Lund University

Doubly ionized thorium: Laser lifetime measurements and transition probability determination of interest in cosmochronology

Biemont, E; Palmeri, P; Quinet, P; Zhang, Zhiguo; Svanberg, Sune
Published in:
Astrophysical Journal

DOI:
10.1086/338700

2002

Link to publication

Citation for published version (APA)
Biemont, E., Palmeri, P., Quinet, P., Zhang, Z., \& Svanberg, S. (2002). Doubly ionized thorium: Laser lifetime measurements and transition probability determination of interest in cosmochronology. Astrophysical Journal, 567(2), 1276-1283. https://doi.org/10.1086/338700

Total number of authors:
5

General rights

Unless other specific re-use rights are stated the following general rights apply
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

DOUBLY IONIZED THORIUM: LASER LIFETIME MEASUREMENTS AND TRANSITION PROBABILITY DETERMINATION OF INTEREST IN COSMOCHRONOLOGY

E. Biémont, ${ }^{1,2}$ P. Palmeri, ${ }^{2}$ P. Quinet, ${ }^{1,2}$ Z. G. Zhang, ${ }^{3}$ and S. Svanberg ${ }^{3}$
Received 2001 August 7 ; accepted 2001 November 15

Abstract

The first lifetime measurements have been performed for six levels of doubly ionized thorium, an important cosmochronometer in astrophysics for estimating the age of the Galaxy. The levels, belonging to the $5 f^{2}, 5 f 7 p, 7 s 7 p$, and $6 d 7 p$ configurations of Th iII, have been measured by the time-resolved laserinduced fluorescence method and compared with relativistic Hartree-Fock calculations including configuration interaction and core-polarization effects. Taking advantage of the excellent agreement between theory and experiment, a first set of transition probabilities of astrophysical interest has been deduced for this ion from a combination of the experimental lifetimes and of the theoretical branching fractions.

Subject headings: atomic data - line: identification - methods: laboratory - stars: peculiar

1. INTRODUCTION

Doubly ionized thorium (Th III) has a complex electronic structure, and its ground state is $5 f 6 d^{3} H_{4}^{o}$. Among the 12 isotopes and isomers of thorium, only ${ }^{232} \mathrm{Th}$, which is characterized by a half-life of 14.05 Gyr , occurs in the solar system. The other isotopes are short lived, with the exception of ${ }^{230} \mathrm{Th}$, which has a half-life of $8 \times 10^{4} \mathrm{yr}$.

In astrophysics, the age of a star can be determined by the use of a radioactive isotope of sufficiently long lifetime, and two such isotopes are frequently considered in cosmochronology: ${ }^{232} \mathrm{Th}$ and ${ }^{238} \mathrm{U}$, which has a half-life of 4.47 Gyr. The abundance patterns in metal-poor halo stars, which are very old, provide some records of the first generations of Galactic nucleosynthesis.

Thorium has frequently been used in the past as a cosmochronometer because its most intense transition (Th II) at 401.9 nm is rather easily accessible (visible range). It has been detected, e.g., in the ultra-metal-poor halo star CS 22892-052 (Sneden et al. 1994, 1996; Cowan et al. 1997) in the framework of the investigation of the third r-process peak elements in some halo stars with the Hubble Space Telescope (HST), the long-lived radioactive nuclei being formed entirely in the r-process and being used to determine the age of the stars and of the Galaxy.

Among the long-lived isotopes considered in the literature, let us mention that Butcher (1987) proposed using the ${ }^{232} \mathrm{Th}$ and Nd elements to derive an age for the Galactic disk, the most abundant isotopes of Nd , taken as references, being stable. The consideration of the $\mathrm{Th} / \mathrm{Eu}$ spectral line ratios for the determination of the age of the Galaxy (see, e.g., François, Spite, \& Spite 1993) has also motivated recent efforts in the laboratory to improve our knowledge of the relevant atomic data.

These efforts, however, have been concentrated on singly ionized elements, one obvious reason being that doubly ionized atoms are more difficult to produce in the laboratory; also, knowledge of their spectra is generally more

[^0]fragmentary (see, e.g., the relevant compilations provided by the NIST ${ }^{4}$ and also Blaise \& Wyart 1992).

Up to now, no Th iII transitions have been considered in cosmochronology, mainly because of the complete lack of atomic data regarding the transition probabilities for this ion. Th III has been marginally identified in some stellar spectra (see below), but the identifications were mostly based on wavelength coincidences. Systematic identification and quantitative abundance analyses have been prevented by the lack of oscillator strengths for this ion.

This justifies the first systematic work that is reported in the present paper. More concretely, the first set of transition probabilities has been deduced from a combination of laser lifetime measurements in a laser-produced plasma and configuration interaction calculations including relativistic and core-polarization (CP) effects.

2. EXPERIMENTAL SETUP

The lifetimes of six levels of Th III were measured in the present work, with the time-resolved laser-induced fluorescence technique. They have been excited according to the schemes summarized in Table 1

The experimental setup used in our experiment is illustrated in Figure 1. Th^{2+} ions were produced in a laserinduced plasma using 532 nm wavelength laser pulses emitted from a 10 Hz repetition rate and 10 ns duration Nd:YAG laser (continuum Surelite) with variable pulse energy. Pulse energies in the range $2-10 \mathrm{~mJ}$ were normally used. The pulses were focused on the surface of a Th foil rotating in a vacuum chamber. In order to obtain the required excitation, 8 ns pulses emitted by another Nd:YAG laser (continuum NY-82) were sent to a stimulated Brillouin scattering (SBS) compressor to shorten the pulses down to 1 ns . The laser was used to pump a dye laser (Continuum Nd-60), and the DCM dye was used in the experiments. According to the excitation requirements, the second- or third-order harmonics of the dye laser were obtained employing a nonlinear optical system, including a KDP crystal, a retarding plate, and a BBO crystal, and they were used to populate three measured levels. Three additional measured levels were excited by the Raman-shifted components of the harmonics, obtained in a cell with

[^1]TABLE 1
Th iII Levels Measured and the Corresponding Excitation Schemes

Measured Level		Lower Level$\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} \lambda_{\text {exc }}(\text { AIR }) \\ (\mathrm{nm}) \end{gathered}$	ExcitationSChEME $^{\text {b }}$	$\begin{gathered} \lambda_{\text {obs }}(\text { AIR }) \\ (\mathrm{nm}) \end{gathered}$
State ${ }^{\text {a }}$	Energy $\left(\mathrm{cm}^{-1}\right)$				
$5 f^{2}{ }^{3} P_{2} \ldots \ldots \ldots \ldots \ldots$	32867.274	510.758	308.967	$2 v$	508.5
5f7p $(7 / 2,1 / 2)_{4} \ldots \ldots$.	38580.600	3188.301	282.464	$2 v+$ AS	309.8
$7 s 7 \mathrm{p}{ }^{3} P_{0}^{o} \ldots \ldots \ldots \ldots$.	42259.714	5523.881	272.133	$2 v+$ AS	272.1
$7 s 7 p{ }^{3} P_{1}^{o} \ldots \ldots \ldots . .$.	45063.970	4676.432	247.526	$2 v+2 \mathrm{AS}$	246.4
$6 d 7 p(5 / 2,3 / 2)_{4}^{o} \ldots \ldots$.	53052.47	6537.815	214.918	$3 v$	232.5
$6 d 7 p(5 / 2,3 / 2)_{2}^{o} \ldots \ldots$	53151.57	4056.020	203.619	$3 v$	234.1

Note.-AS means anti-Stokes component, and 2AS is written for second anti-Stokes component.
${ }^{\text {a }}$ From Blaise \& Wyart 1992.
${ }^{\mathrm{b}} 2 v$ means frequency doubling and $3 v$ frequency tripling.
hydrogen at 10 bars when the harmonics were focused into the cell. In the experiments, the excitation light was isolated with a CaF_{2} Pellin-Broca prism and focused by two CaF_{2} lenses at a distance of about 1 cm above the foil. The two $\mathrm{Nd}:$ YAG lasers were triggered by a digital delay generator (Stanford Research System, model 535) and the delay between the ablation and excitation pulses was adjusted by
the generator. The ions produced by the ablation pulse were excited selectively by the excitation laser beam crossing the plasma horizontally. The fluorescence, decaying from the excited levels, was imaged by two CaF_{2} lenses and concentrated on the entrance slit of a vacuum monochromator. A Hamamatsu R3809U-58 photomultiplier was used for the detection.

Fig. 1.-Experimental setup used in the Th III lifetime measurements

Fig. 2.-Typical experimental time-resolved fluorescence signal from the level at $42259.714 \mathrm{~cm}^{-1}$ in Th III. The lifetime deduced from the fit was 6.6 ns.

The time-resolved signal was recorded and averaged with a digital transient recorder (Tektronix model DSA 602), and the fluorescence decay curve was sent to a personal computer for lifetime determination. The lifetime evaluation was performed by fitting the recorded time-resolved curve from the measured level with a convolution of the time-resolved laser pulse curve and an exponential curve with adjustable parameters. The evaluation procedure has been described and tested in a previous work carried out in our laboratory (Li et al. 2000).

In order to be sure that the Th^{2+} transitions of interest were indeed studied, the modification of the fluorescence signal as a function of the delay time was investigated, the occurrence of a maximum fluorescence signal appearing at shorter delay times for Th III than for Th I and Th II ions. Possible flight-out-of-view effects were eliminated by enlarging the slit of the monochromator.

In order to avoid the recombination of the ions and electrons during the ablation process, a magnetic field was added in the plasma zone by a pair of Helmholtz coils. It was observed that the laser-induced fluorescence signal disappeared when the field was switched off and that the recombination light was strongly reduced when a field at about 100 G was applied.

In order to obtain a sufficiently high signal-to-noise ratio, a decay curve was obtained by averaging fluorescence photons from more than 2000 pulses. A typical decay curve is shown in Figure 2.

For each level measured, 6-9 fluorescence decay curves were recorded under different experimental conditions, where the delay time and intensities of the ablation and excitation laser pulses were varied. Thus, the measurements were performed for different concentrations and temperatures of the plasma. The evaluated lifetimes from the curves were found to be well coincident. This showed that there were neither saturation effects nor reabsorption or collisional effects occurring, and the final result was formed by averaging these lifetimes. The six lifetimes measured are reported in the last column of Table 2. The error bars reflect not only the statistical scattering, but also a conservative estimate of the possible remaining systematic errors. Thus, 0.2 ns was considered as an minimum error bar for any lifetimes of less than 2 ns , and any error bar must be larger than 5% for measured lifetimes of more than 2 ns , even if the statistical scattering is much less than 5% of the measured lifetimes.

3. HARTREE-FOCK CALCULATIONS IN TH III

The Th iII spectrum was first analyzed by de Bruin \& Klinkenberg (1940). Their analysis led to the subsequent publication by Klinkenberg (1950) of a comprehensive description of the spectrum of this ion. Based on infrared observations, Litzén (1974) was able to determine the position of $6 d^{2}{ }^{3} F_{2}$ relative to the ground state $5 f 6 d^{3} H_{4}^{o}$. Additional level values and the ionization limit were derived by Wyart \& Kaufman (1981) from sliding-spark spectra in the ultraviolet region. The first parametric study was performed by Racah (1950) and reconsidered by Blaise \& Wyart (1992) for inclusion in their compilation on the energy levels of the actinides. This compilation (Blaise \& Wyart 1992) contains 82 odd and 93 even levels belonging to the $5 f 6 d, 5 f 7 s, 6 d 7 p$, $7 s 7 p$, $5 f 8 s, 5 f 7 d, 6 d 6 f$; and $6 d^{2}, 6 \mathrm{~d} 7 s, 7 s^{2}, 5 f^{2}, 5 f 7 p, 6 d 7 d$, $5 f 8 p, 5 f 6 f$, and $5 f 8 p$ configurations, respectively. The NIST database ${ }^{5}$ lists only 34 transitions in the range 188.812 and 810.514 nm . The energy levels of Blaise \& Wyart's compilation were retained for the fitting procedure of the present calculation (see below). The energies and the designations of the levels involved in the present work are summarized in Table 3 for both parities ($E<85,000 \mathrm{~cm}^{-1}$).

[^2]TABLE 2
Calculated and Experimental Lifetimes in Th iII as Obtained in This Work

Measured Level		LIfetime (ns)				EXPERIMENT (7)
State ${ }^{\text {a }}$ (1)	Energy (cm^{-1}) (2)					
		A (3)	$\begin{gathered} \text { B } \\ (4) \end{gathered}$	C (5)	$\begin{gathered} \text { D } \\ (6) \end{gathered}$	
$5 f^{2}{ }^{3} P_{2} \ldots \ldots \ldots \ldots$.	32867.274	11.2	38.3	23.9	23.7	25.8 ± 1.5
$5 f 7 p(7 / 2,1 / 2)_{4} \ldots \ldots$.	38580.600	2.0	2.6	2.6	2.6	2.7 ± 0.2
$7 s 7 p{ }^{3} P_{0}^{o}$	42259.714	5.1	6.9	5.6	7.3	6.6 ± 0.4
$7 s 7 p{ }^{3} P_{1}^{o} \ldots \ldots \ldots \ldots$.	45063.970	2.5	3.4	2.2	2.9	2.4 ± 0.2
$6 d 7 p(5 / 2,3 / 2)_{4}^{o} \ldots \ldots$.	53052.47	1.0	1.5	1.0	1.4	1.3 ± 0.2
$6 d 7 p(5 / 2,3 / 2)_{2}^{o} \ldots \ldots$.	53151.57	2.4	3.2	2.4	3.2	3.1 ± 0.2

[^3]TABLE 3
Energy Level Values ($\mathrm{IN} \mathrm{cm}^{-1}$) of Th iil from Blaise \& Wyart (1992)

Odd Parity				Even Parity			
Configuration	Designation	J	Energy	Configuration	Designation	J	Energy
5f6d..........	${ }^{3} H^{0}$	4	0.000	$6 d^{2}$	${ }^{3} F$	2	63.267
5f6d..........	${ }^{3} F^{o}$	2	510.758	$6 d^{2} \ldots \ldots \ldots \ldots$	${ }^{3} F$	3	4056.020
5f7s..........		3	2527.095	$6 d^{2}$		2	4676.432
5f7s	${ }^{3} F^{0}$	2	3181.502	$6 d^{2}$	${ }^{3} P$	0	5090.057
5f6d..........		4	3188.301	6d7s......	${ }^{3} \mathrm{D}$	1	5523.881
5f6d..........	${ }^{3} H^{0}$	5	4489.641	$6 d^{2}$	${ }^{3} \mathrm{~F}$	4	6537.815
5f6d..........		3	4826.826	$6 d 7 s$	${ }^{3} \mathrm{D}$	2	7176.107
5f6d..........	${ }^{3} G^{o}$	3	5060.544	$6 d^{2}$	${ }^{3} P$	1	7875.827
5f6d..........		2	6288.221	$6 d 7 s$.	${ }^{3} \mathrm{D}$	3	9953.580
5f7s..........	${ }^{3} F^{0}$	4	6310.807	$6 d^{2}$	${ }^{3} P$	2	10440.240
5f7s..........		3	7500.605	$6 d^{2} \ldots \ldots \ldots \ldots$	${ }^{1} G$	4	10542.898
5f6d..........	${ }^{3} D^{0}$	1	7921.088	$7 s^{2}$	${ }^{1} S$	0	11961.133
$5 f 6 d$.	${ }^{3} G^{o}$	4	8141.749	$5 f^{2}$	${ }^{3} \mathrm{H}$	4	15148.519
5f6d..........	${ }^{3} H^{o}$	6	8436.824	6d7s..........	${ }^{1} \mathrm{D}$	2	16037.641
$566 d \ldots \ldots . . .$.		4	8980.557	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{3} \mathrm{H}$	5	17887.409
$566 d$.	${ }^{3} D^{0}$	2	10180.766	$5 f^{2}$	${ }^{3} F$	2	18863.869
$5 f 6 d$.	${ }^{3} D^{0}$	3	10741.150	$6 d^{2}$		0	18993.313
5f6d..........	${ }^{3} P^{o}$	1	11123.179	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{3} \mathrm{H}$	6	20770.895
5f6d.........	${ }^{3} P^{o}$	0	11232.615	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{3} F$	3	20840.488
$5 f 6 d$.	${ }^{3} G^{o}$	5	11276.807	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{3} F$	4	21783.869
5f6d..........	${ }^{3} P^{0}$	2	13208.214	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{1} G$	4	25972.172
5f6d...........	${ }^{1} F^{o}$	3	15453.411	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{1} D$	2	28232.502
5f6d..........	${ }^{1} H^{o}$	5	19009.908	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{1} I$	6	28349.961
$5 f 6 d \ldots \ldots . .$.	${ }^{1} P^{o}$	1	20710.949	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{3} P$	0	29299.515
$6 d 7 p$.........	$(3 / 2,1 / 2)^{\circ}$	2	37280.229	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{3} P$	1	30402.855
$6 d 7 p$.........	$(3 / 2,1 / 2)^{\circ}$	1	39280.863	$5 f^{2} \ldots \ldots \ldots \ldots$	${ }^{3} P$	2	32867.274
$7 s 7 p \ldots \ldots . . .$.	${ }^{3} P^{0}$	0	42259.714	5f7p..........	(5/2, 1/2)	3	33562.349
$6 d 7 p$	$(5 / 2,1 / 2)^{\circ}$	2	44088.281	5f7p..........	(5/2, 1/2)	2	34996.087
$6 d 7 p$	(5/2, 1/2) ${ }^{\text {o }}$	3	44464.958	5f7p..........	(7/2, 1/2)	3	38431.640
$7 s 7 p \ldots \ldots . . .$.	${ }^{3} P^{0}$	1	45063.97	5f7p..........	(7/2, 1/2)	4	38580.600
$6 d 7 p$	$(3 / 2,3 / 2)^{0}$	2	47679.97	$5 f 7 p \ldots \ldots . . .$.	(5/2, 3/2)	3	42313.055
$6 d 7 p$........	$(3 / 2,3 / 2)^{\circ}$	3	49980.67	5f7p..........	(5/2, 3/2)	4	43701.665
$6 d 7 p$..........	$(3 / 2,3 / 2)^{\circ}$	1	50992.57	$5 f 7 p \ldots \ldots . . .$.	(5/2, 3/2)	2	43759.222
$6 d 7 p$..........	$(3 / 2,3 / 2)^{0}$	0	51745.37	5f7p..........	(5/2, 3/2)	1	44603.100
$6 d 7 p$.........	(5/2, 3/2) ${ }^{\circ}$	4	53052.47	$5 f 7 p \ldots \ldots . .$.	(7/2, 3/2)	4	47261.099
$6 d 7 p$..........		2	53151.57	5f7p..........	(7/2, 3/2)	5	47421.939
$6 d 7 p$.........	(5/2, 3/2) ${ }^{\text {o }}$	1	53939.27	5f7p..........	(7/2, 3/2)	3	47471.48
$7 s 7 p \ldots \ldots . . .$.	${ }^{3} P^{0}$	2	55399.07	5f7p..........	(7/2, 3/2)	2	49805.94
$6 d 7 p$.........	$(5 / 2,3 / 2)^{\circ}$	3	55552.37	$5 f^{2}$	${ }^{1} S$	0	51161.63
$7 s 7 p \ldots \ldots . .$.	${ }^{1} P^{0}$	1	69001.00	$6 d 8 s$.	${ }^{3} \mathrm{D}$	1	81706.37
5f8s..........	$(5 / 2,1 / 2)^{\circ}$	2	74644.27	$6 d 7 d$	(3/2, 3/2)	1	83358.66
$5 f 8 s \ldots \ldots \ldots$.	$(5 / 2,1 / 2)^{0}$	3	74784.31	$6 d 7 d$	(3/2, 3/2)	3	83702.11
5f7d..........	$(5 / 2,3 / 2)^{\circ}$	3	78327.71				
5f7d...........	$(5 / 2,3 / 2)^{\circ}$	2	78332.73				
5f7d...........	$(5 / 2,3 / 2)^{\circ}$	4	78417.26				
5f8s	$(7 / 2,1 / 2)^{\circ}$	4	78929.56				
$588 \mathrm{~s} . . . \ldots \ldots .$.	$(7 / 2,1 / 2)^{\circ}$	3	79082.84				
5f7d..........	$(5 / 2,5 / 2)^{\circ}$	4	79329.56				
5f7d..........	$(5 / 2,3 / 2)^{\circ}$	1	79484.15				
5f7d..........	$(5 / 2,5 / 2)^{0}$	3	79646.36				
5f7d..........	$(5 / 2,5 / 2)^{\circ}$	2	79915.98				
5f7d..........	$(5 / 2,5 / 2)^{\circ}$	5	80137.22				
5f7d..........	$(5 / 2,5 / 2)^{0}$	1	80784.25				
5f7d...........	$(5 / 2,5 / 2)^{\circ}$	0	80906.30				
5f7d...........	$(7 / 2,3 / 2)^{\circ}$	4	82348.62				
5f7d...........	$(7 / 2,3 / 2)^{\circ}$	3	82827.05				
5f7d...........	$(7 / 2,3 / 2)^{\circ}$	5	83023.21				
5f7d..........	$(7 / 2,3 / 2)^{\circ}$	2	83237.74				
5f7d..........	$(7 / 2,5 / 2)^{\circ}$	4	83552.91				
5f7d...........	$(7 / 2,5 / 2)^{\circ}$	6	83962.90				
5f7d..........	$(7 / 2,5 / 2)^{0}$	5	84239.02				
5f7d...........	$(7 / 2,5 / 2)^{\circ}$	3	84374.16				
5f7d..........	$(7 / 2,5 / 2)^{\circ}$	2	84532.54				

[^4]TABLE 4
Th ii Transitions Depopulating the Levels for which the Radiative Lifetimes Have Been Measured in the Present Work

$\begin{gathered} \lambda \\ (\mathrm{nm}) \end{gathered}$	Lower Level			Upper Level			$g A^{\text {a }}$	CF ${ }^{\text {b }}$
	Energy (cm ${ }^{-1}$)	Parity	J Value	$\begin{aligned} & \text { Energy } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Parity	J Value		
188.3654..	63	e	2.0	53152	o	2.0	$7.97 \mathrm{E}+06$	-0.008
203.6190..	4056	e	3.0	53152	o	2.0	$1.33 \mathrm{E}+08$	0.464
204.0309.	4056	e	3.0	53052	\bigcirc	4.0	$1.49 \mathrm{E}+08$	-0.740
206.2254..	4676	e	2.0	53152		2.0	$1.39 \mathrm{E}+08$	-0.056
209.8953..	5524	e	1.0	53152	o	2.0	$2.35 \mathrm{E}+05$	-0.001
214.9184..	6538	e	4.0	53052	o	4.0	$1.45 \mathrm{E}+09$	-0.743
217.4392.	7176	e	2.0	53152	o	2.0	$4.75 \mathrm{E}+07$	0.016
220.8000 ..	7876	e	1.0	53152	o	2.0	$8.03 \mathrm{E}+07$	-0.191
$222.1496 .$.	63	e	2.0	45064	o	1.0	$1.44 \mathrm{E}+08$	0.202
231.4211.	9954	e	3.0	53152	o	2.0	$1.05 \mathrm{E}+08$	-0.027
231.9533..	9954	e	3.0	53052	o	4.0	$5.20 \mathrm{E}+09$	0.839
235.1692..	10543	e	4.0	53052	o	4.0	$2.70 \mathrm{E}+08$	-0.776
247.5263..	4676	e	2.0	45064	o	1.0	$5.07 \mathrm{E}+08$	-0.553
250.0878 ..	5090	e	0.0	45064		1.0	$8.69 \mathrm{E}+06$	-0.046
$252.8319 .$.	5524	e	1.0	45064	o	1.0	$3.59 \mathrm{E}+07$	0.031
259.1201 ..	0	o	4.0	38581	e	4.0	$1.09 \mathrm{E}+07$	-0.016
263.7461 ..	15149	e	4.0	53052		4.0	$1.52 \mathrm{E}+06$	0.528
$263.8581 .$.	7176	e	2.0	45064	o	1.0	$4.00 \mathrm{E}+08$	-0.267
268.8231.	7876	e	1.0	45064	o	1.0	$4.20 \mathrm{E}+07$	-0.530
$269.3607 .$.	16038	e	2.0	53152	o	2.0	$5.71 \mathrm{E}+07$	0.080
$272.1332 .$.	5524	e	1.0	42260	o	0.0	$1.32 \mathrm{E}+08$	-0.296
277.2837..	2527	o	3.0	38581	e	4.0	$8.45 \mathrm{E}+06$	-0.002
282.4642 ..	3188	o	4.0	38581	e	4.0	$3.77 \mathrm{E}+08$	-0.330
290.7487.	7876	e	1.0	42260	o	0.0	$1.96 \mathrm{E}+07$	0.752
$291.5644 .$.	18864	e	2.0	53152	o	2.0	$1.61 \mathrm{E}+07$	-0.111
$293.2471 .$.	4490	o	5.0	38581	e	4.0	$6.64 \mathrm{E}+08$	-0.497
296.1766 ..	4827	o	3.0	38581	e	4.0	$7.36 \mathrm{E}+07$	-0.033
298.2418.	5061	o	3.0	38581	e	4.0	$4.75 \mathrm{E}+07$	0.057
302.0009.	11961	e	0.0	45064	o	1.0	$5.30 \mathrm{E}+07$	-0.323
308.9670 ..	511	o	2.0	32867	e	2.0	$1.73 \mathrm{E}+07$	-0.052
309.4015..	20840	e	3.0	53152	o	2.0	$4.12 \mathrm{E}+06$	-0.433
309.7974..	6311	o	4.0	38581	e	4.0	$9.31 \mathrm{E}+08$	-0.315
310.3534..	20840	e	3.0	53052	o	4.0	$4.09 \mathrm{E}+06$	0.577
319.7172 ..	21784	e	4.0	53052	o	4.0	$4.00 \mathrm{E}+07$	0.644
321.6575..	7501	o	3.0	38581	e	4.0	$5.94 \mathrm{E}+08$	-0.212
$328.4329 .$.	8142	o	4.0	38581	e	4.0	$2.44 \mathrm{E}+06$	-0.001
329.5010 ..	2527	o	3.0	32867	e	2.0	$4.11 \mathrm{E}+06$	0.042
336.7650 ..	3182	o	2.0	32867	e	2.0	$1.92 \mathrm{E}+05$	-0.001
$337.7403 .$.	8981	o	4.0	38581		4.0	$2.82 \mathrm{E}+08$	-0.144
344.4161..	16038	e	2.0	45064	0	1.0	$8.24 \mathrm{E}+06$	-0.048
$356.5259 .$.	4827	o	3.0	32867	e	2.0	$3.17 \mathrm{E}+06$	0.057
359.1000..	10741	o	3.0	38581	e	4.0	$1.55 \mathrm{E}+08$	0.311
359.5226..	5061	o	3.0	32867	e	2.0	$2.51 \mathrm{E}+06$	-0.020
$366.1452 .$.	11277	o	5.0	38581	e	4.0	$1.69 \mathrm{E}+08$	0.274
369.1671..	25972	e	4.0	53052	o	4.0	$1.44 \mathrm{E}+07$	0.645
376.1292..	6288	o	2.0	32867	e	2.0	$7.20 \mathrm{E}+06$	-0.016
381.5696..	18864	e	2.0	45064	o	1.0	$3.73 \mathrm{E}+06$	-0.078
383.4642..	18993	e	0.0	45064	o	1.0	$9.97 \mathrm{E}+06$	0.203
394.1065..	7501	o	3.0	32867	e	2.0	$8.25 \mathrm{E}+04$	-0.001
400.7496..	7921	o	1.0	32867	e	2.0	$2.16 \mathrm{E}+06$	-0.019
401.1857..	28233	e	2.0	53152	o	2.0	$5.52 \mathrm{E}+06$	-0.048
$432.2699 .$.	15453	o	3.0	38581	e	4.0	$7.94 \mathrm{E}+06$	-0.036
$439.4618 .$.	30403		1.0	53152	o	2.0	$3.14 \mathrm{E}+06$	0.179
440.6668 ..	10181	o	2.0	32867	e	2.0	$3.25 \mathrm{E}+06$	-0.014
451.8277..	10741	o	3.0	32867	e	2.0	$2.65 \mathrm{E}+07$	0.080
$459.7662 .$.	11123	o	1.0	32867	e	2.0	$1.75 \mathrm{E}+07$	0.122
492.8546..	32867		2.0	53152	o	2.0	$1.28 \mathrm{E}+07$	0.243
508.5296..	13208	o	2.0	32867	e	2.0	$7.78 \mathrm{E}+07$	-0.248
$510.8258 .$.	19010	o	5.0	38581	e	4.0	$6.89 \mathrm{E}+07$	-0.289
512.9375.	33562		3.0	53052	o	4.0	$1.05 \mathrm{E}+05$	-0.020
550.6448..	34996	e	2.0	53152	o	2.0	$1.11 \mathrm{E}+05$	0.003
$574.0959 .$.	15453	0	3.0	32867	e	2.0	$2.94 \mathrm{E}+07$	0.225

TABLE 4-Continued

$\underset{(\mathrm{nm})}{\lambda}$	Lower Level			UPPER LEVEL			$g A^{\text {a }}$	CF ${ }^{\text {b }}$
	Energy $\left(\mathrm{cm}^{-1}\right)$	Parity	J Value	Energy (cm^{-1})	Parity	J Value		
593.9607......	28233	e	2.0	45064	o	1.0	$1.22 \mathrm{E}+06$	0.137
679.1636......	38432	e	3.0	53152	0	2.0	$1.75 \mathrm{E}+05$	0.003
681.8882.....	30403	e	1.0	45064	o	1.0	$6.92 \mathrm{E}+05$	0.406
683.7670.....	38432	e	3.0	53052	0	4.0	$5.35 \mathrm{E}+06$	-0.228
$690.8051 \ldots .$.	38581	e	4.0	53052	0	4.0	$9.37 \mathrm{E}+05$	0.026
$819.6688 \ldots .$.	32867	e	2.0	45064	0	1.0	$1.67 \mathrm{E}+04$	-0.008
822.3909......	20711	0	1.0	32867	e	2.0	$2.29 \mathrm{E}+06$	0.114
843.1620......	30403	e	1.0	42260	0	0.0	$2.94 \mathrm{E}+05$	-0.647
922.3825.....	42313	e	3.0	53152	0	2.0	$1.02 \mathrm{E}+04$	-0.001
930.8940......	42313	e	3.0	53052	0	4.0	$2.29 \mathrm{E}+05$	0.097

[^5]The computational procedure used for calculating the oscillator strengths and radiative lifetimes in Th III is the pseudo-relativistic Hartree-Fock (HFR) method (Cowan 1981). Four sets of calculations (A, B, C, and D) were performed in the present work, each of them being combined with a well-established semiempirical adjustment of the radial parameters minimizing the differences between computed and experimental energy levels (Cowan 1981). In calculations A and B, the same sets of interacting configurations were retained, i.e., $5 f 6 d, 5 f 7 d, 5 f 8 d, 5 f 7 s$, $5 f 8 s, 6 d 7 p, 6 d 8 p, 6 d 6 f, 6 d 7 f, 6 d 8 f, 7 s 7 p$, and $7 s 8 p$ for the odd parity, and $5 f 7 p, 5 f 8 p, 5 f 6 f, 5 f 7 f, 5 f 8 f, 5 f^{2}, 6 d^{2}, 7 s^{2}, 7 p^{2}$, $6 d 7 s, 6 d 8 s, 6 d 7 d$, and $6 d 8 d$ for the even parity. While corepolarization (CP) effects were not considered in calculation A, such contributions were included in calculation B using a core-polarization potential and a correction to the dipole matrix elements according to the procedure originally introduced by Migdalek \& Baylis (1978) and recently used with success for different complex atomic systems belonging to lanthanide ions (as, e.g., La III-Lu III: Biémont et al. 1999; Er iII: Biémont et al. 2001a; Pr iII: Palmeri et al. 2000, Biémont et al. 2001c; Tm III: Li et al. 2001; and Yb iII: Biémont et al. 2001b). In the latter approach, the CP parameters were chosen equal to $\alpha_{d}=10.26 a_{0}^{3}$ and $r_{c}=$ $1.89 a_{0}$. These values correspond to the dipole polarizability of the ionic core Th v as computed by Fraga, Karwowski, \& Saxena (1976) and to the expectation value of r for the outermost core orbitals $\left(6 p^{6}\right)$ as calculated by the HFR technique, respectively. All the levels of the $5 f 6 d, 7 s 7 p, 6 d 7 p$, $5 f 7 d, 5 f 7 s$, and $5 f 8 s$ odd configurations have been considered in the fitting procedure, and the average energies, Slater integrals, and spin-orbit integrals of these configurations were varied as well as the R^{k} integrals for the interactions $5 f 6 d-5 f 7 s$ and $6 d 7 p-7 s 7 p$. The levels of the $6 d 6 f$ configurations, strongly overlapping those of the configurations $5 f 8 d, 6 d 8 p$, and $7 s 8 p$ unknown experimentally, were not considered in the adjustment procedure. For 64 levels (fitted using 35 parameters), the mean deviation in calculations A and B was $175 \mathrm{~cm}^{-1}$. For the even parity, the 39 levels below $80,000 \mathrm{~cm}^{-1}$, belonging to the $5 f 7 p, 5 f^{2}, 6 d^{2}$, $7 s^{2}$, and $6 d 7 s$ configurations, were included in the leastsquares fit. Twenty-five parameters ($E_{\mathrm{av}}, F^{k}, G^{k}, \zeta$, effective interaction parameters) were left free to vary. In the $5 f 8 p$,
$5 f 6 f, 6 d 8 s$, and $6 d 7 d$ configurations, only the average energies were adjusted because many high-lying levels have not yet been determined experimentally or their designation is unknown. The mean deviation in the fit was $87 \mathrm{~cm}^{-1}$ (calculations A and B).

Radiative lifetimes deduced from calculations A and B are compared to the experimental results in columns (3) and (4) of Table 2. As expected, because of the neglect of CP corrections, the $\operatorname{HFR}(\mathrm{A})$ results are not in good agreement with the measurements. When including such effects (calculation B), one can observe that the agreement between theory and experiment is improved for some levels, while it is deteriorated for some others. In the particular case of the $5 f^{2}$ level situated at $32867.274 \mathrm{~cm}^{-1}$, quite sensitive to CP effects, the HFR(B) lifetime value is now 33% longer than the experimental result. As already mentioned in previous papers concerning lanthanides (see, e.g., Biémont et al. 2001a, 2001b, 2001c; Palmeri et al. 2000), this is probably due to the fact that the CP corrections, as introduced in our model, are no longer valid for configurations including at least a $5 f$ electron, as this orbital considerably overlaps the $6 s^{2} 6 p^{6}$ core subshells.

In order to estimate the importance of core-core interactions, additional configurations with $6 p$ to $5 f$ core excitations have been included in the model (calculations C and D). These configurations, added to the ones retained in calculation A, were $6 p^{5} 5 f^{2} 6 d, 6 p^{5} 5 f^{2} 7 d, 6 p^{5} 5 f^{2} 7 s, 6 p^{5} 5 f^{2} 8 s$, $6 p^{5} 5 f 7 s 7 p$, and $6 p^{5} 5 f 6 d 7 p$ for the odd parity, and $6 p^{5} 5 f^{3}$, $6 p^{5} 5 f^{2} 7 p, 6 p^{5} 5 f 6 d^{2}, 6 p^{5} 5 f 7 s^{2}$, and $6 p^{5} 5 f 6 d 7 s$ for the even parity. Thus in calculation C, 18 even and 18 odd configurations were considered but no core polarization was introduced in the model. In calculation D, CP contributions for the configurations not involving a $5 f$ electron (using the same CP parameters as the ones adopted in calculation B) were considered. The mean deviations in calculations C and D reached $186 \mathrm{~cm}^{-1}$ (odd parity) for 64 levels and $93 \mathrm{~cm}^{-1}$ (even parity) for 39 levels. Radiative lifetimes obtained in the approximations C and D are reported in columns (5) and (6) of Table 2. The results of calculation D are expected to be the most accurate reported in the present paper, and consequently have been adopted as the final theoretical results.

Using the procedure D , transition probabilities and oscil-

TABLE 5
Radiative Parameters for the Most Intense Th iII Lines as Observed in the Laboratory

[^6]lator strengths have been calculated for about 900 transitions of Th III. Because of space limitations, all these results cannot be reported here, but they can be found in a database of astrophysical interest, DREAM. ${ }^{6}$

In Table 4, however, we give the transitions depopulating the levels for which the lifetimes have been measured in the present work. For each of these transitions, we quote both the weighted HFR transition probabilities (calculation D) and also, in the last column, the A -values normalized according to the lifetime measurements reported here. These last numbers are expected to be the most accurate data. Table 5 contains the oscillator strengths and the Einstein coefficients for the most intense transitions observed in the laboratory (Blaise \& Wyart 1992).

The uncertainties affecting the oscillator strengths, which rely upon the accuracy of the theoretical branching ratios, are difficult to assess because no experimental data are available for comparison. However, from comparisons between theory and experiment carried out in a recent past for a variety of heavy ions, the accuracy of the f-values of the intense transitions is expected to scatter around $5 \%-10 \%$. For the weak transitions (also difficult to measure with precision), the uncertainties could be larger, particularly when cancellation effects are affecting the line strength calculations. It should be emphasized, however, that all the transitions of Table 5 are not affected by such effects.

4. THORIUM IN THE STARS

Thorium has been relatively little considered in stellar spectra. This is related to the fact that the Th II transitions are relatively weak and that the resolution reached until recently on many stellar spectra did not allow detailed quantitative study of weak line profiles in relation to blend-

[^7]ing problems. The high resolution and signal-to-noise ratio that are now reachable on the most recent spectra (e.g., the $H S T$ spectra) allow a more accurate quantitative analysis of the chemical composition of the stars.

It is worth noting here that the 401.9129 nm transition of the radionuclide ${ }^{232} \mathrm{Th}$ II has been investigated by Butcher (1987, 1988) in 20 G-type dwarfs and giants of various ages in order to connect the timescale of nucleosynthesis to that of stellar and Galactic evolution. Thirteen lines of Th II have been also suggested as present or possibly present in the Przybylski star (HD 101065) in the spectral range 395.9500.0 nm (see the paper by Cowley et al. 2000; see also the wavelength list on Cowley's Web site ${ }^{7}$). In the same wavelength range, four transitions observed at 455.560, 458.917, 467.626, and 486.313 nm , respectively, have been identified as being due to doubly ionized thorium (Th III).

As doubly ionized lanthanides are currently observed in many CP stars, frequently with large overabundances, it is expected that some doubly ionized actinides, and particularly Th III, should also appear in the UV or visible spectra of some hot stars. A detailed investigation of highresolution spectra (e.g., those obtained with the $H S T$) is needed to firmly establish such identifications. It is anticipated that the f values obtained in the present work will allow a quantitative investigation of thorium abundance in these stars.

The critical comments of an anonymous referee have been appreciated. This work was financially supported by the Swedish Natural Science Research Council and by the EU-TMR access to Large-Scale facility programme (contract HPRI-CT-1999-00041). Financial support from the Belgian FNRS is acknowledged by E. B., P. P., and P. Q.

[^8]REFERENCES

Biémont, E., Garnir, H. P., Bastin, T., Palmeri, P., Quinet, P., Li, Z. S., Zhang, Z. G., Lokhnygin, V., \& Svanberg, S. 2001a, MNRÅS, 321, 481
Biémont, E., Garnir, H. P., Li, Z. S., Lokhnygin, V., Palmeri, P., Quinet, P., Svanberg, S., Wyart, J.-F., \& Zhang, Z. G. 2001b, J. Phys. B, 34, 1869
Biémont, E., Garnir, H. P., Palmeri, P., Quinet, P., Li, Z. S., Zhang, Z. G., \& Svanberg, S. 2001c, Phys. Rev., 64, 022503
Biémont, E., Li, Z. S., Palmeri, P., \& Quinet, P. 1999, J. Phys. B, 32, 3409
Blaise, J., \& Wyart, J.-F. 1992, Selected Constants, Energy Levels and Atomic Spectra of Actinides (Paris: Editions du Centre National de la Recherche Scientifique)
Butcher, H. R. 1987, Nature, 328, 127
Cowan. 1988, Messenger, 51, 12
Cowan, J. J., McWilliam, A., Sneden, C., \& Burris, D. L. 1997, ApJ, 480, 246
Cowan, R. D. 1981, The Theory of Atomic Structures and Spectra (Berkeley: Univ. California Press)
Cowley, C. R., Ryabchikova, T., Kupka, F., Bord, D. J., Mathys, G., \& Bidelman, W. P. 2000, MNRAS, 317, 299
de Bruin, T. L., \& Klinkenberg, P. F. A. 1940, Proc. Acad. Sci. Netherlands, 43, 581

Fraga, S., Karwowski, J., \& Saxena, K. M. S. 1976, Handbook of Atomic Data (Amsterdam: Elsevier)
François, P., Spite, M., \& Spite, F. 1993, A\&A, 274, 821
Klinkenberg, P. F. A. 1950, Physica, 16, 618
Li, Z. S., Lundberg, H., Wahlgren, G. M., \& Sikström, C. M. 2000, Phys. Rev. A, 62, 032505
Li, Z. S., Zhang, Z. G., Lokhnygin, V., Svanberg, S., Bastin, T., Biémont, E., Garnir, H. P., Palmeri, P., \& Quinet, P. 2001, J. Phys. B, 34, 1349
Litzén, U. 1974, Phys. Scr., 10, 103
Migdalek, J. E., \& Baylis, W. E. 1978, J. Phys. B, 11, L497
Palmeri, P., Quinet, P., Frémat, Y., Wyart, J.-F., \& Biémont, E. 2000, ApJS, 129, 367
Racah, G. 1950, Physica, 16, 651
Sneden, C., McWilliam, A., Preston, G. W., Cowan, J. J., Burris, D. L., \& Armosky, B. J. 1996, ApJ, 467, 819
Sneden, C., Preston, G. W., McWilliam, A., \& Searle, L. 1994, ApJ, 431, L27
Wyart, J.-F., \& Kaufman, V. 1981, Phys. Scr., 24, 941

[^0]: ${ }^{1}$ IPNAS, Bât. B 15, Université de Liège, Sart Tilman, B-4000 Liège, Belgium.
 ${ }^{2}$ Astrophysique et Spectroscopie, Université de Mons-Hainaut, B-7000 Mons, Belgium.
 ${ }^{3}$ Department of Physics, Lund Institute of Technology, P.O. Box 118, S-221 00 Lund, Sweden.

[^1]: ${ }^{4}$ See http://physics.nist.gov/PhysRefData/contents.html.

[^2]: ${ }^{5}$ Available at: http://physics.nist.gov/PhysRefData/contents.html.

[^3]: Note.-Columns (3)-(6) give HFR calculations A, B, C, and D, respectively (see text).
 ${ }^{\text {a }}$ From Blaise \& Wyart 1992.

[^4]: Note.-Energies less than $85,000 \mathrm{~cm}^{-1}$ only are quoted.

[^5]: Note.-For each transition, we give the wavelength (λ), the lower and upper levels (energy, parity, J value), the weighted transition probability $(g A)$, and the cancellation factor (CF).
 ${ }^{\text {a }}$ This work, calculation D (see the text). Calculation normalized with the experimental lifetimes (see Table 2).
 ${ }^{\mathrm{b}}$ Small values of the cancellation factor, CF , indicate large cancellation effects.

[^6]: Note.-For each transition, we give the wavelength, the lower and upper levels (energy, parity, J value), the weighted oscillator strength $(\log g f)$ and transition probability $(g A)$, the cancellation factor (CF), and the laboratory intensity.
 ${ }^{a}$ HFR + CP values as obtained in this work (calculation D; see text).
 ${ }^{\mathrm{b}}$ Small values of CF indicate strong cancellation effects.
 ${ }^{\text {c }}$ According to Blaise \& Wyart 1992.

[^7]: ${ }^{6}$ DREAM is available at: http://www.umh.ac.be/~astro/dream.shtml; it is also available through anonymous ftp at: ftp://umhsp02.umh.ac.be/ pub/ftp_astro/dream.

[^8]: ${ }^{7}$ Available at: http://www.astro.Isa.umich.edu/users/cowley/ prznew2.html.

