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THE ADAPTIVE NONLINEAR MODELER

K. J. Astrom

Abstract

This paper describes a new systems component which is capable of generating a
static nonlinearity adaptively. The device which may be viewed as a building block
in the control engineers toolbox can be used for many different purposes e.g. to
provide automatic calibration of nonlinear sensors, feedforward compensation,

compensation for nonlinear valve characteristics, automatic gain scheduling etc.
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1. Introduction

Much of the work on adaptive control has focused on linear system. In this
paper we discuss a simple adaptive problem namely automatic modeling of static
nonlinearities. There is a wide class of problems where the essential nonlinearity
can be captured by a nonlinear static model. Generically this is the case when the
nonlinearity appears either at the output or the input of the system. A nonlinear
valve or a nonlinear sensor are typical examples. Nonlinearities of this type are
often used in the design of practical control systems. In this paper we propose a
device which can model static nonlinearities adaptively. Such a device can be used
in many different ways some of which are cutlined in the paper. This includes
automatic linearization of sensors and actuators, compensation for static process
nonlinearities and nonlinear feedforward compensation. It is also worth noticing
that tables of process characteristics is an important part of expert control
systems. The adaptive nonlinear modeler is one possibility to describe such

functions with algorithms instead of rules.

The paper is organized as follows. Different ways to characterize a static
nonlinearity are described in Section 2. Adaptive techniques t!o generate
nonlinearities automatically are described in Section 3. It is shown that the ideas
can be encapsulated in a system component 'called the Adaptive Nonlinear Modeler
or ANM for short. Different ways to use this systermn component are discussed in
Section 4. The ideas are summarized in the conclusions where various

sophistications are also presented.

2. Static Nohlinearities

A static nonlinearity is simply a,'s'yst_.,en") whose input-output relation can be
!

described as a nonlinear function

y = f(x) (2.1)

where x is the input and y is tHe ’putput. In this paper it will for simplicity be
assumed that the domain and t’hé range of f are subsets of the real numbers.
There are many different ways to characterize general nonlinear functions. One
possibility which is convenient for our purposes is to combine a table with an

interpolation function. It is assumed that the value of the function is specified for




discrete arguments X Xg seer X and that the wvalues at intermediate points are
specified by an interpolation formula. For simplicity we consider linear

interpolation. The function is thus defined as

_ ————-—---m-f[x ] (2.2)
et ~ g ket~ % K

Together with the table {xk, f(xk)} the function f is then uniquely specified in the

interval [x 1 ,xn].

| 3. Adaptation

An adaptive function generation problem will now be formulated. Assume that the
points x gr XX are given and that there is a device which generates function

values possibly with some errors. The problem is to find a mechanism which will

generate the table {xk, fk}. When Xy <x < Xy +1 the following updating rule can
be used
'dfi
a'i—"' =0 i # k, k+t
df X - X
k 1 "k+1 [
] = = £(x) ~ y(x)] (3.1)
dt T xk+1 - X
df X - X
k+1 1 k {
= 15— [E(x) - v(x)]
dt T Xper ~ Xk
where Y
X - X X - X
k+1 k
y(x) = g f i (3.2)
¥eep ~ X K Fpyq — X ki
%
To explain that the system has ftHe ‘degsired property assume first that x remains
at x, for a long time. Then f converges to f(xk), because if x = x, we get

!

af
7 =1 [0y - 1] (3:3)




This differential equation is asymptotically stable with the solution
f, =1 (xk)

The situation is a little more complicated when x is not a grid point. Introduce

e = f(x) - y(x) = f(x} - of, - B, 4 (3.4)
where
k+1 ~ ¥
o = -
k+1 k
(3.5)
X - X
k+1 k
Then
d 062 - 2¢ 98 . 2 -adfk-(sdfk”
dt - dt dt dt
- az + I32 82
- T
The error e will thus go to zero. Notice, however, that the wvalues fk and fk+1

will not converge to their correct values because the matrix

as

]| -

o B R R

has a zero eigenvalue. Also notice that there are other Weightings between the

derivatives of fk and fk +1 which will give the desired result, The weighting in

{3.1) is, however, quite reasonabl. #
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Figure 1. The adaptive nonlinear modellér.

A System Component

It is thus straightforward to obtain the desired adjustment mechanism. A system

component which is a useful building block will now be described. Such a

component js shown in the blockdiagram of Figure 1. The block has x as its

primary input and f as its primary output. The states of the system are the table

entries f 1’ f , fn which are updated as

2"

dfi
e 0 i # k, k+i
dt T xk+1 - xk "
- 3 . ,
Yert 1 X" %,
dt T xk+1 - xk

where e is an auxiliary input. The ocutput of the system is defined as

%
xk+1 - X Kﬂ—n' x;).{-
y = X - X fk + X - X fk+1
k+1 k k+1 k

' i
An example illustrates how the adaptive nonlinear modeler can be used

(3.6)

(3.7)
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Figure 2. Sirﬁﬁ“l.atioﬁ of fﬁe ANM
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Figure 3. The nonlinearity y = x2 and its estimate obtained from the ANM.
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Example 3.1

Suppose that the ANM is used to find the,nonlinearity y = x2. Let the input signal
be x = 5 sin 0.00314t and let thd ‘table entries used in the ANM be x, = -6,
Xy = -5, ..., X4q
nonlinearity and the ANM. The adaptation is switched off at time t = 8000 and the

= 6. Figure 2 shows the input signal and the outputs of the

ANM is run as an interpolator for a period of the input signal. Figure 3 shows

the actual nonlinearity and its ,;e’;jtinfate obtained from the ANM.




Derivatives

It is sometimes useful to also have the derivative of the function available. This

can be generated numerically as follows

) - et =~ Tt
I

£'{x (3.8)

Inverse Functions

It is also possible to generate many other functions of the function f. If f is
monotone we can e.g. be interested in having the inverse function. This is

obtained simply by reversing the roles of x and f in the table entries.

4. Applications

A number of examples which illustrate how the mechanism may be used will now

be presented.

Automatic Sensor Linearization

Sensors with nonlinear characteristics can convenienily be linearized using the
ANM. For this purpose it is assumed that.an accurate sensor which can be used
for calibration is available. A system which performs the automatic linearization
is shown in Figure 4. An input sig}'n?l Y i5 sent to the sensor and the reference
sensor from some kind of test ri'g. When the signal is swept over the range the
ANM will automatically adjust so that the combination of the sensor and the ANM

will give the same result as the reference sensor.

4
po !
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Figure 4. Automatic sensor linearization using the ANM.

Fig'ure 5. “ Using the ANM to linearize process dynamics.

"
Automatic Linearization of Process Dynamics

k) » !
Consider a process where the major "linearity is a static nonlinearity at the

process input. A typical example is a flow loop with a nonlinear valve. An
adaptive nonlinear mo'delér can be used to linearize the system as is shown in
Figure 5. The ANM is connected in series with the process. Its error signal is
formed as the difference betweel‘fj qxe nominal proce.ss output 17 and the actual
process output v. The parametex,l k is'the nominal process gain. The time constant
in the adaptation lcop should be chosen much larger than the time constants of

the process. This selection is discussed furtHer in Section 5,
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Figure 6. Use of the ANM to find a nonlinear process characteristics,

Determination of a Static Process Model

A natural use of the ANM is to generate a nonlinear static model of a process.
This can be done as shown in Figure 6, To avoid stability problems the time
constant of the ANM should be chosen sufficiently large. As a rule of thumb it

should be larger than the dominant time constants of the process.

Automatic Generation of a Gain Schedule

The system shown in Figure 7 can be modified to provide automatic gain
scheduling. The output of the ANM which gives the derivative of the function is
then used to modify the process gain. Such a scheme will of course only work
well for a process where the major scheme of parameter variations is due to

changes in the static gain of the pr%c;ess,. *
+ " i

Nonlinear Feedforward Compensation

%
Consider a situation where the,fq frg major upsets due to a disturbance which
can be measured. One possibility to make a static compensation is to feed the
disturbance through a nonlinearity which gives the control signal necessary to

compensate statically for the disturbance. Figure 8 shows how the ANM can be
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Figure 7. Use of the ANM for automatic generation of a gain schedule.
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Figure 8, Use of the ANM for automatic generation of a nonlinear
feedforward.
BN

used to genefate this nonlinearity automatically. Notice that the regulator should
not have integral action when the ANM tunes}.
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Fipure 9. Graphical illustration of the behavior of the updating algorithm,

The behavior of the system can be understood as follows. The disturbance v will
generate a control error under proportional control. The ANM will change its
parameters as long as there is an error. The coefficients of the nonlinearity will

thus be adjusted until the error vanishes.

5. Analysis

In many cases the action of the ANM can be understood simply from linear
control theory. Consider for example the automatic linearization case shown in
Figure 2. It suffices to analyse whjt happens when the input x is between two
grid points. The equations for -uﬁdatiﬁg the table entries are then given by
equation (3.1}, When x is kept constant the table entries fk and fk 1 will thus
change in such a way that they have a constant ratio. Let the initial values be fﬁ

o , .
and £7) . ,. It follows from (3.1) t}:at
4

) & = (x - x)? amfk+'1
k’ dt k+1 dt
}

ka1l thus have a constant ratio. This is

illustrated in Figure 9. The equilibrium solution to (3.1) can thus be constructed

If x is constant the changes in £ and f
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Figure 10. Graphical construction of the equilibrium solutions for two

measurements M1 and M2.

. ) o -

as follows. Draw a line through (xk,fk) and (xk + 1,f K4 1). Rotate this line through
the point P such that the line goes through the measured value (xf]. The new
equilibrium values of fk and fk L4 are obtained as the intersections of the line

with the lines x = xk and x = xk 1 Let £ be the x-coordinate of P. It follows that

T 2 W
& - xk xk+1 - X
Hence
3 »
Y R
X - x
E=x 00t (Xq — %)
k+1 k+1 . k xk+ xk+1 - 2x
Notice that £ = Xy 41 if x= Xyt It is thus easy to consiruct the equilibrium

. "
solution geometrically. Figure 1? shgws what happens for two measurements,

Notice that if no weighting is introduced in (3.1) it follows that
!




13

dfy  dfyy,
dt = dt

The straight line will then be displaced parallel to its original position. This means

that there will be no convergence if measurements are inside a given interval,

Improved Algorithms

It is clear from the previous discussion that several iterations are req_uired for
the estimates to converge. Algorithms which converge faster can be constructed
at the expense of the complexity of the algorithm. One possibility is to construct a
least squares algorithm for estimating ths fk and fk 1 This would require
storage of three additional parameters.

It is also possible to make an adaptive change of the table entries x X

Dynamic Properties

The dynamic properties of the adjustment loop is governed by the feedback from
the output of the ANM to its error input. In many cases this feedback is
simply -1. This is the case in Figure 2, Figure 6 and Figure 7. The adjustment

loop is then simply a linear system with the characteristic equation

sT+ 1=

s

In other cases like in Figure 5 and Figure 8 there is dynamlcs in the feedback

which must be taken into account. T}'qs ig hustrated by an example,

Example 5.1 - Linearization of Process Dynamics
Consider the system in Figure 5.,ﬁLet the process dynamics be described by the
transfer function G(s). The dyndhties pf the adjustment loop is then described by

the characteristic equation

1+gi).=0
sT
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To make sure that the adjustment loop is stable it is then necessary to choose T
sufficiently large. A suitable value can be found by the root-locus method

provided that G{s) is known.

In some cases the situation is even more complex. This is illustrated by an

additional example.

Example 5,2 - Nonlinear Feedforward
Consider the system shown in Figure 6. Let the process dynamics be described

by G(s). The characteristic equation of the adjustment loop is then
1 + C‘.Ji)_ =0
sT

The analysis of stability and performance is similar to Example 5.1.

6. Conclusions

The idea presented in this r;eport seems to be a useful component with many
applications. It can be extended and generalized in many different ways. We have
chosen to represent a function by a table of walues and an interpolation
polynomial. Many other representations can be used for example orthogonal
polynomials, other interpolation polynomials etc. In this papér we have only
considered functions f ; R — R. It is straightforward to generalize the resulis to
functions from R” to R and a little %bit harder to extend the results to functions
from R" to Rm. We have also pé,ed ﬁx;d grid points. They can be adjusted

adaptively to have more points where the function bhanges rapidly.

The idea can also be extended to compensation of nonlinearities with a hysteresis
characteristic. This can be done hy fepresenting the hysteresis by two functions

and an internal state which tells Mhich branch to choose,




