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PREFACE

This report is part of a lecture series on the identification
problem. Part of the material is wellknown and collected from
various parts of the literature and other parts e.g. the ge-
neralization of Mann and Wolds theorem in section 8 and the
investigation of the relations between various identification

schemes in sections 8, 9, 10 and 11 are believed to be new.

The write-up is aimed both at engineers in industry who are
faced with practical identification problem and to graduate
students. The material in this report has been presented in
lecture form to various audiences such as industry groups and
graduate students at Lund Institute of Technology. It was
first put together in the present form in a lecture given to

the Research Institute of National Defense.

The write-up is not complete, many details of the proofs are
omitted, many practical examples should be included etc. As
there are no really good surveys available on the identifica-
tion problem I think it is worth while to distribute these
notes although they are not polished.




1. INTRODUCTION

Tn this chapter we will discuss the least squares method and
its application to identification problems such as identifica-
tion of process dynamics and parametric modelling of random
disturbances. The least squares method introduced by Gauss

in his famous work on orbit prediction is one of the oldest
and most powerful techniques available. It 1s easy to learn
and it gives identification procedures that are easily pro-
grammed. It also turns out that many of the identification
schemes that are used can be interpreted as least squares
procedures. It is thus possible to treat many problems in

a unified framework.

Tn this chapter we will thus present the basic results of the
least squares procedure and show how they can be applied to

the solution of the identification problem.

Throughout the chapter we will use two simple examples as

illustrations.

Example 1.1

Consider a discrete time single input single output system.
Assume that a sequence of inputs {y(1), y(2), ..., y(N)} has
been applied to the system and that the corresponding sequence
of outputs {u(l), u(2), ..., u(N)} has been observed. Consi-

der the following class of models
y(t) + a y(t-1) = b u(t-1)

which is characterized by the parameters a and b and let the
criterion be to minimize the sum
N
5oel(t)
t=2
where

e(t) = y(t) - a y(t-1) - b u(t-1)




Example 1.2

Consider a discrete time disturbance. Assume that a sequence
of values {y(1), y(2), ..., y(N)} has been observed, and that

we would like to describe the series by the model
y(t) + a y(t-1) =0

in such a way that the criterion
N
) eQ(t)

t=2

is minimal where

e(t) = y(t) + a y(t-1)

In section 2 we will give a general formulation of the least
squares problem which covers these examples as well as many
other identification problems. The basic solution to the least
squares problem is also given in that section. A geometrical
interpretation of the results are given in section 3. In sec-
tions 4 and 5 we show how the basic solution can be rewritten
for recursive computations. Section 4 covers the situation when
we want to fit models of increasing order and section 5 the
situation when measurements are obtained recursively and we
want to compute the estimate in real-time as the process de-
velops. In section 6 we give a statistical interpretation of
the least squares procedure. One important result is that when
formulating the identification as a statistical problem, we
get a natural loss function. It will also be possible to ans-
wer various statistical problems e.g. how accurate are the
parameter values that are obtained. The statistical properties
are also discussed in section 7 where we among other things
discuss tests of order of the models. Section 8 covers an
example of identification of linear process dynamics. In sec-
tions 9, 10 and 11 we discuss the relations between the least
squares procedure and other identification methods. The last

sections finally cover exercises and references.




2. GENERAL FORMULATION

Suppose that we are given the model

y; = el¢l(xi) + 82@2(Xi) + ...t envn(xi) toes 1= 1,25...,N

(2.1)

where X, are given values, @ are known functions, 8. unknown
coefficients, e. errors and Vi observed values. Assume that

we have N pairs of given values and observations {(Xi,yi),

i=1,2,...,N} and that we want to determine the parameters
ei in such a way that the error defined as

N

b} eiZ
i=1

is as small as possible. To solve this problem we introduce

a vector formalism

— ~— — -~ pem — = -1
vy @l(xl) @2(Xl) ce ¢n(xl) ey 0,
| Y2 ) @l(xz) @2(X2) “ e @n(XQ) e i 0,
y = s ¢ = s & = 5 6 =
YN @l(XN) QQ(XN) ...kPn(XN) ey eN
(2.2)

The equation (2.1) can then be written as
vy = 08 + e (2.3)

and the loss function

N T

2V = 3 e.” = e’ e (2.4)
. i
i=1

It is now a simple matter to minimize V with respect to 6.

We find

T T T T

ele = {y - ®e}T{y - 06} = yTy - yT®e - 6 @Ty + 070076




Assuming that oTo is regular we find

1 ®T T T 1 .7

eTe = 1o - Tyt oTyiT oTote - (oTe) ™t oly)
+ yTy - yT@(@T®)"l @Ty
> yTy - yT¢(®T®)“1 @Ty
where the equality occurs for
6= 0 = (o7a) T @Ty (2.5)
or
270 8 = @Ty (2.6)

The condition that 2To is regular will be discussed in detail
in sections 3 and 8. Let it suffice at this point to mention

that the regularity can be influenced by the choice of X .

The solution of the least squares problem is thus very straight-

forward. We will now give a few examples.

Example 2.1

Consider the problem of example 1.1. In this case we have

y(t + 1) + a y(t) - b u(t) = e(t) t = 0,1,...,N
Hence
(1) | g0y —u(o) | (1)
y(2) y(l) ~u(l) e(2) a
y = s & = s € = ,» B =
b
vy (N) y(N-1)-u(N-1) e (N)
N-1 5 N-1
% vo(t) z v(t) ult)
®T® - t=0 t=0
N-1 N-1 9
z y(t) ult) z u” (t)
t=0 t=0




y

i

y(t + 1) y(t)

y(t + 1) u(t)




3. GEOMETRICAL INTERPRETATION

The least squares problem discussed in section 2 can be given

a simple geometric interpretation. Write the equation (2.1) as

] . - o o)

yq @l(xl) Qz(xl) @n(xl) eq

Yo wl(xz) @z(xz) @n(xz) e,

Tl °1 - 8o - o 7
YN @l(XN) @Z(XN) QH(XN) ey
L - L - L ] L — L -
| (3.1)

or

N ~‘plel - @262 - . - @nen = e (3.2)
Now consider y,\pl, @2, Cees @n as vectors in N-dimensional

Fuclidian space with the norm
[[x]] = xx (3.3)

The least squares problem can then be formulated as the pro-
blem of approximating the vector y by a linear combination of
the vectors ¢, @ 5 .., @n in such a way that the error norm
is minimal. It is well known that the solution of this problem

is given by the orthogonal projection of y as the linear space

spanned by the vectors ¢1, @2, e vn. Compare fig. 3.1.
Fig. 3.1 - 1Illustrates the geometrical interpretation of

the least squares procedure




Let y" be the orthogonal projection. The vector y - y" is
then orthogonal to all the vectors wl, ¢2, RN ¢n. All the
scalar products of y - y" with @l, @2, ce e @n must thus be

zero. Hence

(y - y")T el = 0
(y - y")T @2 =0
(v -yl e™ =0 (3.1)

must thus equal zero. Now introduce
x 1 2 n
yooT 0097 8,07 L. F 8 (3.5)

The equation (3.4) then reduces to

-— — —_

(@l)T $l (¢1)T @2 (@l)T @n yT(pl
($2)T‘Pl (¢2>T @2 (¢2)Tkpn 5 = yT @2
WHT ol @M e? @M e g o™ (3.6)

which is identical to (2.6). Notice that this argument does
not require ml, wz, Cees wn to span the n-dimensional space.
We have thus removed the condition for ®T® to be regular.
Notice, however, that if wl, @2, cees @n are linearly depen-
dent then the elements of 8§ are not unique. A model of the
type (2.1) with fewer parameters can be obta@ned by projec-

tions on the space of linearly independent 0.




4, RECURSIONS IN THE NUMBER OF PARAMETERS

In many cases it is not known a priori how many terms of the
expansion (2.1) that should be used. When identifying system
dynamics it happens very often that the order of the system

is not known beforehand. The least squares problem then has

to be solved for several values of the parameter n. The loss
function or the error norm will in general decrease with the
number of parameters. In section 7 we will put the problem in
a statistical framework and use statistical methods to decide
whether the decrease in the loss function is significant. In
this section we will discuss the computational aspects. When
the least squares problem is solved for a model with n para-
meters and we wich to determine a model with n + 1 parameters,
it seems to be a waste of computing effort to start from scratch.
Instead it seems to be much preferable to use the results ob-
tained for n parameters to obtain the model of order n + 1. In

this section we will show how this should be done.

When introducing extra parameters 0. we get additional terms in
equation (2.1). This implies that additional columns are added
+to the ¢ matrix and that additional elements are added to the
vector 6. To fix the ideas we assume that a model of order Kk

has been obtained and that we intend to compute the coefficlents
of a model of order n, n > k. To do so we partition the matrix

¢ and the vector 6 as follows

wl(xl) ¢2(Xl) RN @k(xl)i kpk+l(xl) ...&Pn(xl)
P, (x,) 9,(x,) o, (x,) o (x,) ¢ (x,)
s = } 2 272 k*727 k+1*72 n 27 |_ (6.1 3.}
n N | 11 2
’ |
(4.1)
6, = col{fys Bys wvuy ek: B gy v 6} = {el: 6,1 (4.2)




The least squares equations (2.6) now becomes

®1T®1 : CI>1T®2 °1 2y
ot | e | e ||
Hence

@1T®1el + ®1T®2e2 = @ly

®2T®161 + ®2T®262 = ®2y

Solving these equations we find

- T T
0, = 84 * Pjso, (@l 6, - y)

T T
5 - P,o, (@l 6, - y)

~d
"

-1 T

By using these equations we can
sively higher order recursively.

we only have to invert matrices

Also notice that the guantity @lTel -

(4.3)

(4. 4)

(4.5)

(4.6)

(4.7)

.8)

(4.9)

compute models of succes-
Notice that in each step
of order (n - k) x (n - k).

y has physical inter-

pretation as the vector of residuals of the model of order

k.
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5. RECURSIONS IN THE NUMBER OF OBSERVATIONS

We will now consider recursive computations that are diffe-
rent from those of the previous section. It often happens
that the observations are obtained sequantially as the pro-
cess develops. It is then natural to compute the parameter
estimates recursively as the data are obtained. This si-
tuation is often referred to as on-line identification. Let
8(N) denote the parameter estimate based on N pairs of data.
To derive recursive equations for o(N) we will introduce N

as a parameter in all quantities involved.

Hence
P (x) 9,00 ... @n(xl)
o(N) = @l(xz) @2(X2) @n(xz)
@l(xN) wz(xN) wn(xN) (5.1)
_.y1 -
Y
y(N) =
Yy (5.2)

When an additional pair of data (XN+1’ yN+l) is obtained a
row is added to the matrix ¢ and an element to the vector y.
To derive recursive equations for the estimate, it is thus

natural to partition the matrices as follows.

QN + 1) Yy o+ 1 (5.3)

where

@(N + 1) = {ml(XN+l), ¢2(XN+1), ces @n(xN+l)} (5.14)
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The least squares estimate of the parameters 1s given by

(2.5) i.e.

6(N) = {ola) s} T otq) y(D (5.5)
Hence

_ T -1 T
S(N + 1) = {0 (N + 1) o(N + 1)} 1 ot(w + 1) vy + 1)

11

GTan ean + Ty @ AT ANy QD+ A vy, o)

(5.6)
To simplify the writing in the algebraical manipulations which

will follow we will delete the argument N of ¢(N) and N + 1 of
(N + 1). We will thus write (5.6) as

s + 1) = (070 + 9 o3 Ty v oy, L ) (5.6)

In the following we will rewrite the equation (2.7). To do

so we will utilize the following well-known matrix lemma.
Lemma

Let A, C and A + BCD be non singular équare matrices then
the following formula holds

1 1 1 -1

14 patey ! opa

ta + Bepy Y o= a7t - atteicT

Proof

By direct substitution we find

(A + Bepdia~t - a™tece™t + patte) Tt pathy

-1+ pepat - Bl ¢ patteyt patt - mepaTim(cTt + paimyipaTt
- T + BCDA™Y - B(I + cpA"iBI{Cc™t + DATtB1™! pa?

-1 + epA™Y - Befe™t + paTiByreTt + paTteyTt pat

- T+ Bepa t - BepATY = T

Notice in particular that the theorem holds if A and C are
positive definite and D = BT.
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Using the matrix lemma we get

6Te +0T@ ™t = Tyt - Tyt o711 + ¢ (aTa) el tpcaTe) 7t
(5.7)

Hence

sn + 1) = oty LeTy - (aToy LTl + 9 e o) TeT T e o) ety

+ (®T®)—lmTyN+l B (®T®)_1LQT{1 + Lp<®T®)—l T}—l@<®T®)—l@TyN+l

We find that the sum of the last two terms 1is

GoTey ToTt1 + g eTary toli L v (ol tet - LP(@TCD)—lq)T}yN_’_l

= T el et ey

But it follows from (5.5)

8(N) = (@ch)'l@Ty

Further introduce

ko = Tyt T v g ety ety

and we find that the equation (5.6) can be written as

o(N + 1) = 6(N) + KIN) Ly, - @ (N + 1) e(N)} (5.8)

Notice that this equation has a strong intuitive appeal. The
next estimate 6(N) is formed by adding a correction to
the previous estimate. The correction is proportional to
V41 " (N + 1)8(N) The term 6 would be the value of
y at time N + 1 if the model was perfect and there were no
disturbances. The correction term is thus proportional to
the difference between the measured value of YN+1 and the
prediction of YN+ based on the previous modelparameters.
The components of the vector K(N) are weighting factors
which tells how the corrections and the previous estimate

should be weighted.

In order to obtain a recursive equation also for the weighting
factors K(N) we introduce the quantity P(N) defined by

P(N) = ofol(N)o(N)} + (5.9)
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The weighting factors D(N) can then be written as

1

KD = PAD @ T{a + PO (5.10)

Introducing the matrix P(N) defined by (5.9) into (5.7) and

we get

PN+ 1) = PAN) - PN {o + 9PN} 1o PAD)

P(N) - K(N)@ P(N)

{I - K(NMN + 1)IP(N) (5.1)

Summarizing we thus find that the least squares parameter

estimate can be computed using the following recursive equa-

tions

KD = PADOTN + 1) {e + 9N + DPADQ (N + 1)}7F  (5.11)
PN + 1) = {1 - KAD@ + 1)IP(D) (5.12)
BT + 1) = 8D + KD {yy,; - © (N + 1)eD] (5.13)

Notice that the definition of P(N) given by the equation (5.9)
requires that the matrix 2To is nonsingular. It follows from
the equations (2.2) that

T N T
eT(N) o(N) = I ¢ (t) ¢ (1) (5.14)
t=1

where ¢ (t) is the vector defined by the equation (5.4). Hence
for small N 579 can never be positive definite. We must in
fact require that N is at least equal to the number of para-
meters n before ®T® could be positive definite. In order to
use the recursive equations (5.11) we thus have to choose
an N-value N_ so large that @T(NO)®(NO) is positive definite
and compute the initial values from

T -1
af® (NO) @(NO)} (5.15)

P(NO)

1

" T - T
e(NO) {e (No) @(NO)} o (NO) Y(No) (5.16)
In some cases it is however very desirable to use recursive

equations in all steps. This can be done with an arbitrarily




T

small error by using the following device. If we use the

recursive equation (5.12) for P with the initial condition

P(0) = PO

where P_ is positive definite it follows from (5.15) that

P(N) = {Po—l + 2 sTan e} (5.17)

o
which can be made arbitrarily close to ®T® by choosing PO
sufficiently large e.g. P = % I. In section 6 we will also
show that it is possible to give a statistical interpreta-
tion to this trick, it simply means that we have an apriori

estimate of the parameter vector with covariance PO.

Example

Assume that we would like to identify a model

y(t) + aly(t—l) + ...t a2y(t—n) = blu(t—l) + ...t bnu(t—n)

Define the parameter vector as

6 = col {a a ., a , b b

1> 72’ n 1’ 72

We find that the vector ¢ (N) is given by
Q(N+1) = {y(N),y(N—l),...5y(N—n+l),u(N),u(N—l),...,u(N—n+1)}

and the estimate is then given recursively by the equations
(5.11), (5.12) and (5.13). The recursive equations are very
well suited for numerical computation of the least squares
estimate in real time. An ALGOL procedure which evaluates

the recursive formulas (5.11) - (5.13) is given below.
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procedure LSRT (t,p,f,y,n,e,v);
comment The procedure iterates the least squares estimate

one step. Notations: t, vector of estimated para-

meters, p covariance matrix, f phi-vector, e resi-

dual, n number of parameters,

surement errors;

integer n; real v,y,e; array t,P,f;

begin

v variance of mea-

integer i,j; real r; array K[1:10], f1[1:10];

comment Compute gainvector

for 1:=1 step 1 until n do

begin r:=0;

for j:=1 step 1 until n do
r:=r + P[1,9] x f(§];
f1lil:=r

end;

r=v;

for i:=1 step 1 until n do
ri=pr + £[i] x f1[i];

for i:=1 step 1 until n do
K[i]:=f1[i] /r;

K3

comment Update parameter estimates;

r:=y;

for i:=1 step 1 until n do
r - f[i] = t[i];

for i:=1 step 1 until n do
t[i]:=t[i] + X[i] x r;

e:=r;

r:

comment Update covariances

for 1:=1 step 1 until n do

for j:=1i step 1 until n do

P[j,i]:=P[i,3]:=P[1i,3] - k[i] = £1[3];

end procedure LSRT;

matrix P;
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6. STATISTICAL INTERPRETATION OF THE LEAST SQUARES PROCEDURE

The identification problem discussed in this chapter can be
stated as:

Given the linear model (2.1), characterized by the parameters
ei, a sequence of observations {Xi,yi,i = 1,2, ..., N}. Find
those values of the parameter 6 which minimized the criterion
(2.4).

There are many additional problems which arise naturally e.g.
why choose the criterion (2.4)? Is it worth while to include
more parameters in the model? Is it possible to assign accu-
racy estimates to the parameter values obtained? In order to
give partial answers to these questions we will put the pro-
blem in a statistical framework. To do so we assume that we

have a model given by the equation (2.3) e.g.
y = 96 + e (6.1)

where the residuals {ei’,i =1, 2, ..., N} are stochastic
variables. In some cases we will assume that the probability
distributions are known in other cases, it is sufficient to
know first and second order moments only. It will be impor-
tant to distinguish between the true parameter value and the
estimate. We introduce the notations 6 and 8 respectively.

We now have

Theorem 6.1

The least squares estimate of 6 is unbiased if e has zero

mean and if ¢ and e are independent.
Proof

The estimate 6 is given by (2.5) i.e.

6 = {oTo)t @Ty

~

Introducing y given by (6.1) we find

6 = {@T@}"léT(®e + e) = 8 + {®T®}“1®Te (6.2)
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Now if ¢ and e are independent we get
“1oTe

~

e = 6 + E {®T®} 1T

=6+ E {010} 1o * Ee = 0
The variance of the estimate is given by

Theorem 6.2

If & and e are independent and if e, are equally distributed

with zero mean and variance 02 we have
E{6 - 8}{0 - 8} = o2{ote} "t (6.2)
If the variance is not known it can be estimated by

2 _
g =

(y - 08) L (y - @8) (6.3)
N - n

Proof

We have

E{o - 61{6 - 01T = E {@T©}®TeeT®{@T®}_l

_1®T(EeeT)®{®T®}_l = {@Té}_l ®T021®{®T®}'

1

- {010} 1

= 62{®T@}—

where the first equality follows by (2.5),the second by ¢

and e being independent and the third from EeeT = o1,

To prove the last statement of the theorem we observe that

y - 96 = ©8 + e - 0 0 + {®T®}'1®Te = Iy - 2{olo} " tol ©
where IN is the N x N unit matrix. We also find that
Iy - @{@Té}_l®T is a projection because
T -1 T T .-1.T _

IN - o{0o 0} 9] IN - ¢o{o 0} (0] =
= Iy - ®{®T®}“1@T - ®{@T®}_1®T + ®{@T®}_1®T®{®T@}'1®T
_ T ,-1.T
= IN - {0 0} o)

Hence
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E{y - @5}T{y - 60} = E{e’ [IN - ®{®T®}—1®T] 26}

= B tp eT{IN - ®(®T®}—1®T}e =

= E tr {IN - @(@TQ)_1®T}eeT = 02 tr{IN - ®(®T®)_1®T}
= 02(tr IN - tr @(@TQ)_1®T) =
= o2t T - tr(ote)y T eTe) = o%(tr I, - tr I) =
N N n
= (N - n)02

We thus find

2 2

E s =

Ely - 90} {y - 26} = o
N - n
Equation (2.5) thus gives an unbiased estimate of the

variance ¢

Under the assumptions of Theorem 6.2 the least squares esti-

T@)_l.Theorem

mate 6 is thus unbiased, its covariance is 02(®
6.2 thus makes it possible to estimate the accuracy of the

parameter values obtained by the least squares procedure.

So far we have only made assumptions on the first and second
order moments of the numbers e, . We will now assume that all
e; are normal (0,c). In this case we could try to estimate
the parameters using the maximum likelihood procedure. To do
so we first determine the probability density function of the

observations Vs We have

y; e N(o,9 (%) + 0,0, () + ... F 6 @ (x:),0) (6.4)
The probability density function of the observations is then
“N/2 =N 1
F(yle) = (2m) o exp - o {y. = 0.9, (x.) - ... -
2 .- 1 171 71
207 1=1

2
- 09 (%0} (6.5)

To maximize the likelihood function we thus have to choose
ei such that the loss function

N
2V = % {yi - elml(xi) - 92¢2(xi) - el - 659n<xi)}
i=1

2 (6.6)
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is minimal. Having found the estimate of the standard devia-
tion is then obtained by
2V
S (6.7)
N

When the residuals are independent and normal the least squares

estimate is thus equivalent to the maximum-likelihood estimate.

In order to investigate the efficiency of the estimate, we will
now compute the information matrix associated with the estima-

tion problem. This matrix is defined by
J = E(grade log f)(grad, log f)T (6.8)

Equation (6.5) gives

log £ = -— N log o - (y - QG)T(y - 96) - N log 2w
20
Hence
grad, log f = iz @T(y - 98) = LZ olet
o o

We thus get

J = E < <I>TeeTCI> = < @T(I)
4 2
o) g

We have previously shown that under the assumptions of Theorem
6.2 the covariance matrix of the estimate is given by (6.2)

and we can thus also conclude that the estimate is efficient.

Summarizing the main results of this chapter, we thus find
that by putting the identification problem in a statistical
framework we have a natural way of introducing the loss
function. We also find it possible to estimate the accuracy

of the parameter estimate.
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7. ANALYSIS OF THE RESIDUALS AND TEST OF THE ORDER OF
THE MODEL

When solving an identification problem in practice, it is
very unusual to know the model structure a priori. This
means e.g. the we seldom know the order of the model and

what terms of (2.1) that are of importance.

In this section we will briefly analyse these matters. It
should, however, be pointed out that it is very difficult
to answer such problems in a way that is acceptable from

practical as well as a theoretical point of view.

It seems quite natural to analyse the residuals ¢ defined

e = Y - 98 (7.1)

where 0 1is the least squares estimate given by (2.5) i.e.

6 = (@Té)_l®TY (7.2)

From a purely deterministic point of view the residuals will
give an indication of how well the measurements are explained
by the model. It is in particular often quite revealing just
to plot the residuals and analyse for large deviations, jumps

or trends.

From a statistical point of view it seems even more important
to analyse the residuals. When the problem was stated in sta-

tistical terms it was actually assumed that
Y = 96 + e (7.3)

where e was a vector of random variables having certain pro-

perties. If the estimate 6 equals the true parameters 6, we
thus find

e = e (7.4)

In this particular case the residuals should thus equals the

stochastic variables e and we can thus make statistical tests
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to see if the data confirms or contradicts the assumptions
made on the statistical character of the errors e. We can
thus test that the residuals obtained can be samples from
a normal distribution. We can evaluate their covariance

function to see if they are dependent.

In practice we have found it convenient to include the

following

1. Plot the residuals

2. Check the distribution of the residuals (Histogram,
Xz—test etc.)

3. Compute sample covariance function of the residuals.

Test if residuals are uncorrelated.

The order of the model is one structural problem that often
is of interest. If the order is not known, we can compute
the least squares estimates for models of successively in-
creasing order. The loss function will naturally decrease
as the order of the model increases and the problem is thus
to judge whether the decrease in the loss function i1s sta-
tistically significant. Such a test can be carried out in
many ways. One commonly used test is based on the following

result.

Theorem 7.1

Assume that the residuals e; of the model (2.1) are indepen-
dent normal (0,0). Let 0. be the least squares estimate based
on a model of order n. and let Vi be the corresponding loss-

function defined by

- - LT N
v, = {y - @iei} {y - @iei} (7.5)

, > My oz N, where n 1s the

order of the system. If the nullhypothesis is true then the

Let the nullhypothesis be HO: n

quantities V, and (Vl - V2) are independent random variables

2
having X2 distributions with N - n, and n, - ny degrees of

freedom.
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nn

Partitioning ; @s follows

o, = {9 ! y.}

1 nt "1
we find
|
CI>an)n l " ®nT ¢ T®n T
! = = n + ¢
______:______ 61 y en 1 ©
T T T
o, 0
wi n : 11)i i n

Solving this equation e.g. by the principle of superposition

we find

. ° Ty v-1 4 T

o. = || + (2.72.) 3.0 e

i i i i

0
We thus find that
y - ¢.6. = & 6+ e - @ @ —(<I>.T®.)~l @.Te
i“i nn nn i i i
The loss functions Vl and V2 can thus be expressed as follows
v, = eT[:I ~ e, (e, Te )7L @.T] e io= 1,2
i n it i 1 i
We have furthermore the identity
T _ T
v, * (Vl - VZ) t (e” I e - Vl) =e I e

where the quantities on the left are nonnegative definite
quadratic forms in e - We will now investigate the proper-
ties of the matrices of the quadratic forms. We have

rank @.(@.T®.)_l 6.7 = +tp @.(@.T®.)“l 5.1 = tr(@.TQ.)"l 6.lo. =
1 a 1 1 1 1 1 1 i 1 1 1

= tr T = n.
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because the matrix @i(®iT®i)_l®iT is idependent and thus has

eigenvalues zero or one.

Hence
T -1 T _
rank [?N - @2(®2 ) @2 = N - n,
T -1 T T -1 T _
rank [%2(®2 @2) o, - ®1(®l @l) 2, = n, - ng

T -1 T _
rank El(Ql @l) @l:]— ny

It now follows from Cockrans Theorem (see e.g. Kendall Stuart,
The Advanced Theory of Statistics, Vol I second edition, Lon-
don 1962, p. 360-362) that the quantities Voo Vg =V, and

T

e INe -V, are independent and X2 under the null hypothesis

and the theorem i1s proven.

To test it the lossfunction is significantly reduced when the
number of parameters are increased from nq to n, we can thus

use the following test quantity

V. -V N - n
£ = —E 2 2 (7.6)

2 Ny, = oy

According to Theorem vV, -V, and V, are independent and X2

and t thus has an F(N - n n, - nl) distribution.

22 72
Tt should also be noted that if there are no disturbances
the columns of the ¢ matrix in equation (2.2) will be depen-
dent if too many parameters are used. This implies that the
matrix 5Te will be singular for a model with to many para-
meters. Hence if the identification is carried out recur-
sively in the number of parameters for noise free data the
matrix 376 will become singular when the order of the model
identified is greater than the order of the true model. By
analysing the route of 2 0 when it is singular, we can, how-
ever, detect the linear dependence of its rows and thereby

estimate redundant parameters.
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8. IDENTIFICATION OF LINEAR SYSTEM DYNAMICS

As an example of the application of the least squares method
we will now discuss the identification of linear system dyna-
mics. Consider a linear, time-invariant single-input, single-
output system. If the input signal u is piece-wise constant
over sampling intervals of constant length the input-output
relation of the system can always be represented by the ge-

neric model

y(t) + aly(t—l) + ...+ any(t—n) = blu(t—l) + ...+ bnu(t—n) +e (t)
(8.1)

If we perform experiments on the system by changing the input

u and observing the output y, we can thus state the identifi-

cation problem as follows:

Given a sequence of input output pairs {u(t), y(t), t = 1, 2,
., N + n}, find a model of type (8.1) which fits the obser-

ved data as well as possible in the sense of least squares.

We can apparently mould this particular problem in the form
of the general least squares formulation discussed in section

2 for example by introducing the quantities

. - _ —_
y(n+l) -y(n) - y(n-1) ... y(1) un) u(n-1) ... u(l)
y(n+2) -y(n+l) - y(n) -y(2) u(n+l) un) ... u(2)

y = ¢ =
y(n+N) -y (N+n-1) - y(N+n-2) - y(N) u(N+n-1)... u(N)

6 = col[:al a5 «..oag bl by ... bn] (8.2)

The least squares parameter estimate is then given by the

equation (2.5). To evaluate this we need the matrices
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N+n
-z y(t) y(t-1)
t=n+1

. N+n
-z y(t) y(t-2)
t=n+1

N+n
-7 y(t) y(t-n)

T t=n+l
¢

<
1

N+n
g y(t) n(t-1)
t=n+1

N+n
) y(t) ult-2)
t=n+1

N+n
3 y(t) ul(t-n) (8.4)
t=n+1l

We have thus no difficulties in formulating the identifica-
tion of the model (8.1) as a least squares problem. It now
remains to show that the least squares estimate has the de-
sired properties of unbiased ness, efficiency etc. Notice
that the proofs given in section 6 do not apply directly.
The standard theorems from regression theory such as 6.1
and 6.2 requires that ® and e are independent. This is cer-
tainly not the case for the model (8.1) as the elements of
the ¢ matrix are actually computed from the numbers e(l),
e(2), ..., . The problem of unbiasedness of the least squares
estimates for the model (8.1) was first studied by Mann and
Wold 1943. They assumed b, = b, = ... bn = 0, which is not

2
essential and they showed that the least squares estimate
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was asymptotically unbiased. Analyses of the exact distribu-
tion of the least squares estimate for short samples have
also been given for first order systems by R.L. Andersson
and T. Koopmans. It is clear from these analyses that the
exact distributions are extremely difficult to handle even
for systems of first order. We will now give a result which
is a straight-forward generalization of the result of Mann

and Wald.

Theorem

Let the residuals e(t) of the model (8.1) be independent,
equally distributed with zero mean. Assume that all moments
of e(t) exist and are finite. Let all the roots of

L
1 n

have magnitudes less than one. Assume that the limits

N N

1im%T I ou(t) and lim & I u(t) ulttr) = R (0
Now o t=1 Nseo  t=1

exist and let the matrix A defined by

Aij = Ru(i—j) i,j = 1,2, ..., N
be positive definite. The least squares estimate O then

converges to 6 in mean square as N»«.

Proof

The proof is essentially the same as the one given by Mann

and Wald with the obvious modifications required to handle

the b-terms. We will therefore here only give an outline

and we refer to the paper by Mann and Wald for details.

We first observe that the assumptions imply that the limits
1 T 1 T

lim = @ . o, lim = o

om N NN NN €

N

exist in the sense of mean square. Introduce
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1 T " 1 T
z.. = = (0o . )(6,. — 6 ) = = @ E
N N N N N o N N ™N
We have
-1 T _
E ZN = E ¢ N EN =0
Because e(t) is independent of y(t-1), y(t-2), ... and a
typical element of @TN EN is
y(k-1) e(k) + y(k-2) e(k) + ... + y(k-n) - e (k)
Furthermore
T _ 1 T T 1 T
Eozyzy = = B{o By Byt opd = = Blo o)
N N
I+ now follows from ( ) that lim Zy exist in the sense
of mean square convergence. Hence
. .1 T ~
1lim Zy = 1im » (@N @N) N (eN - eo)
= A ¢« 1lim N (eN - eo)
and we thus find that N (6N - eo> converges to a random

variable with zero mean and finite covariance. Hence

X ~ T _1 . T B
1im (eN - eo> (6N - eo) = N 1im 2y %y T 0

and we thus find that the least squares estimate is consis-

tent. To find the asymptotic distribution of Oy We observe that

" 1 -1
(eN - eo) vo= A Z
N
- - T _ 1 ,-1 T 1 ,-1
E(eN - eo)(eN - eo) = A E{zNzN } AN - A
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In the analysis presented in the previous sections we have
seen the importance of the condition ®T® being nonsingular.
This condition will depend on the character of the input
signal and of the properties of the true model. For the
discussion which follows we will assume that the data was

actually generated by the mechanism described by

y(t) + aloy(t~1) tooa ot ag Oy(t—no) = blou(t—l) oL+
O

b ou(t—no) + e(t) (8.5)
o

where e(t) is a sequence of incorrelated equally distribu-
ted random variables with zero mean and variance 02. In the
following it will be important to distinguish between the
model (8.1) which is fitted to the data and the equation
(8.5) which actually generated the data. We will therefore
refer to (8.5) as the "true model". "The true model" is thus
characterized by the parameters ns aio and bio, while the
parameters of the fitted model are n, a. and bi' Notice in
particular that the order of the fitted model n may differ
from the order of the true model. We will now give a funda-
mental result concerning the regularity of the matrix ®T®.

We have

Theorem 8.1

Let the output signal y be generated by the model (8.5) with
o = 0 i.e. e(t) = 0 for all t. Then the rank of the matrix
2 ¢ can never exceed 2n_ and there exist an input signal

{utt), t = 1,2,...,3n} such that ®T® has rank 2no.

Proof

Consider the matrix ¢ given by the equation (8.2). Let
no>ong. If the output y was generated by the model (8.5)
with e(t) = 0 for all t, we find that the columns of the

® matrix are linearly dependent. By utilizing the equation
(8.5) we find that all columns can be expressed as linear

combinations of 2no columns. The rank of @T is thus at most
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equal to 2no. As the rank of a product of two matrices
cannot exceed the rank of either factor, we thus find
that the rank of ®T® is at most 2no. It then remains to

show the existence of a suitable input sequence.

Example 8.1

We will now give a numerical example. To do so we will

generate input-output data from a known model.

In Fig. 8.1 and in Table 8.1 we show input output pairs

which are generated by the equation
y(t) + 1.5y(t-1) + 0.7y(t) = u(t-1) + 0.5u(t-2) + roe(t)

where {e(t)} is a sequence of independent normal (0.1) ran-
dom numbers generated by a pseudo random generator. The fol-

lowing values of ) have been used: 0, 0.1, 0.5, 1.0 and 5.0.

In Table 8.2 we show the results obtained when a model ha-
ving the structure (8.1) is fitted to the generated input-

output data using the least squares procedure.

The estimates are calculated recursively for models of in-
creasing order to illustrate the very typical situation in
practice when the order of the model is not known. In Table
8.2 we have shown the least squares parameter estimates and
their estimated accuracy, the loss function and a conditio-
ning number of the matrix 916, The conditioning number

p = 2n max{(A)ij} max{(A_l)ij} is chosen rather arbitrarily.
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Table 8.1 - Input-output data for example 8.1
y

t u e =0 A= 0.1 A = 0.5 A = 1.0 A =5,

1 0.857 0.000 0.086 0.429 0.857 b,28

2 0.915 1.000 1.220 2.100 3.200 | 12.00

3 -1 -0.099 3.000 3.260 4.301 5.602 | 16.01

4 -1 0.246 3.300 3.561 4,604 5.908 | 16.34

5 1 0.635 1.350 1.623 2.713 4,076 | 14.98

6 1 1.2u7 0.215 0.566 1.970 3.726 | 17.77
7 1 0.172 0.878 1.230 2.642 4,407 | 18.52

8 1 0.401 2.666 2.990 4.285 5,904 | 18.85

9 1 -0.847 4,884 | 5.038 5.654 6.423 | 12.58
10 1 1.383 6.961 7.103 7.673 8.386 | 14.09
11 1 .960 8.522 8.724 9.532 | 10.54 18.62
12 1 -0.994 9.410 9.51k4 9.930 | 10.u45 14.60
13 1 -1.336 9.650 9.531 0.054 8.458 3.69
1y 1 -1.447 9.388 8.992 7.407 5.426 {-10.42
15 -1 -0.826 8.827 8.233 5.860 2.892 1-20.85
16 -1 0.541 £.1€9 5.610 3.375 0.581 |-21.77
17 -1 ~-0.122 1.574 1,139 | -0.600 | -2.775 |-20.17
18 -1 -0.7u8 -3,457 { -3,793 | -5.137 | -6.818 |-20.26
19 -1 1.024 ~7.787 | -7.884 | -8.274 | -8.761 |-12.66
20 -1 -0.027 -10.76 |-10.67 |-10.33 -9.895 | -6.43
21 -1 0.442 -12.19 |-11.95 |-10.98 -9.769 | -0.08
22 -1 -1.790 -12.25 |-12.13 |-11.63 |-11.02 -6.07
23 -1 -2.u487 -11.35 |-11.58 |-12.51 |-13.67 |-22.98
24 -1 -0.165 -9.942 [-10.39 [-12.20 |[-14.46 |-32.55
25 -1 -0.797 -8.471 | -9.066 |-11.45 |-14.42 |-38.22
26 -1 0.312 -7.247 { =7.792 | -9.971 |-12.70 |-34.49
27 ~1 -0.127 -6.441 | -6.854 | -8.508 |-10.57 |-27.11
28 -1 -1.196 -6.088 | -6.u447 | -7.880 | -9.672 |-24.01
29 -1 1.236 -6.124 | -6.2u8 | -6.747 | -7.369 |~-12.35
30 -1 .107 -6.424 | -6.349 | -6.050 | -5.677 | -2.69
31 -1 -1.882 ~6.849 | -6.838 | -6.794 | -6.738 | -6.30
32 1.428 -7.277 | -7.170 | -6.742 | -6.206 | -1.92
33 ~-0.963 -5.621 | -5.565 | -5.338 | -5.055 | -2.79
34 -1.566 -1.838 | -1.985 [ -2.571 | -3.305 | -9.17
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Table 8.1 - Input-output data for example 8.1

y
t u e A =0 A=0.1|x»=05 h=101x=5
35 -1 1.385 2.678 2.558 2.077 1.477 -3.23
36 -1 0.671 4,804 4,793 4,752 4.699 4.28
37 -1 -0.067 3.831 3.893 L, 1u0 b, uus 6.92
38 1 -0.132 0.88u 0.970 1.317 1.751 5.22
38 1 ~0.050 -0.856 | -0.774 | -0.u447 -0.037 3.24
40 -1 0.855 -0.403 |[-0.255 0.335 1.073 6.98
41 -1 0.078 -0.505 | -0.333 0.355 1.214 8.09
42 1 -0.572 -1.975 | ~1.878 |-1.489 [-1.002 2.89
43 1 -1.242 -2.110 -2.,208 |[-2.602 |-3.085 -7.04
Ly -1 -0.658 -0.282 | -0.563 [-1.690 -3.099 {-14,37
45 -1 0.164 0.554 0.217 1-1.132 {-2.818 |-16.31
46 L -0.140 ~0.472 -0.794 |[-2.085 |[-3.698 |-16.60
u7 1 0.504 -0.595 | -0.793 [-1.583 | -2.570 |-10.47
48 -1 0.281 0.937 0.895 0.726 0.515 -1.18
49 -1 0.156 1.322 1.u413 1.775 2.227 5.84
50 1 -0.112 -0.172 | -0.018 0.598 1.368 7.53
51 1 1.022 -0.684 | -0.414 0.666 2.015 12.81
52 -1 -2.157 0.594 0.676 1.001 1.408 4,686
53 -1 ~0.732 0.870 0.730 0.170 | -0.530 -6,13
54 -1 -0.326 -0.610 | -0.910 -2.,109 | -3.607 |-15.59
55 -1 1.644 =3,025 | -3,212 |-3.960 | -4.896 [-12.38
56 -1 0.727 -5.8610 | -5.608 |-5.601 | -5.591 -5.52
57 -1 0.298 -7.798 | -7.634 | -6.980 | -6.162 0.38
58 1 0.960 -9.269 | -8.929 | -7.569 | -5.869 7.73
59 1.340 -7.946 | -7.416 -5.298 | -2.650 18.53
60 0.823 -3.930 | -3.291 | -0.737 2.u456 28,00
61 1 ~-2.088 1.167 1.545 3.059 4.951 20,08
62 -1 -1.453 6.001 5.977 5.878 5.755 4,77
63 1 -2.715 7.685 7.112 b,81e 1.951 | -20.99
by -1 ~-0.615 7.827 6.923 3.305 | -1.217 }-37.39
65 1 2.474 5.861 5.153 2.322 | ~1.217 | -29.53
66 1 -1.249 3.812 3.258 1.0u45 | -1.722 | -23.86
67 -1 0.094 3.116 2.790 1.489 -0,138 | -13.15
68 -1 1.333 1.505 1.538 1.669 1.832 3.14
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data for example 8.1

y
t u e A =0 = 0.1 = 0.5 = 1,0 x = 5.0
69 -1 0.135 -1.,423 1 -1.133 0.028 1.4791 13,09
70 -1.591 -4.689 | -4.435 | -3.421 | -2.154 7.98
71 1.426 -5.5637 | -5.217 | -3.939 | -2.341 | 10.uu
72 ~1.589 -3.523 § -3.380 | -2.808 | -2.093 3.63
73 -0.078 0.091 0.074 0.007 | -0.078 | -0.76
T4 -1 0,035 4,103 3.981 3.493 2.883 ] -2,00
75 -1 -0.14y 5.591 5.405 4,663 3.735 1 -3.69
76 1 0.571 4,014 3.878 3.334 2.655 | -2.78
77 1 0.768 2.607 2.610 2.622 2.636 2.75
78 1 0.052 2,601 2.7086 3.125 3.648 7. 84
79 1 -0.,297 3.577 3.702 4,203 4,830 9.8Y4
80 1 1.216 5.044 5.281 6.226 7.407 | 16.86
81 -1 -0.130 6.563 6.816 7.831 9.099 | 19.25%5
82 -1 1.137 5.813 6.1u42 7.457 9.101 | 22.25
83 -1 0.851 2.626 3.026 4.630 6.633 | 22.66
84 1.084 -1.631 | -1.151 0.766 3.163 | 22.34
85 -1.103 -3.784 | -3.456 | -2.143 | -0.502 | 12.63
86 -0,169 -3.034 | -2,895 | -2.335 | -1.636 3.9¢
87 -1 ~-1.443 -0.403 | -0.,567 | -1.224 | -2.045| -8.,62
88 0.439 1.020 0.719 | -0.482 | -1.984 | -14,00
89 2,151 2.312 2,191 1.709 1.107 | -3.71
90 -1 0.472 4,254 4,330 4,637 5.021 8.09
g1 ~-0.691 4.262 4,393 4,914 5.566 | 10.78
92 -0.056. 3.916 4.052 4,597 5.278 | 10.73
93 -0.043 | 4.390 4,499 4,934 5.478 9,83
9y -1 0.733 5,344 5,485 6.050 6.755 { 12.40
95 0.433. 4,443 4,622 £.337 6.231 | 13.38
96 1.572 3.42y 3.750 5.057 6.690 | 19.76
97 -1 0.196 3.525 3.910 5,448 7.370 | 22.75
98 -1 0.051 2.392 2,745 4.157 5.922 | 20.04
99 -1 ~-0.580 -0.381 | -0.178 0.632 1.645 9,74
100 1 =0.094 -3.7u5 | -3.698 | -3.509 | -3.273 | -1.38
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We will now analyse the results of Table 8.2. Let us first
consider the case of no disturbances X = 0. In this case

we find that it is only possible to compute models of order
1 and 2. When we try to compute the third order model, we
find that the matrix 27s is singular as would be expected
from Theorem 8.1. The conditioning number is 1.3 x 106.

(To handle the numerical problems for a model of third or-
der in a case like this, we must use numerical methods which
do not require the inversion of ®T® e.g. the reduction of ¢
to triangular form using the QR algorithm). We also find that
the estimated standard deviation of the coefficients of the

second order model are zero.

Proceeding to the case of A = 0.1, i.e. the standard devia- -
tion of the disturbances is one tenth of the magnitude of )
the input signals, we find that the matrix ®T® is still

badly conditioned when a third order model is computed.

Analysing the details we find, however, that the Gauss Jordan
method gives a reasonable accurate inverse of ®T®. Pre-and
postmultiplying the matrix with its computed inverse, we

£ind that the largest off-diagonal element is 0.011 and the
largest deviation of diagonal elements from 1.000 is 0.00u45.
We also find that the estimates ;3 and ﬂ do not differ sig-

3
nificantly from zero.

Proceeding to the cases with more disturbances we find that
the matrix 5To no longer becomes badly conditioned for mo-
dels of order 3, but that the estimates 53 and B3 st1ll do
not differ significantly from zero. Notice also that the
standard deviation of the parameters in all cases increases

as the order of the model is increased from 2 to 3.



- 36 -

09

9 0FeT 0

99°0Fhc’0

19" 0FL6°0

60°0¥60°0-

8T°0F.487°0

Te0Z | Sheohhg|ze"s TT 0785 T~
hLTT | 022°29h2| 6278 T9°0FTh"0 | T9°0786°0 80°0FhL 0 | L0°0F8KH°T- 07§ = X
023 S06°TETS| 55" L £8°0702° 0 S0°0798°0-
9L 869°86 | L0°T ST 0¥¢0°0- 9T'0FLE'0 ET"07E6°0 60°0¥60°0~ LT'07¢8°0 TI'0¥SS°T-
AR £98°66 | 90°T HT*0F9h'0  CT 0FE6"0 90°0799°0 ' 90°0FLh T~ 0°T = X
SL TET'80€ H8'T 02'0700°T £0° 07880~
STST & TSh'hZ €G°0 60°0Fh0'0- ¢TI 0%¢h 0 | 90°0F96°0 80°0¥n0°0- 9T'0F9L°0 TT 0%hS T~
902 83 HZ €970 L0°0F8h°0  90°0%96°0 €0°0FL9°0  H0'0¥8hH"T- §°0 = Y
£9 8h8 LCe  BG°T LT 070T T £0°0¥88° 0~
hL6SE . €86°0 TT°0 | 90°0%¥20°0- TT0FLh'0 TO'0¥66°0 80°0¥¢0°0- 9T 0¥€L°0 TT'0¥¢S T-
50¢ £86°0 TT°0 20°0%6h°0  TO°0F66°0 | T0°0¥69°0 T0°0F05°T- T°0 = X
Lhttghe  99°T 8T 06T T £0°0¥88° 0~ |
gOTRE"T - - - - - - - -
£0¢ 00070  00°0 00°0¥0$°0 00°0F00°T 00°0%0L°0 00°0F0§°T- 0°0 = ¥
69 £98°597 TL'T 8T 07€C" T £0°0788° 0~
00 ' 0 0°T 0 0L 0~ 0§ T~ onay,
, N v €q Zq Tq £o Zp T,

peandwoo (T*g) 2JN1dNJIS UYJ}TMm [spou

T'g ©1g®3 JO BIBD WOIJ

® JO saesjeweded oyl JO So3PUT1ISS ssdaenbs jseer]

v

- ('8 ®L4elL



- 37~

We will also discuss some other ways to find the order of
the system. We can e.g. consider the variances of the para-
meters. We find e.g. from table 8.2 that the coefficients
;3 and gg do not differ significantly from zero in any case.
In table 8.3 we also show summarize the values of the loss-
function as well as the values of the F-testvariable when
testing the reduction of the lossfunction for a model of or-
der n, compared to a model of order n, as was discussed in
section 8. Compare equation (7.6). We have at the 10% level
F(2,100) = 2.37 and at the 1% level F(2,100) = L4.84, We thus
find that by applying the F-test or the XZ,test in this case
we get as a result that the system is of second order for all
samples. The actual parametervalues of table 8.2 as well as
the estimated accuracies gives an indication of the accuracy

that can be obtained in a case like this.




Table 8.3 -

case 1 X
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Gives the values of the,lossfunction V, the con-
ditioning number u of ¢ @ and a table of F-test
values when identifying models of different order
to the samples of Table 8.2.

\

u

2666.23

59

~ 265.86

205

I\DE—JCD;:j

0.00

135971

case 2?2 Y

\

2644 .15

248.447

0.987

205

w i I lols

0.983

35974

case 3 A =

0.5

\Y

227 .848

2701.35 |

63

s o w  NE ol B

24,006

24.558
24451

| 206
1518
2982

case b A =

1.0

\Y

'3166.78

308.131

212

99.863

476

36,813

98.698

1351

w%quOdwm
5900

532 |

0.191

Mfiéégwﬁ
130
0.1

0.8

mQSS

734

100 |

487
0.55

-

365
33
0.72

292
" 25 -
0.80 |

873

;s Wi P ol 3

94.800

1647

case 5 A=

5.0

v

21467.64

520

5131.905

2440.245

262,220 1

2375.624

2910

‘:‘Ew‘r\)‘y—d ol

0.88  0.92

156

52

185 |

122

T e

26

17
2031

nlFE w0 3

2290.730

3847

0.21

18 14

0.9% |
1.2

1.2
1.5

Fow N O

1.6
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9. COMPARISON WITH CORRELATION METHODS

It is of interest to compare the least squares procedure
with other identification schemes. In this section we will
investigate the relationship with the correlation method
discussed in chapter 4 . When determining process dynamics
for a single input single output system using correlation

methods the following quantities are computed.

1 N-1
R (1) = I ul(t) ult + 1)
v N-t  t=1
1 N-rt
R (1) = by y(t) y(t + 1)
y N-t t=1
1 N-t1
R (1) = b y(t) ult + 1)
yu N-t  t=1
1 N-1
(1) = % u(t) y(t + 1)

[
g
=
I
~
+

Comparing with the least squares identification of process
dynamics discussed in section 8 we find that the elements
of the matrices (8.3) and (8.4) of the least squares proce-
dure are essentially correlations or crosscorrelations. Neg-

lecting terms in the beginning and end of the series we find

—
Ry(O) Ry(l) cen Ry(n—l) Ryn(O) Ruy(l) cen Ruy(n—l
Ry(D) Ry(n—?) Ryu(l) Ryu(O) ' Ruy(n—Z)

oTo - R (0) R (n-1) R (n-2) R (0
R (0D R (1) R (n-1)

u u u

R (0) R,(n-2)

i R _(0)
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-R_(1L)
y

-R_(2)
y

-R_(n)
y

>y R,y (1)

(2)

Hence if a correlation analysis is performed, it is a
simple matter to calculate the least squares estimate

by forming the matrices 516 and @Ty from the values of
the sample covariance functions and solving the equation
(2.5). As the order of the system is seldom known apriori
it is often convenient to compute the least squares esti-

mate recursively as was discussed in section 4
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10. RELATIONS TO KALMAN FILTERING THEORY

We will now show that the equations for the least squares
estimate are easily obtained from Kalmans results on linear
filtering. Apart from being a curiosity this result is of
interest in connection with realtime identification. Using
Kalmans results it is possible to obtain least squares es-
timates even in the case when the parameters of the process

are random processes.

Kalman considers a dynamical system
x(t + 1) = ¢ x(t) + e(t)

y(t) = C x(t) + v(t) , (10.1)

where {e(t), t = 1,2,...} and {v(t), t = 1,2,...} are se-
quences of independent equally distributed random variables
with zero means and covariance matrices R, and R, respec-

1 2
tively. Kalman has proven the following theorem.

Theorem (Kalman)

Let the initial condition of (10.1) be a normal random variab-
le (m,RO). The best estimate of x(t) (in the sense of least
squares) given the observed outputs y(1), y(2), ..., y(t) is

given by the recursive equations

() = & x(t-1) + K(t) {y(t) - C o x(t-1)}

%(0) = m (10.2)
where

K(t) = S(t) ¢’ {C s(t) c' + R}

S(t) = ¢ P(t-1) o + R,

P(t) = 5(t) - K(t) C S(t)

S(0) = R (10.3)

o}




- U2 .

The matrix S(t) has physical interpretation as the covarian-
ce matrix of the apriori estimate of x(t) given y(1), ...,
y(t-1) and the matrix P(t) as the covariance of the poste-

rior estimate of x(t) given y(1), ..., y(t).

Now consider the least squares identification of the system
y(£) + a;y(t-1) + ... + a y(t-n) = bju(t-1) + ... + b u(t-n) +
+ 1 e(t) (10.4)

where {e(t)} is a sequence of normal (0,1) random variables.

Introduce the coefficients of the model as state variables

Xl(t) = ag

Xz(t) = a,

Xn(t) = a,

Xn+l(t) = bl

Xn+2(t) = b2

X2n(t) = bn (10.5)

and define the following vector
C(t) = {-y(t-1), -y(t-2) ... -y(t-n) u(t-1) u(t-2) ... uCt-n)}

(10.6)

As the coefficients are constants we have
x(t+1) = x(t)
The equation (10.4) can now be written as

y(t) = C(t) x(t) + e(t) (10.7)
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and the least squares identification problem can be stated

as a Kalman filtering problem with ¢ = I, Rl =0, R, = Az.
Applying Kalmans theorem we find that the estimate is given
by

x(t) = x(t-1) + K(t) {y(t) - C x(t-1)}

K(t) = P(t) c(t) (2% + c(t) P(t) cl(p)y™?

P(t) = P(t-1) - K(t) C(t) P(t-1) (10.8)

But these equations are identical to the equations (5.11) -
(5.13) for the recursive computations of the least squares
estimate. As we have no apriori estimate the initial condi-
tions are Q(O) = 0 and P(0) = «», To be able to use the recur-
sive equation for P we introduce P(0) = % I where ¢ > 0 is

a small number and let e > 0 in the solution. Compare section

5 for a detailed discussion of the initial conditions.




11.

T

REAL-TIME LEAST SQUARES, CONTRACTION MAPPINGS AND STOCHASTIC
APPROXIMATIONS

In this section we will analyse the least squares estimation
procedure from still another point of view. To start we will
consider the equation (5,8 ) for recursive computation of

the least squares estimate i.e.
B(t+1l) = o(t) + K(t) {y(t+l) - ¢ (t+1) e(t)} (11.1)

We have previously shown that if K(t) was chosen according
to the equations (,1D and (6.12 the sequence {6(t)} will
converge to the time parameter value 0. We will now show
that there are many other ways to choose K(t) which also
ensures convergence. This results are of interest from two

points of view.
1. It makes it possible to simplify the computations.

2. The methods wused to prove the main results are
extremely general and they can be used also in
many other problems to construct convergency

parameter estimates.

We thus find that if there were no disturbunces there are
many ways to choose K(t) in such a way that the equation
(11.1 ) will converge. Notice that by involving the prin-
ciple of contraction mapping we do not depend heavily on
the mapping T being linear. Stochastic versions of the
principle of contraction mapping were first discussed by
Robbins and Monro under the name of stochastic approxi-
mations. The results of Robbins and Monro have later been
extended by Dvoretsky who has proven the following theo-

rem.
Theorem 11.1

Let o s B and Yh (n = 1,2,...) be non-negative real num-

bers satisfying
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llm ¢4 = 0 s X B < and N Y = o
n n n
n—>o n=1 n=1
Llet ¥ Dbe a real vector and Tn(n = 1,2,...) be measurable

transformations satisfying

]]Tn(rl,...,rn) - 8 ]|| s max {an,(l+6n)]]rn - 9] - v (11.2)

for all real vectors rl,...,rn. Let X and Yn be random

vectors and define

Xn+l(w) = Tn(Xl(w), ce s Xn(w)) + Yn(w)
for n > 1. Then the conditions E X12 < ®
z E Yn2 < o
n=1l
and E{Ynixl,...,xn} = 0 with probability 1 for all n imply

. 2. _
1im E {(Xn - )"}y =0

and

P {1im X, - T} o= 1

n-o
We know already that (11.1) will converge if K(t) is chosen
according to (10.3). We will now use Dvoretskys theorem to
prove that the sequence (11.1) converges to §, under very
general conditions. In particular we will show that this is
true for many choices of K(t). This result is important for
practical reasons because it will make it possible to simpli-
fyv the computations. When doing so it should, however, be
observed that even if the sequence §  converges for choices
of K(t) other than (10.3) the convergence might be slow. The
result is also of importance for another reason. Because of
the generality of Dvoretskys result it will be possible to
set up converging stochastic approximation schemes for much

more general identification problems.
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We now have

Theorem 11.72

Let

1) K{t) ¢ (1) non-negative definite
N

2) 1im x b

N

(K(D)9(t) + 9l (1) KT(e)) - A
N—o t ’

1

where A is positive definite.

3) K []2 < =

1~ 8

t=1

and assume that {e(t), t = 1,2,...} are independent, have
zero mean and finite variance then the sequence (11.1) will

converge to 8 _ with probability one.




T,

Proof

The essence of the proof is to demonstrate that the condi-
tions of the theorem imply that the sequence (11.1) satis-
fies the conditions of Dvoretskijs theorem. To simplify the

writing we introduce

An = K(n) ¢ (n)
Xn = g(n) - o,
Y = K(n) e(n+l)
n

The sequence (11.1) can then be written as

Xn+l = {I - An} Xn + Yn (11.3)

The numbers K(n) may depend on y(t-1), y(t-2) etc, but accor-
ding to the assumptions the numbers e(t) were independent (of
themselves and of y(t-1), y(t-2), ...). They have zero mean

. 2
and variance i .

Hence

1t
(ew]

E{Yn\xl, cees Xn}

and

£y < E [k |7 - el < 2 |k ]|?

It now follows from assumption 3) that

2 e k] < e

1 n=1

1N~ 8
[l
}_<
FZAN

n
I+ now remains to show that the linear transformation
T(x) = (I - An)X

satisfies the condition (11.2) of Dvoretskijs theorem. To

do so we will first assume that all An are positive definite.
Let a, be the smallest and bn the largest eigenvalue of An’
As Al is symmetric and positive definite we have a > 0. The
condition 2) also implies 2 a, = . Now introduce a sequence

of positive numbers c having the properties
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fee]

c -0 and Yy a ¢ = o
n n n
n=1

We will now estimate |]Tn(x)]] where || . || denotes the
matrix norm which is subordinate to the Euclidian vector norm.

We consider two cases seperately

[T GOl s 2+ [{An|[>!|x\[ (1 + b)) ]x]]

IZAN

(1 + bn) tey

B) | x]] 2 ¢
2 2 2 T
N Goll? = 112 + ax]|? - 222 x

<

2 2 T
s (1 + b Y x|l - 2x A_x

We further have

min XTAnX = a,
| I=]]=1

where

o
Zan:oo
1

Hence

=17

2 2
T, GO]™ < 1+ by - 2a | [x]]

2a !
2
[T GOl s \‘l+bn %] | \Il— —

1+5D
n
For n sufficiently large we have
[
J Zan a,
1I--—— v 1 -
1+ 5D 2 1 +5D 2
n n
Hence
2 “n
[T, ol s =l +Db " - ——— " |Ix]|
n n >
1 +b
n

2 4n “n
<l Yoep? - =D
n % 2

1 + b
n
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where

[°)
% ancn =
1

according to the definition of c - As bn +~ 0 we have also

We thus find

TG || s max{ao_, (1 + Bn)||X]| - v}
where
a = (1 + bn)cn
Bn = 1+ b 2 1

ac
v = n n
n

1+ 5D 2

n

The numbers o , 8 and vy obviously satisfy the requirements
of Dvoretskijs theorem. We have thus proven the theorem for
the special case that att An are positive definite. We will
now remove this condition. When A are not positive definite
we start with (11.3) and iterate to twice. Hence

ntk-1 ntk-1 ntk-1

X = ( T Av)X + X ( T A ) K(u) e(Cu)
v=n u=n SERT! v

The product
n+tk-1
4 A
v
v=n
must become positive definite for a finite k because of 2).

Now define the sequence

7z = X
v n+vk
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We have
zZoe1 T A 2 o4 v (11.4)
v v
where
. ntvktk
A Y = T
p=n+vk
and
n+vk+k n+vk+tk
Vv = b3 ( 0 A ) K(u) e(u)
p=n+vk u v

As all A"
AY]

verges to z

are positive definite the sequence (11.,4) con-

ero according to the result just obtained.




