boiler application in section 7.
The computation of the pseudo-inverse of K requires the inverse

of KTK. It is wellknown that the multiplication with kT worsen

the condition of the problem and numerical difficulties may arise.
The accuracy of the matrix K" is checked using the matrix KK,

. . . . + .
This matrix should equal the unit matrix. Thus K K i1s computed

and printed.

7. APPLICATION TO A BOILER MODEL

In this section we will give an application of the reduction pro-
cedure to a practical problem. We will consider a drum-downcomer-
riser loop of a drum boiler for a power station unit of approxi-
mately 150 MW. The drum pressure is 140 bar and the outlet steam

©C. The derivation of the basic nonlinear equa-

temperature 530
tions, computation of steady state values and linearization re-

sult in the matrices E,F,G,P,Q,R. The derivation of these results
as well as a FORTRAN program for the computations are documented
in ref {4}. The complete output of program RESTAF which includes

the input matrices E,F,G,P,Q,R is given in table I.




The components of the vector v correspond to the following phy-

sical quantities:

the drum pressure

o
ja

the drum liquid level

the drum liquid temperature

3

the riser tube temperature

i

the steam quality
the riser outlet flow
the downcomer flow

the evaporation flow

<
I
O 5 E 5 XoHH H K

5 ® = 0

heat flow from the risers to the

steam water mixture

The input variables are:

— —

Qg heat flow to risers

u = w feedwater flow
fw

S

steam outlet flow

and the output variables are:

Pg the drum pressure

Y - v the drum liquid level

On the first two pages of table I the input matrices E,F,G,P,Q,R
are listed. Inspecting the matrix E we find that the two last co-
lumns of E equal zero. All other columns have non zero elements.
The column vectors six and seven of E have non zero elements only
in the second row and consequently they are linear dependent. The
rank of E maximally equals six and we have the interesting situa-
tion when the number of time derivatives of the variables v, ex-
ceeds the rank of E. The time derivatives of the riser outlet flow
and the downcomer flow which correspond to the non zero elements
in columns six and seven arise from momentum equations for the

riser and the downcomer.

Both conditions of theorem 1 are satisfied in this case and the
reduction is successful. The computed rank of E equals six. In
section 5 we found that in general the non uniqueness of the rank

factorization could not be exploited for a favorable choice of




the state variables. However, if the linear coupling between

the columns of E was not too elaborate we could choose K as the
linear independent columns of E and get a quite simple form of

L. In the program this is done using an indicating vector (JBETA)
which has non zero elements in positions corresponding to the
linear independent columns of E. In this case K will equal the
first six columns of E. Using the pseudo inverse of K the matrix
L is computed to satisfy the equation E = KL. The state variables

are given by the matrix L viz.

i
<

x1 1
2 T Yy
X3 = V3
X, = vy
X5 = V5
Xg = VB + 2.656 v7

and we have a simple physical interpretation of the state variab-

les.

Equation (3.7) gives all static relations between the variables
v and u. A successful reduction requires p«I—KK+)F) = %-n. This
rank equals 3, The three static relations are given by
the matrices (I - KK')F and (T - KK')G in table T. The original
linearized equation contains two static relations between the
variables v and u which are found in the fourth and ninth rows
of F and G. These relations are refound in the fourth and ninth
rows of (I—KK+)F and (I—KK+)G. The third static relation is given
by any of the rows 1,3,7,8 of (I—KK+)F and (I-KK')G. These four
rows are in pairs linearly dependent. The existence of the third
static relation is a consequence of the fact that the number of
time derivatives of the variables Vs exceeds the rank of E and
primarily of the assumptions made when basic physical laws were

applied to the process.

Inspecting the system matrices A,B,C and D we find that D equals

zero and that




Several elements of A and B also approximately equal zero.
However, some caution must be observed when approximating since

the variables have true physical dimensions.

Tf the reduction is made manually it is indeed a very tedious
work. It is therefore believed that this algorithm represents

a very attractive solution to the reduction problem.

8. ILLUSTRATION OF THE IMPLICATIONS OF THE CONDITIONS OF THEOREM 1

Using examples suitable for hand computation we will demonstrate
the physical implications when the reduction fails. As far as the
author knows there do not exist any physical counterparts of the

examples.

Example 1. We will demonstrate when the system fails to satisfy

condition (i). Consider the system

0 1 2 0 0 1T 1 -1 0 -1
1 0 0 O & + 11 1 v+ -1 0 4= 0
3 0 0 0 3 3 3 -1 -1
0 0 O 0 0 2 1 1 1 0
.
We get
0 0 0 0
(t-xxtHyp =0 0 00
0 0 0 0
0 2 1 1
thus
+
p((I-KK )F) = 1

This rank should equal 2 since the rank of E equals 2 and %
equals 4. If we examine the original system 1t is clear that
the second and third equations are equal except for the input

variables. This implies that

2ul = u2

The system has only one independent input variable and only one
of the two considered equations contributes to the number of sys-

tem equations. Hence a unique solution does not exist.




Example 2. The system in this example will satisfy the condition
(1) but not condition (ii). We have

o 1 2 0 0 1 1 -1 0 -1
1 0 0 0 Y+ 1 1 1 1 v + -1 0 U= 0 (8.1)
3 0 0 0O b 2 2 0 -1 -1
0o 0 0 O 1 1 2 0 1 0
We get
0 0 0 0
(I—KK+)F _ |-0.3 0.3 0 0.9
0.1 -0.1 -0.1 -0.3
1 1 2 0
and

Then
o ((I-KKHF) = 2

L

PO rkx™HE

) = 3

The existence of a unique solution requires that the rank of
condition (ii) equals 4., If we solve the fourth equation of

equation (8.1) for Vg and substitute the result into the first

equation the time derivative of v, will vanish. Eliminate V4

using the remaining two equations. Then

0 O /2 -1/2 1 /2 1 1 0
0 ol z+|1/2 1/2 1|z +|-3/2 0ju+ |0 O0|0w =0
3 0 O 3 1 0 -2 1 0 0
where z = [vl Vs vu]T. This system can be reduced to a first

order system on standard form. The number of state variables is
thus less than the rank of E, which in this case causes the fai-

lure.
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APPENDIX A

Every matrix A{mxn} of rank r > 0 has a rank factorization
of the form
A{mxn} _ B{mxr} . C{rxn} (1)

where both B and C have rank r. The pair of matrices B and C
are not unique. The requirements are that the columns of B
form a basis for the column space generated by the columns of
A. C is chosen to satisfy eq (1). The pseudoinverse is defined
as

at = cTeechaTey et (2)

Some of the properties are

1. TFor any matrix A there always exists a unique pseudo-
inverse.
. . . + -
If A is quadratic and nonsingular A = A 1
wH* = a
+
AA A A

anty?2 = aat ana atm)? = Aa

+ + . .
. AA and A A are symmetric matrices.

o o E W N
. . ° P

We also have

gt = (sTp) 18T
RN G

where B and C are the same matrices as in eq (1).

Let K be a % x r matrix where r is the rank of K and 2 % 7.

Then
a. The rank of the matrix kK" is r.
. +
Proof: The rank of the matrices K and K equals r. We have

(xxHK = X
then
S(K) = v ¢ min (p(KK'), o(K))
and
+ } +
p (KK ) < min (p(X), p(X ))

A

thus
+
o (KK )

"
3




b. The rank of the matrix (I—KK+) is & - 1.
Proof: We have

+ + + +
p ((I-KK ) + KK ) < p(I-KK ) + p(KK )
or
+ +
p(I-KK ) 3 p(I) - p(KK ) = & - 71
and
+
(I-XK )K =0
The last equation implies that the dimension of the range
+ .
space of (I-KK ) is less or equal to & - r. Thus
+
p(I-KK ) = 2 -
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APPENDIX B

PROGRAM RESTAF

COMPUTES THE STANDARU FOURM S(A,8.,C,0) UF A LINCZAR
EQUATION
caVOOT+Fav+GeUu=0
PaY+JoVa+relU=0
USTHG THE CUNCEPRPT Ul PSEUDOINVERSES,
THe STATe VARIABLES ARE
A==V

NE=NE 15 THE OFRDER OF THE UJJADRATIC MATRICES E AND F
NU=NU 1S THE NUMBER OF INPUT VARIABLES U

NY-NY IS THE NUMBEX OF OUTPUT Var[ABLES Y

JINV=-DINV I5 A SMALL NUMBER USE£D WHEN INVERTING
DRANK

DRANK-DRANK IS A NUMBER Uscu WHEN FINDING RANK

fHE NUMSER OF INPUT,OUTFUT aND STATE VARIASLES ARE
LIMITEo T 490

THbE muMBer UF EQUATIONS (NE) Is LiMiTeo Tu 30

RibErenCe K EXLUND,NUMERICAL MODELBUILDING

SUBRJUTINES RedUIRED
GLART - OMATPROD

CLMEN S TON LS5 230),F (30,300, G030540),P (10,200,001 05,30),ROL0520)s5AM
U3, 300,330,303, 0MC305,30),DMC30,30),EMC3U0,30),AR(30,30)s1IBETAC30
1), JB2TAC3Y ), ICOUNT(C40)

READ 1sNR

FORMAT(TS)

[FINR=99) 2,2,121

READ 3o N s NUSNY,DINV, DRANK

FURMATC312,2020.40)

READ 4o (e lsJd)sd=d»NE)sI=1»NE)

READ 4»{(F(lsJ)ed=LNE)sI=1,RE)

RKe Al ds (0G0 IsJd)ed=isNUd» I=1sNE)

READ de((P(IsdrsdslsnNY ) l=l,nY)

KEAD 45 (30T, Jd)ed=LsNE)s [=1,NY)

READ 4-0ir01sJ)sd=dsNUds I=1,NY)

FORMAT(4220410)

PrRINT 5 :

FURMATOLHL, 30H PRINTOUTS FRUM PROGRAM RESTAF.//)

PrRINT A

FORMAT(O9A HMATRIX E5/7)

DO 130 I=1,.Ng

PrINT 10,(ECIsd)sdsisne)

PRINT 11

FORMATC/ /7,94 MATRIX Fs/)

DU 131 1=L,NE

PRINT L0s(F(IsJd)sd=1,NE)

PRINT 12

FURMATC /75,94 MATRIX G)/)‘

DU 132 [=21,NE

PRINT 105(GC1sJ)5J=1,NU)

PRINT 13

FURMATC( /7598 MATRIK Ps/)
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UU 133 I=4,NY

PRINT 405(P(Lled)sd=1sNY
PrRINT 14

FURMATC//759H MATRIX WUs/)
J0 134 1=1,NY

PRINT 120,(QC1,J)sd=1sNeg)
PRINT 1v

FORMATC/ /594 MATRIX R»/)
DU 135 I=41,NY
PR};\T‘1[;)(?;3(1»\)))\,‘:1)%\5'0)
FORMAT(L0E14.3)

J9 din I=1.NE
SJ 1n J:l)Ni’_:
AMOT,d)=e(153)

P A=3d
i3=580
DELTA=0RANK
INVRT=U0
IRANK=1
IPS=i

SAabl M EAaxT(AMNESNES Qs INVRT, IVQA\JK)IPb)UELTA)ll\’ldyldf’_—.lll)\}bt‘ﬂ)

SR INT 17, IRANK

FORMAT(/ /522 THE RANK OF MATRIX E£E=,12)
SRINT 18

FURMAT( /7,330 THE LINEAw INDEPENDENT RUWS UF E5/)
U 19 [=1,NE

IF(ISETACLY=1) 205,21,20

ICOuUNTCID=1

SU TU 19

ICOUNTC(TI D=0

COnNTINUE

PRINT 22, (ICOUNT(I)s1=1sNE)
FORMAT(4U13) .

PRINT 23

FORMAT(//»37H THE LINEAR INDEPENDENT CULUMNS OF Es/)
U0 24 [=1,NE

IF(JBETACL)Y)) 25,26525

ICOUNT(L)=1

G0 TO 24

ICOUNT(T =0

CUNTINUE :

PRINT 22, (ICOUNTCI ) I=1sNED)

COMPUTE MATRIX K=LINEAR TNDEPENDENT COLUMNS OF &

NI=U

U 25 I=i,Nc
IF(JSeETACT)) 295,285,229
Nl=N|+1

DO 30 J=1,NE
AK(JsNII=ECJs 1)
CONTINUE
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PRINT 31
FORMAT(//»43H THE RESULT OF THE RANK FACTURIZATIUN E=Kul,/)

PRINT 32
FURMAT( Y MATRIX Ks/)
o0 136 =1, NE

PrINT 40, (AK(I,J)sd=1sN1)

CUMPUTE THE PSEUDO INVERSE JF K
D0 33 I=1,nE

DO 33 J=LisNI

AMCUs 1)=AaK(Tsd)

CALL UMATPROD(AM,AK,BM, NI NE,NT30,305,30,3U0,30,30)

CFCINVRTH1) 36537530

PRINT 38, INVRT

FORMAT(//»48H TrE INVERSION OF K(TRANSPOStu)#=K FALLED INVRT=512)
GG 70 12u

CONTINUE

CALL DMATPROD(SM»AM»CM, NI, NI, NE»,30,30,30,30,30,30)
COMPUTE L=K(PSEUDU) =K
CALL DMATPRUD(CM,E»BMsNIsNE,NEs30,30,30,30,30,30)

PRINT 43

FORMATC(//9H MATRIX Ls/)

00 205 I=4,41

PRINT 10,(HM(IsJd)sd=1sNE)

PRINT 44

FORMAT(//5234 THE PSEUDOINVERSE OF Ks/)
00 437 I=41,N1

PRINT 10,(CM(1sJ)sJd=1sNE)

COMPUTE K(PSEUDU) =K

CALL\DMATPROD(CM,A&,E;NI,NE;NI;3D.JU;60;$U;$U;3D)

PRINT 202
FORMAT(//548H MATRIX K(PSEUDD)#»K SHOULD EQUAL THE UNIT MATRIX,/)
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DO 138 I=1,n1
136 PRINT 10 (E(TsJ)sJd=1sNI)

COMPUTE K=K(PSEUDO)
CALL DMATPROD(CAK,CMsEsNE»NEsNE»305,30,30,305,30,30)

CUMPUTE (I=K=2K{PSEUDO))

DY 47 l1=1,NE

47 E(III):E(I)l)"iG
CU 48 I=L1lsNt
00 44 J=1,NE

48 ECI,Jd)=~c(1sd)

COMPUTE (1=-KaK({(PSELUDU))nF

CALL OMATPRUDCE »F s AMSNE»NE »NE»30,30,30,30,30,30)

PRINT 151

154 FORMAT(//,25H MATRIK (1=-KaK(PSEUDU))®F,/)
00 152 I=s1,nE

PRINT 10, (AMCI,J)sJ=1,NE)

[
Ut
o

COMPUTE (J=KaK{PSEUDO)) =G
CALL DMATPROD(E »GoUM,NESNE,NU,30,30,30,105,30,30)

PRINT 153
153 FORNMAT(//»250 MATRIX (I-KaK(PSEUDU))®Gs/)
JU 154 [=1,N&
154 PRINT 20,C0DMCIsJd¥sJd=1NU)
U0 51 I=1sNE
U0 54 J=1,NE
51 AK(I:.Jd)=AMC1,J)

TEST THE RANK OF (1=KsK(PSEJDO))I=F

14=3y
JELTA=DRANK
INVRT=D
IRANK=1
[P5=y

CALL MIARTCAM»NESNE»Us INVRT» IRANK s IPS,DELTA» LA, B IBETA,JBETA)

MTEST=NE=NI
IFCIRANK=NTEST) 52,535,535
50 PRINT Sd, IRANK,NTEST
54 FORMAT(//,45A FALLURE THE RANK OF (I=-K*K(PSEUDO))*F EQUALS, 13, 13H
11T SHOULD 8E,13) '
00 55 I=1,NE
IFCISETACT)=1) 57,565,57
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56 1C0UNT(I)=1
GU TO 55
57 ITCOQUNT(T)=0
55 CONTINUE
PRINT 58
55 FORMAT(//5,49H THE LINEAR [NOEPENDENT RUWS UF ([~K*K(PSEUDUII®E /)
PRINT 225 (ICOUNTC(I s 1=1sNE)
GO TU 124
53 CONTINUL

COmMPUTE L
(I-KeK(PSEUDU))I=F-

Ul 59 I=1,N]
U0 59 J=1,nNE

54 AM(UI,Jd)=8M(1,J)
JU 60 I=41s.NC
20 o5 J=1snNE
NM=ERNT+]

60 AM(NM, JI)=AK{1,J)

TEST THE RANK OF L
([=KaK{PSEUDU) I»F

Catt MIA&T(AM,NM,NiyU,INVHT,IRANK:IPS,UELTA;lA;IHyIdLIA;JbE{A)

IFCIRANK=NE ) 615,672,01
61 PRINT 63, IRANK,NE
63 FORMAT(//s47H FALILURE THE RANK OF Lo l=Kak{PSEUDU) ) 2#F EUWUALS» 13519
14 1T 3A0ULD BESIS)
NT=nNgZ+nNT
J0 o4 1=1,NT
IFCIBETACI)I=1)655606505
60 1COUNTCI)=1
50 TO 64
65 1COUNT(I=0
64 CONTINUE

PRINT o7
67 FORMAT(//,51H THE LINEAR INDEPENDENT RUWS UF;L;(I—K*K(PSﬁUDU))$F,/
1) ! A
PRINT 22, (1COUNTCTI)» I=1sNT)
GO Ty 120

62 CUNTINUE
COMPUTE L(TRANSPOSED) =L
DO 68 I=i,nNI
DO Off_' J=1sNE

68 DM(Js 1 )=gM(1,J)

CALL DOMATPRUD(DM»BM» AM,NE, NI, NE»30530530530530530)
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CUMPUTE LITRANSPOSED ) oL +F( TRANSPOSED ) »( [=K#K(PSEUDO) )k

00 74 1=1isNt&
)O 71 J=1,NE
71 3M(dsD=r(l,J)

CALL DMATPROD(BM,AK,EM,NE,NE,NE,30530,30,30,30,30)

D0 74 1=1,NE
U0 74 J=1,NE
74 tM(II\.}):A"%(II\))“'EM(IP\J)

PRINT 75
75 FORMATC//»33H MATRLIX LTaL+FTe(I=-KaK(PSEUDU))I#F,/)
UU 139 I=1,NE
139 PRINT 10, CEM(I,J)sJ=1eNE)

ComMPUTE (L(TRANSPOSED)*L+F(TRANSPOSEU)*(l“K*K(PSEuUU))ﬁF)(INVtRSﬁ)

14a=30
IR3=30
DELTA=01INY
INVRT=1
IRANK=(
{Ps=0

CALL MIAKT(EM:NE;NE:U;iNVRTpIRANK:lPS;UELTA:lA’IB;iBEIA;JBEiA)

IFCINYRT+LY 76577576
77 PRINT 78 »INVRY
78 FORMAT(//5%6Hr FAILURE (L(THANSPOSEU)*L+F(fRANSHUSEU)ﬂ(I“K*K(PSEUUU)
1)2F)CINVERSE) IS SINGULAR INVRT=,12)
GO Tu 129
76 CONTInNUL

COMPUTE FCTRANSPOSED ) #( [=K#K(PSZUDO))

CALL DMATPROD(BM,E»AMs NEsNEsNE»30530,30,30,30,30)

call DMATPROU(EM;DMpAKpNE;NEleyﬁU,JO)SOrJUréﬂ)JU)
CALL DWATPHUD(F)AK:UM;NE;NE:NIr30;50:30,50150160)
CalLl DMAfPROD(CM)DM!tINI!NE)NIr\SU)JUJ\SD)\SU)éUJ'}U)
00 87 I=1,NI
DO 87 Jd=1»N1

87 E(IsJ)==E£(1,J)

CUMPUTE PCINVERSE)
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90
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96

162

Ta=10
I8=10
DELTA=DINY
INVRT =1

TR ANK=(
1PS=9

CALL MIARTLP,NYNY, 0, INVRT, IRANK, [PS,DELTA» TA» IH, IBETA»JBETA)

FFCINVRT L) 88,89,88

PRINT 90, INVRT

FORMAT(//,29H FAILURE P 1S SINGULAR INVRT=,12)
GO0 TO 120

CONTINUE

PRINT 91 -
FORMAT(//,148H MATRIX PCINVERSE)»/)

DO 14D I=1,NY

PRINT 105 (PCLIsJ)sJ=isNY)

COMPUTE P(INVERSE)#Q

CALL DMATPRUD(P,0,0MsNY,NY,NE,10,10,10530,30,30)
COMPUTE ©

CALL DMATPROD(DM, AKs8MsNY»NE,NI»30530530530530530)

DU 96 I=1,NY

D0 96 J=1,NI
Ml Jdi==3M0]15J)
COMPUTE 4

CALL DMATIPRODCEMsAMs AKSNEs NEsNE»3Us305,30,30530530)

CALL DHMATPROD(F ,AK EMNE ,NESNE, 30,30,30,3U05,30,30)

U0 102 I=1i,nE
’C:M( Teld)=eM(lsI)=-1,

CALL DMATPROO(CM,EMs AM,NL, NE»NE, 30, 30,30, 3U0,30,30)
CALL OMATPRUDCAM» Gy CMaNT s NE,NU» 305305305105 30530)
COMPUTE U

CALL DMATPROGCAK»GsAMs NEsNEsNU» 30, 80,30,10530530)
CALL OMATPROD(DM, AM»AK,NY»NE,NU» 30530, 80530,30,30)
CALL DHATPROD(P Ry AM,NY,NY,NU»10,10,10510,30530)

L]

DO 413 I=1,NY
U0 113 J=1,nNU

B7
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144
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CM(T,Jd)=ak(l,J)=AM{1I5J)
PRINT THE rRESULT

PRINT 1414

FORMATC//»16H SYSTeM MARTICESS/ /),

PRINT 11>

FORMAT(9r MATRIX A,/7)

00 141 [=1,N1

PRINT 10,(EC1,Jd)sJd=1,N1) .
PRINT 110

FORMATC//50H MATRIXK Hs/)

DO 142 I=1,N]

PRINT QU (CMUI»Jd)sd=1,0U)
PRINT 117

FORMAT( /7,9 MATRIX Cs /)

JO 143 I=14,nNY

PRINT 10, (HM(I»,J),Jd=1sN1)
PRINT 113

FORMATC/ /75,94 MATRIXK Ds/)

DO 144 1=1,NY

PRINT 10, (OMIT»J),Jd=1,NU}
CONTINUE ‘
Go 70 109
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NUMERICAL MODELBUILDING f

K. Eklund

ABSTRACT

This paper describes a systematic modelling technique which
makes it possible to avoid many of the tedious elements that
always are involved in the modelling of industrial processes.
The technique is based on the nonlinear eguations which are
usually obtained from basic physical laws. It gives a syste-
matic procedure to compute steady-state solutions and linea-
rized equations from the nonlinear physical equations. The
procedure 1is based on wellknown methods for solving nonlinear
equations and numerical differentiation. The final result is

a system description on state space form S(A,B,C,D). The essen-
tial difficulty is to find the smallest number of state variab-
les and to assign these to the linearized model. A method for
solving this problem is the main result of the paper. The pa-
per also contains an application of this method to the model-

ling of a boiler.

+Thi8 work has been supported by the Swedish Board for Technical
Development under Contract 68-336-f.
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1. INTRODUCTION

It is a very tedious work to establish a linearized mathematical
model of an industrial process of some complexity. Even if basic
physical laws are applicable it can be extremely laborious to
compute the steady state values and to linearize the equations.
In particular if we take into account that is is often highly
desirable to develop linearized models for different operating
conditions and to investigate the sensitivity of the model to
physical parameters. It is also very difficult to check the
linearized equations even if the basic equations themselves of-

ten are quite easy to check.

I+ thus seems rather attractive to develop an algorithm which
enables a digital computer to perform-all the:tedicus work. Such
an algorithm is proposed in this paper. We start with the basic
nonlinear equations and proceed to compute steady state values
and linearize. The final result is a system description on state
space form. The state space form is convenient because a large
amount of control theory uses this representation of the system
as a starting point and since important physical variables can
be retained as state variables in the final model. The procedure
is based on wellknown methods for solving nonlinear equations
and numerical differentiation. The only difficulty is to assign

the smallest number of state variables to the linearized model.

A method for solving this problem is the main result of the paper.

The procedure is outlined in section 2. The proof of the theorem
given in section 4 requires some knowledge of the concept of
pseudo inverses. In section 3 we give some relevant properties
of the pseudo inverse. A method to find the smallest number of
state variables and to assign these to the linearized model is
presented in section 4. The main result Theorem 1 is contained
in this section. In section 5 we give an alternative formulation
of some conditions of Theorem 1. The assignment of state variab-
les is not unique. In section 6 it is discussed how this non-
uniqueness can be exploited to choose state variables that are
physically significant. In section 7 the reduction technique is

used for the modelling of a drum boiler.




2. A SYSTEMATIC MODEL REDUCTION TECHNIQUE

To establish a mathematical model of an industrial process it

is often convenient to divide the process into a number of com-
ponents. These components are treated separately. A set of equa-
tions which describe the dynamic and static relations between the
inputs and outputs for each component are derived. The components
are linked up with a number of internal variables which might be
of secondary interest. This technique simplifies the derivation
of the basic equations but introduces a number of auxiliary vari-
ables, see e.g. Analysis of Discrete Physical Systems by Koenig
et al {5}. The resulting mathematical model is usually a set of
nonlinear equations which include both ordinary and partial dif-
ferential equations. Partial differential equations are approxi-
mated by finite differences in the space co-ordinates. We also
assume that the system has constant coefficients. The system be-
haviour for small disturbances about an equilibrium state is of-
ten of great interest. This behaviour might be described by the
linearized system equations. Thus if we require the resulting
model to be a set of linear ordinary differential equations the

following systematic approach is proposed.

e The process is described by basic physical laws such as
the laws of conservation of mass, energy and momentum.
The resulting set of equation is
F(v,v,u) = O (2.1a)

0 (2.1b)

where f is an fL-vector whose components are nonlinear func-

gly,v,u)

tions of the variables Vi thelr time derivatives and the
process input variables us. g is a k-vector whose components
are nonlinéar functions of the variables Vi, Us and the
process output variables y;- The input vector u and the out-
put vector y are identified and treated separately already
at this stage. All other variables are included in v. The
set of equations is consistent if the number of variables

v equals & and if y is a k-vector. Wé can always assume
that the vector f does not depend on dH/dt because we can

then introduce a new input variable u = du/dt.




The steady state values are obtained if we put time deriva-
tives equal to zero in equation (2.1) viz.

f(v,u) = 0 (2.2a)
gly,v,u) = 0 (2.2b)
Given the steady state values u® of u equations (2.2a), (2.2Db)
determine the steady state values v® and yo of v and y res-
pectively. The zero solutions of the nonlinear equation (2.2)
are obtained by standard techniques e.g. a Newton-Raphson
method. Other methods are found in {1},{2},{6},{7}.

Linearize equation (2.1). We get

Ev + Fv + Gu = 0 (2.3a)
Py + Qv + Ru = 0 (2.3b)
where
= £:00,v°,u") {2 x 1)
F o= fv(O,vO,uo) (e x 2}
G = fu(O,vO,uO) {2 x 2}
P = gy(yo,vo,uo) {k x k!
Q = gv(yo,vo,uo) {k x 2}
R = gu(yo,vo,uo) {k % m!

The perturbed variables that is the differences v—vo, y—yo

and u-u® are denoted as the variables themselves. The matrices
of first partial derivatives of the vectors f and g with res-
pect to ;, v and u and y, v and u respectively are obtained

by numerical differences.

The linearized set of equations (2.3) is reduced to state
space form S(A,B,C,D).

dx = Ax + Bu
dt
y = Cx + Du (2.4)

where x% is the state n-vector, u is the input m-vector and
y is the output k-vector. A,B,C and D are matrices of pro-

per order.

The problem of reducing equation (2.3) to state space form
is to find the smallest possible number of state variables
and to assign these to the model. A method which solves this
problem is the main result of the paper and is presented in
the following section.

If the transfer function representations are needed these

are easily obtained from eguation (2.4) using standard me-

thods, see e.g. {8}.




3. PSEUDO INVERSE

The proof of the reduction theorem given in the following sec-
tion requires some knowledge of the concept of pseudo inverses.
Therefore we give some relevant properties in this section. A
detailed presentation is found in e.g. Estimation Theory by

Deutch {31}.

Every matrix A{m x r} of rank n > 0 has a rank factorization of
the form
A{m x r) _ B{m X n} C{n x 1} (3.1)

where both B and C have rank n. The pair of matrices B and C are
not unique. The requirements are that the columns of B form a
basis for the column space generated by the columns of A. C is
then chosen to satisfy (3.1). The pseudo inverse of A is now de-
fined as

At = cTeeeTy-t 8Tyt BT (3.2)

Some of the properties are:

1. For any matrix A there always exists a unique pseudo inverse.
2. The rank of A+ equals the rank of A.

3. If A is quadratic and nonsingular INDE A—l

v, aHt = a

5. aAta = A ana atant = At

5. (aaT?2 = aat and ata)? = ATA. That is AAT and ATA are

projections.

+ + . .
7. AA and A A are symmetric matrices.

Further we have

+ T

3Tyt B
cTeeeTy-1

C+

1"

where B and C are the same matrices as in (3.1).

We will also use the following rank properties of the pseudo
inverse. Let T be a m x n matrix where n is the rank of T and

m z n.




+
Lemma 1. The rank of the matrix TT 1s n.

Proof: The rank of T and T+ equals n. We have according to 5
above

(TT+)T =T

Then

o(T) = n < min (p(TT'), p(T))
where p(T) denotes the rank of T.
We also have

o (TTT) < min (p(T), o(T'))

Thus

p(TT+) = n

Lemma 2. The rank of the matrix (I—TT+) is m-n
Proof: We have

o ((I-TT") + TT') 5 p(I-TT') + o(TT")

or

o (I-TTT) 3 o0(I) = o(TT") = m-n

\

and

(I-TT )T

0

The last equation implies that the dimensions of the range space

of (I—TT+) is less than or equal to m-n. Thus
0 (I-TT") = m-n

Tntroduce the notations R (T) and # (T) which stand for the range
space and the null space of the matrix T respectively. Then we

also have

Lemma 3. B (T) = A (I-TT)
Proof: We have

(I-TTHYT = T - TT'T = 0
Hence

tiéQA/<I-TT+> i=1,...,n (3.3)




where t, is the i:th column vector of T. According to Lemma 2

we have
+
p(I-TT ) = m-n

. + .
The dimension of the null space of (I-TT ) is then n. The vec-

tors ti, i=1,...,n are linearly independent and span the range
space of T. Thus

R (T = S (I-TTD)




4. REDUCTION OF LINEARIZED SYSTEM EQUATIONS TO STATE SPACE FORM

Before the theorem is stated it is convenient to have a look at
the structure of equation (2.3). It is immediately clear that the
number of state variables at most equals the rank of E. If the
rank of E equals % the number of state variables is 2 and equa-
tion (2.3a) can be solved directly using the inverse of E. The
reduction to standard form is in this case trivial. However, in
general the rank of E is less than % and greater than zero. This
is a consequence of two facts. Static relations between the variab-
les v and u, create rows of zeros in E. The number of time deri-
vatives introduced might exceed the rank of E. That is we have
additional static relations between the variables v, and u. which
are not quite apparent. In the boiler application, section 7,

the matrices of equation (2.3) are given in Table 1. Inspecting
matrix E we find that E has dimension 9 x 9 and that the rank

maximally equals six.

If the inverse of P does not exist one or several of the outputs
are a linear combination of the others. The linear dependent out-
puts may be excluded by computation of the linear independent rows
of P. However, physical insight usually permits uz to avoid this
problem and there is no loss of generality if we assume that the

inverse of P exists.

Theorem 1

Given a linear dynamic system with constant coefficients described

by
Ev(t) + Fv(t) + Gu(t) = 0 (4.1a)
Py(t) + Qv(t) + Ru(t) =0 (4.1b)

where v(t) is an #&-vector, u(t) is an m-vector, y(t) is a k-vector
and E,F,G,P,Q,R are matrices of proper order. Assume that the rank
of Eis n, 0 < n ¢ 2. The rank factorization of E then is

ple x 23 _ {2 xn} {nx ¢} (4.2)

where the matrices K and L both have rank n. If

(i) o ((T-XKM)F) = 2 - n
(i1) R 1-xxHey N Ry = o




then the state space form of the linear system (4.1) is

() = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (1.3)

where the state n-vector is

x(t) = Lv(t)

and

A= kKT o+ plaroxxkhypy T

B = kKirnTn + Frr-xxHey -k - 116
c = -prorTL + Fher-xxkhHyey LT

p = p it + Frer-xkHer el ok ye-ry
Proof:

The problem we have stated can be formulated as: Prove that there
exists a unique solution to the differential equation (4.1) and

that this solution is given by equation (4.3).

Before the arguing is started we will write down, quite formally,

some equations. Combining (4.la) and (4.2) we get

KLv + Fv + Gu = 0 (4.1)
Introduce the n-vector x and set

x = Lv (4.5)
The equations (4.4) and (4.5) then give

Kx = - (Fv + Gu) (4.86)

To prove the existence of a solution to (4.6) we must show that
the vector (Fv + Gu) lies in the column space of K or equivalently

that

(Fv + cw € & (10 (4.7)
Using Lemma 3 equation (4.7) can be replaced with

(Fv + Gu) € A (I-KK") (4.8)
where

kb e Tt KT

By definition equation (4.8) is true if




(T-xk ) (Fv + Gu) = 0 (4.9)
or
(r-xxHrey = - (1-xx"Heu (1.10)

Thus if (4.10) holds the solution of (4.8) 1is
x = -K'Fv - x'au (4.11)

Rewriting (4.5) and (4.10) as one equation we get

L X
+ v = + (4.12)
(I-KX )F - (I-XK )Gu
or
TV = 7 (4,.13)

To prove the existence of a unique solution to (4.12) we must
show that the vector z lies in the column space of T and that
the rank of T equals &. The vector x by definition lies in the

column space of L. If condition (i) holds then

2 1-xxt = R a-xxHE) (4.14)
Hence
A (1-xxHe) < & 1-xxHT) (4.15)

. . . +
which implies that the vector (I-KK )Gu belongs to the range space
of (I—KK+)F. Then the vector z lies in the column space of T and
a solution of (4.12) exists. If condition (ii) holds then the rank

of T equals ¢ and the solution is unique.

The proof of the theorem can now be carried out in the following
manner. Take an arbitrary vector x(tl) and input vector u(tl).
Then using (4.15) we can always find a vector v(tl) such that
(4.10) is satisfied. This vector v(tl) is uniquely determined
by (4.12) if also condition (ii) of the theorem holds. The so-
lution of (4.12) is obtained using the pseudo inverse of T. Also

using the fact that (I—KK+) is a symmetric projection we get
n v
v(tl) = Ax(tl) + Bu(tl) (4.186)

where

LT+ P roxxMHey LT

T+ Prer-xxkHer e ok he

we >
"

1




Now equation (4.11) uniquely determines the derivative of x(tl).

Using (4.16) we get
. 0" + v +
X(tl) = -K F AX(tl) - (KT B+ KG) u(tl) (L.17)

Certain linear combinations of the derivatives of the variables
vi(tl) are uniquely determined by (4.5). Differentiating (4.5)

we get
Lv(tl) = x(tl) (4.18)

Since there are some static relations, given by (4.10), between
the variables vi(tl) and ui(tl) the derivative of v(tl) is uni-
quely determined only if we also have the derivative of the in-

put vector u(tl). This also féllows if (4.16) is differentiated.

Thus given arbitrary vectors x(tl) and u(tl) we have shown the
existence.of a unique vector v(tl) and n unique linear combina-
tions of vi(tl) which satisfy the original differential equation
(4.la). The last statement follows if (4.18) is substituted into
(4.6).

The solution of (4.l1a) in the interval (tl,tz) for an arbitrary
input vector u(t) is obtained by integrating (4.17) with the
initial value X(tl). Using (4.16) and (4.17) and the arguing above
this solution will satisfy the original equation (4.la) in the

whole interval (tl,tz).

When (4.1b), (4.16) and (4.17) are combined the state space form
of the original set of equations is obtained and the theorem is

proved.

Notice that the theorem does only supply a solution to the reduc-
tion problem when the number of state variables equals the rank
of E. Notice also that all static relations between the variables

v, and u, are given by equation (4.10).




5. CHECK OF CONDITIONS

An algorithm which performs the rank factorization of the matrix
E is a necessary subroutine of the reduction program. It is then
convenient to formulate the conditions as rank conditions. Condi-
tion (i) is already on a suitable form. If condition (i) holds

condition (ii) is eqguivalent to that the rank of T equals %. Hence
(i) o((I-KK)F) = 2 - n
(1) o (T) = 2

where the matrix T is defined by equation (4.13). The conditions

should be checked in the listed order.




6. CHOICE OF STATE VARIABLES

The state variables are given by

x = Lv

The matrix L is not uniquely determined but L is chosen to satis-
fy

E = XL

where the column vectors of K form a basis for the vector space
generated by the column vectors of E. In this section we will in-

vestigate if this non-uniqueness of L could be exploited to get

a simple physical interpretation of the state variables.

The wvariables v, do often have a simple physical interpretation.
It seems then attractive to retain these variables as state variab-
les. Let E be arranged so that the n first columns of E are linear-
ly independent. Assume that s is the largest number of variables

v. which can be retained as state variables viz.

1

X, =V
1 1

Xy =V

X_ =V S £ 1
S S

The matrix L can then be partitioned as

|
BRI
L - _____4____
bo1 1 Boo
where
Lll = T {8 x s}
le =0 {s x (L-8)}
Loy {(n-s) x s}
L22 {(n-s) x (24-3)}

However, in general the number s will equal zero. To show this

let

E = [e e v, € e

1 2 n n+l " °° 2




where e. is the i:th column vector of E. The vectors €15 +oes €
are linearly independent and € 41> v €, are linearly dependent.
Assume
n
e 41 T ‘% Aji ey i=1,2, ,&-n (6.1)
3=1
where
Aji+0 ¥ i,]
and that no directions of vectors €15 «evs € coincide. Let
kl’ ces kn be an arbitrary basis for the column space generated
by €5 rvs €. Then the rank factorization of E may be written
as
e e ST KA B St | R
oo S O PN B OO | P Y
I | 21 22
(6.2)
where the submatrices of the partitioned matrix K have the di-
mensions
Ky {s x s}
Kiy {s x (n-s)!
K, {(e-8) % s}
Ky {(2-8) x (n-8)!

Evaluating equation (6.2) we get

K + K,,L

|
re o o e e e 1 = 11 12721 ; 12722
1o eey N ERCELTR A
|
Koy + Koolpy | Kooloy
The identity above implies
[es+l"'en en+l"'e%] = [ks+l"'kn]L22 (6.3)

There are still n linearly independent column vectors in the left
hand matrix in (6.3) since we assumed that Aji $ 0, ¥ i,3 and

that e ., €, were in pairs linearly independent. The right

1’ 2
hand matrix has maximally n-s linearly independent column vectors.
Equation (6.3) thus gives s = 0. This means that there is in ge-
neral no especially favorable choice of the state variables avai-

lable.




A natural way to constitute a basis for the column space of E
is to choose the linearly independent columns of E as a basis.

The rank factorization of E then is

_ i
E = K[ngLz] (6.4)
where
K = [el ce en]
Ll = I {n x n}
L2 {n x (2-n)}
The submatrix L, gives the coefficients of the expressions which
constitute the 2-n linearly dependent column vectors €41 s Sy

of E. Using the notions of (6.1) we have

_ T co
)y = Dhgy oo AL i =2 1,2,...,%-10

(22
where (22)i denotes the i:th column vector of L2. If the linear

N+l tco €y 18 not as elaborate as

indicated in (6.1) but e.g. only one of the vectors e

dependence of the vectors e

1° ...,en,

1° n+1? tt o ez then the choilce

(6.4) creates rows of zeros in the submatrix L, except in the

say e is needed to establish e

row corresponding to e Considering that we have no especially

1
favorable choice of state variables available it seems attractive

to use the choice of (6.4).




7. APPLICATION TO A BOILER MODEL

In this section we will give an application of the reduction pro-
cedure to a practical problem. We will consider a drum-downcomer-
riser loop of a drum boiler for a power station unit of approxi-
mately 150 MW. The drum pressure is 140 bar and the outlet steam
temperature 530 °C. The derivation of the basic nonlinear equa-
tions, computation of steady state values and linearization re-
sult in the matrices E,F,G,P,Q,R. The derivation of these results
as well as a FORTRAN program for the computations are documented
in Linear Mathematical Models of the Drum-downcomer-riser Loop
of a Drum Boiler by the author {4}. The complete output of the
FORTRAN program which computes the matrices of the state space
form given the matrices E,F,G,P,Q,R is presented in Table 1.

The table also includes some intermediate results. The matrix
KK which should equal the unit matrix is used to check the

+
accuracy of K .

The components of the vector v correspond to the following phy-

sical quantities:

rpd the drum pressure B
N the drum ligquid level
T, the drum liquid temperature
T, the riser tube temperature

v o= X the steam quality
W the riser outlet flow
W the downcomer flow
W, the evaporation flow
Q. heat flow from the risers to the
steam water mixture ]

The input variables are:

Qg heat flow to risers
u = W feedwater flow
fw

wS steam outlet flow

and the output variables are:

Pg the drum pressure

y the drum ligquid level




Inspecting the matrix E we find that the two last columns of E
equal zero. All other columns have non-zero elements. The column
vectors six and seven of E have non-zero elements only in the
second row and consequently they are linearly dependent. The

rank of E maximally equals six and we have the interesting si-
tuation when the number of time derivatives of the variables v
exceeds the rank of E. The time derivatives of the riser outlet
flow and the downcomer flow which correspond to the non-zero ele-
ments in columns six and seven arise from momentum equations for

the riser and the downcomer.

Both conditions of Theorem 1 are satisfied in this case and the
reduction is successful. The computed rank of E equals six. In
section 6 we found that in general the non-uniqueness of the rank
factorization could not be exploited for a favorable choice of

the state variables. However, if the linear coupling between the
columns of E was not too elaborate we could choose K as the linear-
ly independent columns of E and get a quite simple form of L.

This choice is used in the reduction program and in the boiler
application K will equal the first six columns of E. Using the
pseudo inverse of K the matrix L is computed to satisfy the equa-

tion E = KL. The state variables are given by the matrix L. We

get

Xlzvl

2 TV

X3:V3

Ty

*5 ~ Vs

Xg = Vg + 2.656 Vo

and we have a simple physical interpretation of the state variab-

les.

Equation (4.10) gives all static relations between the variables
v, and u.. A successful reduction requires p((I—KK+)F) = %2-n. This
rank equals three and consequently the number of static relations
between the variables us ind Vi is thrie. These relations are gi-
ven by the matrices (I-KK )F and (I-KK )G in Table 1. The origi-

nal linearized equation contains two apparent static relations




between the variables \ and us which are found in the fourth
and ninth rows of F and G. These relations are refound in the
fourth and ninth rows of (I—KK+)F and (I—KK+)G. The third sta-
tic relation is given by any of the rows 1,3,7,8 of (I—KK+)F
and (I~KK+)G. These four rows are in pairs linearly dependent.
The existence of the third static relation is a consequence of
the fact that the number of time derivatives of the variables
vy exceeds the rank of E and primarily of the assumptions made

when basic physical laws were applied to the process.

Inspecting the system matrices A,B,C.and D we find that D equals
zero and that the two outputs equal the first two state variab-

les as expected.

Several elements of A and B also approximately equal zero.
However, some caution must be observed when approximating since

the variables have true physical dimensions.

If the reduction is made manually it is indeed a very tedious
work. It is therefore believed that this algorithm represents

a very attractive solution to the reduction problem.




8.
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