LUND UNIVERSITY

Implementation Languages for CACE Software

Bruck, Dag M.

1987

Link to publication

Citation for published version (APA):
Briick, D. M. (1987). Implementation Languages for CACE Software. (Technical Reports; Vol. TFRT-3195).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/8709d2ea-94f5-4ced-9bcb-964f196791e5

CODEN:LUTFD2/(TFRT-3195)/1-020/(1987)

Implementation Languages

for CACE Software

Dag M. Bruck

STU project 86-4047

Department of Automatic Control
Lund Institute of Technology
" September 1987

Document name

Department of Automatic Control FINAL REPORT

Lund Institute of Technology Date of issue
P.O. Box 118 September 1987
S5-221 00 Lund Sweden Document Number
CODEN:LUTFD2/(TFRI-3195)/1-020/(1987)
Author(s) Supervisor
Dag M. Brick

Sponsoring organisation
The National Swedish Board of Technical
Development (STU project 86-4047)

Title and subtitle
Implementation Langunages for CACE Software

Abstract

This report discusses the selection of implementation languages when developing tools for computer aided
design of control systems. Experiences have been compiled from special case studies within the project and
from previous projects,

When developing large software systems, the availability of modularization, data abstraction, object-oriented
programming and safe separate compilation are of great importance. The development work is also affected by
the programming environment, that is, compilers, subroutine libraries, editors, graphics packages and window
management. Standardization and portability must be considered as well.

We think future packages will be written using many programming languages for the following reasons:
A CACE package will consist of a large number of modules (naturally falling into the areas of numeric
computations, symbolic computations, user interfaces and expert systems), and it is natural to use different
languages for different purposes. Tt is also necessary to reuse existing software, for example, numeric libraries
written in Fortran. Most workstations support, although with some limitations, the mixing of modules written
in different languages, such as, Fortran, Pascal, C and Lisp.

This report covers in particular Fortran, Pascal, Modula-2, Ada, C and C++, Prolog, Common Lisp, KEE and
Smalltalk. These languages are either widely available, or have features of special interest. For implementation
of production systems, we recommend C++ in particular, and possibly Ada, C and Modula-2. Common Lisp is
recommended for expert system applications. New development in Fortran must be avoided. For exploratory
programiming and rapid prototyping, Common Lisp and more advanced programming environments like KEE
are recomimended.

Key words
Computer Aided Control Engineering, Programming languages, Programming tools, Programming environ-
ments, Modularity, Data abstraction, Object-oriented programming, Exception handling

Classification system andfor index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 20

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 101 0,
5.221 03 Lund, Sweden, Telex: 33248 Iubbis lund.

Table of Contents

L. Introductionoiiiniiniiii i et i it er ey 3
2. Users and USeS ..vuineiitiit it ie ittt e e 4
Types of USEIS .vivtetiiiii it ini ittt e et ireneren 4
Components of a CACE packageoviiiiiiiiiiiiinininens. 5
Software development phaseso.oiiiiiiiiiniiiniainanns 6
3. The programming environmentc..ccviiiiiiiiiiiiiiiiiiiiin... 8
Programming tools ...t i 8
StandaTds ottt i e e e e e 10
4. Programming language concepis . ..ovvutvirivirininrriirriinirnness 11
Modularity . ..ovoviiii i i i it e e e e 11
Data abstractiono e 11
Correctness and reliabilityo i i, 12
5. Overview of programming languagesc.coviiiiiiiirireinrrennneens 14
ko 155 - O 14
Pascal ci i e e 14
Modula-2 ..o i i e e e e e e 14
. 15
Cand G o i e e et e e e 15
Prolog ..o e 15
7T+ 15
KEE i e e e 16
Smalltalk oo e 16
R 04 T E T T (T 17
Acknowledgements ...t i i e 17
References .o v i e e 18

1. Introduction

This is the final report of the project “Implementation Languages for CACE
Software” (STU project 86-4047). It has been a part of the project “Computer
Aided Control Engineering (CACE)” at the Department of Automatic Control,
Lund Imstitute of Technology.

When implementing CACE software it is not obvious which language to
choose. We have obtained some insights via the other pilot projects that have
been carried out. The project “New forms of man-machine interaction” (STU
project 84-5069) [Mattsson et al., 1986] has given a considerable insight into
the use of Pascal as an implementation language. The projects “Experiments
with expert system interfaces” (STU project 85-3042) [Larsson and Persson,
1987] “Expert control” (STU project 85-3084) [Arzén, 1987), “High level prob-
lem solving languages” (STU project 85-4808) [Astrém and Mattsson, 1987]
and “Representation and Visualization of Systems and Their Behaviour” (STU
project 86-4049) [Mattsson, 1987] have all given experiences with working in
a Lisp environment. Additional Lisp experience has been gained from the
study of system structures. Other projects carried out by the team mem-
bers include large Fortran programs. We have also Ada experience from other
projects. Modula-2 is used extensively on our IBM PC AT’ for programming
of real-time applications,

We felt, however, that it would be useful to have a project which was
specifically devoted to implementation languages. Firstly, it would be an op-
portunity to compile our experiences. Secondly, it would give us possibilities to
get experience of using additional languages, for example: Prolog, the purely
object-oriented language Smalltalk, and other sophisticated programming en-
vironments, such as KEE. These experiences are reported in Briick [1987],
Kreutzer and Astrdm [1987] and Denham [1987], respectively.

The report is organized as follows, In Section 2, different types of users and
different uses of a CACE package are identified. The components of a CACE
package {calculations, user interface, expert systems) are shortly described.
Typical software development phases are also noted. In Section 3, the pro-
gramming environment is discussed. This includes a number of programming
tools: compilers, subroutine libraries, editors, graphics libraries and window
management. An important area is the user’s background and his subjective
opinion of the environment, Related issues are standardization, adaptabil-
ity and quality of the environment. Section 4 discusses a small number of
programming language concepts of particular importance to CACE software;
modularity, data abstraction, object-oriented programming, correctness and
reliability. In Section 5, overviews are given on Fortran, Pascal, Ada, Modula-
2, C and C++, Prolog, Common Lisp, KEE and Smalltalk. Conclusions are
given in Section 6.

In this report, a CACE package is the goal and purpose of the discussion;
a tool is a piece of software that a user can grab in order to accomplish a task;
the environment is about everything in sight of the user, including all tools.

2. Users and uses

This section will cover different types of users and the different ways the CACE
packages are used, major components of such a package, and the development
phases of software systems.

Types of users

The uses of a CACE package can be related to three different kinds of generic
users: the end user, the developer, and the implementor, Of course, a real
person can perform several duties, none of which may be clearly specified; the
“typical” user serves as a conceptual model.

The end user uses the CACE package as it is, i.e., in the way it was
installed on his computer, He will use it, more or less frequently, to solve
his application problems. He will only get in touch with the user interface
of the package (in other areas called the top-level), and not the underlying
implementation.

The end user’s major concern is to get the job done as efficiently as pos-
sible. An important aspect is execution speed; although computer perfor-
mance increases linearly over time, the complexity of many problems grow
exponentially. Another important aspect of user efficiency is integration; the
CACE package must be integrated with all the other facilities the computer
can provide the end user. For example, the same user interface (e.g., editing
commands and window control) should be used in both the word processor
and the CACE package. It should also be possible to move equations to the
document the user is preparing. Of course, execution speed and user efficiency
are of no use if the CACE package is not available on the computer system
the user is familiar with and has immediate access to.

The developer adapts and extends an existing CACE package to meet
local requirements. The developments are used by the end user; developments
are typically initiated by requests from end users.

We assume that the package can be changed in some ways (not merely
installed on a particular computer), but that there will exist a “core” which is
pre-defined and not alterable by the developer. Extendability should include
facilities for adding new operations (commands), new data structures, and
ways of enhancing the user interface. This indicates that there is no clear
distinction between users, developers and implementors.

The developer must have easy access to a large number of utility routines,
both complex and powerful (essentially all operations available to the end
user), and simple routines (for example, to read and write numbers), The
development language may be an ordinary programming language, which will
most likely be the same language as was used for implementing the core of the
package, augmented by a run-time library. It can also be a special purpose
language, specificly tailored at writing CACE applications; an example of this
approach is EAGLES [Gavel, 1986}, with the embedded langnage M [Gavel et
al., 1986].

The implementor is responsible for the core of the CACE package, which
is then used by the developer and the end user. The basic facilities of the
computer system will be heavily used: compilers, graphics libraries and win-
dow management. The possibility to combine parts written in different pro-
gramming languages may become important. Porting the package to other
computer systems, maintaining multiple versions and debugging the package,
are likely problem areas for the implementor.

Components of a CACE package

This section will outline a few components or facilities that are required in a
CACE package. The emphasis has been put on the implementor’s view.

Numerical calculations are dominant, and will remain so as long as we
can predict. There are a huge number of numerical routines that must be in-
cluded in a general CACE package: NAG, LINPACK, EISPACK, ODEPACK
and many more. Fortran is the dominating language for writing numerical
software; the only other languages which may become more widely spread are
Ada and C. Good numerical software is difficult fo write, and the quality of
compilers (and run-time libraries) must be checked before porting the CACE
package to another computer.

Symbolic calculations are becoming increasingly popular, and there are
several good reasons for providing symbolic manipulation. The user inter-
face would be improved by allowing the user to work on a higher level. He
could present his problem to the computer on a form suitable to himself, Re-
sults on analytic or symbolic form could give a better insight into structural
properties than numerical tables. Even when it is not possible to carry the
symbolic calculations all the way through, symbolic manipulation could be
useful; symbolic manipulation could simplify the problem and transform it
to a form better suited to numerical solution. Symbolic manipulation could
also be used for automatic generation of procedures for calculating gradients,
Jacobians, Hessians, and much more, thereby reducing the user’s work load
and hopefully decreasing the risk of introducing errors,

Existing packages for symbolic calculations, such as MACSYMA [MAC-
SYMA, 1983] and muMATH [muMATH, 1983, are powerful, but require
considerable computer resources, In particular, MACSYMA is best run on
specially designed Lisp machines. MACSYMA is large and unmodularized;
inclusion of existing well-proven routines in a CACE package is therefore al-
most impossible. It should be noted that existing packages, even without the
integrated CACE environment, are useful tools for certain problems.

More and more attention is now drawn to the design and implementation
of user interfaces. The style currently in fashion was introduced with Apple’s
Macintosh [Apple, 1985], and most workstation manufacturers follow similar
ideas, for example, Sun Microsystems [Sun, 1986]. It is very important to
design a consistent and predictable user interface, based on the limited scien-
tific results in existence today. The overall design is more important than, for
example, whether pop-up menus or buttons are used to select an operation.
Luckily, there exists some general advice [Kyster, 1987], or guidelines for a
computer family, leading to a consistent user interface for several packages on
a particular computer.

The user interface has traditionally consisted of two parts: command de-
coding and presentation. Both parts are becoming increasingly complex with
modern window based workstations. Input operations, including commands,
can be initiated using menus, buttons, textual commands, and more. Qutput
from the package consists of text and complex graphics, such as, animation. In
addition, there are operations for handling windows: activation, deactivation,
moving, resizing, just to mention a few,

With modern window based systems, the user will expect the computer to
handle multiple related tasks simultaneously. The use of concurrency, real or
time-shared, imposes new requirements on the software. A typical example is
the “notifier” which sends asynchronous interrupts to all application programs;

5

a common window management approach. In particular, exception handling
and error recovery must be carefully considered.

The hottest area, in particular among sales people, is so called expert
systems or knowledge based systems (KBS); a good definition is beyond the
scope of this report. Some promising results have been obtained, but the goal
must not be set too high. In particular, expert systems can be used for the
user interface, for example, to provide intelligent help systems [Larsson and
Persson, 1987]. It may also be possible to design user interfaces that adapt
themselves to the user’s needs.

Software development phases

The implementor’s work can be broken down into a number of tasks, or phases,
Fach of these phases are of course not isolated from the others; further more,
a software system will be revised many times, leading to iterations over all
phases,

The first, probably most important, and surely least understood, phase is
the specification of the system. A specification is usually informal, outlining
the facilities of the package. Such a specification is useful, in particular when
developing an experimental system, but not sufficient for all purposes; relia-
bility and correctness issues, to be discussed below, require a more stringent
specification. Much interest has been devoted to the principles of specifi-
cations and the development of practical methods [{Gehani and McGettrick,
1986]. Regrettably, all methods have some deficiences, preventing them from
catching on.

There is an alternative to the tedious task of writing specifications, which
may have no relevance to a quickly changing realify anyway. It is called ex-
ploratory programming, or rapid prototyping. The basic idea is to sit down
in front of a highly interactive computer system, preferably with a genuine
end-user, and develop a rudimentary system “on-the-fly.” The prototype can
then be refined, or even completely re-implemented in another programming
language. The main benefits are that the end-user takes part in the develop-
ment and that quick results (i.e., impressive demonstrations) can be shown.
Rapid prototyping is usually done in a bottom-up fashion. The introduction
of expert system fools (such as KEE) opens new possibilities in this area.

The act of writing code has been extensively covered elsewhere. Two
things deserve to be mentioned though: Firstly, the concept of structured
programming has been universally accepted, which also influences the choice
of programming language. Lately, so called object-orienfed programming has
gained much support [Stefik and Bobrow, 1986]. Secondly, a CACE package
is a large piece of software, There are a number of problems which arise
when “programming in the large” that can be disregarded when “programming
in the small.” There is also a change of view on how software systems are
developed: First, programming was considered a handicraft; later, programs
were built, emphasising the idea of a programmer’s toolbox; recently, programs
are allowed to grow “organicly.” Controlling organic growth will probably
become a new management area.

Programming is one of the few areas where debugging an existing product
is considered good engineering practice. Still, modern debugging tools help
the programmer find errors more quickly than before. The most powerful
interactive, symbolic, debuggers exist on Lisp machines and personal comput-
ers. Complex systems, using multiple processes and graphics, are beyond the

6

capabilities of current debuggers.

Documentation should not be a separate development phase, but inte-
grated with all other activities. Window based workstations allow easy and
instant access to textual documentation, but graphics can rarely be included in
the document. Documentation tools aiding the user with hierarchical decom-
position, on-demand explanations, and cross referencing, are now emerging
[Nelson, 1980]. One example is NoteCards developed at Xerox PARC.

Nor is maintenance a separate activity; in fact, initial development could
be regarded as a change from nothing to something.* All problems related to
specification, documentation and programming in the large become aggravated
when changes must be made in existing software systems.

* Coined by Ivar Jacobson, Ericsson Telecom.

3. The programming environment

There is more to chosing implementation tools than just looking at a few
programming languages. It is also necessary to consider the implementor’s
programming environment: tools for program development, how the imple-
mentor fits into the environment, and how the environment can be adapted
to fit the implementor,

Programming tools

The compiler (or interpreter) of the implementation language is one of the
most important programming tools. Compilers are improving in speed and
quality of generated code, but more important are diagnosties and the pos-
sibility to detect logical errors — “Make it right before you make it faster”
[Kernighan and Plauger, 1978]. The latter issue is closely related to the lan-
guage definition, but there are also some differences between compilers for
a particular language. Facilities for checking array indices, overflow, illegal
pointers, unused variables, etc., ought to be available in every compiler. In
some cases, the deficiences of a compiler can be covered by a separate program
[Johnson, 1979a).

Regardless of language, there is (sometimes) the choice between a compiler
and an interpreter. The compiler should be designed to detect as many errors
as possible, also when separate compilation is used. With the interpreter, less
diagnostics can be accepted if additional interactive debugging facilities are
provided; with interpretative systems, small modules can be efficiently tested
using a bottom-up approach. A minimum set of debugging facilities are: trac-
ing, examination of data structures, and command execution at breakpoints.
Some systems provide both a “checkout” and a “production” compiler. This
may be a good idea, but subtle differences between the two versions are un-
avaidable; an incorrect program may incidentally return correct results using
one compiler but not the other, for example, because of differently initialized
data areas. So called incremental compilers offer the possibility to change indi-
vidual modules, without a full {ime consuming recompilation; in some systems,
modules can be substituted in a running system.

We predict that future CACE packages will consist of modules written
in many different programming languages. No single language is suitable for
all applications, and packages with dissimilar backgrounds will be merged,
Therefore, the possibility to freely mix modules written in different languages
is essential. Real systems often provide limited capabilities in this area, for
example, subroutine calls in only one direction, usage of “wrappers” for chang-
ing argument passing conventions, loss of precision, different representations
of strings, high calling overhead, and much more; special attention should be
drawn to this issue when chosing a programming environment.

Subroutine libraries are associated with both the programming language
and with the operating system. Some combinations (e.g., C on Unix) provide
a very rich selection of routines, Numerical libraries, such as NAG, and li-
braries for handling graphics and windows, are also required. These libraries
are essential for quickly implementing a CACE package on a computer sys-
tem. Regrettably, standardization of subroutine libraries is lagging far behind
the standardization of programming languages. Subroutine libraries are often
sensitive to changes between operating system releases. Relinking or recom-
pilation is usually needed, and sometimes, major routines must be completely

8

rewritten. In any case, there will be delays between the release of the operat-
ing system and the release of a working CACE package; end users are often
required to postpone certain upgrades until all application packages have been
revised, '

The most important tool for the programmer is the fext editor; it is the
tool used most of the time, and personal preferences are often debated. The
editor of choice, with regard to facilities and power, is Emacs [Stallman, 1984
and 1986). Emacs is customizable and extensible; it even contains a buili-
in Lisp interpreter. There are a number of “modes” which give access to
high-level operations suited to a particular application. Of course, all these
facilities do not come for free, and Emacs becomes slow on small time-sharing
systems, Other aspects that must also be considered when chosing a text
editor. Because of personal taste and previous experiences, people often like
one editor more than another. Some editors, for example, vi on Unix systems,
are readily available and can handle any type of equipment.

Graphics and window management are the most difficult, or rather least
developed, areas of the programming environment [Hopgood et al., 1985].
Most workstations provide window based environments that look wonderful
to people used to “dumb” terminals; when trying to use windows and graph-
ics from a program, an overwhelming number of inconsistencies and problems
arise. It is not yet possible to say whether the users lack experience of these
new tools, or if the design of the tools must be changed, or both. Some expe-
riences can be found in Briick [1986] and Mattsson et al. [1986].

Two levels of supporting software is needed: Firstly, a basic framework of
drawing primitives, window operations, segment handling and picking. With
some effort, a consistent and efficient design can be devised. Secondly, rou-
tines for “high-level” facilities, such as menus, buttons, cut and paste, and
scroll bars, are welcome. The high-level routines speed up development work
considerably, and maintains a compatible user interface among all packages on
a particular computer system. No vendor-independent package of this type is
yet available,

Lastly, there are a number of other useful tools, in particular in a Unix
environment. The parser generator tools, Yacc [Johnson, 1979b] and Lex [Lesk
and Schmidt, 1975], can be used for command parsing; defining a grammar
for the command language will often produce a consistent and general user in-
terface. It is also possible to “compile” raw input data, with excellent support
for error detection and diagnosis. An interesting problem is how graphical
input, for example, picking and rubberband lines, should be expressed using
a context-free grammar,

So called profilers show how much the different parts of a program are
executed. Output from a profiler can be used for detecting errors (for exam-
ple, code that is never executed), and for detecting “hot-spots” that can be
improved (programmers’ guesses are often wrong), thus increasing execution
speed.

An example from the Lisp world is Flavors [Cannon, 1982], a package
for object-oriented programming, Flavors is quite powerful, and exists today
on most workstations and many mini-computers. For maximum efficiency,
Flavors must be integrated with the underlying Lisp system.

PA Consultants, Cambridge, England, has developed a commercial “soft-
ware engineering toolkit” called PA-SET. It provides a number of tools for
database management, window management and graphics, plus an “infras-

9

tructure” that ties the application program to the tools. The PA-SET will
form the base of a CACSD environment funded by SERC in the U, K.

A few final words must be said about how the user (in our case the im-
plementor of a CACE package) experiences the programming environment.
The very general term quality encompasses many aspects that contribute to
a good environment. Quality is bug-free system software, the absence of ar-
bitrary limits, sensible behaviour at boundary conditions, and much more.
A good design is often rejected because of a bad implementation. Program-
mers are also sensible to turn-around time. Interactive systems decrease the
turn-around time tremendously. Multi-process systems, for example, a win-
dow based workstation, gives the user the opportunity to switch tasks and
schedule his work, rather than having to sit idle.

The user’s background and skills determine to a large degree the effective-
ness of a programming environment. Tt may sometimes be better to employ
techniques that are known to the users, rather than introducing the “right”
thing, whatever that may be at the time. There is also a risk, in particular
among less experienced end users, that people feel over-run by technology.

Standards

Standardization is a key issue in decreasing development time, both by mak-
ing software more portable, and by decreasing learning time. Programming
languages are quite well standardized, but most packages contain inherently
unportable routines. The problem is often that programmers lack the knowl-
edge and understanding required to write easily portable code. Ada is one of
the few language where machine dependencies can be handled in the language,
but it is still possible to disregard these facilities.

Standardization in other areas have not come as far. Two graphics stan-
dards exist: GKS (Graphics Kernel Standard) and PHIGS (Programmer’s
Hierarchical Interactive Graphics Standard). References to GKS are Hopgood
et al. [1983] and Enderle et al. [1984]; to PHIGS Brown [1985] and SIS [1985].
Neither GKS, nor PHIGS, have been wholeheartedly accepted by the user com-
munity, and there is still a shortage of efficient implementations. It should be
noted that PHIGS has just recently become commercially available. Window
management is still far from any standards. A small number of window man-
agers, such as, Macintosh, SunView and X-Windows, have gained considerable
inferest, but are fully incompatible. It is interesting to note that there exists
standards for related user interfaces, for example, layout of letterhead paper
or roadsigns.

A somewhat contradictory goal for the designer of a programming envi-
ronment is adaptability. Adaptability implies changes, and therefore potential
anarchy. In reality, some of the best environments gain their power from being
customizable or even programmable: the Unix shell is a small programming
langnage, and EMACS is a Lisp system [Stallman, 1984 and 1986]. By adapt-
ing and extending an existing tool, big improvements can be gained with little
effort. The same view should of course be applied to the CACE package itself.

10

4. Programming language concepts

This section contains a discussion of programming language features and con-
cepts of particular importance to CACE packages. Too much can be said
about programming languages in general. In this report, we will confine the
topic to a few key issues that are of particular importance when implement-
ing a CACE package: modularization, data abstraction, and reliability. For
a more profound understanding of concepts, design and implementation of
programming languages, see Ghezzi and Jazayeri [1982] and Horowitz [1983].

Modularity

Development of any CACE package will involve quite a lot of programming.
A CACE package will probably contain code from many different sources and
for performing many general tasks (for example, command decoding). Mod-
ularization is the key to flexibility and reusability of existing code. The code
must also be split up into a number of source files in order to be manage-
able. Common guidelines for modularization is that functions or procedures
(subroutines) should be no longer than one page, and source files should not
exceed 500 lines.

Separate compilation is supported by most language implementations,
whether part of the language definition (as in Ada or Modula-2), or not (as in
Pascal). The important issue is how well this facility agrees with the require-
ments for data abstraction and reliability, which are discussed below.

The ideal language should provide both protection and accessability. A
module (or compilation unit) must be able to hide information which is not
needed outside the module; it must also be possible fo protect data areas from
illegal modifications. A difficult problem in most programming languages is to
exchange information between two modules via a third module, without giving
the third module full access. Accessability means that all kinds of language
elements should be exportable, i.e., not only data and subroutines, but also
compile-time constants and type definitions.

The ideal language will ensure that all this is done in a safe and con-
sistent way. Dependencies can be automaticly checked by the compiler, and
compilation timestamps can be checked by the linker to make sure no out-
dated modules are used. Ada and Modula-2 come close to the ideal language
in this respect. In other languages, for example, when using C with Lint and
Make, dependencies can be explicitly stated by the programmer. Conventions
established for a programming team must be enforced by the programmers
themselves, with only little support from the programming language.

Data abstraction

The aim of programming languages has changed over time. First, the lan-
guage was designed to give maximum control over the hardware (assembly
language). Then it was designed to express calculations (Fortran). Today,
most languages are designed to express algorithms, i.e., with an emphasis on
on control structures (Algol, Pascal). This is the result of the general accep-
tance of “structured programming” in the late 1970%.

The trend is now going away from specifying algorithms that operate on
data structures, to specifying so called abstract data types which also include
operations on data objects. The programmer decides what data types are
required; then the data types are provided with necessary operations, and

11

the internal representation of the data is completely hidden, Object-oriented
programming is often explained as messages being sent to objects, expressing
the idea of data objects as active entities. The object is even allowed to
ignore a message, which can be regarded as argnment passing through “call-
by-desire.” Object-oriented programming is also characterized by inheritance:
common properties are made explicit by introducing classes; the objects inherit
properties (data and operations) from these classes.

Well, why should we go for data abstraction? In other reports, for ex-
ample, [Mattsson, 1987], the need for abstraction mechanisms in a CACE
package has been identified; similar reasons apply to programming as well.
Data abstraction is a change of view on how data and operations interact; it
also implies new programming languages with improved syntax and semantics.
In the same way as structured programming resulted in better programs in
1980, so will data abstraction and object-oriented programming yield better
programs in 1990.

The data abstraction mechanism can be designed in basicly three different
ways. As usual, some languages form a “grey zone” between these categories,
and some experimental languages are almost impossible to label,

Basic overloading. Ada provides overloading of operators, functions and pro-
cedures. A package contains subprograms that define operations on data types
which are protected from the outside. There is no dynamic binding of at-
tributes or operators.

Classes with inheritance. Firstly, a class represents a more object-oriented
view on data, with tighter coupling between data and operations. Secondly,
a class can inherit properties from other classes, so called superclasses. Over-
loading is often used to meet special requirements for the class; general purpose
routines are defined in the superclasses. The programmer also has (optional)
conttrol over object creation and destruction, and fype conversions. Binding is
still static. Important languages in this category are C4+4 and Simula-67.

Classes and dynamic binding. Smalltalk and Lisp based packages for object-
oriented programming offer multiple inheritance and dynamic binding, in ad-
dition o the facilities of the previous category. Multiple inheritance means
that a class can inherit properties from more than one immediate superclass,
which is common with real-world objects. With dynamic binding, the type (or
class) of an object is determined at run-time. Dynamic binding is sometimes
convenient, but invites to an obscure usage of variables.

Eivery time a new concept is introduced, concern about efficiency is raised.
Classes and overloading can be efficiently implemented. For example, the run-
time overhead for virtual functions in C+++ is about four memory references;
the storage overhead is one word per object plus one word per virtual function
per class (C++ was explicitly designed with efficiency in mind). In systems
with dynamic binding, more work must be made at run-time. Programmers
instinctively avoid advanced features when maximum performance is needed.

Correctness and reliability

Correctness is one of the basic requirements for any software package. Two
approaches are used to ensure correct programs: error correction is to find and
correct existing “bugs” in a software system; error prevention involves methods
to produce a correct program in the first place. Only trivial programs can

12

easily be shown to be correct, and all major software packages contain known
and unknown errors.

Testing is the most common way of achieving program correctness, but
testing can only prove the presence of errors, not their absence.* This defi-
ciency has stimulated a large amount of research in program verification, i.e.,
to verify that a program is correct independently from its execution. This
means proving that a program is consistent with its formal specification. A
few languages support formal verification, but there is no practical experience
with real systems of interesting complexity.

When correctness cannot be guaranteed (which is normally the case),
reliability is the second best thing. Reliability means that the system is likely
to perform to the user’s satisfaction, but minor or infrequent errors can be
tolerated. On the other hand, correct programs can be unreliable, for example,
if the specification does not reflect actual requirements, or if the specification
does not state what should be done under critical circumstances.

Some programming languages naturally support safe and reliable systems.
Modularity and data abstraction are essential for reducing complexity of the
software system, and for enforcing well-defined properties of data ob jects. Ex-
ception handling (as in Ada) is a very good way to handle errors and other
uncommon events. Given an easy-to-use and powerful exception handling
mechanism in the programming language, the programmer is more willing to
program defensively and take all sorts of errors into account. The language im-
plementation should include optional tests for detecting overflow, out-of-range
array indices and illegal pointers; these runtime errors are typical symptoms
of earlier programming errors,

* After Edsger W. Dijkstra.

13

5. Overview of programming languages

This section contains an overview of a few selected programming languages.
The languages have been selected either because they represent an “obvious”
choice for implementing (parts of) a CACE package, or because they offer
significant advantages over other, more common, languages. A more compre-
hensive overview is found in [Ghezzi and Jazayeri, 1982},

Not only the features of the language itself must be considered when select-
ing a programming language for a project. Availability and implementation
quality are important factors. The intended application should of course have
the greatest influence on the selection. Of the languages listed below, Lisp,
Prolog, KEE and Smalitalk are tailored to research and exploratory program-
ming; compiled languages, such as, Ada, Modula-2 and C+4++ may be more
suited in a production system, Traditional languages (Fortran, Pascal and C)
can usually be mixed; other combinations are less common, but it is often
possible to call C and Fortran from Lisp.

Foriran

Fortran is one of the first programming languages still used, and is therefore
traditionally much used for scientific computing. Good implementations are
widely available; numerical and graphical subroutine libraries all have Fortran
bindings. There exists today a great deal of software written in Fortran, that
would be extremely costly (several million U.S. dollars) to rewrite in a superior
language.

On the other hand, Fortran is in all respects an old language. The lack of
control structures, data structures and recursion, plus all potentially danger-
ous features (no variable declarations, common block, equivalence, reference
parameters), lead to a strong recommendation against using Fortran for future
work.

Pascal

Pascal is the language most widely used for teaching programming. It has
many good aspects, but modularization, separate compilation and data ab-
straction are not part of the standard definition; vendor specific extensions
cover some of the deficiences, but in an unportable way. Pascal is widely
available and known to most programmers.

Modula-2

Modula-2 is a new programming language heavily based on Pascal. All good
features of Pascal are present, and minor problems have been rectified. The
biggest improvement is the support for modularization: each module is split
into two parts, a definition module and an implementation module. Modula-2
enables safe separate compilation and encourages clean modularization.

Regrettably, there is no exception handling, and no support for object-
oriented programming. Still, Modula-2 displays most good features of Ada,
but in much smaller and readily mastered language. The transition from
Pascal to Modula-2 is easy. Modula-2 is recommended for future work, when
available.

14

Ada

Ada has all the good features of Pascal and Modula-2, plus exception handling;
tasking may be of value for CACE software. There is no support for object-
oriented programming,.

Ada is a large and comprehensive language, and therefore quite difficult
to learn and implement. We think much of the criticism from academia is
unjustified, but Ada cannot be recommended yet because of the lack of good
compilers and run-time support.

C and C++4

C is a very expressive langnage which becomes a powerful tool in the hands of
an experienced programmer, but has many dangerous features [Koenig, 1986].
C is flexible, efficient, available, portable, and has become quite popular, also
outside the Unix world. C is on many computers the only language fully
integrated with the Unix operating system.

C++ was designed to be “a better C,” by removing most of the dangers of
C and by supporting data abstraction and object-oriented programming, The
result is a very good programming language. The C++ translator produces
C code, so portability is good. Exception handling can be added to C [Lee,
1983], but not yet to C++. C++ is highly recommended for future work;
good references are [Stroustrup, 1986a and 1986b].

Prolog

Prolog [Clocksin and Mellish, 1981] is a programming language based on pred-
icate logic and the resolution method. For more general applications, Prolog
offers very powerful pattern matching, and database facilities in main memory.
Some common programming tasks are awkward to express in Prolog, and the
backtracking facility is sometimes more of a problem than an aid.

Prolog is well suited to symbolic computations, in particular tasks in-
volving pattern matching [Briick, 1987]. Tt is probably difficult to mix an
interpretative Prolog system with other languages.

Lisp

Lisp is the oldest programming language for symbolic computations. The
basic data structure is the list (even numerical expressions are represented
by lists), but modern dialects, for example, Common Lisp [Wilensky, 1986],
support other data structures (e.g., arrays and hash tables). Common Lisp
is becoming a de-facto standard [Steele, 1984]. Add-on packages, such as
Flavors and Loops, provide support for object-oriented programming. Expert
systems are usually based on Lisp, for example KEE. Lisp is highly interactive,
often with a good programming environment, in particular on special-purpose
Lisp machines. Lisp is efficient for symbolic computations, but Lisp systems
are large and resource consuming {typically require 12 MB of memory on a
workstation).

Lisp is highly recommended for research and rapid prototyping in the
area of CACE software. A full-fledged lisp system is one of the most efficient
programming environments available,

15

KEE

KEF is not an ordinary programming language, but a complete development
system for AT applications and expert sysiems [Intellicorp, 1984]. An impor-
tant feature of KEE is a rule system, which is normally used to represent
“expert” knowledge; rules can also be used for expressing algorithms in a
declarative way (as in Prolog). KEE also supports frames [Minsky, 1975],
with inheritance mechanisms added. KEE has many built-in features which
are easy to use; using KEE in a way that wasn’t anticipated by the developers
of KEE is less pleasing,

KEE is costly and requires a powerful computer; it is therefore only avail-
able on Lisp machines and upper-range workstations. KEE is highly recom-
mended for research and rapid prototyping,

Smalltalk

Smalltalk is the first truly object-oriented programming language. It was
originally developed at Xerox PARC in the early 1970%, and has influenced
all other research in object-oriented programming,

The current version, Smalltalk-80 [Goldberg, 1984), is not only a program-
ming language, but a complete development environment with file handling,
text editing and other support functions. Regrettably, this implies that a
Smalitalk application cannot be mixed with other languages. Smalitalk is an
interesting research language, also in the CACE area [Kreutzer and Astrém,
1987].

16

6. Conclusions

Future CACE packages will consist of a number of related modules. These
modules will originate from many sources, and will be written in different
programming languages. One of the key issues in developing a CACE package
is therefore flexibility and extendability; the possibility to reuse previous work
and take advantage of existing competence. It must be possible to mix different
programming languages.

Data abstraction and object-oriented programming are probably the best
methodologies for program development. The best languages are Common
Lisp (with Flavors or Loops) and C4++. Interactive environments, like those
on lisp machines or like KEE, are particularly tailored at research and rapid
prototyping. Ada and C are also possible, and offer the advantages of good
exception handling. Safe separate compilation is found in Ada and Modula-2,
for example. Fortran cannot be recommended for any future development
work, but the large existing base of subroutine libraries should be used when
possible.

Finally, other aspects of the programming environment should be con-
sidered. Required tools are: a text editor, a debugger, a graphics package,
window management, and possibly compiler generators and profilers. A dif-
ficult problem is to provide flexibility and adaptability to specific needs and
preferences, while still maintaining some level of standardization.

Acknowledgements

This work was supported by The National Swedish Board of Technical Devel-
opment (STU), project number 86-4047.

This report draws on experiences from special case studies performed in
the CACE project, as well as other projects at the Department of Automatic
Control in Lund. The case studies have been carried out by Mats Andersson
and Mike Denham (Lisp and KEE), Dean K. Frederick (window management)
and Wolfgang Kreutzer (Smalltalk).

The author wishes to thank Dr. Sven Erik Mattsson for his encouragement,
criticism and helpful comments,

17

References

ApPLE COMPUTER, INC. (1985): “The Macintosh User Interface Guidelines,”
in: Inside Macintosh, Volume I, Addison-Wesley, Reading, Mass., USA.

Arzin, K-E. (1987): “Realization of Expert System Based Feedback
Control,” CODEN: LUTFD2/TFRT-1029, Department of Automatic
Control, Tund Institute of Technology, Lund, Sweden.

AsTrOM, K. J., and S. E. MATTSSON (1987): “High-Level Problem Solving
Languages for Computer Aided Control Engineering,” CODEN: LUTFD2/
TFRT-3187, Department of Automatic Control, Lund Institute of Technol-
ogy, Lund, Sweden.

Brown, M. D. (1985): Understanding PHIGS — The Hierarchical Computer
Graphics Standard, Template, San Diego, CA, USA.

Brick, D. M. (1986): “Implementation of Graphics for HIBLIZ,” CODEN:
LUTFD2/TFRT-7328, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

Brick, D. M. (1987): “Simplification of Expressions using Prolog,” CO-
DEN: LUTFD2/TFRT-7364, Department of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden.

Cannow, H. I. (1982): “A Non-Hierarchical Approach to Ob ject-Oriented
Programming,” unpublished report, Artificial Intelligence Laboratory, MIT,
Cambridge, Mass., USA.

Crocksin, W. F. and C.S. MeLLisa (1981): Programming in Prolog,
Springer-Verlag, Berlin-Heidelberg, FRG.

DENEAM, M. J. (1987): “Knowledge Representation in Systems Modelling,”
CODEN: LUTFD2/TFRT-7365, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

ENDERLE, G., K. KANSY and G. Prarr (1984): Computer Graphics Pro-
gramming (GKS—The Graphics Standard), Springer-Verlag,

Hopcoop, F. R. A., D. A. Duck, J. R. GarLor and D C. SUTCLIFFE
(1983): Introduction to the Graphical Kernel Standard (GKS), Academic
Press.

Horgoon, . R. A, D. A. Ducg, E. V. C. Frerping, K. RoBINSON and
A. 5. WiLLiams (Lids.) (1985): Methodology of Window Management,
Proceedings of an Alvey Workshop at Cosener’s House, Abingdon, UK,
April 1985, Furographic Seminars, Tutorials and Perspectives in Computer
Graphics, Springer-Verlag,

Gaver, D. T. (1986): “Introduction to EAGLES,” Lawrence Livermore
National Laboratory, California, USA.

Gaver, D. T., C. J. HerGET and B. S. LaAwvER (1986): “The M Language,
An Interactive Tool for Manipulating Matrices, Systems and Signals,”
Lawrence Livermore National Laboratory, California, USA.

GEHANT, N. and A. D. McGerTrIcK (Eds.) (1986): Software Specification
Techniques, Addison-Wesley, Reading, Mass., USA.

Gupzzi, C. and M. JAzZAYERI (1982): Programming Language Concepts,
John Wiley & Sons, New York, USA.

18

GOLDBERG, A. (1984): Smalltalk-80 — The Interactive Programming FEnvi-
ronment, Addison-Wesley, Reading, Mass., USA.

Horowirz, E. (1983): Fundamentals of Programming Languages,
Springer-Verlag, Berlin-Heidelberg, FRG.

INTELLICORP (1984): Knowledge Engineering Environment (KEE) — User
Manual, Intellicorp, Menlo Park, CA, USA.

Jounsow, S. C. (1979a): “Lint, a C Program Checker,” in: Unix Program-
mer’s Guide, Volume IT B.

Jounson, 8. C. (1979b): “Yace: Yet Another Compiler-Compiler,” in: Unix
Programmer’s Guide, Volume I B.

KERNIGHAN, B. W. and P. J. PLAvGER (1978): The Elements of Program-
ming Style, Second edition, McGraw-Hill, New York, USA.

Koenig, A, R. (1986): “C Traps and Pitfalls,” Computing Science Technical
Report No. 123, AT&T Bell Laboratories, Murray Hill, New Jersey, USA.

KreuTzER, W. and K. J. AsTrOM (1987): “An Exercise in System Rep-
resentations,” CODEN: LUTFD2/TFRT-7369, Department of Automatic
Coatrol, Lund Institute of Technology, Lund, Sweden.

KysTER, H. (1987): “Menneske-Maskin-Samspil,” EC-Rapport ECR-199,
Elektronikcentralen, Hgrsholm, Denmark.

Larsson, J. E. and P. Persson (1987): “An Expert System Interface
for Idpac,” CODEN: LUTFD2/TFRT-3184, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden,

Leg, P. A. (1983): “Exception Handling in C programs,” Software—Practice
and Experience 13, 389-405, May 1983.

Lesk, M. E. and E. ScumipT (1975): “Lex — A Lexical Analyzer Genera-
tor,” in: Unix Programmer’s Guide, Volume II B.

Marrsson, S. E., H. ExmQvisT and D, M. Briick (1986): “New Forms of
Man-Machine Interaction,” CODEN: LUTFD2/TFRT-3181, Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

MaTTssoN, S. E. (1987): “Representation and Visualization of Systems
and Their Behaviour,” CODEN: LUTFD2/TFRT-3194, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

MACSYMA (1983): MACSYMA Reference Manual, The Mathlab Group
Labaratory for Computer Science, MIT, Cambridge, Mass., USA.

Minsky, M, (1975): “A Framework for Representing Knowledge,” in Win-
ston, P. H.: The Psychology of Computer Vision.

MUMATT (1983): muMATH-83 Reference Manual, The Soft Warehouse,
Honolulu, Hawaii, USA.

NELsoN, T. H. (1980): “Replacing the printed word: A complete literary
system,” in Lavington (Ed.): Information Processing 80, IFIP 1980, North
Holland.

SIS (1985): Datorgrafi—PHIGS, Programmers Hierarchical Interactive
Graphics Standard, Technical report no. 308, SIS—Standardiseringskom-
misionen i Sverige, Sweden.

19

STALLMAN, R. M. (1984): “EMACS: The Extensible, Customizable,
Self-Documenting Display Editor,” in Barstow, D. R., H. E. Shrobe and

E. Sandewall: Interactive Programming Environments, McGraw-Hill, New
York, USA.

STALLMAN, R. M. (1986): GNU Emacs Manual, Fourth Edition, February
1986, Free Software Foundation, Inc., Cambridge, Mass., USA.

STEELE, G. L. (1984): Common LISP: The Language, Digital Press, Bed-
ford, Mass., USA.

STEFIK, M. and D. G. Bosrow (1986): “Object-Oriented Programming:
Themes and variations,” The AT Magazine 6, No. 4, Winter 1986.

STROUSTRUP, B. (1986a): “An Overview of C++,” SIGPLAN Notices 21,
10, 7-18, October 1986.

STROUSTRUP, B. (1986b): The C++ Programming Language, Addi-
son-Wesley, Reading, Mass., USA.

SUN (1986): SunView Programmer’s Guide, Sun Microsystems, Inc., Moun-
tain View, California, USA.

WILENSKY, R. (1986): Common LISPcraft, W. W. Norton, New York, USA.

20

