
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Strategies for Management of Architectural Change and Evolution

Nedstam, Josef

2005

Link to publication

Citation for published version (APA):
Nedstam, J. (2005). Strategies for Management of Architectural Change and Evolution. [Doctoral Thesis
(monograph), Department of Computer Science]. Department of Communication Systems, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/dbf13ce9-aa2a-4eba-884b-b66dd1d02dc4

 i

Strategies for Management of
Architectural Change and Evolution

Josef Nedstam

Department of Communication Systems
Faculty of Engineering

ii

ISSN 1101-3931
ISRN LUTEDX/TETS—1077—SE+192P

© Josef Nedstam

Printed in Sweden
E-kop
Lund 2005

 iii

To mom

iv

This thesis is submitted to Research Board FIME – Physics, Informatics,
Mathematics and Electrical Engineering – at Lund Institute of Technology
(LTH), Lund University, in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Engineering.

Contact Information:

Josef Nedstam
Department of Communication Systems
Lund University
P.O. Box 118
SE-221 00 LUND
Sweden

Tel: +46 46 222 96 68
Fax: +46 46 14 58 23
e-mail: josef.nedstam@telecom.lth.se
http://www.telecom.lth.se/Personal/josefn/

 v

Abstract

Software architecture, the underlying structure to a software system, is an asset
which can be invested in. Such investments can later be capitalized on in the
form of e.g. increased flexibility and enhanced maintainability. These benefits
may be gained in a system developed in one project, but are much more visible
in a strategic perspective when several projects share resources. Architectural
decisions must then be based not only on technical considerations, but also on
organizational and business factors. Organizational factors come into play as the
software development process is tightly related to the design rules surrounding
the software architecture. Business factors are important, as any attempt at gen-
erating value by investing in the software architecture must be aligned with the
organization’s overall view on value generation. Challenges in this field lie in
raising the awareness of organizational and business factors for developers, and
the abstractness of software architecture from a management point of view.

This thesis has involved multiple case studies at organizations facing chal-
lenges related to these aspects of software architecture. The research has been
conducted mainly from a qualitative standpoint, to build theory from empirical
observations. Interviews as part of architecture and process assessments have
been the primary tool for gathering information, and the results have been vali-
dated by a continuing effort to find cases that broaden the emerging theories.

Different development models linked to architectural strategies have been
investigated, and the flexibility of software processes has been assessed with re-
spect to e.g. architectural changes. Study of the implementation of architectural
changes has lead to a suggestion for a process for architectural change. Architec-
tural decisions and changes drive the evolution of a software architecture, and
the thesis gives a framework for evolution of software architecture and devel-
opment strategy in general. One such strategy, Open Source Software develop-
ment, is analyzed in-depth. An attempt to quantify the benefit of an architec-
tural strategy is also made, when a model for decision support on reuse is im-
plemented in a tool.

The thesis contributes to increasing the awareness among both developers
and managers of the role of the software architecture as an enabler and mediator
of technical as well as business goals.

vi

 vii

Acknowledgements

Thanks to my supervisor Martin Höst, and my professors over the years: Per
Runeson, Ulf Körner, Claes Wohlin and Ross Jeffery. Thanks, Karl Cox, for
inspiring me to go to Australia, and thanks again to Ross and NICTA for fi-
nancial support during my time there. Thanks also to Fysiografen for such
funding, and to my parents for funding my conference trip after Australia. Spe-
cial thanks to Mark Staples for showing me that it’s possible to do research to-
gether with other people.

Thanks to all my co-authors, and to my co-workers at SERG/Telecom and
NICTA/ESE. Among these, special mention to Lena Karlsson, Daniel Karl-
ström, Thomas Olsson, Magnus C. Ohlsson, and Enrico Johansson. Finally
thanks again to my parents, and also to family and friends!

viii

 ix

Contents

I Introduction 1

1. Outline and Related Work ..1
2. Software Products and Software Development...4
3. The Software Process...7
4. Software Architecture ..8
5. Relation between Process and Architecture ..10

II Research Methodology 11

1. Research Goals ..11
2. The Methodological Approach ..12
3. Data Collection Methods ..14
4. Analysis in Qualitative Studies...17
5. Assessments as a Tool in Research ...17
6. Validity in Qualitative Studies ...18

III Context of Studies 21

1. Studied Organizations ...21
2. Scope and Features of Studied Cases..28

IV Understanding Software Product Line Engineering:
Available Strategies and Approaches 31

1. Reasons for Software Product Lines ...32
2. SPL Definitions...33
3. Frameworks of SPL ...35

x

4. Comparison of Ways to Introduce SPL... 39
5. Comparisons of When and How to Introduce Support for Variation.... 42

V The Business and Economics of Software 45

1. General Marketing Models for High-Tech Markets 45
2. The Technology Adoption Life Cycle ... 47
3. Products or Services .. 50
4. Cost.. 51
5. Value .. 52
6. Risk .. 53

VI Process Flexibility and the Linkage Between Process,
Organization, and Architecture 57

1. Introduction ... 57
2. Background and Related Work... 59
3. The Assessment Method ... 60
4. Case Study.. 63
5. Results and Method Improvements .. 71
6. Discussion .. 72

VII The Architectural Change Process 81

1. Introduction ... 81
2. Conduct of Research... 82
3. Case Study Descriptions ... 83
4. Process Overview .. 86
5. Analysis of Process versus Cases .. 89
6. Validation... 96
7. Conclusions .. 97

VIII Evolving Strategies for Software Architecture and
Reuse 99

1. Introduction ... 99
2. Conduct of Research... 101
3. The Studied Cases .. 102
4. Dimensions from the Material .. 104
5. A Framework for Architectural Evolution ... 105
6. Relating Architectural Strategies to Business Goals.............................. 113
7. Discussion .. 117
8. Summary and Implications ... 118

 xi

IX Open Source Business Models in Practice: A Survey of
Commercial Open Source Introduction 121

1. Introduction..121
2. Conduct of Research ...122
3. Open Source Software ...123
4. Open Source Software Applications in Business...................................124
5. Lessons Learned from Open Source Software129
6. Relations to the Community ...134
7. Business Models ..135
8. Conclusions...137

X Quantifying Benefits of Architecture for Selecting
Components to Standardize 139

1. Introduction..139
2. The Foundation Modules..140
3. A Model for Semiautomatic Assessment of Foundation Module

Candidates ..142
4. Model Operationalization..148
5. Trial on Actual Product...155
6. Discussion and Related Work..158
7. Conclusion..161

XI Main Contribution 163

1. Contribution...164
2. Further Work..169

xii

 Strategies for Management of Architectural Change and Evolution

 1

I Introduction

Software has very few laws of nature that limit its usage, compared to other en-
gineering disciplines. A bridge builder will be subjected to laws of nature be-
yond her control when selecting solutions to span a bridge across some obstacle.
A software developer would in a similar situation have many more degrees of
freedom, and most restrictions would be constructed by man, such as limita-
tions on the programming language used. When all these degrees of freedom
are utilized, each effort to solve a problem becomes a standalone project.

The drawback of this situation lies foremost in productivity, as commonal-
ities between solutions are not exploited. A software architecture, i.e. an en-
forced structure to the components of a software system, can be chosen to limit
the set of possible solutions, to focus development on solution subsets which are
known to have certain qualities, such as security, safety or performance. To ex-
ploit the commonalities between several solutions, the concept of software ar-
chitecture must however be extended to cover several products – to treat the
software architecture as an asset.

There are two main challenges to this approach. A software architecture used
this way implies imposing rules on the developers, and it can be difficult to
make the developers adhere to these rules. It is also difficult to make manage-
ment on the business side invest in an abstract asset such as a software architec-
ture, rather than in e.g. concrete functionality that can immediately fulfill some
customer need.

This thesis contains studies that aim at focusing on the architecture as a stra-
tegic asset, at exploiting its full potential.

1. Outline and Related Work
This thesis is introduced in this chapter, were an initial motivation is given,
along with a general description of the foundational concepts of software proc-
ess and software architecture. The chapter is followed by a description of the
research methodology, also containing the research goals and research questions
of this thesis. Chapter III continues this methodology description by presenting
the sample of organizations studied for this thesis. The subsequent two chapters

I Introduction

2 Strategies for Management of Architectural Change and Evolution

present surveys of related work in Software Product Lines, and the business and
economics of software. The empirical studies performed during this thesis are
then presented. Chapter VI presents a study on process flexibility, with results
regarding the linkage between software organizations, processes and architec-
tures. It also provides insights into scenario-based models, and on how process
simulation can be used to study software processes. Chapter VII further investi-
gates the linkage between organization, process and architecture by examining a
number of cases of architectural change. A process for architectural change is
given. Chapter VIII enhances this notion of architectural change to cover archi-
tectural evolution, i.e. sequences of architectural change. A framework for archi-
tectural evolution in face of changing markets is given. The framework involves
several strategies for software architecture and software development in general.
One additional such strategy is analyzed in Chapter IX, open source software
development. Chapter X presents an effort to quantify the value of an architec-
tural strategy for reuse, and the thesis is concluded in Chapter XI.

In the course of this research a number of papers have been publicized. The
following have been used to a smaller or larger degree in this thesis:

Exploring Bottlenecks in Market-Driven Requirements Management
Processes with Discrete Event Simulation

Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam and Christian
Nyberg

The Journal of Systems and Software, No. 59, pp 323-332, 2001
This paper evaluates discrete-event simulation as a tool to perform early

evaluation of process change proposals. Simulation is one of the tools used to
analyze the organizations and processes in the case study. The paper contributes
to the description of line-oriented development in Chapter VI and leads up to
the organizational framework presented there.

Understanding Software Processes through System Dynamics Simulation:
A Case Study

Carina Andersson, Lena Karlsson, Josef Nedstam, Martin Höst and Bertil I. Nilsson
Proceedings of the 9th IEEE Conference on Engineering of Computer-Based

Systems (ECBS’02), Lund, Sweden, April 2002
This paper evaluates system-dynamics simulation as a tool to perform

evaluation of process change proposals. It has for this thesis increased the depth
of study of the organization Company A presented in Chapter III and analyzed
in Chapters VI and VIII.

Practitioners’ Expectations on Software Processes

Martin Höst, Daniel Karlström and Josef Nedstam
Workshop on Learning Software Organizations (LSO 2003), Luzern, Swit-

zerland, April 2003

 1. Outline and Related Work

Josef Nedstam 3

This is a report from an interview study where practitioners have been inter-
viewed about their expectations on the software process. It has contributed
knowledge to the Company E case in this thesis. The organization is presented
in Chapter III, used as reference for the analysis in Chapter VII, and one of the
cases studied in Chapter VIII.

A Case Study on Scenario-Based Process Flexibility Assessment for Risk
Reduction

Josef Nedstam, Martin Höst, Björn Regnell and Jennie Nilsson
Proceedings of the 3rd International Conference on Product-Focused Process

Improvement (PROFES’01), Kaiserslautern, Germany, September 2001
This paper presents the concept of process flexibility, and a process flexibil-

ity assessment method, in a case study. The method is based on risk analysis,
and the case study identified opportunities for process improvements, although
no clear line was drawn between process issues and other issues such as organi-
zation and architecture. This is the basis for Chapter VI.

The Architectural Change Process

Josef Nedstam, Even-André Karlsson and Martin Höst
Proceedings of the 2004 International Symposium on Empirical Software

Engineering (ISESE'04), pp. 27-36, Redondo Beach, CA, August 2004
The paper presents a process for decision-making in architectural changes.

The process is based on the functional change process used by most companies,
theory of organizational change, and experiences from seven architectural
changes at three companies. The paper concludes that architectural changes lead
to organizational and process changes, and that these are as important as the
technical parts of such changes. An additional case study has been used for vali-
dation. This paper is the basis for Chapter VII.

The study also exists in an initial workshop version: Nedstam, J., Karlsson,
E.-A. and Höst, M, “Experiences from the Architectural Change Process”, in
Proceedings of 2nd International Workshop From Software Requirements to Architec-
ture (STRAW’03), Portland, Oregon, May 2003.

Evolving Strategies for Software Architecture and Reuse

Josef Nedstam and Mark Staples
Submitted to Journal of Software Process: Improvement and Practice, 2005
The paper presents a framework for architectural evolution, which describes

how organizations can change strategies for software architecture and general
software development as their market and business environment changes. The
framework is developed from studies of the architectural evolution of 13 com-
panies. This paper is the basis of Chapter VIII.

The study also exists in two workshop versions: Nedstam, J. and Karlsson,
E.-A., “Experiences from Architectural Evolution”, in Proceedings of 5th Austral-
asian Workshop on Software and Systems Architecture, Melbourne, Victoria, April

I Introduction

4 Strategies for Management of Architectural Change and Evolution

2004; and: Nedstam, J., “Finalizing a PhD Thesis in Architectural Evolution”,
in Proceedings of 6th International Workshop on Economics-Driven Software Engi-
neering (EDSER-6), Edinburgh, Scotland, May 2004.

Open Source Business Models in Practice: A Survey of Commercial Open
Source Introduction

Josef Nedstam, Anna Andersson and Karin Hässler
Technical Report CODEN:LUTEDX(TETS-7213)/1-14/(2005) & local

28, Department of Communication Systems, Lund University.
The paper presents a study of how nine companies have integrated open

source software development into their business models. This shows an addi-
tional strategy to the paper above. The paper is the basis of Chapter IX.

A Quantitative Model for Valuation of Module Reusability

Josef Nedstam and Martin Höst
Submitted to 10th European Conference on Software Maintenance and Re-

engineering, Bari, Italy, 2006
The paper presents an attempt to quantify the benefits of an architectural

strategy, to give one practical example of tools similar to those presented in
Chapter V. The paper is the basis of Chapter X.

2. Software Products and Software Development
Theory on software products and software development is needed as a back-
ground for discussions on the importance of software architecture as a tool to
improve productivity. This section discusses general attributes of software
products, change as a key component for successful software development, and
the evolution of software products.

2.1 Functionality and Quality
The functionality, or the feature content, of a software product is often its most
visible aspect. Functionality can e.g. easily be demonstrated. Other aspects such
as usability and reliability are also important, but since they are harder to spec-
ify, they are often neglected. Normally product requirements are divided into
functional and non-functional requirements (Sommerville, 2001), with the un-
fortunate effect that all aspects other than functionality are bundled together
(Bass et al., 1998). Bass et al. instead introduce quality attributes. These are split
into two major groups: those that are observable at execution, and those that are
not, as shown in Table 1.

Other classifications exist, and one example is found in ISO/IEC 9126
(Sanders & Curran, 1994; ISO, 2001). That classification includes similar as-
pects as the one given above, but does not separate between qualities that are
observable at execution or not. This thesis focuses on these quality attributes of

 2. Software Products and Software Development

Josef Nedstam 5

software, rather than functionality. It also focuses more on the right hand side
of Table 1.

2.2 Software Change
Profitable industry relies on change (Kotter, 1996). Market competition is the
main driving force for this trend, accentuated by globalization of competition.
New products must be released in a faster pace, new markets must be created,
market shares in existing markets must increase, and costs in development, pro-
duction and distribution must be reduced. This is also true for software prod-
ucts.

Lehman presents the notion of software evolution (Lehman et al., 1997;
Lehman & Ramil, 2003), to describe how a software system in operational use
must change to remain of value for its users. These changes are classified as
adaptive, corrective, or perfective. Adaptive changes are made as the environ-
ment of the system changes, such as a changing hardware environment, or a
changing legal environment. Corrective changes are made as faults in the origi-
nal system are discovered. Perfective changes are made to improve some quality
attribute of the system, or to enhance the system with new features. This view
on software evolution focuses on what happens to a system after it has been de-
veloped and delivered, i.e. software maintenance. This thesis broadens this view
of software evolution by also looking at new development from a basis of avail-
able software assets from previous products (Rajlich & Bennett, 2000).

Software changes can be implemented on many levels of abstraction. One
such class of software change is the architectural change (Sommerville, 2001).
An architectural change is a structural change to the software with the purpose
of changing or maintaining the quality attributes of a system, or enabling major
changes to the system’s functionality, i.e. adaptive or perfective change. The
focus of this thesis has been on architectural changes with impact on quality
attributes that are not observable at execution. The aim of such changes is to
enable introduction of new products in a faster pace on the market, and de-
crease the costs of product development and maintenance.

Table 1. Quality attributes

Observable at execution: Not observable at execution:

Feature content Modifiability

Performance Portability

Security Reusability

Availability Testability

Usability

I Introduction

6 Strategies for Management of Architectural Change and Evolution

Other changes of importance to the software industry are improvements of
development processes (Zahran, 1998). The software process is a tool to avoid
previous problems and retain experiences from projects. The quality of the
software process is linked to the quality of the resulting product (Sommerville,
2001; Sanders, 1994), so software process improvement can improve software
product quality, but also decrease lead-time and lower costs of software devel-
opment.

2.3 Product Lifecycles
Changes, such as those described in the previous subsection, mean that software
products, just as any other type of product, follow a product lifecycle on the
market (Grant, 1998). A typical lifecycle of a successful product is shown in
Figure 1. After an introductory phase where the product is marketed and
needed infrastructure is established, the invention or product becomes desired
and experiences market growth and expansion. After a while the market be-
comes saturated, and this is followed by the phase where a company can make
the largest revenues from the, by now, mature product. Finally, introduction of
other products or inventions means that this product, or the entire market, will
decline.

This behavior has major implications on the software development issues
studied in this thesis. The introduction will involve much innovative work,
where after the structure, or architecture, of the product will stabilize. The
technical choices made in this early phase will have impact throughout the life-
cycle of the product, and determine much of the company’s ability to develop
new versions of the product in its mature, and financially interesting, phase.

The processes whereby new versions of the product are developed are also af-
fected by the product lifecycle (Noori, 1990). As already mentioned, architec-
tural work is important in the early stages of a product. Other factors are how-
ever also affected. Project management is crucial for successful product devel-
opment in the early stages of the lifecycle, while line management can take

Figure 1. Product lifecycle (Grant, 1998)

Introduction

Growth

Maturity
Decline

Saturation

Time

 2. Software Products and Software Development

Josef Nedstam 7

more responsibility in mature products, where the organization can develop
products in more of an assembly-line fashion. A similar view, the Technology
Adoption Life Cycle (Moore, 1995, 1999), describing the birth and maturity of
a whole market, is presented in Chapter V. It gives further guidance on the
strategies available in different faces of the life cycle.

3. The Software Process
The software process refers to the activities performed when developing soft-
ware, including specification, design, implementation, testing, operation and
maintenance. It is sometimes referred to as the software lifecycle (Pfleeger,
1998), since it contains activities such as maintenance, which are generally not
performed by the project developing the product. This should not be confused
with the product lifecycle described in Section 2.3. A general definition of the
word process is given in Merriam-Webster (1998):

A series of actions or operations conducing to an end; espe-
cially: a continuous operation or treatment especially in
manufacture

Quality management in software engineering has adopted this notion of a proc-
ess from manufacturing (Bergman & Klefsjö, 2004). An improved process will
result in products with improved quality. The process can also be used to share
experiences within a company (Basili et al., 1994), and process improvement
can lead to decreased costs and lead-time (Dion, 1993).

The definition above implies that if software has been developed, that devel-
opment has followed some process, even if this process has not been defined by
the developing organization. A process definition, or any document describing
the process, does on the other hand not guarantee that development is done
according to the process (Bandinelli et al., 1995). This thesis focuses on the
actual work done in projects, and how to improve the way such work is done.
Focus has not been put on the relation between any documented process and
the process actually being followed.

The standard reference process model is the waterfall process (Royce, 1970),
where development is done in a sequence of phases: requirement specification,
design, implementation, integration, test and maintenance. A phase is not
started until documents produced in the previous phase are approved and base-
lined. Since the waterfall process was suggested, iterative (Basili & Turner,
1975) and incremental process models (Mills et al., 1980) have been suggested,
to enable quick response to requirements changes, and lower risks of not reach-
ing project goals.

The waterfall model resembles the stage-gate model for product develop-
ment (Cooper, 1990; Cooper & Kleinschmidt, 1993), which is used for man-
agement of development projects. Projects are split up into stages with defined
goals, and at each gate the project is assessed to see if it should be continued or

I Introduction

8 Strategies for Management of Architectural Change and Evolution

cancelled. The development itself does not however have to follow the waterfall
process (Karlström & Runeson, 2005).

Much of the focus in software process improvement has been on the man-
agement part of software development. The leading example is the Software
Engineering Institute’s Software Capability Maturity Model (CMM) (Paulk et
al., 1993), which focuses on using quality control from manufacturing disci-
plines and apply to software engineering, by measuring and improving the
software process. A reaction to this trend is the developer-focused, agile proc-
esses. The main example is extreme programming, XP (Beck, 1999a; 1999b),
which contains a number of programming practices, such as pair programming,
small releases, test first, and 40-hour week, but also a practice of on-site cus-
tomer.

A number of process characteristics are defined in (Sommerville, 2001),
shown in Table 2:

For process improvement purposes, and also for selecting a company that can
develop high quality products, these attributes must be assessed. Several assess-
ment methods exist, such as ISO 9000 (ISO-9001, 1994), TickIT (TickIT,
1995), CMM (Paulk et al., 1993) and Bootstrap (Kuvaja et al., 1994), but most
are focused on management and quality issues (Ares et al., 2000). Most assess-
ment methods are therefore used to certify a process or organization, or to reach
a certain maturity level. Software process improvement is mainly concerned
with making a process better in a general sense, and does not focus on support
for process change in a concrete business situation. An assumption behind this
thesis is that a process is not good, according to any quality attribute, in it self,
but must be viewed according to the context it is being used in.

Rather than quantitative process improvement, this thesis is more concerned
with qualitative process changes necessitated as the business environment or
software architecture of a company changes. The need for process changes
driven by architectural changes is studied in Chapter VII.

4. Software Architecture
One definition of software architecture used in this work is taken from Bass et
al. (1998):

The software architecture of a program or computing sys-
tem is the structure or structures of the system, which com-

Table 2. Process Characteristics

Understandability Visibility

Supportability Acceptability

Reliability Robustness

Maintainability Rapidity

 4. Software Architecture

Josef Nedstam 9

prise software components, the externally visible properties
of those components, and the relationships among them.

This definition implies that the architecture is an abstraction of a system that
describes the components of the system, and their interaction, but not the in-
ternal details of these components. Furthermore, an architecture can and will be
described by more than one structure or view. However, all systems have an
architecture, even though no architect has created it, and no documents de-
scribe it. To be useful as a software asset, the architecture, just as the process,
therefore must be enforced. The most tangible features of a software architec-
ture therefore often become the design rules that enforce it.

The choices made when developing an architecture should be controlled by
the driving quality attributes, i.e. the subset of quality attributes such as those
given in Table 1 that is viewed as most important for the product or products
that shall be developed from the architecture (Bass et al., 1998). Different solu-
tions can be evaluated with respect to several of these driving quality attributes
based on a number of architecture assessment methods (Dobrica & Niemelä,
2002; Abowd et al., 1997), such as modifiability in the Software Architecture
Analysis Method (SAAM; Kazman et al., 1994), and almost any attribute in the
Architecture Tradeoff Analysis Method (ATAM; Kazman et al., 1998). An
overview of SAAM is given in Chapter VI.

One sketch of boxes, connected with arrows, is not sufficient to describe an
architecture according to the definition above. There are a number of views on
the architecture of a system. Bass et al. (1998) suggests a number of architec-
tural structures, shown in Table 3:

These structures show different views of the system and its architecture. Since
they are intricately related to one another, they are complicated to develop,
change, and update. Kruchten (1995) instead presents four views that are re-
lated almost hierarchically, see Figure 2, and a fifth view, the scenarios view, to
tie the four other together. Each of the four views is connected to a stakeholder:
end users for the logical view, programmers for the development view, system
integrators for the process view, and system engineers for the physical view.

Research in the field of architectural changes is supported by the assessment
techniques mentioned above, but most literature in the field of architecture is
concerned with developing architectures for new systems. One assumption be-
hind this thesis is that most architectural work is currently done on architec-
tures in existing products, and this thesis focuses on how to manage change in
such architectures. In a sense this way of using an architecture can be seen as

Table 3. Architectural Structures

Module Conceptual/Logical Process/Coordination

Physical Uses Calls

Data flow Control flow Class

I Introduction

10

maintenance, where defects in existing products are removed, and the products
are adapted to a changing environment. The architecture studies in this thesis
have however investigated how new products are developed from old products,
rather than improving old products. Research in component-based software
development and software product lines (Clements & Northrop, 2001) share
this view, and software product line engineering is revisited in Chapter IV.

5. Relation between Process and Architecture
There are a number of similarities and related issues between software architec-
tures and software processes (Perry, 1994). From a technical viewpoint they can
both be decomposed into components that treat information, and output some
type of data. This view might be useful especially when trying to automate parts
of the software process. It might also be useful when trying to find strategies for
decomposing a software process into activities. A problem with this view is that
while software components can be controlled and behave deterministically, the
teams and personnel in a software project present social and cultural behavior
and challenges.

This thesis has mainly studied two other similarities. First of all, both devel-
opment processes and software architectures imply rules on how software devel-
opment shall be carried out at an organization. A software process exhibits this
in an obvious way. The architecture is however also often seen as a set of rules,
from a developer viewpoint. Secondly, the architecture and the process are both
used to transfer knowledge and experiences from one project or product to an-
other.

Figure 2. The 4+1 View Model of Architecture

Scenarios Scenarios

Logical view

Process view

Development view

Scenarios Scenarios

Physical view

 Strategies for Management of Architectural Change and Evolution

 11

II Research Methodology

Settling on research questions is the first step of a successful research project.
Design of a study can be done from this basis. First of the choices to then be
made is to select a research approach. This will guide selection of data collection
methods, and later, analysis techniques.

This thesis presents on empirical research, where conclusions are drawn
based on observation of a real-world phenomenon. This section first of all pre-
sents the research goal and the research questions for the thesis. The choice of a
qualitative or a quantitative approach is then discussed, and the predominately
qualitative data collection and analysis methods used in this thesis are described.

1. Research Goals
The research presented in this thesis has been guided by a vision to enhance
developers’ and architects’ abilities to improve the software architecture that
supports them, so it fits better with the business goals of their organizations.
Special interest has been placed on using software architecture as a tool for
achieving reuse-related quality attributes.

The benefits gained by a software architecture are assumed to be context de-
pendent, i.e. one form of successful architecture improvement is hard to trans-
fer to another software developing organization. This means that the concrete
conclusions about the specific architectures found in this thesis are hard to
transfer, but that the methods and tools that have been assessed can be used in
other contexts.

1.1 Goals
The vision above has been specified in a research goal, to set the constraints for
this PhD Thesis:

Help developers and architects utilize and evolve their soft-
ware architectures to better support the business goals of
their organizations, with respect to quality attributes related
to increased productivity.

II Research Methodology

12 Strategies for Management of Architectural Change and Evolution

The goal has a target audience of developers and architects. A secondary goal is
therefore to give the third stakeholder, management, insights into what can be
achieved by a software architecture with respect to productivity. The software
architect role is also deliberately vague as it will have many different names in
different organizations. It should be viewed as a role with technical responsibili-
ties not connected to one single development project, but rather to software
assets common to many parallel and consecutive projects. In order for the two
roles, developers and architects, to make the architecture support business goals,
these business goals must be understood. Finally, quality attributes relating to
productivity are such as reuse, modifiability, and extensibility. The opportuni-
ties to use the software architecture to support quality attributes such as secu-
rity, safety or performance are not part of this thesis.

1.2 Questions
The goal above has been broken down into research questions, which have been
explored in research projects in the scope of the thesis. These questions are as
follows:
Question 1: What is the linkage between architectural strategies and business

goals?
Question 2: How does the software architecture relate to the organization

and the software process?
Question 3: How do organizations carry out architectural changes, and how

can this process be improved?
Question 4: Which architectural strategies exist, with bearing on business

goals related to productivity?
Question 5: How do software architectures evolve to continue supporting

business goals in an evolving environment?
These questions have been formulated as concrete research questions in the
various studies described in the chapters of this thesis. The research questions
presented here has been the focus of different studies as seen in Table 4.

2. The Methodological Approach
Empirical software engineering is a relatively new field of study, and method-
ologies are still being established. Much empirical software engineering research
has followed the quantitative tradition, as is done by Wohlin et al. (2000), per-
haps because most researchers come from the natural sciences, where controlled
experiments are familiar. Before carrying on with a research project, one should
however ask oneself according to which research tradition it lends itself.

The positivistic school, using quantitative studies, has its roots in the natural
sciences where universal and objective laws of e.g. physics and mathematics can
be found (Kolakowski, 1972). A theory is used to form a hypothesis, which is
tested through a controlled experiment on a phenomenon, separated from its
context. The method should be as formal as possible, ensuring that the results
will not be affected by e.g. researcher bias or any other source of subjectivity.

 2. The Methodological Approach

Josef Nedstam 13

The success of such methods within the natural sciences has lead to widespread
use in the social sciences as well (Patton, 2001).

On the other side the qualitative school includes theoretical traditions and
orientations such as ethnography, phenomenology, hermeneutics and such, all
focused on the social sciences. The methods used here are not deductive but
inductive, used to build theory, so-called Grounded Theory, meaning that the
theory is grounded in the empirical world. In this world everything is assumed
to depend on its context. Therefore, it is impossible to lift something out of its
context into an experimental setting, and objectivity, whether it exists or not, is
impossible to reach. Where the quantitative researcher is restricted to generalize
to the analyzed context only, i.e. the population that the sample was taken from
in order to represent the population, the qualitative researcher still tries to say
something general about the nature of the phenomenon under study, even
though a single case and a single and unique context has been studied. A quali-
tative researcher sees the results from a case study as one small part of a holo-
gram, which still contains the whole picture of reality, but only from one per-
spective.

The choice between the two approaches is often and successfully done
pragmatically. Most commonly, the qualitative approach is used in an explora-
tory setting, trying to create a model or a proposal for a theory, which later can

Table 4. Relation between research questions and papers

Question Chapters Linkage

1 IV, VIII,
X

Business goals of software organizations are shown in Chapter IV,
linkage between architectural strategies and business goals is ex-
plored in Chapter VIII, and benefits of a specific architectural
strategy are analyzed in Chapter X.

2 VI, VII Chapter VI analyses the relation between the flexibility of a soft-
ware process, the software organization, and its architecture, while
Chapter VII investigates process and organizational factors that
have to be understood and overcome in order to change an archi-
tecture.

3 VII, X Chapter VII presents an architectural change process based on a
number of studied architectural changes, while Chapter X gives an
example of a quantitative model for decision support in such a
process.

4 VIII, IX Chapter VIII presents a framework of architectural and develop-
ment strategies to exploit opportunities for reuse, appropriate for a
company’s specific position and environment. Chapter IX investi-
gates one additional strategy in depth.

5 VIII Chapter VIII also shows linkage between the evolution of a busi-
ness along with the evolution of the software architecture on
which the business bases its offering, be it products, services, or a
hybrid of the two.

II Research Methodology

14 Strategies for Management of Architectural Change and Evolution

be confirmed in quantitative studies. The approaches are also frequently mixed,
e.g. by using a set of qualitative interviews to put words to the numbers pro-
duced by a broad and quantitative questionnaire study.

In this thesis, the work mostly follows the qualitative approach. The studies
have explored largely unchartered phenomena and social constructs. They have
still however involved both collecting and generating numbers. In Robson’s
terminology (2002) all studies included here can be classified as case studies,
although some of them possibly could have been extended to grounded theory
studies.

Robson (2002) also introduces a spectrum of approaches to problem solv-
ing, ranging from pure basic research to researchers as consultants. The studies
presented in this thesis have all been performed in close cooperation with indus-
try, and the studies have aimed at generating results that can be applied by the
studied companies. Most of them are therefore focused on applied research, and
to some extent provide results that are directly applicable to industry. Some of
the studies, such as the one presented in Chapter X, have been performed simi-
larly to action research (Robson, 2002), where the aim is not only to broaden
the boundaries of science, but also to help the subjects under study with a spe-
cific problem, and broaden the knowledge of such practitioners in relation to
that problem. Action research also involves change, and as this thesis shows,
change is difficult. Change driven by action research should be allowed to take
years (Fullan, 1991). Even though a PhD thesis does take years, you are seldom
given the opportunity to pursue one single case for lengthy periods of time.

3. Data Collection Methods
Several data collection methods are available for qualitative studies, but the
most common are observations, interviews and archival studies. The following
discussion focuses on interviews, as it has been the most frequently used in-
strument in the studies presented in this thesis.

3.1 Observation
Observation is, according to many qualitative researchers, the best method of
data collection (Patton, 2001), as it gives the best opportunities for the re-
searcher to penetrate a phenomenon. The largest critique against observations is
that the observer is biased, that the observer affects the phenomenon under ob-
servation, and that it is too difficult to record what is being observed, i.e. two
observers will tell a quite different story after watching the same phenomenon
(Robson, 2002).

The observer bias is handled by acknowledging that all methods have re-
searcher bias. The results will therefore present but one, or possibly a few, per-
spectives of the phenomenon under study. The observer’s effect on the phe-
nomenon can be handled by being an invisible observer. This can be hard to
achieve or even raise ethical aspects. Another solution is participatory observa-
tion, where the observer to a varying degree participates in the phenomenon.

 3. Data Collection Methods

Josef Nedstam 15

Even though it is often advantageous to participate fully, one must be able to
use the gathered experiences in research and present the results. Therefore, it is
often useful to take a step back and just be a bystander from time to time, in
order to observe the phenomenon through a research viewpoint. A helpful abil-
ity or technique for this is introspection, in order to analyze what one really has
been participating in and observing. The drawback of participant observations
is that it demands a lot of resources.

Observation is resource intensive, as it takes weeks to blend in into a soft-
ware engineering work environment. Observation has therefore only been used
in specific settings, such as to better understand architectural assessment meth-
ods, and during meetings, to understand the architectural decision process in
Chapter VII.

3.2 Interviews
Within interviews, as in observations, the researcher is the instrument for data
collection. Since the focus is on qualitative studies, the research is often based
on a loose design and not on formal methods. This means that a lot is required
from the researcher in terms of both social and scientific abilities. Becoming a
good interviewer requires a lot of practice. Several types of interview techniques
exist, ranging from open to structured (Minichiello et al., 1990). Their charac-
teristics are shown in Table 5.

The interviews performed in this work have mostly been in the form of an
interview guide, where a prepared set of issues is discussed, and the interviewees
are able to introduce other issues. In some of the studies, only one issue has
been discussed. In other studies, as in Chapter VI, follow-up interviews have
been performed following a structured interview technique, where the partici-
pants have mostly been presenting quantitative data about their organizations
and processes.

There are different ways of ensuring a valid description of an interview. In
structured interviews and questionnaires it is trivial to achieve a valid descrip-
tion. In open interviews it can however be difficult to account for what some-
times amounts to hours of discussions. Tape and even video recordings can be
used and later transcribed. Taking notes is also an option. It is however far from
obvious which is the better way. Glaser (1992) dislikes recordings, and even
argues against taking notes during interviews, as it interferes with the discus-
sion. Recordings may hinder a free and open discussion, and transcriptions re-
quire much resources, often twice as much time as the interview itself. The ini-
tial interviews of this thesis were recorded and transcribed, but later interviews
were just described in keyword notes. The description validity was then assured
by letting interviewees give feedback on interview summaries.

Other methods of data collection can also be used in qualitative studies. The
most important is analysis of written documents, which has been used to a vary-
ing degree in most of the studies performed in this work. Literature is viewed as
any other data source in qualitative studies, and just as theory emerges from a

II Research Methodology

16 Strategies for Management of Architectural Change and Evolution

qualitative study, so does the need for literature. There is however a need for a
balance between reading up on a subject before a study, and keeping an open
mind to any emergent theory found in the data produced in that study.

3.3 Sampling in Qualitative Studies
Within qualitative studies the subjects are not sampled randomly, but instead
purposefully. One way of doing such a sample is to find the interviewee that is
likely to give the most interesting information about the phenomenon, perform
the interview and do an analysis. From this analysis one tries to find a new in-
terviewee that probably will give a totally different perspective on the phe-
nomenon. This is repeated until no more information is extracted through fur-
ther interviews (Glaser, 1992).

It is important not to think in statistical terms when selecting a sample size
in qualitative studies. Whatever size selected, the results of any quantitative
analysis from data collected from a qualitative, purposeful sample cannot be
statistically significant, as the sample has not been selected to represent any lar-

Table 5. Types of interviews

Type Approach Purpose Questions Features

Informal
conversa-
tional inter-
view

Qualitative Enter perspec-
tive of inter-
viewee

Discussion
around one
topic led by
interviewee

High resources,
high dependence
of interviewer

Interview
guide

Qualitative Enter perspec-
tive of inter-
viewee, with
opportunity to
compare to
others

Several topics
given by inter-
viewer, discus-
sion led by in-
terviewee

High resources,
less dependence of
interviewer

Standardized
open-ended
interview

Qualitative Enter perspec-
tive of inter-
viewee, with
opportunity to
compare to
others

Questions are
given word-by-
word, inter-
viewee may
answer in own
words

Low resources, low
dependence of
interviewer

Structured
interview,
question-
naire

Quantitative Drawing general
conclusions
about phe-
nomenon and
not conclusions
about interview-
ees

Questions are
given word-by-
word, on paper
or verbally,
interviewee is
forced to answer
according to
fixed dimen-
sions

Low resources,
minimal depend-
ence of interviewer

 3. Data Collection Methods

Josef Nedstam 17

ger population. In many of the studies presented here, as varying viewpoints as
possible have been interviewed, However, it has often not been feasible to do
iterative interviews. One exception is Chapter IX, where snowball sampling has
been used. Here the participants are asked to name others who might be famil-
iar with the phenomenon under study. This was repeated until new participants
were naming persons who already had been interviewed. When opportunity has
arisen, counterexamples or examples that have broadened theory have however
been included, such as in Chapters VII and VIII.

4. Analysis in Qualitative Studies
The results from a qualitative study are not simply the transcribed and con-
densed interview material. This preparatory work is necessary but must be fol-
lowed by a proper analysis of the data.

In order to draw conclusions from the data one must find dimensions
within the phenomenon in the data, and try to find patterns among them. Di-
mensions are found by coding, categorizing and analyzing the data (Patton,
2001). It is of importance to compare the coding schemes and categories against
the original data to see that the whole has not disappeared into a set of details.

Abstract relationships can be synthesized from the dimensions, by arranging
the data into matrices according to the dimensions (Glaser, 1992). The process
has to be iterated to find all of the important dimensions. Patterns that are
found should be questioned, e.g. by changing perspective. By letting several
researchers create their own dimensions and matrices the validity of the findings
has been strengthened.

5. Assessments as a Tool in Research
Assessments or evaluations are methods for a researcher to influence the envi-
ronment, the first step to perform changes and have impact on the environ-
ment. The purpose of evaluations is to assess the effects or effectiveness of the
phenomenon under study, so it is not really a distinctive research strategy
(Robson, 2002). Since evaluation research assigns a value to the object under
study, which can include persons or companies, such research is more sensitive.
It is however useful for decision support when making changes.

Several types of evaluations or assessments exist (Scriven, 1991; House,
1980). Formative evaluations are used to guide the development of a phenome-
non. Summative are used to assess effects and effectiveness of a phenomenon.
As an example, ATAM (Kazman et al., 1998) can be used formative when de-
veloping or improving an architecture, or summative when selecting among
commercial off-the-shelf components.

Evaluations can also be classified into outcome evaluation and process
evaluation. The outcome of software development is products and revenues.
Process evaluation therefore seems more natural when assessing software proc-
esses and architectures. However, the architecture might be viewed as an out-

II Research Methodology

18 Strategies for Management of Architectural Change and Evolution

come of the early activities of a software process, and the specific process for
developing the architecture might be difficult to examine.

Another dimension of evaluation is whether the evaluation only produces
one number indicating the monetary value of e.g. an architecture, or whether
this value is assessed for different views and stakeholders, or even in qualitative
terms. The bottom line is always said to be the most important factor, but Far-
bey et al. (1993) have studied how different evaluation methods, along this di-
mension, has been used in IT industry.

In Chapter VI, a process flexibility evaluation method has been developed
and tested in a case study. The method was developed by adapting SAAM
(Kazman et al., 1994) to processes, since SAAM focuses on architecture flexibil-
ity. The adaptation was done with help from checklists found in Scriven (1991)
and Ares et al. (2000). Architecture assessments according to ATAM and ac-
cording to a project-centric approach were made as a first step during the work
with Chapter VII.

6. Validity in Qualitative Studies
In a quantitative setting, where a phenomenon has been lifted out from its con-
text and a controlled experiment has been performed in a laboratory, it is possi-
ble to perform a direct replication to confirm the validity of the study. In a
flexible design study, such a replication is impossible, since the context of the
study is always present and always changing, and cannot be recreated. There-
fore, other procedures for ensuring validity and trustworthiness are needed.
Robson (2002) defines three types of understanding in qualitative research,
namely description, interpretation, and theory. These types have particular threats
to their validity.

After an observation or interview, the researcher must be able to provide a
valid description of the events. Typical ways of ensuring such validity are to take
video- or audio recordings, and writing high-quality notes. The interpretation of
what has been observed or discussed can be made invalid if the researcher im-
poses a preconceived meaning or framework onto the material, instead of devel-
oping such a framework or modifying any prior, suitable framework. Finally,
the theory developed from the study can become invalid if the researcher does
not consider alternative interpretations or explanations for the results. The solu-
tion here is to try to find material that does not fit the theory emerging from
the study.

Glaser (1992) finds a grounded theory study valid if it has been performed
as a continuing search of evidence which disconforms to the emergent theory.
This ideal has been followed within reason. The participants of the study in
Chapter VI were given the opportunity to change the framework of the soft-
ware development environment which was emerging; one additional case was
found for the architectural change process of Chapter VII, which showed the
bounds of its applicability; and the framework of architectural evolution in
Chapter VIII is still expanded as new cases are found.

 6. Validity in Qualitative Studies

Josef Nedstam 19

Other threats may be related to the effect a researcher might have on a set-
ting, interviewee bias, or researcher bias. Several techniques exist for countering
these threats. A participatory observation that carries on for an extended period
of time might mean that the observer blends in better with the setting. Differ-
ent forms of triangulation can be used, by using many observers, many data
sources or many analysis methods.

Results in the papers included in this thesis have generally been validated
through repeated interpretation by several researchers, and by letting the com-
panies and practitioners under study give feedback and review the findings. The
specific procedures for ensuring validity are described in each study. The main
strength in the validity of the conclusions of this thesis lies in that over 20 soft-
ware organizations have been studied. The priority has been to find new cases
describing similar phenomena, rather than investigating the same case from
several viewpoints, such as using several respondents in the same organization,
or doing lengthy observational studies. The following chapter introduces the
case companies, in order to give a fair view on the context wherein conclusions
can be generalized.

20

 Strategies for Management of Architectural Change and Evolution

 21

III Context of Studies

A discussion of the context of the presented studies can provide insights of how
to transfer the results of this thesis into industry, both by showing in what
situations the knowledge can be directly transferable, and by indicating when
suggested guidelines and methods might have to be adapted to fit a new con-
text. Under the assumption that such technology transfer is complicated, as
stated in the research goal, Chapter II, information about the context of the
findings in this report is crucial to gain any type of generalizability.

1. Studied Organizations
Table 6 gives an overview of the 23 studied organizations. The organizations are
anonymized, because a number of them volunteered information on condition
of confidentiality. Domain indicates the application domain, or the type of
products the organization is developing for its customers. Size is a measure of
the number of software developers employed by the organization. Small means
not much more than 10, medium not much more than 100, and large above
100. Some organizations have however been significantly larger, but Table 6
gives the size of the organizational unit under study, rather than the size of the
multinational companies which are included. This metric could also be based
on revenues, and the two would often be related if the main line of business in
the company would be software development. This is however not the case for
several of the companies under study. Focus therefore shows if the company
mainly focuses on hardware or software, and if the company primarily develops
products or provides their customers with services. The platform option is an
in-between, where the company supplies an incomplete product which needs
services to be customized and installed. Scope indicates whether this offering is
directed at a mass market or at individual customers, and is somewhat linked to
the type of offering. The individual organizations are described in the following,
with a varying degree of detail. Information specific to certain research issues
are presented in the thesis chapter treating that issue.

III Context of Studies

22 Strategies for Management of Architectural Change and Evolution

Table 6. Studied Organizations

Company Domain Size Focus Scope

A Consumer electronics Large Hardware product Mass market

B CASE tools Large Software product Niche market

C Consumer electronics
platform

Large Hardware platform Customer
specific

D Control systems Large Hardware/software
platform

Mass market

E Radar systems Medium Hardware product Customer
specific

F Consumer electronics Large Hardware product Mass market

G Telecommunications
application platform

Medium Software platform Niche market

H Newspaper manage-
ment system

Medium Software product Niche market

I Webshop solutions Small Software platform Niche market

J Information system
development tool

Small Software platform Customer
specific

K Biomedical analysis
tools

Small Hardware product Niche market

L Healthcare services Large Information system In-house

M Combat simulators Medium Hardware/software
product

Customer
specific

N Internet payment solu-
tions

Medium Software product Niche market

O Cash machines Small Hardware product Niche market

P Embedded web-server
products

Medium Hardware product Mass market

Q Embedded real-time
systems

Large Software service Customer
specific

R On-demand informa-
tion system services

Large Software service Customer
specific

S Telecommunications Large Hardware/software
systems

Varies

T Development tools for
embedded systems

Small Software service Niche market

U Embedded operating
systems

Medium Software product Niche market

V Telecommunications
services

Large Software service Customer
specific

W CASE tools Large Software product Mass market

 1. Studied Organizations

Josef Nedstam 23

1.1 Company A
Company A developed consumer electronics. The individual products were
based on a so called application platform. The application platform develop-
ment process used at Company A was assessed for the study of Chapter VI. The
purpose of the platform was to serve as a basis for several products released
within a time-period. The products were developed in parallel, and the first
product to be based on a platform was developed simultaneously as the plat-
form. The first product therefore had a large impact on the requirements of the
entire platform. A platform contained 90 - 95% of the code of a product, and
most of the code in a platform was reused from previous platforms.

The project studied in Chapter VI was the second platform project to result
in a product for the public market, and therefore the details and interactions of
the platform and product processes were still taking form. The project was se-
lected because it was in its requirement specification phase, the part of the proc-
ess that was most mature.

During this phase the market requirements were first analyzed and refined
to requirements for the various user functions. They were then decomposed
into module requirements. The step from functional to module requirements
involved design work, as the requirements were mapped onto an existing archi-
tecture. The work during the requirement phase was organized in 15 functional
groups, each responsible for a well-defined functional area. Those groups in-
cluded the roles responsible for product management, requirement specification
and software design and their tasks were to analyze, document and prioritize the
requirements and also to make sure that there was compliance between the
market requirements and the functional requirements. When the requirements
were in baseline, the project was reorganized into module teams that should
implement the functions. During this transition an integration plan was made
to determine which functionality each module should contain at the end of
each development increment. After implementation the modules were tested
and integrated, while the integration and system test was at the time the respon-
sibility of the projects developing products from the platform.

After this study, Company A was split in two companies, Companies C and
F, along the interface of the platform. This dynamic is described in Chap-
ter VIII.

1.2 Company B
Company B develops software engineering tools. One of their main products is
a CASE tool that consists of a front-end with editors for various types of dia-
grams and source code, and a back-end for compiling the diagrams into code.
Other utilities such as a simulation tool are also part of the development tool.

Company B is used as an example in the discussion section of Chapter VI.
At the time that study was made, Company B released a new version of their
product every six months, and successive development cycles for these releases
overlapped. Features were implemented by development teams in an assembly-

III Context of Studies

24 Strategies for Management of Architectural Change and Evolution

line fashion, described by Regnell et al. (1998; 2001). A shift in strategy was
eventually necessitated, and this is discussed in Chapter VIII. The changes lead-
ing up to this shift in strategy are analyzed in Chapter VII. The organization
has architects per project but no established line organization for architecture,
and module responsibility is assigned to senior experts.

1.3 Company C
Company A was split in two companies. Company C is the half that develops
platforms for consumer electronic devices. These platforms are sold to external
customers who configure the services within the platform to create complete
products. The software platform consists of a number of modules, and a mid-
dleware layer hides the internal architecture from the customers.

Projects are organized in: a project management group, with product man-
agement responsibility; a system-engineering group, with expert groups and
function groups responsible for major features within market requirements; and
a system realization group, which receives specifications from the system engi-
neering group and develops the platform. The system realization group is di-
vided into a hardware- and a software branch, which are subdivided into devel-
opment teams, each responsible for a set of modules. The organization has de-
fined roles responsible for each module. These persons work with function
groups during specification, and development teams during implementation.
The company also has a dedicated architecture group that performs most of its
work within projects, especially supporting and influencing the system-
engineering group.

1.4 Company D
Company D develops control system environments for industrial automation,
e.g. chemical plants, dairies, etc. The control system environment consists of
both a development view, called control builder, and a deployment view, i.e.
the controller itself. Within the control builder, controllers can be designed by
specifying hardware sensors and actuators, constructing control loops, and con-
necting variables in those control loops to the hardware devices. A fully speci-
fied system can then be compiled and deployed onto a controller in a control
system.

Company D typically carries out one large project at a time, involving the
entire organization. Each project evolves the same product further by adding
features to the control builder, e.g. new editor facilities, and the controller, e.g.
new hardware interfaces. Implementation proposals are developed during a fea-
sibility study. Accepted implementation proposals pass a tollgate, in line with
the stage-gate approach (Cooper, 1990; Cooper & Kleinschmidt, 1993), after
which implementation begins. Development is organized into teams, each
working on a number of implementation proposals. Work is feature-focused
and the organization has no module-responsible and no architects, but instead

 1. Studied Organizations

Josef Nedstam 25

relies on senior developers to take responsibility for long-term architectural
goals.

1.5 Company E
Company E develops radar systems for various types of installations. Each sys-
tem has been developed in its own project and for one customer. These projects
have spanned several years, and the organization has focused on one customer
and product at a time. The projects have followed an iterative development
process, but have had little external controls during the main development parts
of the projects. As the organization gains domain knowledge the customer re-
quirements on some radar products are better understood. These mature prod-
uct types can therefore be sold to new customers without large development
projects. The organization also has opportunities to extract functionality general
to all its products for reuse.

1.6 Company F
Company F is the other resulting half of Company A, after the split mentioned
in Section 1.3, and is therefore developing consumer electronics from a hard-
ware/software platform provided by Company C. The developed products are
all belonging to the same specific application domain, and the platform is also
specific to this domain. The company develops some 20 products each year –
some with small variation such as internationalization, while some vary to a
greater extent, such as by focusing on high-end or low-end market segments.
The market pressure on this organization is therefore high. The organizational
structure and processes are similar to those of Companies A and C.

1.7 Company G
Company G started out as a consultancy business in services for the public
switched telephone network, and has packaged their domain knowledge in an
application server. They work in close cooperation with companies providing
gateways between telephone systems and the Internet. Depending on their in-
vestors they shift focus from developing a generic application server for several
customers, to developing specific solutions with custom applications for one
customer.

1.8 Company H
Company H develops a newspaper management system with some 80 applica-
tions such as subscriptions, advertisements and so on. They introduced a plat-
form for graphical user interfaces to enable portability between Mac and Win-
dows. Versions of the system were generated for individual customers by
parameterization, but their solution did not allow for much variation. Problems
with differing customer demands were instead solved by a customer forum were
the customers often managed to agree on their requirements for the system.

III Context of Studies

26 Strategies for Management of Architectural Change and Evolution

1.9 Company I
Company I worked as a consultancy business, where each project resulted in a
web solution customized for one customer. Similarities between projects led
them to develop a wizard-style tool for setting up a web shop. This was to be
sold along with services such as tailoring and development of specific applica-
tions and components.

1.10 Company J
Company J was a startup which developed a tool for developing information
systems. Views on business information could be generated automatically, while
business logic had to be implemented for each customer. Such development was
supposed to be done by the customer, but the company was initially funded by
consultancy services in information systems, often to do such development.

1.11 Company K
Company K develops tools for automatic blood analysis, specific for each cus-
tomer. They extracted generic parts into a platform, to be able to cut lead-times
for new customers. They however saw problems in generalizing user interface
parts, as customers often had quite different requirements on user interfaces.
From this platform they also tried to broaden their market scope by developing
bone marrow analysis tools.

1.12 Company L
Company L is a healthcare organization, composed of several hospitals and
primary health care units. Each regional organization has had its own software
systems, and many of them have also developed their own software systems.
Such development is now in the process of being outsourced, and the various
systems are being consolidated. The overall goal is to be able to let patients have
electronic journals which can be used in the same way by the various healthcare
facilities in the region.

1.13 Company M
Company M develops combat simulators, and also some civil defense simula-
tors for e.g. firefighting. Some simulators are software-only, while others are
embedded in actual, or training, weapons systems. A complete customer solu-
tion may consist of many interconnected simulators on several tactical layers.
Company M has used a common architecture for all products, and has tried to
maintain generic components which are to be used as-is by projects developing
customer solutions. The challenge lies in keeping components generic, even
though customer projects at their final stages often just “clone-and-own” com-
ponents (Clements & Northrop, 2001), i.e. take a copy of the source code and
develop in their own direction without regard for the needs of other projects.

 1. Studied Organizations

Josef Nedstam 27

1.14 Company N
Company N develops credit card payment solutions for Internet. They started
out by a baseline, or reference implementation, which customer projects have
been free to modify to come up with a complete solution. As a considerable
volume of new customer demands has emerged, a new baseline was warranted,
but it was very labor intensive to lift all products up to this new level of func-
tionality, as the customized code based on the previous baseline was hard to
identify and disentangle from generic code. They have since started implement-
ing a light-weight software product line. These efforts have been described by
Staples & Hill (2004) and are a part of the analysis in Chapter VIII.

1.15 Company O
Company O is a company offering cash processing solutions such as coin sort-
ers. The organization has 400 employees and software development at Com-
pany O is done by approximately eight developers organized as a unit within
the R&D department. Company O has introduced an agile development proc-
ess (Beck, 1999a; 1999b) along with open source software development (Ray-
mond, 1998).

1.16 Company P
Company P was founded in 1984, and develops network cameras and video
servers, servers for printers, scanners and storage devices as well as wireless access
points for mobile connection to local networks and the Internet. Their ap-
proach to software product lines has been studied by Bosch (2000).

1.17 Company Q
Company Q develops integrated hardware and software solutions for embedded
real-time systems, and has started using open source software. Their solutions
are sold to individual customers as services rather than products.

1.18 Company R
Company R has in recent years shifted its main focus from providing hardware
products to providing software services and solutions for business. Their open
source software strategy is further described in Chapter IX.

1.19 Company S
Company S is one of the world’s leading organizations within telecom industry.
Some of the other organizations described in this thesis are part of Company S,
and their overall strategy to open source software is further described in Chap-
ter IX.

III Context of Studies

28 Strategies for Management of Architectural Change and Evolution

1.20 Company T
Company T has 30 employees and works mainly as a distributor of develop-
ment tools for embedded systems.

1.21 Company U
Company U provides customers with a Linux distribution for embedded sys-
tems. Company U offers customers what is called a subscription to the Linux
distribution, where an annual fee is paid for upgrades and support. All source
code is provided. Customers are mainly from the consumer electronics market
and the mobile communication market, but there are also some customers from
the automation industry. Company U uses Eclipse technology for the in-house
developed IDE DevRocket.

1.22 Company V
Company V has 3000 consultants, which operate in four different areas: Mobile
Devices, Products, Operators & Networks and Enterprises & Industry. Their
strategy regarding open source software is further described in Chapter IX.

1.23 Company W
Company W developed the first Integrated Design Environment (IDE). Today
focus is on all activities in the software development process, and besides IDEs
like JBuilder and Delphi, Company W offers software tools for requirement
management, configuration management, build systems and design to their
customers.

2. Scope and Features of Studied Cases
As this is a thesis in software engineering, the studied companies have mainly
been software developers. Most however also develop hardware, or have to take
hardware into special consideration. One company that ceased software devel-
opment has also been studied for Chapter VIII, and one which only acts as an
open source software distributor, for Chapter IX. Three companies no longer
exist. Company A was reorganized and split into Companies C and F, a move
which is studied in Chapter VIII. Companies J and T were trying to become
product rather than service businesses, but have gone out of business.

Along that dimension – products vs. services – the thesis involves companies
from those who develop shrink-wrapped mass market software, those that de-
velop one-off products for one customer at a time, to those that provide either
their technology or simply their know-how as services. End-users and customers
vary from government and heavy industry, telecommunications operators and
software developers, to private consumers; and products have been both em-
bedded, information systems and off-the-shelf products.

 2. Scope and Features of Studied Cases

Josef Nedstam 29

For the companies where the software process has been studied in-depth, it
has been clear that most development is project driven – projects to complete a
mass-market product, or a specific customer solution. This full focus on indi-
vidual projects has however had to be reconsidered for the companies that have
wanted to manage and maintain architectural assets for reuse between projects.
One company that had no real projects was Company B, where new products
were pushed out regularly in a line-oriented model of development. Other or-
ganizations have used similar line-oriented development for reusable assets,
while others have developed new releases of such assets in internal projects.
Roles responsible for each software module have often been appointed. Such
responsibility has sometimes been shared by introducing roles responsible for
features, or user functionality. In some cases no module responsible have been
assigned, but responsibility for the code has rather been shared between all de-
velopers. Project lead times, or times between product releases, have varied from
months up to several years.

In the terms presented in this section, Chapter VI includes a study of the
flexibility of the development process used in a project to develop an internal,
reusable asset. The study shows the tight coupling between organization, archi-
tecture and process, and is contrasted with conclusions from a different model
for development, line-oriented development. Chapter VII studies the process
for making decisions about, and changing the software architecture. The con-
text has varied, as to whether these changes have been implemented in product
or customer oriented projects, internal projects, or in a line-oriented context.
Chapter VIII takes a more external perspective, and discusses whether these
organizations have a focus on individual customers, market niches, or mass
markets, and how their strategies for development and software architecture are
affected by these choices. Chapter IX studies how one such strategy, open
source software development, can be exploited in various such business con-
texts. Finally Chapter X takes us back to the technicalities of software develop-
ment, where introduction of some line-oriented elements must be validly moti-
vated in an organization which is strongly driven by projects. This motivation is
done by evaluating an architectural strategy in quantitative terms, i.e. by finding
the value of architecture.

Before the studies made during this thesis are presented, the reader is intro-
duced to one technique to increase productivity through reuse – software prod-
uct-line engineering. Chapter V, on the business of software, gives the external
business context for the internal development strategies which are studied in
Chapter VIII. Chapter V also shows the current state of economics research in
software engineering, such as tools to understand the value of the different qual-
ity attributes which are sought for in this effort to improve our ability to man-
age software architecture.

30

 Strategies for Management of Architectural Change and Evolution

 31

IV Understanding Software Product
Line Engineering: Available
Strategies and Approaches

Interest in gaining the benefits of a product line approach has risen
in software industry lately. Such benefits are for instance increased
productivity and mass customization. Several approaches for the
introduction and evolution of a Software Product Line are pre-
sented in this literature survey, and their differences are identified.
One such large difference is whether investments in general should
be made up-front or as late as possible. Software Product Line En-
gineering still relies on company champions and pioneers, and
needs to be packaged in tools and methods to be accessible to soft-
ware industry in general.

Software product line engineering has attracted attention in recent years, due to
its opportunities of exploiting reuse between the products in a company’s port-
folio. A software product line is a way to manage reuse of assets common to a
set of products developed by one company, and to manage the variation be-
tween these products.

While the development of computer hardware still abides by Moore’s law
(Moore, 1965), software has not kept up with this pace. Software reuse has
since the late sixties been seen as one method of bridging this gap. Many tech-
nical solutions to reuse have been proposed since then, including subroutines,
modules, objects, and components (Karlsson, 1995; Krueger, 1992). Support-
ing technologies for reuse have also been developed, such as component libraries
and configuration management systems.

The initial ambition of industry-wide reuse has resulted in research into
COTS components. Industry has however gradually realized that libraries of
general components do not suffice, but that reuse should rather be domain spe-
cific (Bosch, 2000). This means that reusable components must be adapted for
the specific company developing products from them, and adapted for the spe-
cific type of applications being developed. A further problem with reuse that so
far has been neglected is the managerial and organizational impact of a switch
to reuse-oriented development. Resources have to be spent on reusable assets,

IV Understanding Software Product Line Engineering: Available Strategies

32 Strategies for Management of Architectural Change and Evolution

and the organization needs to introduce roles and structures that plan the de-
velopment, use and maintenance of these assets. Software Product Line Engi-
neering, which is an architectural approach to reuse, focuses efforts on the do-
main at hand, and may also support organizational adaptation. This report pre-
sents the benefits of Software Product Line Engineering, and the strategies and
approaches available in literature.

The following section describes why Software Product Lines have become a
current issue, while Section 2 includes definitions of what Software Product
Lines are. Section 3 gives an overview of the most common frameworks for
Software Product Line Engineering, and Section 4 and 5 focuses on when and
how to introduce and evolve a Software Product Line.

1. Reasons for Software Product Lines
Krueger (2003) makes the case for a Software Product Line (SPL) explicit,
when saying that the objective of an SPL is to optimize software engineering
efficiency by exploiting commonalities among products. Software Product Line
Engineering (SPLE), also called Software Product Family Engineering, is there-
fore the development and maintenance of several products simultaneously,
where the products have enough commonality to warrant introduction of man-
aged reuse and variation between them.

Krueger’s case for SPL is broken down into more specific benefits by the
Software Engineering Institute (SEI) at the Carnegie Mellon University
(Clements & Northrop, 2001), which states that SPLE can help an organiza-
tion:

� Achieve large-scale productivity gains

� Improve time to market

� Maintain market presence

� Sustain growth

� Improve quality

� Increase customer satisfaction

� Achieve reuse goals

� Enable mass customization

� Compensate for lack of software developers
These stated benefits are quite interrelated, and some are indirect benefits. For
example, increased customer satisfaction would come from improved quality or
mass customization, while market presence is maintained by improved time to
market. For any company wanting to adopt SPLE, these benefits should be
concretized and related to the company’s business goals. SEI presents a good
example of this in their Cummings case study (Clements & Northrop, 2001),
where one business goal was to move their high-volume automotive diesel en-
gines into the low-volume market of industrial diesel engines. SPLE’s ability to

 1. Reasons for Software Product Lines

Josef Nedstam 33

enable mass customization allowed them to develop products for these low-
volume markets.

2. SPL Definitions
A range of similar definitions exist in the marketing field (Pride & Ferrell,
2003; Beckman & Rigby, 2003). In these definitions one company sells a range
of product types, each of which can be considered a unit with regard to market-
ing or technology. A Software Product Line is more than just a product line,
and different from a family of products that work together. A company can
market a product line, but if the set of software products are not developed
from a common set of core assets, with managed evolution and variation, it
cannot be called a Software Product Line. A family of software products will
often use a common asset, but will not be a Software Product Line if there is no
managed variation between the products. Key components of SPLE are there-
fore reuse and variability.

Bosch’s view on SPL (2000, p162) has its focus on reuse between members
of a product line:

When combining software architecture and component-
based software development, the result is the notion of
software product lines.

According to Bosch’s definition, introduction of an architectural approach lim-
its the reuse of components to within a company if there is no architecture with
industry-wide acceptance. Bosch expands his definition by comparing it to
other types of strategic reuse. In his framework of software product line matur-
ity (Bosch, 2002), presented in Chapter VIII, he highlights the difference be-
tween pure reuse, which he assigns to the platform state in the framework, and
reuse with variation management, which he assigns to the software product line
state. The need for variation management comes from reusing not only identi-
cal functionality, but also similar functionality, which in other words is the dif-
ference between using a platform and using an SPL according to Bosch.

In his definition, Krueger (2003) emphasizes the benefits of an SPL, and
points out reuse, as well as variability:

The objective of a software product line is to optimize soft-
ware engineering effectiveness and efficiency by capitalizing
on the commonality and managing the variation that exists
within a product line of similar software systems.

Krueger’s definition also points to the benefits of an SPL, when he mentions
optimizing effectiveness and efficiency. The SEI definition (Clements & North-
rop, 2001) further emphasizes the common marketing focus of the products,
and the process by which the products are developed:

A software product line is a set of software-intensive systems
sharing a common, managed set of features that satisfy the

IV Understanding Software Product Line Engineering: Available Strategies

34 Strategies for Management of Architectural Change and Evolution

specific needs of a particular market segment or mission
and that are developed from a common set of core assets in
a prescribed way.

For a product line to be an SPL according to this definition, the product line
must also implicitly be developed according to SEI’s framework, or possibly
some other, so that the products of the product line are developed in a pre-
scribed way. Even though the focus of these three definitions differs, they all
agree on including the concepts of reuse and variability.

2.1 Components of SPLE
An SPL contains managed variation, variation that must be bound at some
point in the production process. These variation-binding points, spanning from
development time to runtime, form the basis of an SPLE classification scheme
proposed by Krueger (2003). The dimensions of the taxonomy are:

� Production, describing how, when and by whom products are produced
from reusable assets, how decisions to bind variability are made in produc-
tion, how the reusable assets are represented, and how variability is repre-
sented in these assets.

� SPL evolution, i.e. how enhancements etc. are propagated to and from af-
fected assets and products.

� Scope, described on a floating scale from proactive to reactive scope man-
agement, where the proactive approach tries to capture all foreseeable vari-
ability of future products, while the reactive approach only adapts the as-
sets of the SPL when new variability is needed. These approaches are dis-
cussed further in Sections 5 and 6.

� SPL initiation, describing how the transition from standard software engi-
neering to SPLE is managed, an issue revisited in Section 5.

Variation mechanisms in the production dimension have two aspects: level of
abstraction and scale. The level of abstraction ranges from requirements varia-
tion linked to code generation, variation points supported by the Product Line
Architecture (PLA), to code level variation where source files are overwritten or
rewritten to create variants. The scale might range from single lines of code to
subsystems, and depends on the level of abstraction. If design is the level of ab-
straction, with variation provided by an object-oriented framework, then the
scale of variation is the concrete classes that extend the abstract classes of the
framework. If code is the level of abstraction, with reuse supported by a Con-
figuration Management (CM) tool, the scale of variation will be the files that
the CM tool is managing.

In short, SPLE is about reuse and variation. Reuse is the main benefit of
SPLE, and variation has to be managed in order to develop several different
products from the same reusable assets.

 3. Frameworks of SPL

Josef Nedstam 35

3. Frameworks of SPL
This section gives an introduction to four attempts at creating frameworks that
cover all aspects of SPLE, in order to support the introduction and operation of
an SPL. The section also shows the two major camps in the field of SPL, a
heavyweight approach advocating large initial investments in reusable assets,
and a lightweight alternative, where investments are only made for the immedi-
ate future. The heavyweight approach is represented by the first three frame-
works, especially SEI’s, and the lightweight approach is represented by
Krueger’s BigLever (2005) framework.

3.1 SPL According to the SEI
SEI’s Framework for Software Product Line Practice (SEI, 2005a) is based on
the three essential activities: core asset development, product development, and
management. The framework consists of 29 product line practice areas grouped
in areas relating to software engineering, technical management and organiza-
tional management, shown in Table 7.
Most of these practice areas are present in standard software development. The
framework therefore describes how each area is different when implementing
and running a software product line; discusses the area in relation to the three

Table 7: SEI Practice Areas

Software Engineering
Practice Areas

Technical Management Practice
Areas

Organizational Man-
agement Practice Areas

Architecture Definition Configuration Management Building a Business Case

Architecture Evaluation Data Collection, Metrics, and
Tracking

Customer Interface Man-
agement

Component Develop-
ment

Make/Buy/Mine/Commission
Analysis

Developing an Acquisi-
tion Strategy

COTS Utilization Process Definition Funding

Mining Existing Assets Scoping Launching and Institu-
tionalizing

Requirements Engineer-
ing

Technical Planning Market Analysis

Software System Integra-
tion

Technical Risk Management Operations

Testing Tool Support Organizational Planning

Understanding Relevant
Domains

 Organizational Risk Man-
agement

 Structuring the Organiza-
tion

 Technology Forecasting

 Training

IV Understanding Software Product Line Engineering: Available Strategies

36 Strategies for Management of Architectural Change and Evolution

essential activities; and presents or gives references to specific practices for that
area.

Requirements Engineering (RE) is an example of a Software Engineering
practice area, where the differences for SPLE from standard RE focus on the
division of requirements into those generic to all members of the product line,
and those specific to each product. RE for SPL core asset development intro-
duces a hierarchy of requirements. Practices for turning individual product re-
quirements into generic requirements are therefore needed, and vice versa. This
practice area is highly related to the scoping practice area, found under technical
management. Technical management also includes processes, planning and tool
support, while organizational management includes practice areas relating to
e.g. business cases for SPL, marketing and organizational structure. The three
groups of practice areas are meant to target different groups of roles in an or-
ganization.

To guide a company in managing these 29 practice areas, SEI also presents
12 Software Product Line Practice Patterns. The general definition of a pattern
is a description of a problem, a solution, and the context in which the solution
fits the problem (Gamma et al., 1995). The practice patterns describe how to
group and relate practice areas to accomplish a certain part of an SPL effort for
an organization in a specific situation. The patterns were identified, as they
were recurring solutions to problems from the case studies SEI has undertaken,
and act as a way to reuse SPL experience.

Some of these patterns are educational and only provide an overview of the
framework, e.g. a mapping of practice areas, practice area groups and essential
activities. Others are of a more operational nature, describing which areas are
involved when developing any internal asset, or when determining what prod-
ucts should be included in the product line. These operational patterns are then
combined into composite patters that describe how to implement a product line
and develop products from it.

Finally, SEI’s framework also includes the Product Line Technical Probe, an
instrument for assessing the SPLE readiness in an organization. The results of
such an assessment include the strengths and weaknesses the organization ex-
hibits with regards to product line engineering, along with recommendations
on how to initiate or improve a product line effort.

In conclusion, SEI’s approach to SPLE is architecture and process centric. It
is heavy to implement, and also promotes proactivity, i.e. upfront investment in
common assets to support predicted variability.

SEI’s framework has been developed from several case studies performed by
the SEI, with a strong bias towards defense industry. It is also based on a series
of workshops on SPLE, which have evolved into an annual confer-
ence (SEI, 2005b).

 3. Frameworks of SPL

Josef Nedstam 37

3.2 SPL According to Bosch
Another prominent reference in SPLE is Bosch (2000). Bosch presents a similar
approach to SEI’s that is extracted from several case studies. Bosch’s approach
contains a process for introducing SPLE that includes developing a business
case for SPLE, setting the scope for the product line, product planning, devel-
oping a PLA, and populating this architecture with components. The PLA is
developed using Functionality-Based Architectural Design, starting from func-
tional requirements. The architecture is then transformed to conform to quality
attributes. This is different to SEI’s quality driven approach to architecture
(Bass et al., 1998), which starts with quality attributes.

Bosch provides more technical details on how to develop components with
complex interfaces, and how to provide variability on the component level. For
example, Bosch suggests that object oriented frameworks can be used for com-
plex interfaces, and that component variability mechanisms can include inheri-
tance, configuration or templates. Variation interfaces, in the form of documen-
tation or operations performed at instantiation, provide standardization and
access to these variability mechanisms. If upfront investment has not been made
in variability for a component in a particular setting, the component instead
needs to be adapted. This can be done by copy-paste, inheritance or wrapping
in conventional programming languages, but in general adaptation should be
transparent, black-box, composable, reusable and configurable.

3.3 SPL According to Fraunhofer IESE
The empirical software engineering research branch of the German Fraunhofer
institute, Fraunhofer IESE, also has a project in SPLE, which has resulted in the
PuLSE (Product Line Software Engineering) method for introducing SPLE
(Bayer et al., 1999). The method consists of six components. The Baselining
and Customization component focuses on technology transfer. It enables com-
panies to tailor the method to their specific conditions. Four of the components
relate to technical activities: Economic Scoping, Customizable Domain Analysis,
Domain Specific Software Architecture and Instantiation. These components fo-
cus on the early activities of SPLE, and indicate that the method is best suited
for proactive SPLE. Evolution and Management is a management support com-
ponent used to maintain and evolve an existing SPL. Although the method
seems to favor proactive SPLE, it can be introduced incrementally onto an ex-
isting software process.

Fraunhofer IESE also gives an overview of eleven code level variability
mechanisms (Anastasopoulos & Gacek, 2001), which extends Bosch’s overview.
Their mechanisms include parameterization, conditional compilation, and ob-
ject oriented mechanisms such as aggregation and inheritance. In their overview
they compare the mechanisms to illustrate the variation for which they can be
used, when they can be used, and which programming languages support each
mechanism.

IV Understanding Software Product Line Engineering: Available Strategies

38 Strategies for Management of Architectural Change and Evolution

In summary, for these three heavyweight SPL method, the SEI framework is
the more elaborate when it comes to managerial support. It is also the frame-
work that depends most upon a proactive approach, with heavy initial invest-
ments in reusable assets. The frameworks by Bosch and Fraunhofer IESE pro-
vide more technical detail on e.g. architectural design and mechanisms to
achieve variability.

3.4 Lightweight SPL
The methods mentioned above require heavy investment before development of
products from the product line. The investments are in processes and proce-
dures, but foremost in a PLA with reusable components. In order to lower this
adoption barrier, Krueger advocates extractive adoption of SPLE. This is
achieved by reusing one or more existing software products as an SPL baseline,
with limited reengineering. This technology is packaged in a tool, BigLever
Software GEARS (BigLever, 2005; Krueger, 2002a), which sits on top of any
CM tool, and therefore works at the level of individual files. Variation in a
product line is modeled in feature declarations, products that can be developed
or generated from the product line are described in product definitions, and
automata are actuated to configure products from source files, declarations and
definitions. The tool can provide the infrastructure for the proactive approach to
SPLE described in Section 5. Its main benefit is however that it enables the re-
active approach, where an SPL is incrementally extended to allow for more vari-
ability as it is needed, and the extractive approach, where a proper SPL is ex-
tracted from a set of existing products with commonalities. The extractive ap-
proach is seen as a starting point, which is to be followed by inclusions of either
other products extractively, or new variability reactively. These two approaches
therefore allow for investments in reusable assets to be made when this reuse is
needed, rather than in advance, as is the case with the proactive approach.

Krueger acknowledges that the proactive approach can be applied when the
scope of variability can be determined far in advance, and when an organization
can afford to spend resources up-front, possibly by delaying current products
while setting the scope and architecture of the product line. The benefits of the
proactive approach are then achieved as inclusion of new products should not
require modeling of new variability.

Although Krueger’s approach uses code-level variation, all approaches rely
on the PLA as the most important asset to manage reuse and variability. In
search of even lower barriers of adoption, Staples & Hill (2004) present a case
study of a company which did not rely on architecture-level variation points
when introducing an SPL. The company introduced SPLE extractively; reuse
was managed by the CM tool, and variation was managed through build
scripts. The approach is based on providing variation by overwriting source files
from a core CM branch. It has weaknesses in that the level of reuse decays as
changes useful to all products and customers are made to customized assets, and
is therefore only used to introduce SPLE.

 4. Comparison of Ways to Introduce SPL

Josef Nedstam 39

4. Comparison of Ways to Introduce SPL
Two scenarios show the different needs companies might have when initiating a
product line:

� A company develops one product, but then has to customize it for each
customer in a contract- and project-driven fashion. This results in a diverg-
ing set of products, but products that will have the same basic functional-
ity. Changes to one product, that could benefit others, are not easy to
transfer. The company therefore wants to increase software engineering ef-
ficiency and effectiveness by only correcting errors found in all products
once, and by only introducing new features used by all products once. The
company still has to manage variations between the individual products.
The situation is depicted in Figure 3.

� A company develops an established product for a mass market. The market
segment is broad, but borders to closely related niche segments. The com-
pany therefore wants to capitalize on differentiation, which e.g. can be ac-
complished by internationalization to capture other geographic market
segments, or reaching other demographics by differentiating on cost. From
the basis of one product, the company wants to introduce variation that
can be planned ahead, while still seeing the future product line as one
product. The situation is depicted in Figure 4.

Figure 4. Differentiating an existing product by introducing variability

Figure 3. Turning diverging products back into one product with variants

LegendLegendLegendLegend

Product

Variant

IV Understanding Software Product Line Engineering: Available Strategies

40 Strategies for Management of Architectural Change and Evolution

These two example contexts are quite different, but the end state is similar – to
maintain and evolve one product line, rather than several products. To manage
the differences in the needs of companies about to introduce SPLE, a number
of introduction models have been presented in literature. Bosch (2002) divides
these according to two dimensions – evolutionary vs. revolutionary, and existing
set of products vs. new product line – where the four combinations are:

� Evolve existing set of products into product line (evolutionary, existing): A
PLA is developed based on the architectures of several existing products,
and one component at a time is generalized, or reengineered, from the ex-
isting customized components.

� Replace existing set of products with product line (revolutionary, existing):
All product development is halted, a PLA is developed, and products and
components are reengineered according to present and predicted require-
ments on product line members.

� Evolve new software product line (evolutionary, new): The product line is
initiated by one or a few products, and commonalities and variation are
only modeled for these products, but later evolved as new products enter
the product line. The requirements on these new products might force re-
engineering of the PLA.

� Develop new software product line (revolutionary, new): Assets are devel-
oped with all expected product line members in mind. The aim is to avoid
reengineering, but the risks are high since domain knowledge has not been
established.

Table 8 shows three stages of development during introduction of SPLE on a
line of four products according to these four approaches. The grey top-left
component of each product is specific to each of the four products, while the
other three components are reusable throughout the line of products.

A company in a situation such as shown in Figure 3 would have to choose
between the two former alternatives, with an existing set of products. Compa-
nies described by Figure 4 would choose from the two latter. These four strate-
gies focus on reusing common assets, rather than managing variation between
products. The SEI refers to these four strategies, but promotes the revolutionary,
or proactive approach:

� Proactive: Similar to Bosch’s two revolutionary types of initiation, where a
scope is set for current and future members of the product line, a scope
which defines if any requested product should be developed by the organi-
zation as part of the product line. Apart from establishing the scope, this
type of initiation requires developing a business case for the product line,
common requirements and a common PLA for the members of the prod-
uct line, along with components common to all members. Development of
these common assets is supported by the SPL Practice Pattern Product
Parts, with its variants Green Field, Barren Field and Plowed Field, where

 4. Comparison of Ways to Introduce SPL

Josef Nedstam 41

existing assets can be mined to various degrees (Clements & Northrop,
2001).

Krueger on the other hand is more averse to designing solutions to require-
ments that have not yet been asked for by customers, and he presents one way
of introducing SPLE according to this philosophy:

� Extractive: Assets are mined from one or several existing products. If the set
of existing products is large, commonalities and variation can be extracted
incrementally, product-by-product, as opposed to Bosch’s component-by-

Table 8: Bosch's introduction of SPL

Evolve SPL from existing
products

Revolutionary SPL from exist-
ing products

Evolve SPL from one
product

Revolutionary SPL,
introduce products

Legend Specific component of a
complete product

Common reusable components

IV Understanding Software Product Line Engineering: Available Strategies

42 Strategies for Management of Architectural Change and Evolution

component alternative. The strategy has the same aim as Bosch’s two evo-
lutionary initiation approaches, with low risk and low barriers of adoption.
It is solely a product line initiation strategy, compared to the proactive and
reactive approaches, which are used to evolve an existing PLA to allow for
new variation. The previously mentioned case study of Staples & Hill
(2004) is also an example of an extractive method, a method where a PLA
was not used to implement variability.

The adoption models can be seen in light of the Technology Adoption Life Cy-
cle (Moore, 1991), where early adopters are ready to put resources into being
first with SPL, and thereby gaining a competitive advantage. However, most
companies will hesitate until the technology has been packaged in a more user-
friendly fashion, i.e. in well-established tools and consultancy services, rather
than in singular case studies. This concern is in line with concerns about the
total cost of introducing SPL: the tools and knowledge need to be affordable;
but foremost, the introduction must not stall product development for an ex-
tended period of time, or consume extraordinary resources. In Krueger’s words,
as with any technology, “for the mainstream software engineering community
… the adoption barrier must be much lower than that experienced by the early
pioneers” (Krueger, 2002b).

5. Comparisons of When and How to Introduce
Support for Variation

The previous section focused on initiation of a product line, which is closely
related to how support for new variation can be introduced in an established
product line. The two opposing camps are, as before, the proactive, with SEI in
the forefront (Clements, 2002), and the reactive, led by Krueger (2002b). In the
proactive approach up-front investments are made in roadmaps, PLAs, and
component variability, to cover all products in the scope of the product line. In
the reactive approach risks are minimized by only satisfying existing customers.
This is achieved by implementing functionality they seek, and making the re-
quired changes to the PLA to support reuse and variability as such needs be-
come apparent. The proactive approach is linked to internally elicited market
requirements, while the reactive is linked to requirements from explicit custom-
ers. In other words, the proactive approach is more market driven than the reac-
tive, contract driven approach.

According to the proactive approach, changes are made before they are
needed, while reactive changes are done when they are needed. In the case study
presented by Staples & Hill, the initial code level variation mechanism soon led
to reuse decay, where changes to source files in individual products reduced
reuse benefits. When this type of reuse decay was discovered, architectural sup-
port for that specific variation was enabled by performing retroactive changes,
i.e. after variation was needed. In this way the company is slowly moving from a

 5. Comparison of When and How to Introduce Variability

Josef Nedstam 43

SPL based on code-level variation, to one based on a full-fledged PLA, while
still receiving some of the benefits of an SPL in the transition.

Allowing more variation or exploiting more commonalities for reuse requires
changes to the core assets and also, in the general case, to the PLA. One method
of performing architectural change is refactoring (Opdyke & Johnson, 1993),
where the architecture is changed without changing functionality, and the sys-
tem then re-tested before changes to functionality are allowed, changes that will
then be implemented on a stable base of reusable assets. Refactoring describes
how to perform architectural changes, and comes from the Agile community,
which generally favors the reactive approach to deciding when to perform archi-
tectural changes. Refactoring can however also be applied when changing the
architecture proactively or retroactively.

Contrary to Krueger’s attempts to limit the organizational effects of intro-
ducing SPLE, Chapter VII presents a process for architectural change that in-
stead acknowledges the impact on organization and process. Bosch (2005) also
recognizes organizational impact, when he presents an integrated framework for
staged adoption of software product families. The framework is centered on five
decision dimensions: feature selection, architecture harmonization, shared com-
ponent scoping, organization and funding. Along these dimensions Bosch sug-
gests procedures to be put in place as the company gains SPLE maturity in
three stages, from initial adoption, over expanding scope, to increasing maturity.
The assumption behind this framework is that initiation of SPLE is best done
according to light-weight principles, but that full institutionalization is later
achieved with process rigor and organizational bureaucracy.

44

 Strategies for Management of Architectural Change and Evolution

 45

V The Business and Economics of
Software

Software products are what drive software businesses, but good software busi-
ness is not only about utilizing the most innovative products. Engineering is
about developing technical solutions, but in an effective and efficient manner,
i.e. finding a balance between innovation, quality and cost. However, the busi-
ness of software also concerns business and marketing strategies – releasing and
marketing the right product at the right time. The first three sections of this
chapter focuses on business and marketing strategies related to high tech mar-
kets, specifically software markets, and the impact such strategies have on
strategies for software architecture and development. The sections towards the
end of this chapter instead focus on economics tools for use in not only strate-
gic but also operational, day-to-day software engineering.

1. General Marketing Models for High-Tech
Markets

A number of models exist for high tech market strategy (D’Cruz & Ports,
2003). This section gives an overview, while Sections 2 and 3 give in-depth in-
formation on two models that are tightly linked to strategies for architecture
and development.

1.1 Product Portfolio Matrix
Boston Consulting Group’s Product Portfolio Matrix (Stern & Stalk, 1998) is a
tool to analyze the products in the portfolio of a company. Analysis is done
along the two dimensions market growth and relative market share. Startups usu-
ally only have one or a few products with a small market share on a rapidly
growing market. Their goal should be to gain market share with these products,
while established companies should have a good spread of high-market-share
products on both stable and increasing markets, and new, low-market-share
products on expanding markets. Any company should divest in products with
low market share on markets that are not expanding. The model is simple, and

V The Business and Economics of Software

46 Strategies for Management of Architectural Change and Evolution

does not account for the revenues made from the products, but only focuses on
absolute market share. Products with high absolute market share are assumed to
generate revenues, and gaining market share is assumed to require investments
in marketing or technology. The most direct impact of portfolio management
to software development is in prioritizing resources (Vähäniitty, 2004).

1.2 The Whole Product
The concept of the Whole Product (Levitt, 1986; McKenna, 1991) is also used
in engineering and marketing of high-tech products. The model consists of four
layers of a product. A whole product is not only the underlying technology, the
generic product, which is the engineering view of the product. The expected
product is the least a customer would be interested in buying. This is often de-
termined in view of competitors’ offers. The augmented product includes fea-
tures a customer would not expect, features which can be used to beat competi-
tors. The potential product includes all factors concerning the customer, such as
total cost of ownership and services which help customers fully utilize the prod-
uct.

1.3 Disruptive Technology
The theory of Disruptive Technology (Christensen, 1997) says that a new, dis-
ruptive, technology will attract customers on behalf of proven, sustaining, tech-
nology as soon as it reaches the customers’ minimum quality requirements –
even though products based on the old technology still outperform these new
products. In Whole Product terms, when a disruptive technology evolves from
generic to expected products, it may gain market share on behalf of sustaining
technology packaged as augmented or even potential products. This speaks in
favor of startup companies, because established companies with proven solu-
tions are less motivated to replace technology that works and is profitable. The
problem with such disruptive technology for established companies is that it
provides new applications of technology, applications where business models
and business value is hard to foresee. The performance of the new products is
also lower than that of the existing technology, and is therefore not viewed as a
threat. The performance and quality of disruptive technology can however im-
prove rapidly, as development and manufacturing processes are tuned.

A good balance in the product portfolio matrix of an established company
can alleviate the risk of being overtaken by startups with disruptive technology.
Products with disruptive technology from this portfolio should initially be sepa-
rated from the rest of the organization and focused on niche markets, to not
interfere with and cannibalize on profitable, sustaining, technology (Lindsay &
Dennis, 2001).

 2. The Technology Adoption Life Cycle

Josef Nedstam 47

2. The Technology Adoption Life Cycle
The theory behind the Technology Adoption Life Cycle assumes that consum-
ers behave differently regarding when they are willing to adopt a new technol-
ogy. This means that different marketing strategies will be appropriate as the
target market changes. The technology adoption life cycle model exploits the
three models presented in the previous section. The model gives guidelines on
how to act in order to move products to more favorable sectors of the product
portfolio matrix, and uses the concepts from the whole product to determine
what focus a company should have in the various stages of the life cycle. It also
explains the dynamics of a market as disruptive technology becomes established
and gains market share. Figure 5 shows the segments of adopters and the phases
of the technology adoption life cycle, as described below.

2.1 Types of Adopters
According to the technology adoption life cycle, people behave differently when
faced with new technology (Rogers, 2003). These behavioral differences are
divided in the segments innovators, early adopters, early majority, late majority
and laggards, see Figure 5. Innovators are those who acquire new technology for
the technology itself. Early adopters are not so much interested in the technol-

Figure 5. Segments and phases in the Technology Adoption Life Cycle

Segment:
Innovators Early Majority Laggards

Early Adopters Late Majority

Phase:
The Chasm Tornado

Early Market Bowling Alley Mainstream Market

V The Business and Economics of Software

48 Strategies for Management of Architectural Change and Evolution

ogy, but in how it can be put to use, and are willing to accept cumbersome so-
lutions with initial defects – where innovators enjoy cumbersome solutions with
initial defects. The early majority sees technology from a practical point of view,
and wants references before buying in to new inventions. The late majority
wants simple solutions as they are uncomfortable with new technology, and
laggards don’t want anything to do with new technology. The early and late
majority constitutes the bulk of a future market – the early majority is prag-
matic, while the late majority is conservative. Figure 5 can be compared to Fig-
ure 1 in Chapter I, where the figure here – showing adoption – can be viewed
as the cause of the product life cycle in Figure 1, Chapter I.

Each segment has their own incentives to buy; therefore the shifts between
target groups mean not only quantitative differences in strategies for marketing,
but also qualitative, in that each group have their own requirements on a prod-
uct or offering.

2.2 Phases of the Life Cycle
The general idea is to establish the product with each of the groups of custom-
ers in sequence, and then exploit the present group of customers, as reference or
for setting standards, in order to reach the next group of potential customers.
The problem is that the transitions between market segments are not smooth,
primarily because the target segments have quite different goals.

Customers found among innovators and early adopters in the early market
can drive up expectations on the profitability of the product. The main obstacle
is to evolve a business from this early market onto the mainstream market of
early and late majority adopters. The technology is not yet mature enough for
the majority of customers to readily accept it, and the majority also wants one
new infrastructure to set the standard for coming technology. This gap between
early market and mainstream is called the chasm (Moore, 1991). The early ma-
jority is looking for non-disruptive technology that improves their business, and
they choose such technology by referencing others in their situation. The cus-
tomers of the early market however chose the new technology as it is disruptive,
and can give enormous benefits at high risks. Such customers are therefore not
good references to enter the mainstream market.

The strategy suggested by Moore (1991) to cross this chasm is to focus on
one niche market at a time, and becoming the market leader in each of these
niches. With this focus, the technology can be packaged as an expected product
for each of these niches. It is important to select the right initial niche, although
there will be very little marketing data to back up this decision. In the early
market no potential customer can be turned down, but the focus required when
crossing the chasm will require a company to change strategy and say no to cus-
tomers that do not fit the target. The following niches should be selected close
enough to the initial niche, in order to maintain focus and exploit experiences
made in previous niches. This phase is called the bowling alley. The strategy
should give initial revenues needed to develop a sustaining technology, and pro-

 2. The Technology Adoption Life Cycle

Josef Nedstam 49

vides references for similar niches, and finally the entire market of early majority
customers.

Eventually the technology might enter the tornado (Moore, 1995), where the
entire early majority changes to the new technology. They do it as fast as possi-
ble, to minimize the disruption, and they go for one vendor of the new infra-
structure, to get common references and a de facto standard. There will there-
fore be only one major winner in this phase, and the strategy should be to care
less about the customer and more about beating the competition and being able
to ship as many units as possible. In this phase customers will select the winning
product even if it doesn’t match their specific requirements, because they know
they will have to change infrastructure, and that the winning vendor will be
able to provide future support for the selected technology. The strategy is there-
fore quite different from the previous phase, where customer focus was key to
winning niche markets. During this tornado, price will become important. Ear-
lier markets can be priced on the value provided to the customer, but during
the tornado competition will be driving prices down and commoditizing the
product.

Eventually the hypergrowth of the tornado stops, as the market saturates.
During this established market it is time to capitalize on the market share
gained during the tornado. Prices can generally not be increased, so in this
phase costs are important to control, through e.g. process discipline. Market
shares can still be gained by adding value to the product with extra features and
product differentiation in order to again reach niche markets.

2.3 Shifting Focus in the Life Cycle
The theory has direct impact on architectural strategies to reuse. On early mar-
kets it is all about selling to the customer you have. They will buy the technol-
ogy even if it is not packaged in a user friendly product and targeted directly
towards them, because they have the technological know-how to help you inte-
grate the offering into their organization. Every new customer however means a
new commitment to integrate the unpackaged technology into a new setting,
and the emerging products might very well be diverging.

In order to cross the chasm to the early majority, the technology must be
packaged in a whole product. It should also be targeted at one specific niche in
the future market. The technology therefore has to go from several customized
solutions to one product standardized for a small market niche. This resembles
the scenario in Figure 3 of Chapter IV, where an initial product has diverged
into several customized offerings, and then has to be brought back to one stan-
dardized product, with possible variations to fulfill previous commitments.

The whole market should thereafter be conquered by expanding into more
and more niche markets, which again leads to several specialized products that
however are standardized for their specific markets. The technology itself is im-
portant, but also knowledge about customers on these niche markets. As the
tornado hits, a new cycle begins, with focus on one standardized product. If this

V The Business and Economics of Software

50 Strategies for Management of Architectural Change and Evolution

product survives and becomes one of the winners of this rapid market expan-
sion, it can later be diversified to once again gain market niches, as in the sce-
nario depicted in Figure 4 of Chapter IV.

The theory suggests several types of actors on a market, especially during the
tornado and after. The tornado generally generates one main winner, but there
will not be a market if there is no competition to refer to. The initial technol-
ogy might come from startups that do not have the financial power to provide
an entire market with a whole product solution. Some actors will therefore em-
ploy vertical strategies, where a whole product is supplied to a niche market.
Others might see opportunity in horizontal strategies, where they provide many
such niche markets with an underlying infrastructure. During the tornado and
after, smaller actors will attack the winning product by providing e.g. low cost
alternatives. Others might develop supplementary products and services to the
main product.

The theory of the technology adoption life cycle is however not undisputed.
It concerns adoption, which shall lead to market share, but it is unclear if cross-
ing the chasm into a mainstream market will be profitable for every high-tech
product. Also, contrary to Moore’s view that totally different strategies are
needed for the early majority, von Hippel (2005) suggest that the innovators
and early adopters can very well be used to find inspiration for more innova-
tion.

3. Products or Services
Cusumano (2004) has been analyzing the evolution of software companies by
investigating changes in the balance of sources of revenues. This has added a
further dimension to strategies for software business. Cusumano bases strategy
assessments on five basic questions: are we marketing products or services; are
we targeting individuals or enterprises, or mass or niche markets; are we target-
ing a horizontal or vertical market; how do we intend to generate recurring
revenue streams; how do we plan to reach mainstream customers, or do we in-
tend to avoid the chasm altogether; do we intend to be a leader, follower or
complementor on the market; and what is the character of our company. The
main dimension in this strategy framework is whether a company supplies
products or services to its market.

Developing and marketing a software product can give the highest returns
on investments, because after development, production is virtually for free. It is
therefore the dream of most software companies. The risks are however signifi-
cant, in that revenues can be very unpredictable, and cease altogether in bad
times, when customers don’t upgrade to the latest version of your product. A
prerequisite is also that all customers want the same product, and not versions
customized to their particulars. Cusumano’s data show that software companies
that are thought to be purely product companies therefore tend to become
more and more service suppliers, as this gives recurring revenue streams from
established customers. Hybrid solutions, with a mix of product and service of-

 3. Products or Services

Josef Nedstam 51

ferings, are a common way to gain the large revenues of products, and the re-
curring revenues of services.

The whole product can therefore be accomplished by either products fo-
cused strategies, or services focused strategies. The technology itself, the generic
product, can be packaged and wrapped with the features necessary to make it
directly useful to the customers as a product. In order to evolve this expected
product into an augmented product and further, methods for mass customiza-
tion, such as the software product line strategies of Chapter IV, or some of the
architectural and development strategies of Chapter VIII, can be employed.
Another alternative for turning a generic product into a whole product is to
provide this packaging as a service to each specific customer, as Company C
currently does when delivering their platform. Such services are often provided
by 3rd party consultants acting as integrators, as shown in Chapter IX.

The strategic models presented in this chapter so far have had impact on the
strategies available for architecture and development in the companies studied
in this thesis. These are most visible in Chapters VIII and IX. The following
sections give more fine-grained tools for decision support concerning the eco-
nomics of software development. These are related to the aspects of engineering
which demands us to develop solutions at the right cost. Innovative solutions
coming from the engineering or development department of a company must
also be able to show benefit, and risks must be under control in software devel-
opment.

4. Cost
Cost modeling has come far in the field of software engineering (Halling et al.,
2004). Software development project success is often defined in terms of meet-
ing budget and deadline. This view can suffice if business can predict the value
of developed products, and if products are developed in individual projects.
COCOMO (Boehm, 1981) is one such model, based on historical industry-
wide data, to estimate the cost of projects, based on the expected functionality
which should be developed by the project, and the project’s inherent risks in
terms of application type. This, and similar models (Fenton & Pfleeger, 1998)
gives opportunity to balance total project costs against project duration and
staff count.

One problem with such cost models is to estimate the volume of functional-
ity which is to be developed in a project. In most models this is relative to lines
of code, but there are metrics which are telling more about actual functionality,
such as function points (Albrecht, 1979; Caine & Banks Pidduck, 2004). Tra-
ditional project planning uses e.g. work breakdown structures, but recent soft-
ware engineering methods use object counts or use cases (Jamieson et al., 2004).

It is also difficult to determine the actual benefit generated at any one time
during a project, although the cost might be known at any such time. Further-
more, the requirements stated at the initiation of any project may not be true,
as they may not be known by the customer in advance, or may change during

V The Business and Economics of Software

52 Strategies for Management of Architectural Change and Evolution

the project (Noppen & Aksit, 2004). Most costs can be transferred into mone-
tary units, but this should be done late during cost estimation, to retain multi-
dimensional information about different types of costs as far as possible (Po-
ladian et al., 2003). Cost factors are also not only limited to development, but
include future use and maintenance (Asundi et al., 2000). Cost and value are
therefore linked, and sometimes hard to separate, as one type of value for a cus-
tomer is the total cost of ownership for a product (Ferrin & Plank, 2002).

5. Value
Costs of development are important to know, control and estimate. But the
value of what is developed during a software project is what any customer is
willing to pay for – what should govern the pricing of software products and
services (Cooper, 2000). When assets are developed for internal reuse, the costs
of these are also not enough to assess whether they are of benefit to projects de-
veloping products from them – the value of each such component must be de-
termined.

Value is more difficult to assess than cost. The true value of a complete
product can be determined by judging its success on the market. This in turn
means that the value of a project often can be determined – if it concerns devel-
oping a new product, or adding value to an existing product whose value can be
determined. The value of a specific architectural strategy or architectural change
is much more difficult to establish. Individual features of a product can be val-
ued through e.g. AHP (Saaty, 1980), and the same can be done for quality at-
tributes – although the assessment becomes more abstract. To concretize ab-
stract attributes such as quality in general, or reusability, maintainability, and
extensibility, scenario-based techniques have been employed heavily in software
architecture research. Certain architectural strategies are said to have positive or
negative impact on certain quality attributes. Concrete change or usage scenar-
ios show aspects of certain quality attributes, and when the scenarios are valued
against each other, the qualities are indirectly valued. If we assume that software
architecture is driven by, and enables, quality attributes, and if we know which
architectural changes have impact on which quality attributes, then we have a
link from the concrete scenarios a user or customer requests, and the architec-
tural strategies which help fulfill these scenarios. SAAM (Kazman et al., 1994) is
one scenario based architectural assessment method which assesses the relative
value of modifiability in architectural decisions, while ATAM (Kazman et al.,
1998) can be used to value several quality attributes of an architecture. Sce-
nario-based methods are further discussed in Chapter VI.

This indirect valuation often leads to a relative value, where different archi-
tectures can be compared to each other. The problem is when an architecture
already exists, and current projects still can deliver value in the products they
develop, but the productivity could possibly be improved through investment
in architectural assets. If the value generated by such architectural improve-
ments cannot be compared to the value generated by letting development pro-

 5. Value

Josef Nedstam 53

jects do business-as-usual, then it is difficult to get resources and funding for
long-term architectural efforts. The Cost Benefit Analysis method (CBAM;
Moore et al., 2003) is an extension of ATAM, where the relative value of differ-
ent architectural strategies is assessed in the context of a particular set of sought-
for scenarios and scenario outcomes. It still provides a relative measure, and
assumes the existence of a fixed architecture budget, but architectural invest-
ments could be weighed against user features in this method.

For valuation in general, Reifer (2004) presents a framework of valuation
model sophistication, based on Pitkethly (1997) and used in valuation of soft-
ware trade secrets:

1. Cost approach, based on the cost to replace an asset with a comparable
asset.

2. Income approach, value in terms of future cash flows.

3. Market approach, valuation based on recent sales of similar assets.

4. Time value of money, with discounted cash flows.
5. Uncertainty, valuing discounted cash flows for risk.

6. Flexibility, valuing discounted cash flow and decision tree analysis.

7. Changing risk, valuation with real options theory to adapt for changing
market and economic conditions.

The framework shows available types of methods, and shows that risk must be
considered to set a proper value on products or assets that are not yet devel-
oped.

6. Risk
The value of a product under development might change dramatically, if e.g.
the development project misses its deadline, or if there is a recession in the
economy when the product is released onto the market. These risks must there-
fore be assessed too. One simplistic way of accounting for risk is to evaluate
based on discounted cash flows, such as net present value analysis (Birrer &
Carrica, 1990), and use an increased discount rate (Padberg & Müller, 2004).
Such methods are appropriate for short term investments and decision support
for ongoing business (Bahsoon & Emmerich, 2003). A proper risk assessment is
however done with probability distributions, and real options theory is one way
of modeling such value (Asundi & Kazman, 2001).

Traditionally investment is done when the net present value is positive. But
such decisional support assumes that investment decisions can be reversed. In-
vestments in software development must however usually be treated as sunken
costs if it does not result in a marketable product or reusable asset. Real options
theory can then be used to determine whether it is preferable to delay invest-
ment. Real options theory is derived from financial options theory (Black &
Scholes, 1973). An option is an asset that provides its owner the right, without
a symmetric obligation, to make an investment decision under given terms, for

V The Business and Economics of Software

54 Strategies for Management of Architectural Change and Evolution

a period of time into the future, ending with an expiration date. The owner of
the option can exercise the option by investing the defined strike price, if this is
financially favorable. The option can be exercised at or before the expiration
date, depending on the rules of the option. Black & Scholes (1973) present a
stochastic model to construct and evaluate financial options. Bahsoon & Em-
merich (2003) have from this derived a method to evaluate real options – op-
tions on non-financial assets – specifically for the options provided by architec-
tural investments. The method views the value of an architecture as the set of
requirements it supports, and a set of representative requirements – or future
scenarios – must be elicited.

Although real options theory looks promising, and has been used to evaluate
software trade secrets (Reifer, 2004), the problems are that parameters such as
discount rates of software projects, dividends payable by projects, and correla-
tions between architectural investments must be determined. This does not lie
in the scope of expertise of software engineers (Asundi & Kazman, 2001).

These risk assessment techniques aim at determining the flexibility of a
software architecture. This flexibility can be viewed in different ways. The ar-
chitecture can be flexible in that it is easy to change and adapt when new re-
quirements arrive, or it can be flexible in that it does not need to change. Flexi-
bility is usually retained by opting out alternatives late in the development
process. This is done by Toyota when developing and designing new models of
cars. Several designs are allowed to compete with each other well into a devel-
opment project, rather than selecting one design as early as possible (Ward et
al., 1995). The strategy is resource intensive, as several design groups work in
parallel, whereof most of them will be scrapped in the course of a project. With
real options theory, the strategy has however shown to be efficient and effective
(Ford & Sobek, 2005). The gain is attributed to less needed redesign during the
project, as more options are available; and better quality of the resulting design,
as more design improvements are given opportunity to emerge. Such strategies
should be possible to transfer to design of software systems, if the differences in
balance between cost of design and cost of production in car manufacturing and
software development are properly considered.

People treat risks differently when comparing the risks of changing the cur-
rent state of affairs to not doing so. Even though change is needed, people are
biased towards not committing to action – omission bias (Suarez & Patt, 2004).
If the risk of taking an action is similar to the risk of doing nothing, people tend
to prefer inaction. This is however also true if the action involves risks, but risks
that are lesser than the risks of inaction. One explanation could be that action
carries responsibilities, more clearly so than inaction. A similar effect is people’s
bias to status quo (Suarez & Patt, 2004). If we retain our flexibility to make
future decisions, maintaining status quo can be a rational choice. Such flexibil-
ity can be assessed by real option theory. But the bias towards the status quo is
stronger than that, as people want to delay action in order to gain more infor-
mation on alternatives, and want to diffuse responsibility for such decisions.
Change initiators must therefore create a sense of urgency (Kotter, 1996) also

 6. Risk

Josef Nedstam 55

when rational evidence points to the benefits of taking action to reduce risks or
gain other benefits. The following chapter presents a method for assessing flexi-
bility and risk related to the development process, and Chapter VII investigates
the problems facing an architect when initiating architectural change.

56

 Strategies for Management of Architectural Change and Evolution

 57

VI Process Flexibility and the Linkage
Between Process, Organization, and
Architecture

Flexibility is a desired quality of software processes. Process flexibil-
ity implies a capability to adapt to new contexts. Another aspect of
flexibility is the cost of maintaining process effectiveness as new
situations arise. A lack of preparedness for future events may con-
stitute a high risk to a software development organization. This
study presents a method for assessing the flexibility of an organiza-
tion and its processes. The assessment method is scenario-based and
provides an estimate of process flexibility in terms of risk. The
method is evaluated in a case study, where the process flexibility at
a telecommunication software developer has been assessed. The
proposed method was able to identify a number of relevant areas to
be improved in order to reduce risks of inflexibility for the particu-
lar process. The study provides insights into challenges regarding
scenario-based methods. When compared to the line-oriented de-
velopment used at Company B, the project-based case also shows a
relation between software processes, architectures and organiza-
tions.

From Nedstam et al., “A Case Study on Scenario-Based Process
Flexibility Assessment for Risk Reduction”, Proceedings of the 3rd
Intl. Conf. on Product-Focused Process Improvement, Kaiserslau-
tern, Sep 2001, extended with information from Höst et al., “Ex-
ploring Bottlenecks in Market-Driven Requirements Management
Processes with Discrete Event Simulation”, The Journal of Systems
and Software 59, pp 323-332, 2001.

1. Introduction
Software processes are intended to be used in many projects under a number of
various circumstances. In many cases, experience and knowledge can be trans-

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

58 Strategies for Management of Architectural Change and Evolution

ferred from project to project in terms of common models of the process (Basili
et al., 1994). This would not be possible if the process was not reusable and
adaptable. Zahran (1998) classifies process adaptability into e.g. suitability to
support varying sizes of projects, suitability for different types of products, and
flexibility to accommodate a variety of methods, techniques and tools. Process
maintainability, which is related to adaptability, is discussed by Sommerville
(2001) in terms of the process’ ability to evolve in order to reflect changing or-
ganizational requirements or identified process improvement proposals. A
number of similar definitions of flexibility in general and process flexibility in
particular are discussed in Nelson et al. (1997).

This study focuses on the flexibility of the process in terms of its ability to
maintain support for software development when changes in the environment
occur. The changes may or may not lead to a need for process adaptation. Ex-
amples of changes are that the organization enters a new market, emergence of
new technology, or changes in the employment market for the organization.

There are similarities between the usage of processes and the usage of soft-
ware architectures. An architecture may be used in a number of projects, and it
may be adapted for different situations. It also represents experience and knowl-
edge that is applicable in a series of projects. In this chapter an assessment
method, SAAM (Bass et al., 1998), which is used for assessing architectures, is
used as a basis for an assessment method for software processes. The derived
method is evaluated in a case study in an industrial setting.

Standard process assessment methods such as CMM (Paulk et al., 1993) and
ISO 9000 (ISO-9001, 1994) focus on the predictability and quality of the out-
comes of a process, and strive for process maturity in a general sense. The pur-
pose of the proposed assessment method is to determine the flexibility of a
software organization and its process. The flexibility may be measured in terms
of the cost of maintaining the same degree of support when the process is used
in a changed setting, or when it is adapted to fit a changed setting. This cost,
combined with the probability of experiencing this changed setting, can be in-
terpreted as a risk, and the assessment method proposes areas to focus on in
order to reduce process-related risks.

The use of a scenario-based approach has shed light on what types of con-
clusions can be drawn from such methods, and the challenges involved in gen-
erating and interpreting scenarios. The case itself, which shows a project-driven
organization, has been contrasted to the line-oriented case of Company B,
which has been presented in Chapter III. This has provided insights into how
power can be distributed in software organizations, and how this affects efforts
on quality and architecture.

The structure of this chapter follows. Section 2 discusses related work and
the theory the presented method is based on. Section 3 describes the proposed
assessment method, built from the theory discussed in Section 2 and a case
study. That case study, performed at Company A, is presented in Section 4.
Section 5 discusses the conclusions from the case study, and issues of further
research, while Section 6 includes a discussion of scenario-based methods in

 1. Introduction

Josef Nedstam 59

general, and also general conclusions on differences between line- and project-
oriented development.

2. Background and Related Work
The basic ideas of the proposed method are based on the Software Architecture
Analysis Method (SAAM) (Bass et al., 1998). The main contribution from
SAAM is the usage of scenarios and a framework for developing and analyzing
these scenarios. The scenario approach was selected as scenarios have been
proven useful as tools for change management and decision support (Jarke &
Kurki-Suonio, 1998). Nelson et al. (1997) provide some examples of how flexi-
bility can be divided in terms of structural and process flexibility. This work has
been a basis for breaking down process flexibility in terms of organizational fac-
tors, a set of factors used throughout this article.

SAAM primarily investigates the modifiability of a software architecture, an
attribute closely related to flexibility. SAAM is performed in the following way:
1. Develop Scenarios: A list of expected uses or changes to the analyzed ar-

chitecture is produced. It is important to consider all stakeholders affected
by the architecture. The scenarios are also organized to indicate relations
among them.

2. Describe Candidate Architecture: The architecture is described so it can
be analyzed. This step is done in parallel with the previous, as need for de-
tailed architectural information emerges when new scenarios are found.

3. Classify Scenarios: The scenarios are classified as direct or indirect with
respect to the architecture. A direct scenario is supported by the architec-
ture without alterations. An indirect scenario requires some changes to the
architecture in order to be supported.

4. Perform Scenario Evaluation: In this step every indirect scenario is ana-
lyzed to find out the effort or cost needed to support it.

5. Reveal Scenario Interaction: If many scenarios require changes to the
same component, that component probably has a high structural complex-
ity. Such scenarios are said to interact.

6. Overall Evaluation: The cost of using the architecture is calculated by
assessing the cost for each scenario and scenario interaction.

The SAAM has since been refined into the ATAM (Clements et al., 2002),
where also the tradeoffs made in the architecture are identified, and the sensitiv-
ity of the architecture is assessed based on a prioritized set of quality attributes
and scenarios. This evolution could show how the method presented in the fol-
lowing section could be further enhanced. To translate the principles of SAAM
from architecture modifiability to process flexibility, practical guidelines to
evaluation (Scriven, 1991; Robson, 2002) has been used, following the example
of Ares et al. (2000).

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

60 Strategies for Management of Architectural Change and Evolution

3. The Assessment Method
This section describes the assessment method, as it was used in the case study
that is presented in the following section. An overview of the method is given in
Figure 6. The method consists of five activities, which are approximately carried
out in sequence. First the assessment is planned. After the method’s planning
phase, a description of the assessed process is generated. This description ma-
tures throughout the whole assessment, and is an aid for selecting relevant in-
terviewees. The assessor then develops scenarios from a list of issues that emerge
during interviews. After an initial categorization of these scenarios the partici-
pants assess the probability and cost of each scenario, from which a risk can be
calculated. The scenarios with the highest risks are analyzed to provide decision
support and recommendations for process improvement. These five steps are
described below.

3.1 Assessment Planning
The purpose of this phase is to set the constraints of the assessment and find
relevant interviewees. The only input to this activity is the client of the assess-
ment. The assessor gives the client an outline of the assessment plan for re-
source estimation, and a description of what the assessment will result in.
Thereafter the assessor and the client agree upon a purpose, a scope, a time-
frame, and a system of metrics for the assessment.

The purpose is used to focus the assessment, and the scope is used to further
narrow the assessment to e.g. a particular type of subproject. The timeframe is
used to narrow the applicability of the assessment in time, to be able to formu-
late more concrete questions. The system of metrics, the scales for cost and
probability, is used to collect data from the interviewees about the cost of sup-
porting the scenarios that will be developed, and to determine the probability of
these scenarios. The cost of supporting a scenario is regarded as the cost of
maintaining the same degree of support although the process environment
changes due to that scenario.

Finally, interviewees for the assessment are selected in order to be able to
plan the assessment. The context description developed in the following subsec-
tion is used to identify the roles in the organization that would give the most

Plan
Assessment

Present
Results Assess Risks Develop

Scenarios
Describe
Process

Plan
Viewpoints Scenarios Risks Report

Plan
Assessment

Present
ResultsAssess Risks

Develop
Scenarios

Describe
Process

Plan
Viewpoints Scenarios Risks

Report

Figure 6. Assessment method overview

 3. The Assessment Method

Josef Nedstam 61

valuable information. Therefore, these two activities are carried out in parallel.
The interviewees shall cover different aspects of the process and organization,
limited by the scope.

3.2 Context Description
The purpose of the context description is to identify roles in the organization
that are suitable for interviews, and to create a starting point for open-ended
interview questions.

In order to do this, a process description, an organizational structure de-
scription, and a list of roles and their responsibilities shall be created. The vo-
cabulary of the organization can also be useful, in order to simplify the inter-
views.

3.3 Scenario Development
The purpose of this phase is to develop a set of scenarios that will constitute the
basis for the risk assessment. The input to this phase is a set of interviewees and
an initial knowledge about the process and organization. The assessor develops
scenarios from issues discussed with the interviewees.

The interviews are based on the initial knowledge of the process and the
purpose of the interviews is to elicit and discuss issues that affect the current
situation in the organization, see Figure 7. The activities of the process and the
different parts of the organization can be used as an initial set of such issues.
The set of issues is expanded during the interviews.

Ideally the interviewees provide the assessor with scenarios, but most likely
the assessor will have to create scenarios from the issues discussed. Analyzing
how the issues were brought up provides clues as to how they are related. From
the issues a set of abstract scenarios is sketched. Each issue shall be covered, but
several issues may affect an abstract scenario due to their relations. When the
issues are covered the abstract scenarios are specified, resulting in concrete scenar-
ios, see Figure 7. An abstract scenario may then result in several concrete scenar-

Figure 7. Scenario development: The context description provides suitable interviewees.
The outcome of the interviews is a set of issues. Abstract scenarios are elicited from the

issues. These are, if possible, specified to more concrete scenarios

Process Interviewees Issues Concrete

Scenarios

Abstract

Scenarios

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

62 Strategies for Management of Architectural Change and Evolution

ios. Concrete scenarios shall not contain too long chains of events, as it becomes
more unlikely that the organization would take actions according to that chain
of event. In such a case it may be possible to split the scenario. Some abstract
scenarios may be hard to specify, due to lack of domain knowledge. If these
abstract scenarios are included they introduce a higher risk of interpretational
errors.

The set of scenarios shall then be reviewed in order to see if it is possible to
answer whether the scenario is likely and costly. The engineering environment
factors presented in the following subsection should also be relevant to the set of
scenarios.

3.4 Risk Assessment
The purpose of this phase is to assess the risks of the scenarios and draw conclu-
sions. The input to this phase is the set of scenarios and the set of issues from
which the scenarios were developed.

A second round of individual interviews lets the interviewees state the prob-
ability of each scenario and the cost of supporting each scenario according to
the scales determined in the assessment-planning phase. The participants shall
be given the option not to answer a question if they feel they have no reasonable
answer. The method is however designed to only give an indication of the proc-
ess-related risks that the organization faces so no exact answers are required.

The interviewees shall also state which engineering environment factors the
scenarios affect, in order to simplify scenario interpretation. A suggested set of
factors is: Process, Resources, Organization, Competence, Software Architec-
ture, Technology, Tools, Process Implementation and Management. This set of
factors is not firmly defined and many have to be reinterpreted and adapted to
the specific situation. The purpose of it is to be able to draw conclusions that
are more general than those who only concern a specific scenario. The gener-
alizability of conclusions drawn from scenario-based methods is further dis-
cussed in Section 6.1.

After the second round of interviews each scenario can be given a risk value.
This can be done in a number of ways. The basic principle is to multiply the
cost of a scenario with the probability of a scenario. This is exemplified in the
case study.

If the interviewees disagree to a large extent, the calculated risk values may
be misguiding. More than one technique of calculating them can then be used
to determine an appropriate set of high-risk scenarios. The level of agreement
per scenario can be analyzed with the dispersion of the risk values, which can be
calculated as the standard deviation divided by the mean risk for that scenario
(Regnell et al., 2001).

The subjects’ level of agreement can be investigated with a Kappa analysis
(Fusario et al., 1997). It compares the answers given by each possible pair of
interviewees. The analysis method requires that the answers are divided in a few
discrete steps, which puts constraints on the selected system of metrics. This

 3. The Assessment Method

Josef Nedstam 63

means that the method produces two values of agreement for each pair of inter-
viewees, one for the costs and one for the probability of all scenarios.

With a Kappa analysis a matrix is built, where each cell (x,y) contains the
number of times interviewee one gave an answer x when interviewee two gave
an answer y. Elements on the diagonal contribute to a higher Kappa index, in-
dicating that the participants agreed completely, and results that are close to the
diagonal can contribute according to a weight given by Fleiss and Cohen
(Fusario et al., 1997). A Kappa of above 0.21 is considered ‘fair’, above 0.41
‘moderate’, and above 0.61 ‘substantial’, according to a rule of thumb suggested
by Landis and Koch (Fusario et al., 1997).

The proposed assessment method has now produced an appropriate number
of high-risk scenarios that the organization could focus on in future process
improvement initiatives. This set of scenarios is however very specific, but can
be generalized by analyzing the interview issues from which the scenarios origi-
nated.

Another generalization that can be made is to study the engineering envi-
ronment factors that the high-risk scenarios affect. For each scenario the par-
ticipants should have stated which engineering environment factors are most
affected. These can be analyzed by counting how many times each factor was
mentioned by the interviewees and weighting this against the risk value of the
scenario in question. Dividing this by the total risk value of all scenarios gives a
set of indices between zero and one. These indices suggest how much each fac-
tor affects the total risk on the organization, and shows which factors should be
prioritized in risk-reduction efforts.

The output of this phase is a set of high-risk scenarios, related to a set of or-
ganizational issues and a set of prioritized engineering environment factors. If
the level of agreement between the interviewees has been analyzed, information
about e.g. communication flow can emerge as a side effect.

3.5 Assessment Presentation
The purpose of this phase is to present the outcomes of the previous phase to
the clients and the participants of the assessment in an understandable way. It is
important to let everybody that has dedicated time and effort on the assessment
give and get feedback. This feedback is part of the presentation phase, and it
can be valuable for strengthening the conclusions from the assessment.

4. Case Study
An initial evaluation of the method was performed on a software process used
in a software engineering course including an industry-like project (Wohlin &
Regnell, 1999). The purpose was to evolve the procedures of the method. The
results were guidelines for the interviews of the proposed method. In order to
evaluate the resulting method a case study was planned and performed at Com-
pany A, presented in Chapter III.

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

64 Strategies for Management of Architectural Change and Evolution

4.1 Evaluation Planning and Operation
The process was studied resulting in a context description, and the assessment
was planned with the Process Developer at Company A. The assessor and the
Process Developer decided on a timeframe including the current and the fol-
lowing platform project. Table 9 shows the system of metrics for data collection
that was selected.

Four roles were selected as interviewees, to cover as much as possible of the re-
quirements process. The Process Developer gave a presentation of the process
and organization, which was the base for the context description. From this
description the Process Developer, the Project Manager, a representative of the
System Designers, and a Subproject Manager responsible for a module with
new functionality, were selected as interviewees.

In the first set of interviews a set of issues was developed. The first interview
was held with the Process Developer, and it was based on a set of generic ques-
tions regarding the roles and responsibilities of the interviewee, and a small set
of issues found when describing the process. The interviews with the other three
participants followed the same basic procedure, but were supported by a larger
set of issues. The interviews were recorded on tape in order to easier find ab-
stract scenarios during the following analysis of the issues. The interviews lasted
less than one and a half hour, and apart from the assessor and the interviewee,
the Process Developer was also present at all interviews.

The interviews resulted in 26 issues, listed in Table 10. These were ordered
in an Entity-Relation diagram and all that had been said regarding each issue
was assembled under each issue.

This led to a set of abstract scenarios for each issue. Some of these covered
several issues, and they were all traceable back to their original issues. It was
realized that many of these scenarios would be hard for the interviewees to as-
sess. One of the strengths of scenarios is to make an abstract phenomenon more
concrete. A risk is however that the scenarios become too narrow, and that
closely related scenarios do not result in similar values for probability and cost.
Therefore both abstract and concrete scenarios were provided during the second
interview, where the concrete scenario acted as an example among others within

Table 9. Estimate scales

Value Scenario Probability Scenario Cost

1 Never Already supported

2 Unlikely Inexpensive

3 Likely Expensive

4 In all likeliness Impossible

 4. Case Study

Josef Nedstam 65

that abstract scenario. Some abstract scenarios were however found to be too
broad and had to be split up into several concrete scenarios. Every scenario was
not made concrete due to lack of domain knowledge. The result was a set of 36
abstract scenarios, whereof 31 were exemplified with concrete scenarios. Table
11 shows some of these scenarios. Issues with scenario development, such as
these, are elaborated in Section 6.1.

During the second set of interviews the participants were asked to assign
values for probability and cost of each scenario according to the scales above,
and determine which engineering environment factors where affected by the
scenario. The original list of factors was process, organization, competence, re-
sources, architecture and technology. It was derived from the issues and deter-
mined by the assessor and the Process Developer. During the first and second
interview the list was appended with three additional factors that emerged dur-
ing the interviews: tools, process implementation and management.

Table 10. Interview issues

Reuse Architecture Platform Vision Communication

Platform vs. Product Architectural
Changes

Requirements Qual-
ity

Technical Evolution

Integration Testing Market Subcontractors

Resources Line vs. Project Tools Organization

Process Estimates Metrics Competence

Decision Support Requirement
Changes

Requirement Sources Organizational Cul-
ture

Business Focus Responsibilities

Table 11. Sample scenarios

Abstract Scenario Concrete Scenario

Applications must be rebuilt after an architec-
tural change.

The architecture must be rebuilt due to new
performance requirements, which means that
the interfaces to most applications must be
rebuilt.

Problems during integration of the second
product based on the current platform.

Performance bottlenecks do not emerge until
building the second product on this platform.

Products set quality requirements on the plat-
forms.

The first product to be built on this platform
demands that X% of all branches in code shall
have been run in test.

Project managers get a larger resource respon-
sibility.

The line organization functions as a consul-
tancy firm for the project organizations.

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

66 Strategies for Management of Architectural Change and Evolution

 During the first interview, which was held with the Process Developer, in-
terpretation problems were found with three scenarios. These were clarified and
caused no problem. During the second interview a scenario was however found
that had to be split in two. The scenario concerned architecture and the System
Designer realized that two similar problems called for different solutions. This
was confirmed by the two remaining interviews.

The Process Developer did not attend the other interviews during the sec-
ond round of interviews. The interviews were recorded on questionnaires, and
they took less than an hour each.

4.2 Evaluation Data Analysis
Since the assessment method is qualitative in nature, it is not possible to draw
significant quantitative conclusions from the results, as discussed in Chapter II.
The assessment is intended as a tool for decision support for future process im-
provements, indicating problem areas in the process and organization.

Since the interviewees gave intermediate values during the second round of
interviews, the scales found in Section 4.1 were modified to include seven steps;
the four original and three intermediate steps. These steps were numbered from
0 to 6, as it was natural for both the probability and the cost scale to start at
zero.

4.2.1 Risk Assessment
The risk values for each scenario were calculated by assuming that the original
values for cost, cis, and probability, pis, that an interviewee i gave for a scenario s
were dependent. The values were assumed to be dependent, because when the
interviewees studied a scenario they in most cases automatically assessed the risk
in some way. This was noted by frequent phrases such as “we will not be able to
support this scenario but it doesn’t matter, because it will never happen” or “we
are already working this way so the scenario has already happened and it will
cost nothing to support”. Furthermore the scale for cost was assumed to be in-
terpreted as an exponential scale.

The second assumption lead to a transformation of the cost scale from the
initial range of 0 to 6, to scores ranging from 1 to 106, giving the cost c'si for one
scenario and one interviewee:

 isc
isc 10=′ (1)

The probability scale was normalized, ranging from 0 to 1, giving the probabil-
ity p'is for one scenario and one interviewee:

 6isis pp =′ (2)

After these transformations the first assumption was considered, and the risk
value for each scenario was calculated accordingly. The risk, ris, that each inter-

 4. Case Study

Josef Nedstam 67

viewee gave each scenario was calculated by multiplying the resulting cost with
the resulting probability:

 isisis pcr ′⋅′= (3)

This resulted in two to four values of risk for each scenario, depending on how
many interviewees had assigned a cost and a probability value to each scenario.
Finally the average risk rs for each scenario was calculated from the individual
risk values:

 ∑=
i s

is
s n

r
r (4)

In Formula 4, ns is the number of answers for scenario s.
Figure 8 shows the scenarios sorted according to their risk calculated accord-

ing to the exponential dependent technique described above, with the risk value
on the Y-axis and the scenario number on the X-axis. The line of diamonds
shows the dispersion of the risks of the scenarios, here measured as the standard
deviation divided by the average risk. The four first scenarios show much higher
risk than the following, which indicates that they shall be prioritized. When
analyzing them more carefully it however became clear that the participants
gave very varying answers, which is also indicated by the high dispersion of the
two scenarios with highest risk.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

20
16 35

4 17
15 6 3 21

12 32
13 18

5 22
30 10

23 19
27 2 31 26

36 7 34 33
9 8

28 11
25 14

29 24
37

0,0

0,5

1,0

1,5

2,0

2,5

Figure 8. The scenarios sorted by their risk calculated according to the proposed method

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

68 Strategies for Management of Architectural Change and Evolution

4.2.2 Participant Interagreement
The high dispersion of risk values for some scenarios called for further analysis
of the level of agreement between the participants. A Kappa analysis (Fusario et
al., 1997) was made on the interviewees’ values of cost and probability. Kappa
for the costs ranged from -0.02 to 0.34 among the possible pairs of interview-
ees, with an average pair agreement of 0.20. Kappa for the probabilities ranged
from 0.13 to 0.42 among the possible pairs of interviewees, with an average pair
agreement of 0.25. The low levels of agreement can be explained by that the
interviewees were selected to get as differing views on the process as possible.

4.2.3 Other Risk Calculation Techniques
Since the risk values for the scenarios were uncertain, other ways of finding the
most important scenarios were investigated. Firstly, the scale for the costs trans-
formation was studied. If the original, linear values were used, the order of the
scenarios differed. It was however considered reasonable that the original verbal
scale was not interpreted as linear by the interviewees, but rather exponential or
worse. The linear technique of assigning risk values was later used as a reference
when evaluating the assessment method during the feedback session.

An analysis was made as to whether the order of the scenarios was sensitive
to the base used in the original exponential transformation. The original base
was ten, i.e. each of the six steps in the scale meant a tenfold increase in cost. A
twofold increase was tried, and the order of the scenarios differed slightly. The
four most important scenarios were however still the same. If a fourfold increase
or larger was used, the ranking order was identical to the tenfold increase.

The scenarios were also sorted by selecting the answer giving the highest risk
for each scenario, i.e. saying that if anyone can sense a risk in a scenario, there is
a risk. This order, the maximum-risk technique, was somewhat different as it
gave a large number of ties. The four first scenarios were however still the same
as the four first of the exponential dependent technique. The scenarios that each
individual rated highest were also examined. None of the interviewees ranked
the same scenario highest and these four scenarios were identical to the four
most important scenarios in the exponential dependent technique.

The last examined method to calculate the risks of the scenarios was to as-
sume that the values for cost and probability of the scenarios were independent.
The exponential transform was still applied to the costs for each individual an-
swer. Then the average cost and average probability for each scenario was calcu-
lated, over the number of answers for that scenario. These two averages where
then multiplied to give a value for the risk of that scenario. This technique, the
exponential independent technique, implies that the participants, when studying
one scenario, gave the answer for cost independently of the answer for probabil-
ity. This would perhaps be beneficial, but was not the way in which the answers
were given. Using the exponential independent technique, two of the four most
important scenarios were found among the four most important scenarios from
the exponential dependent technique.

 4. Case Study

Josef Nedstam 69

The exponential dependent technique was selected as the prime candidate for
calculating risk in this particular case, a choice that was confirmed at the feed-
back session. Most of the following analysis is based on this assumption.

4.2.4 Analysis of Engineering Environment Factors
The nine engineering environment factors could now be analyzed based on the
calculated risk values for the scenarios. The sum of the risk values for all scenar-
ios where one of these factors had been brought up by an interviewee was calcu-
lated. This value represents the risk that affects that factor. By dividing it by the
total risk for all scenarios the percentage of the organizations risk affecting that
factor was calculated. This analysis is visualized in Figure 9. ‘Implementation’
in the diagram means process implementation, while the other factors are the
same as in Section 4.1. The sum of the affected factors is more than one, since
several factors appear in a single scenario.

The figure shows that 65 % of the discovered risk somehow affects the proc-
ess, and that 61 % affects the resources. Therefore it would be recommended to
focus on these two factors when trying to reduce risks according to the results of
this assessment.

4.3 Evaluation Results
The analysis gave clues to which scenarios were most important. Because of the
low level of agreement between the interviewees, three techniques of calculating

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Process

Organization

Competence

Resources

Architecture

Technology

Tools

Implementation

Management

Figure 9. A diagram showing the impact each of the engineering environment factors has
on the risk of all scenarios

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

70 Strategies for Management of Architectural Change and Evolution

risk were considered. The techniques were: exponential dependent, exponential
independent and linear, as discussed in Section 4.2. The four highest-risk scenar-
ios from each technique were selected, which resulted in nine unique scenarios.
These were compared to the interview issues, and three groups of scenarios
emerged. These were:

� Architectural issues related to rebuilding the architecture due to e.g. new
technologies, and architectural problems with system integration.

� Resources and competence, which are lacking if Company A has to react to
the high-risk scenarios or introduce new technology.

� Process issues mostly regarding the relation between requirements and test.
Among these issues, process, resources, and to some degree competence and
tools, had already been pointed out by the previous analysis of engineering envi-
ronment factors. One of the nine scenarios did not fit in these groups, as it only
affected the issue of subcontractors. This scenario was also regarded as least im-
portant of the nine by the three selected risk calculation techniques. These re-
sults were presented to the interviewees on a feedback meeting.

4.3.1 Feedback Session
A meeting was held with the participants in order to present and verify the re-
sults. An exercise was conducted in order to select the most appropriate tech-
nique for risk calculation. The participants were given three sets of high-risk
scenarios, consisting of the four scenarios with highest risk according to the
three techniques exponential dependent, exponential independent and linear. They
were then given the question: If you were to start a process improvement initia-
tive, which set of scenarios would you base it on? All four participants selected
the four scenarios given by the exponential dependent technique. This was a veri-
fication of the assumptions made during the risk assessment, and the presenta-
tion that followed was based on the selected technique.

The results above were presented and the participants agreed to the risks as-
sociated with resources and the issue of improving the connection between their
requirements phase and test phase. They showed interest in analyzing their low
level of agreement, and agreed on letting the Process Developer analyze the data
from that aspect. They were furthermore satisfied with the level of resources
they had spent on the assessment. Together they had spent less than 30 work-
ing-hours, where the Process Developer had done the main part. A presentation
of the whole case study for middle and senior management was scheduled.

4.3.2 Threats to Validity
This subsection covers the threats to validity that emerged during the assess-
ment operation.

The Process Developer had participated during the first set of interviews.
This hindered anonymity, but the discussions were open and the other inter-
viewees were not afraid to criticize the process or other aspects of the organiza-

 4. Case Study

Josef Nedstam 71

tion. This decreases the threat that important issues were not brought up during
the interviews.

A major concern is the quality of the scenarios. A high-quality set of inter-
view issues is a base for scenario development, as is the assessor’s knowledge of
the organization, found in the context description. The assessor’s ability to de-
velop an adequate set of scenarios from this material is however a decisive fac-
tor. The method gives support but training and practice is also essential. One
way of validating the scenarios is to analyze future changes to process, architec-
ture or structure of the organization, and the causes for these changes.

A threat during the second set of interviews was that all interviewees except
one used intermediate values, perhaps because words like ‘never’ and ‘impossi-
ble’ are awkward to assign to events. The interviewee who did not use interme-
diate levels also filled in the questionnaire himself, which the others did not,
and he assigned factors to scenarios after he had assigned all cost and probability
values. The impact of such threats is hard to assess.

From a correct set of high-risk scenarios the identification of high-risk issues
should present no threat. The generalization from high-risk scenarios to priori-
tizing engineering environment factors however contains a number of threats.
Firstly the factors were not thoroughly defined and were left for the interview-
ees to interpret. Secondly the set of factors was created informally and impor-
tant factors may be overlooked. These threats could be avoided with a better
defined set of engineering environment factors. In this study, the factors have
however been emerging, as a part of the conclusions drawn in Section 6.2.

5. Results and Method Improvements
This study has introduced the concept of process flexibility. A method is pro-
posed which assesses process flexibility by analyzing risks within an organization
and its process. The method uses scenarios in order to focus on the particular
situation at an organization. The method is evaluated in a case study, where the
process flexibility at Company A has been assessed. The method has proven
promising in the aspects of cost, feasibility and effectiveness:

� Cost. During the case study, the assessed organization provided three par-
ticipants who spent less than 30 working-hours in total. Of these 30 hours
the contact person at the organization spent about a third. The assessor
spent around 60 hours collecting and analyzing data. The cost of perform-
ing an assessment of this type is therefore considered low.

� Feasibility. The low cost also leads to increased feasibility, as there were
no major problems in scheduling appointments with the participants. An
assessor using this method will need some training, most of which can be
derived from this article. With a trained assessor the method generates
questions and scenarios that are possible to answer and assess unambigu-
ously. The results generated are also easy to interpret and feasible to act
upon.

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

72 Strategies for Management of Architectural Change and Evolution

� Effectiveness. The method has in the case study produced results that the
participants agreed described the situation at the organization. Three areas
were identified that called for improvements.

The method has only been used once, and has many opportunities of improve-
ment. From a researcher’s point of view, the method also has opportunities of
generating general conclusions about process flexibility. To further increase the
feasibility of the method the guidelines and procedures of the method could be
improved, either from experience with the method or from lessons learned from
other software process assessment methods.

The effectiveness of the method could be validated by following up the
situation at assessed organizations. One possible way of doing this is to see if
any of the scenarios has occurred in the timeframe specified in the assessment.
In order to make generalizations from this method it must first of all be possible
to compare results from different assessments. If this is possible one can eventu-
ally compare organizations that are flexible, according to the method, versus
organizations that are inflexible. This could provide general conclusions as to
how organizations and processes should be designed in order to be flexible.

Further studies of the proposed method may provide additional insights into
ways of understanding and improving scenario-based process flexibility assess-
ment, which hopefully can contribute to an effective and efficient method for
risk management in software development.

6. Discussion
This study has raised two topics of discussion. One is the complexity of scenario
generation and interpreting results from scenario-based methods. The other is
the relation between a software-developing organization, its products, processes,
and the architecture on which their products are based. These issues are dis-
cussed in the following.

6.1 Scenario Generation and Interpretation Revisited
The method presented in this study is based on scenarios, as is SAAM (Kazman,
1994) and ATAM (Kazman, 1998). The real options methods presented in
Chapter V can also be said to be based on scenarios, as the set of likely require-
ments changes actually is a set of future scenarios. Other forms of evaluation
and assessment are analytic methods, such as the one presented in Chapter X,
and methods based on checklists and standard forms such as CMM (Paulk et
al., 1993).

The upside of scenario-based techniques is that they make abstract and un-
explored phenomena quite concrete. The scenarios will also be relevant to the
studied context, as they are developed in cooperation with stakeholders, rather
than a pre-fabricated standard evaluation form. To exploit these benefits, it is
however required that the set of scenarios is adequate, i.e. representative of fu-
ture outcomes of the phenomena under study. This study however shows that it

 6. Discussion

Josef Nedstam 73

can be difficult to make stakeholders generate scenarios, an experience shared
from case studies with the CBAM method (Moore et al., 2003). Most scenario
methods therefore require assistance from method experts such as external con-
sultants performing the evaluations.

This study has also uncovered a number of theoretical issues with scenarios.
A scenario represents an area of likely and similar outcomes in the space of pos-
sible outcomes. This area is larger or smaller depending on the level of abstrac-
tion of a scenario, as shown in Figure 10. But if the scenario is not close to a
point in this outcome space, how can we assess the probability and effect of the
scenario? These will not be the same throughout the space of an abstract sce-
nario, although hopefully similar. These differences are shown in Figure 11, an
example of how the outcome in e.g. risk of the top three scenarios of Figure 10
could behave. So close-to-point scenarios are easier to assess the risk of. But the
whole set of scenarios is supposed to tell us something about the future – some
type of average future. How can we know that the set of scenarios is representa-
tive of the future, so that our set of scenarios will tell something about also the
effects of most other scenarios? The set of scenarios can be classified, so that we
can generate scenarios from all possible classes, and get our coverage more
evenly distributed. This is shown with the dashed lines in Figure 10. But we
then have to assume that the behavior of the scenarios is somewhat linear, and
how can we assume this? Why can’t relatively small changes in a scenario result
in quite different outcomes? And how does the space of outcomes “between”
scenarios behave?

Examples of how the outcome of a scenario could behave nicely, or not so
nice, are shown in Figure 11. The middle example shows a category where we
would have to generate many scenarios, and make them very specific to be able
to describe the behavior of scenarios of that category. In the right-most case, we

Figure 10. Space of outcomes for scenarios. The areas indicate the difference in outcome
that can result from an abstract or underspecified scenario, points indicate the specific

scenarios that are sought for, and the dashed lines demarcate a classification of six types of
scenarios.

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

74 Strategies for Management of Architectural Change and Evolution

could describe the behavior quite well with only a few extra scenarios. In some
cases scenarios can be parameterized, as to some extent is done in CBAM
(Moore et al., 2003). The leftmost example in Figure 11 could e.g. be
parameterized. Most often there are not only quantitative differences between
two scenarios, but also qualitative. This is when the outcome-space between
scenarios is difficult to predict.

Abstract scenarios, which take up a large area in the outcome space, will also
be difficult to compare to point-shaped concrete scenarios. For the probabilities
to be comparable, the scenarios should be on the same level of abstraction.
Kazman et al. (1994) introduce two levels of abstraction, or categories, when
they separate usage scenarios – those that show examples of how end users will
try to use a system – from change scenarios – those that describe change re-
quests from users and customers. America et al. (2005) further introduce strate-
gic scenarios, from marketing literature, which describe how the market and
economy in general might evolve. These strategic scenarios might lead to
change scenarios, and when evaluating an organization’s flexibility with regard
to a set of scenarios, these scenarios should be of the same abstraction level.

Another problem is that scenarios are short chains of events, or stories.
Sometimes a scenario only consists of one event, but more often they involve
assumptions and several dependent and independent events. A longer scenario
will then be more unlikely than a scenario based on one single event, which
makes the comparison of probabilities even more difficult. The evaluator could
in these cases raise the responses to the same level of abstraction, but some of
the directness of the scenario-based approach is then lost. These issues call for
further work on scenario-based methodology.

Figure 11.Possible outcomes of scenarios. Points indicates the sought for, fully specified
scenario, areas show the spread of the top three underspecified scenarios of Figure 10. The x
axis shows one dimension of Figure 10, while the y axis shows outcome, which in the case

study would represent risk.

 6. Discussion

Josef Nedstam 75

6.2 Development in a Line-Oriented Fashion
Development at Company A is performed in projects, most of which result in a
new product being released for production. In the studied case the project de-
veloped a platform to be used by product-oriented projects. Practically all de-
velopment resources are however consumed by these projects, and less prestig-
ious line-oriented work such as quality or maintenance has difficulties penetrat-
ing through to the projects.

A quite different approach was taken by Company B, presented in Chapter
III. A case study has been performed on the development process, and specifi-
cally the requirements process at Company B. The REPEAT process is a result
of an improvement program that started in 1995, as Company B considered
efficient requirements engineering a key success factor. After the introduction of
REPEAT, a significant improvement in delivery precision and product quality
was gained. However, after a number of releases with REPEAT, it was realized
that market pressure resulted in a number of further challenges regarding
throughput and congestion (Regnell et al., 1998). Therefore a process simula-
tion model was developed to analyze bottlenecks in the requirements process
(Höst et al., 2001).

6.2.1 The REPEAT Process
REPEAT manages requirements continuously by controlling a product pipeline
in which three releases are developed in parallel. The product pipeline delivers
two new product releases per year. REPEAT covers typical RE activities, such as
elicitation, documentation, and validation, and the process has a strong focus
on requirements selection and release planning. A schematic picture of the
process is shown in Figure 12.

Ju
l

Se
p

Ja
n

M
ar

Ju
n

Ju
l

Se
p

D
ec

Ja
n

M
ar

Ju
n

Ju
l

Se
p

Elicitation

Selection

CM/Construction

Conclusion

1

2

3

4

5

6

RQ Start

RQ Deadline

Spec Baseline

Code-Stop

Release

Kick-out

Milestones Phases

Release n-1

1 2 3 4 5

6

Release n

1 2 3 4 5

6

Release n+1

1 2 3 4 5

6

Ju
l

Se
p

Ja
n

M
ar

Ju
n

Ju
l

Se
p

D
ec

Ja
n

M
ar

Ju
n

Ju
l

Se
p

Elicitation

Selection

CM/Construction

Conclusion

1

2

3

4

5

6

RQ Start

RQ Deadline

Spec Baseline

Code-Stop

Release

Kick-out

Milestones Phases

Release n-1

1 2 3 4 5

6

Release n

1 2 3 4 5

6

Release n+1

1 2 3 4 5

6

Figure 12. The milestones and phases of the REPEAT process, aligned with a fixed release
schedule

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

76 Strategies for Management of Architectural Change and Evolution

REPEAT is instantiated for each release, and each process instance has a
fixed duration of 14 months. Each REPEAT instance consists of five different
phases separated by milestones at pre-defined dates. The Elicitation phase deals
with the collection and initial classification of requirements. The Selection
phase includes detailed specification of each requirement and release planning.
The Change Management phase is active in parallel with construction (design,
implementation, and testing of requirements for the coming release) and man-
ages changes in requirements priorities due to events such as emergence of high-
priority requirements and delays. The Conclusion phase includes post-mortem
documentation. Each phase is further described below.
 Elicitation: The elicitation phase includes two activities: collection and classi-
fication. Collection of requirements is made by an issuer that fills out a web-
form and submits the requirement for storage in a database which was devel-
oped in-house. Requirements are described using natural language and given a
summary name by the issuer. An explanation of why the requirement is needed
is also given. The issuer gives the requirement an initial priority P, which sug-
gests in which release it may be implemented. P is a subjective measure reflect-
ing the view of the issuer, and is measured on an ordinal scale with three levels,
as shown in Table 12.

Selection: The goals of this phase are: (1) to select which requirements to im-
plement in the current release, (2) to specify the selected requirements in more
detail, and (3) to validate the requirements. The output of this phase is a re-
quirements document that includes a selected-list with a detailed specification
and effort estimation in hours of all selected requirements, and a not-selected-
list including the requirements that are postponed to the next release. The se-
lected requirements are divided into a must-list and a wish-list. The must-list
comprises requirements that are estimated to take 70% of the available effort,
while the wish-list comprises requirements that are estimated to take 60% of
the available effort. This implies that if the effort estimations are correct, half of
the wish-list will be implemented, and the rest will be reconsidered for imple-
mentation in the next release. However, all the requirements on the wish-list are
specified, so if the estimations are not correct there will still be a number of
specified requirements to implement in the release.

Table 12. The ordinal scale of the priority P

Priority Semantics

1 The requirement is allowed to impact ongoing construction of
the previous release.

2 The requirement is incorporated in the current release plan-
ning.

3 The requirement is postponed to a later release.

 6. Discussion

Josef Nedstam 77

Change Management during Construction: This phase of the REPEAT proc-
ess is carried out in parallel with the design, implementation, and testing of the
requirements, and handles changes in the priorities of the requirements. There
are two sub-phases of this phase, one before the code-stop milestone (3-4 in
Figure 12) and one after code-stop (4-5 in Figure 12). After code-stop no im-
plementation is carried out. Instead the focus is on testing. If new priority-1-
requirements are issued, these may be allowed to affect ongoing construction,
and in the change management phase the requirements on the must- and wish-
list may be rearranged so that new and more important requirements can be
incorporated. The 70%– 60% rule for the must- and wish-lists must, however,
still hold, implying that some less important requirements should be postponed
in order to incorporate the new, more important, requirements.
Conclusion: In this phase metrics are collected and a final report is written that
summarizes the lessons learnt from this REPEAT enactment.

6.2.2 The Process Simulated
During 1998 and 1999, the number of unimplemented requirements in the
requirements database was increasing, and the REPEAT process had at times
been in a state of congestion. Process simulation was carried out to analyze how
to improve resource allocation to reduce this congestion. The simulator was
event-based (Banks, 1996), and modeled on a queuing network (King, 1990).
The structure can be seen in Figure 13, and shows how development was mod-
eled as a series of consecutive but parallel releases divided in 3 development
phases focused on requirements engineering. Process simulation presented
quantitative process improvement proposals, but foremost aided in understand-
ing how Company B managed to develop and release products regularly, with-
out the use of proper development projects and the associated overhead.

Elicit Select ConstructPrevious
Release

Elicit Select ConstructCurrent
Release

Elicit Select ConstructNext
Release

Incoming
Requirements

Release

Prio 1

Prio 3
Not
Selected Not

Completed

Elicit Select ConstructPrevious
Release

Elicit Select ConstructCurrent
Release

Elicit Select ConstructNext
Release

Incoming
Requirements

Release

Prio 1

Prio 3
Not
Selected Not

Completed

Figure 13. Simulation model

VI Process Flexibility and the Linkage Between Process, Organization and Architecture

78 Strategies for Management of Architectural Change and Evolution

6.3 A Framework of Process, Organization and
Architecture

With the introduction of engineering environment factors, this study has
shown relations between the software process, organization and architecture. An
organizational framework has emerged from this study along with the analysis
of the context of the companies studied in this thesis – especially by studying
the differences between project-oriented organizations such as Company A, and
line-oriented organizations such as Company B. Two instantiations of this
framework are shown in Figure 14. The main components of the general
framework are the organization, how work is done, and the products that are
produced. These components were identified from the environmental factors
presented in the flexibility assessment case study performed at Company A.

Figure 14. Organizational Framework. Above - organization with strong line
management. Below - organization with strong projects

Process

Project

Architecture

Features

Line

How work is done

Product

Organization

Re
so

ur
ce

s

Changes

Quality

Develops

Fa
ci

lit
at

es

Affects

Defines

Process

Project

Architecture

Features

Line

How work is done

Product

Organization

Re
so

ur
ce

s

Changes

Quality

Develops

Fa
ci

lit
at

es

Affects

Defines

Process

Project

Architecture

Features

Line

How work is done

Product

Organization

Re
so

ur
ce

s

Resp. for

Controls

Changes

Quality

Develops

Fa
ci

lit
at

es

Controls

R
esp. for

Process

Project

Architecture

Features

Line

How work is done

Product

Organization

Re
so

ur
ce

s

Resp. for

Controls

Changes

Quality

Develops

Fa
ci

lit
at

es

Controls

R
esp. for

 6. Discussion

Josef Nedstam 79

The organization consists of the hierarchy of line management and project
management, often combined in a matrix organization. How work is done is
controlled by the process in use, the project organization and project model,
and by the architecture. The product consists of features and qualities, and of
the architecture, which enables feature content, and most importantly, enables
the desired quality attributes. The arrows in the framework indicate which sub-
components control each other, and the direction and strength of these rela-
tionships may vary in different organizations, especially with regard to the divi-
sion of responsibility between line and project management.

The framework instantiation shown in the upper part of Figure 14 shows an
organization with strong line management, responsible for both a formal proc-
ess and an established architecture, which both controls how projects are per-
formed, and how a project can change the architecture. This is comparable to
the Company B situation described in Section 6.2, where the products were
developed in an assembly-line fashion, rather than through proper projects. The
lower part of the figure shows an organization where most resources are con-
sumed by typically one single project, which defines both architecture and
process. From the case-study presented here, Company A would resemble the
lower part of Figure 14, as the organization is quite project-driven, but the con-
cept of a platform and platform projects means that there is a line function with
decision power and independent resources.

The general framework highlights that even though the architecture is a part
of the product, it also affects how development is carried out. This has implica-
tions for the special problems of architectural change, as shown in Chapter VII.
The framework can also be used to visualize the balance of power in a company:
either as a company where line management has responsibility for long term
process and architecture goals, and power to enforce them; or as a company
where resources and control is focused on projects and short term product de-
velopment.

80

 Strategies for Management of Architectural Change and Evolution

 81

VII The Architectural Change Process

Software architecture is recognized as a critical factor for successful
products, but few have studied how organizations decide on archi-
tectural changes. In this chapter the topic is studied through several
cases. The changes are in all cases changes to the quality attributes
of the system, and follow the same general process. The study shows
that architectural changes have aspects of both functional and or-
ganizational changes. An architectural change does not only need
to be technically sound, but it also needs to be anchored firmly in
the organization. This chapter describes the general architectural
change process, and gives both architects and managers guidelines
to balance short-term project goals and long-term organizational
goals within this process.

From Nedstam, J., Karlsson, E.-A. and Höst, M., “The Architec-
tural Change Process”, Proceedings of the 2004 International
Symposium on Empirical Software Engineering (ISESE’04), pp
27-36, Redondo Beach, CA, August 2004.

1. Introduction
Software architecture is becoming a well-established field in technical terms, i.e.
different types of architectures have been characterized (Garlan & Shaw, 1996);
different useful views of the architecture have been described (Soni et al., 1995;
Kruchten, 1995); and books have been written, covering the general area, e.g.
Bass et al. (1998), Hofmeister et al. (1999) and Bosch (2000). However, little
research has been done on how decisions on architectural changes are made in
organizations.

Architectural changes are often different in nature from functional changes.
They can impact larger parts of the product, and they are expensive to imple-
ment. In this study it is also observed that architectural changes have a varying
degree of organizational impact. Functional changes often originate from a cus-
tomer demand and are the responsibility of a defined role in a company, i.e.
product management. Architectural changes can on the other hand emerge
from various sources, and roles are seldom defined to drive such changes.

VII The Architectural Change Process

82 Strategies for Management of Architectural Change and Evolution

This work recognizes that any change to a product can be classified any-
where on a continuous scale from solely architectural changes, affecting struc-
ture rather than user-observable attributes, to solely functional changes, limited
to a single user function. Comparisons made between architectural and func-
tional changes will mostly consider these two extremes, and the changes studied
are considered to be close enough to the architectural end of this spectrum to
support such arguments.

The process for making decisions regarding functional changes and features
has received attention in recent years (Evans et al., 1997). Software develop-
ment processes generally support this well, for instance through the stage-gate
approach (Cooper, 1990; Cooper & Kleinschmidt, 1993). When it comes to
decisions regarding the software architecture, the architect is often not so well
supported, neither for the analysis of the technical solutions, nor for the organ-
izational impact of the change.

The practitioners who contributed to this study needed help in managing
architectural changes, help that was not provided from surveying literature. An
initial research question was therefore posed: How are architectural decisions
made? In order to answer this question a qualitative study has been performed
on how changes to the software architecture have been handled at three soft-
ware development organizations, and what forces drive the need for changes
and control which solutions are decided upon. The research question was there-
fore refined to: What is the implicit or explicit process of architectural change?

Based on the case studies, such a general process has been identified. De-
tailed investigation of the cases, by comparing the identified process to the
process for deciding on functional changes, and theories of organizational
change, led to suggested improvements and guidelines for each step of the proc-
ess. The validity of the process and guidelines has then been analyzed through a
workshop session and through a reference case study performed at Company E.
The reference case is presented in Section 6 and visible at the bottom of Ta-
ble 13.

This introduction is followed by a description of how this study was con-
ducted. Section 3 provides the case descriptions, and the suggested process is
presented in Section 4, followed by a comparison between cases and process.
Section 6 describes the validation, followed by conclusions.

2. Conduct of Research
This is a study of seven architectural changes initiated at three software-
developing companies. All companies develop products for a mass-market, and
their products have long lifetimes. Therefore their architectures need to support
several simultaneous versions of their products, with several releases over an
extended period of time. The research was exploratory in nature, and the overall
research question related to architectural decision making.

Qualitative data has been collected in two sets of interviews. The first set was
held with architects and system designers at the three companies to collect in-

 2. Conduct of Research

Josef Nedstam 83

formation about the companies, their products, and their architecture. The in-
terviews were open, and through the three interviews suitable architectural
changes were identified. Changes were selected that affected varying aspects of
the architectures to a small or large extent. The study was also constricted to
cases that were recent in time, so key personnel and documentation could still
be found.

Key persons in those changes were interviewed in a second set of interviews.
This set of seven sessions, involving from two to five respondents, was guided
by these interview questions:

1. What is the architectural change?

2. Why was the architectural change needed?
3. Who initiated it?

4. How were the associated decisions made?
The data was then analyzed to find dimensions, classify and assign values to
these, in order to draw qualitative conclusions from the data (Patton, 2001).
The significant dimensions that emerged were the phases of the resulting proc-
ess, and collected data was categorized and tabulated accordingly. Contributing
factors to the success or failure of the change initiatives were then identified, in
order to provide the guidelines for the suggested process.

To avoid validity threats to description, interpretation, and theory (Robson,
2002), the interviews were recorded and transcribed, and the respondents gave
feedback on this initial data. Premature hypotheses were avoided, and the re-
spondents have given feedback on the final conclusions, along with practitio-
ners in similar situations, described in Section 6. Section 6 also introduces a
reference case which contrasts well to the results of this study.

3. Case Study Descriptions
The three companies involved in this study were industrial partners of the Cen-
ter for Applied Software Engineering at Lund University (LUCAS). Part of
LUCAS is the LUCAS Architecture Academy that is a one-year part time soft-
ware architecture course for LUCAS partners. This research is done based on
issues that came up in the context of the course. The LUCAS Architecture
Academy included a number of sessions where the companies presented their
architectural work to each other, and issues in the area were raised and elabo-
rated. The companies themselves, Companies D, C and B, are presented in
Chapter III. This section describes architectural changes at the companies: two
at Company D, three at Company C and two at Company B. These descrip-
tions are followed up in Section 5, with a comparison to the suggested change
process.

VII The Architectural Change Process

84 Strategies for Management of Architectural Change and Evolution

3.1 Company D Changes
Protocol Framework: Company D recently acquired companies within their
domain in order to increase their market share. The controller developed by
Company D was intended to replace those companies’ products. To support
the same customers, the controller therefore had to support a number of legacy
protocols for sensors and actuators from those products. This was realized as a
problem using the present architecture, as the protocols were intertwined with
the rest of the code, and could only be developed at one site, the one studied
here. This site only had capacity to develop one to two new protocols per pro-
ject. To be able to develop several protocols a year, Company D decided to de-
velop a generic IO and communication protocol framework. The solution was
developed through a pre-study and an implementation proposal, which resulted
in a solution that enabled frequent releases of the product with many new or
legacy protocols in each release. This would be accomplished by letting other
departments of the company develop the protocols they were responsible for,
using the protocol framework.
Real-Time Operating System: For a number of years Company D had had
discussions about cutting licensing costs on Real-Time Operating Systems
(RTOS). A suggestion from local product management at the studied site to
develop their own RTOS was rejected by local development management. In
parallel, high-level management decided to reduce the number of RTOSs to
only one. This would not only lower licensing costs but also provide focus on a
common competency regarding RTOSs and tool support, which would stan-
dardize and simplify distributed development. Top-level development man-
agement initiated a pre-study across all departments of the company. Partici-
pants were interviewed regarding their use of, and competencies in RTOSs. The
site studied here used one RTOS, but the pre-study led to a recommendation
for all departments to switch to another. Eventually the recommendation be-
came a requirement for a project at the studied site. This requirement was post-
poned by the local organization, while an OS expert prepared a solution with a
Virtual Operating System (VOS) layer, which was introduced in a later project.

3.2 Company C Changes
Data Router: During routine reviews the system-engineering group at Com-
pany C discovered several modules handling data streams within the system in
similar ways. These modules could instead use a common data router and
thereby reduce memory footprint. The architecture group developed a design
proposal that was approved, but no resources were provided from the project.
Project management did not consider the memory savings to be large enough.
Therefore, the solution was implemented by the software architecture group
and integrated with a small-scale system on an isolated branch of the code. After
inspection this branch was merged with the main track, and the software archi-
tecture group initiated documentation and training on the new architectural

 3. Case Study Descriptions

Josef Nedstam 85

mechanism. The solution was still not widely accepted, as most modules already
had their own implementations of the same functionality.
Hardware Abstraction Layer Split: The bottom layer of the architecture had
existed in previous versions of the product, but had not been formally defined,
and therefore there had been no clear rules as to how to access the hardware.
The hardware was also not encapsulated well enough from the software, leading
to unnecessary impact in the software when the hardware changed. The devel-
opers working in the lower layers of the product realized the need for a clearer
definition of these layers. They proposed a solution that meant removing hard-
ware dependencies from the Hardware Abstraction Layer (HAL) interface, i.e.
creating a logical layer on top of the previous HAL. One driving force for in-
troducing this logical layer was that the cost for a product developed from the
platform is very dependent on the hardware components used, and therefore
these are often changed to provide cheaper solutions. The purpose of the logical
layer is to allow such changes without expending effort in the higher layers of
the software.

The solution was presented for the system-engineering group and brought to
the software architecture group. When the proposed solution was established
within the system-engineering and software architecture groups, project man-
agement decided to assign resources to the change. The software architecture
group introduced new coding rules according to the suggestion and made
changes to the architecture descriptions. At the same time, the developers in the
HAL made preparatory planning for the change, before doing the actual im-
plementation when resources were assigned and the architecture was updated.
Include-file Reorganization: The software architecture group had created a
flexible structure for the source- and include-files. The design rules that en-
forced this structure required several files for each component, and when the
number of modules grew to around 100, the configuration management system
encountered performance bottlenecks. The tool support responsibles within
Company C were in contact with support personnel from the tool supplier,
who identified the problem as having too many files in the system. The soft-
ware architecture group was assigned to create a new structure.

The flexibility provided by the original structure was only needed by a few
of the about 100 modules, and these could continue to use the previous struc-
ture. The rest of the modules were given a new structure, which basically in-
volved merging three or four source files into one file. This resulted in a three-
to-one reduction of source files.

3.3 Company B
Communication Mechanism: Company B was regularly releasing new versions
of their software development tool through line-oriented development, as de-
scribed in Chapter VI. New requirements, especially related to new language
standards affecting the development tool being developed, meant that the old
architecture could not support further development. Top-level management

VII The Architectural Change Process

86 Strategies for Management of Architectural Change and Evolution

therefore decided to create a new product generation. Company B had recently
acquired other companies, which developed software engineering tools that
were to be integrated into the new product. One of the problems with the new
requirements was an increase in the number of diagram editors. The old com-
munication mechanism did not support this increase, but one of the acquired
companies had recently solved that problem, using a common object model. A
technical discussion led to a consensus of using the new solution, although it
meant major architectural changes.
Editor Framework: The editor framework utilized to develop graphical editors
was changed as well, using a more generic solution, a decision also taken by
consensus in the development project. The drivers for this change were in-
creased reuse of common editor elements, and outsourcing of development
throughout the organization. Several other decisions in this change process had
to be enforced by the responsible architect, as consensus could not be reached.
Both these changes were introduced in the same project.

4. Process Overview
Initial analysis of the cases led to a definition of a general process of architec-
tural change, illustrated in Figure 15. The steps of this process where more or
less present in all the seven studied changes, but there was often no conscious
enactment of the process.

By analyzing the cases further, problems and opportunities were identified
within the different companies, some of which are presented in Section 5. From
this information, combined with theories of functional and organizational
change, improvements to this process were suggested – a form in which the
process is described in this section. The relationship between the process and
the case studies is shown in Section 5. The purpose of the improved process is
to enable organizations to make the right decisions by the right people at the
right time. From an employee viewpoint the process should give guidance in
the decision process, both for change initiators and decision-makers. Since ar-
chitectural changes have an impact on organizations, they can be compared to
the organizational change process. Kotter (1996) defines an eight-stage process
which describes how to prepare an organization for major change, and how to
anchor the change in the organization:

1. Establishing a sense of urgency

2. Creating the guiding coalition
3. Developing a vision and strategy

4. Communicating the change vision

5. Empowering employees for broad-based action
6. Generating short-term wins

7. Consolidating gains and producing more change

8. Anchoring new approaches in the culture

 4. Process Overview

Josef Nedstam 87

The general process for functional changes involves requirements elicitation,
pre-studies, implementation, and related decision-points. It focuses on how an
organization should make decisions. Kotter’s process for large-scale organiza-
tional change instead focuses on how to make changes happen. In the suggested
process the two features are combined. This has been done by mapping Kotter’s
change process onto the functional change framework, such as described in the
stage-gate approach (Cooper, 1990; Cooper & Kleinschmidt, 1993). In practice
the process therefore has to be adapted to the present functional change frame-
work. It must also match the balance within the organization, with respect to
line and project, as discussed in Chapter VI, Figure 14. The process proposed in
this paper contains the steps of Figure 15:
1. A need emerges: The process is preceded by a chain of events where need

for change emerges or is created, and someone, the change initiator, sees
this need and considers it his or her responsibility. This can be compared
to Kotter’s Establishing a sense of urgency, and to requirements elicitation in
a functional change process.

2. Initial decision preparation: In this phase the change initiator does
preparations with the goal of getting resources to analyze and implement
the change.

� Document background: To increase the chance of having an impact
on the resolution of the need, the change initiator should document
the background of the need, i.e. what products, components or or-
ganizational entities are involved, the history behind the need, how it
manifests itself, etc.

� Identify stakeholders/decision makers: While documenting the
background, stakeholders should be identified. In order to have opti-
mal impact, the change initiator should pay attention to these and es-
pecially to the decision makers that will be involved in the following
process. This is related to Kotter’s Creating the guiding coalition.

3. Decision: Go/no-go: An initial decision must be made whether the issue
at hand is adequate and feasible to treat. Probably, not much effort has
been spent before this decision point, e.g. one person’s work for hours or
days. Work done in the following phase of this process, before a decision
on any particular solution or implementation of change, probably requires
resources that must be budgeted, e.g. a handful of persons or more, which
work for days or weeks. Therefore a person responsible for resources must

4. Decision preparation:
Analyze technical alternatives
Analyze Organizational impact
Return on investment

2. Initial decision preparation:
Document background
Identify stakeholders

 1. Initiation:
A need emerges

3. Decision:
Go/no-go

6. Rollout 5. Decision:

Rollout

Figure 15. The Process of architectural change

VII The Architectural Change Process

88 Strategies for Management of Architectural Change and Evolution

make a decision whether to go on with this process or not. The formality
of this decision-point is controlled by the organization at hand. If the
change can be viewed as a normal product requirement or change pro-
posal, it can be treated as such through the ordinary channels: implemen-
tation proposal and related decision points. However, if the change is more
of a change in the way people work, or a change in an internal quality at-
tribute not leading up to completion of a specific project, the process steps
that follow are of a different complexity. The risks of facing opposition are
higher and the decision process and preparations must be more thorough.

4. Decision preparation: This phase is akin to performing a pre-study or
developing an implementation proposal in technical change management.
In terms of Kotter’s process, it resembles Developing a vision and strategy.

� Analyze technical alternatives: When technical alternatives have
been proposed, these can be analyzed from an architectural viewpoint
in a number of ways (Dobrica & Niemelä, 2002), e.g. with ATAM
(Clements et al., 2002).

� Analyze process and organization impact: When making a techni-
cal analysis, the organizational implications are often overlooked,
judging from the results of this study. This might lead to unexpected
resistance to a change. An organizational analysis is therefore made,
based on the initial analysis of stakeholders, in order to assess the im-
pact of the change and prepare the organization for the change. The
activity therefore contains parts of Kotter’s Communicating the change
vision.

� Return on investment (ROI): The need that the change satisfies has
to have a financial side. An ROI analysis will simplify getting support
for the change from top management and management of any project
that might implement the change. This activity will support Kotter’s
Generating short-term wins.

5. Decision: Rollout: Software projects generally have a tollgate or decision
point where it is decided which implementation proposals will be included
in the resulting product. The same decision is made in this phase, regard-
ing technical aspects of the architectural change. Organizational changes
are however not suitable to implement in a product oriented project, and
will therefore need another form of implementation and associated deci-
sion.

6. Rollout: This activity involves the implementation of the change. Results
from this study show that the rollout of the technical part of the change
often is best carried out within an ordinary project – i.e. where most or-
ganizational resources often are allocated – but other options exist. The
technical implementation has to be synchronized with the rollout of the
organizational change, which must be managed by, and given resources
from, the line organization. This activity is related to the late phases of

 4. Process Overview

Josef Nedstam 89

Kotter’s process: Consolidating gains and producing more changes, and An-
choring new approaches in the culture.

When comparing to Kotter’s process it is important to keep the proper context
in mind. Kotter presents a process for long-term organizational changes, which
means some phases are of a different scale. Kotter’s process also focuses on en-
gaging employees and preparing an organization for a change, and not so much
on how to perform the actual change. Since this paper focuses on changes to
software architectures, we can use the decision framework common in software
projects as a basis for a change process with features of both perspectives.

5. Analysis of Process versus Cases
This section compares the process suggested in Section 4 to the architectural
changes described in Section 3. Table 13 gives an overview of the changes in
relation to the suggested process, and also includes an architectural change used
as a reference and presented in Section 6.

5.1 A Need Emerges
Before the suggested process is initiated a need for a change somehow appears.
The reasons for changes in this study have included business decisions to in-
crease market share, lower costs and lead time, but also more technical reasons
where the architecture has not been able to support increased complexity and
new features.

In Company D the need for the protocol framework was initiated when top
management decided to increase the market share by acquiring other actors in
the same domain. Mid-level managers and experts then saw the need for sup-
port of legacy protocols found in the newly acquired companies’ products. The
need for a change of RTOS on local level came from a higher-level need to save
licensing costs and focus competencies by reducing the number of RTOSs. The
process was initiated by higher-level management and supported by developers
at other sites of the organization.

In Company C the introduction of a data router was driven by memory size
being an important quality attribute. The opportunity to save memory was dis-
covered by system engineers during routine code-reviews. The need for a HAL
split emerged as the company wanted to be able to change hardware compo-
nents frequently in order to save costs. The developers in the lower levels of the
software initiated the change themselves in order to simplify the frequent hard-
ware component changes. The need for an include-file restructuring became
apparent, as the configuration management tool did not support the existing
structure. The architecture group initiated this change since they were responsi-
ble for the include-file structure.

Two related changes were studied at Company B. A new mechanism, allow-
ing editors to work against one system representation, was introduced to in-
crease the number of possible editors. A framework for editor GUIs was intro-

VII The Architectural Change Process

90 Strategies for Management of Architectural Change and Evolution

duced in order to increase reuse of common components and enable outsourc-
ing of editor development. Local experts initiated these changes and the tech-
nology came from the newly acquired companies. These changes would later
lead to a product generation shift.

Change initiators have been identified from all levels of the companies, i.e.
managers, experts appointed when the issue came up or as part of their ordinary
role – where a special case is the architects themselves – and down to the devel-
opers. This can be compared to functional changes where needs often emerge
from customers and are managed by marketing or product management.

5.2 Initial Decision Preparation
A decision process that can be initiated by anyone will eventually have to be
brought before a decision maker. In this phase the change initiator documents
the background of the issue, and identifies stakeholders and decision makers.

When the need for legacy protocol support had emerged in Company D, lo-
cal experts analyzed the protocol framework solution in a pre-study. Limited
attention was however paid to other departments that were supposed to imple-
ment protocols on this framework. Regarding the change of RTOS, the pre-
study had been carried out by higher-level management. This resulted in rec-
ommendations to change to a single and specified RTOS. The pre-study in-
volved interviews on all company sites.

The introduction of a data router in Company C was prepared by the sys-
tem-engineering group by identifying the locations where similar functionality
had been found. Current and future clients to the data router were loosely iden-
tified but not further analyzed. The only stakeholder that was approached was
the architecture group, who would be responsible for developing an implemen-
tation proposal. Regarding the HAL split, the developers in that layer prepared
a solution themselves, and set up a meeting with the appropriate decision-
makers, in this case the system-engineering group. In the case of the include-file
restructuring, the initial preparation was made by the tool-vendor’s support
organization. They concluded that the projects contained too many files. The
architecture group was identified as a stakeholder, since they had developed the
previous structure. Apart from that, stakeholder identification was not done
actively, since the frequent tool failures meant that stakeholders presented
themselves spontaneously.

In Company B the first steps of the product generation shift were taken on
many levels, both within the original organization and by developers and man-
agers in newly acquired organizations. Technical discussions were held, leading
to the realization that the whole architecture had to be changed. Solutions were
gathered from all parts of the organization, and the new architecture was
adapted to enable distributed development. Stakeholders and decision-makers
were therefore identified adequately.

 5. Analysis of Process versus Cases

Josef Nedstam 91

In the case studies we have seen examples of less successful changes, where
too little has been known about the impact of the change. Effects of functional

Table 13. Overview of studied changes

 1. Initiation 2. Initial
Decision
Preparation

3. Deci-
sion:
Go/no-go

4. Decision
preparation

5. Dec:
Roll-
out

6.
Roll-
out

Organiza-
tion impact

Protocol
Frame-
work

Need: Support
legacy protocols
– distribute
protocol dev

Initiator: Dev
mgmt

Background:
Effects of
dec not
considered

Stake-
holders: No

Dev
mgmt:
develop
imple-
mentation
proposal

Tech: Pilot
study

Org: Improv-
ing during
process

ROI: No

Post-
pone
parts

Part of
project

Large,
changes of
responsibility
between
units

RTOS
switch

Need: Cut cost,
standardize
development

Init: Top mgmt

BG: OK

SH: OK

Top
mgmt: req
for next
project

Tech: VOS
on branch

Org: Some

ROI: No

Merge
with
current
project

Parallel
to
project

Manageable
changes to
support
contacts

Data
Router

Need: Reuse to
save memory

Init: Sys eng

BG: OK

SH: From
established
decision
process

Sys eng:
develop
imple-
mentation
proposal

Tech: Pre-
study

Org: No

ROI: After
the fact

No
external
re-
sources

On
isolated
branch

Small, but
developers
not adopting
other solu-
tions

HAL
split

Need: Simplify
change of HW
comp

Init: Developers

BG: Devel-
opment
before deci-
sion

SH: OK

Action
already
taken

Tech: See 3.

Org: Low
impact

ROI: Obvi-
ous

Pack-
age

Part of
project

New product
mgmt op-
portunities

Include
file
structure

Need: Re-
establish tool
support

Init: Arch group

BG: OK

SH: OK

Internal to
architec-
ture group

Tech: 2
structures, 3
rollout alt.

Org: OK

ROI: Obvi-
ous

Project
by
project

Project
by
project

Change of
initial proc-
ess steps

Comm.
Mech.

Need: Support
several editors

Init: Local ex-
perts

BG: Greater
impact than
documented

SH: Some

Top
mgmt:
start new
line of
projects

Tech: Proto-
type project

Org: No,
ROI: No

Launch
new
series of
projects

New
series of
projects

Change from
line- to
project-
oriented dev

Editor
frame-
work

Need: Distribute
dev

Init: Local ex-
perts

BG: OK

SH: OK

As above As above As
above

As
above

As above,
and enabling
distributed
development

Ref
change:
Radar
FW

Need: Reuse and
CM

Init: Developers

BG: Not
explicitly

SH: Not
considered

No formal
decision

Tech: Inter-
nal dev

Org: No,
ROI: No

Already
imple-
mented

Never
rolled
out
exter-
nally

No existing
org to man-
age new asset

VII The Architectural Change Process

92 Strategies for Management of Architectural Change and Evolution

changes are often more limited and customer-oriented. As opposed to architec-
tural changes, functional changes often have resources allocated to this phase,
such as product management performing requirements elicitation.

5.3 Decision Point: Go/No-Go
In this activity the first decision to commit resources is made. The right deci-
sion maker shall have been defined previously, and process and organizational
issues must not be forgotten in this decision.

In Company D, local level management decided that an implementation
proposal of the protocol framework should be developed, since the solution
would allow for more protocols and more frequent releases of the product. The
organizational impact was not given much focus in this decision. Regarding the
RTOS switch, top management decided to turn the recommendation into a
requirement for the following projects. This requirement was later postponed
by the local organization.

In Company C, the system-engineering group decided that the architecture
group should develop an implementation proposal of a data router. Regarding
the HAL split, the solution was so well prepared by developers that neither the
system-engineering group, nor the architecture group had to invest large re-
sources in preparation, and the decision was of little significance. Regarding the
include-file structure, the architecture group themselves decided that they
should develop a solution. Resources spent by the architecture group were con-
sidered insignificant in comparison to the resources wasted during tool prob-
lems. Organizational impact related to difficulties in rolling out the new struc-
ture was considered at this stage.

In Company B, the decision to apply resources to the change process was at
a higher level, since it involved starting a whole new line of product-oriented
projects. A decision was therefore made by top management to prepare and
plan for a first project, which should result in a prototype for the product.

A forum for architecture issues could be helpful when making these deci-
sions. Considering functional changes, organizations sometimes have product
management fora, making similar decisions. The problem for the architect is
that the decision is one of resources, for which the architect seldom has respon-
sibility. Getting project resources has a benefit since the change can be more
easily embraced by that project. It is however not trivial to receive resources
from a project manager. The architect or change initiator therefore needs sup-
port in building a case for the proposed change.

5.4 Decision Preparation
In the decision preparation phase a small group of people will analyze technical
alternatives, process and organizational impact, and ROI. From a company
viewpoint this is done to make the right decision, and from an architect or
change initiator viewpoint this will help convince people of the need for
change. This phase is similar to developing an implementation proposal when

 5. Analysis of Process versus Cases

Josef Nedstam 93

making a functional change, and should therefore be adapted to how imple-
mentation proposals are handled within the organization. The analysis of tech-
nical alternatives can be done in parallel with the analysis of process and organ-
izational impact.

At Company D, the protocol framework was prepared through an imple-
mentation proposal, in the same way as a normal requirement. The technical
solution was based on expert opinions. The process and organizational impact
was considered, and a pilot study was made, involving development of a proto-
col at another site in the same company. However, there are many developers in
the acquired companies that are impacted by this change but have not been
involved in these initial phases. The change of RTOS was postponed to a later
project, and in the meantime an OS expert prepared a solution involving a
VOS layer to allow for several operating systems. One organizational impact
was overlooked, as the change meant that new RTOS support contacts had to
be established. Regarding ROI, the change of RTOS lead to no short-term wins
for the local organization.

In Company C, the architecture group developed the data router solution in
a pre-study. It was based on already implemented solutions, but the group
failed to recognize opposition from project management and developers. ROI
was calculated late in the process. Regarding the second change, the developers
had already prepared the HAL split so the architecture group only had to pre-
pare changes to architecture documentation and design rules. No quantitative
ROI was made but the ability to change components was considered an obvious
benefit, both in the short term for projects, and in the long term as a new busi-
ness opportunity. Regarding the include-file restructuring, the architecture
group found that the flexibility provided by the original structure was only
needed in a few modules, and a simpler structure was created for other modules.
ROI, or cost, was considered regarding the rollout, since rollout was expensive
and did not contribute directly to any product. Short term gains were however
evident, in that the current state of affairs hampered every-day operations.

In Company B the first project of the new product generation was planned.
When making technical decisions many parts of the organization were involved,
and consensus in joint forums was the goal. When this could not be reached,
the architect responsible for that type of functionality had to make the decision.
Organizational impact was not only considered when selecting solutions, but
also when distributing development of various modules. This distribution could
at least in one case have been better planned, as they ended up with developing
a module at one site, which was highly dependent on two other modules at an-
other site, leading to unnecessary communications problems.

The studied cases have rarely included ROI or business cases for the
changes. This might be because technicians often lack knowledge of such issues,
and lack insight into the business model of the company. The solution would
then be either training and education, or if technically oriented change initia-
tors would receive support from marketing and business functions. Another
issue in this phase is the involvement of the right people during decision prepa-

VII The Architectural Change Process

94 Strategies for Management of Architectural Change and Evolution

ration. Finding the right people would in many cases aid in identifying organ-
izational impact at an early stage.

5.5 Decision Point: Rollout
When a feature-oriented implementation proposal is completed, it is generally
passed through a tollgate in the project. In this tollgate the project decides
which features or implementation proposals shall be included in the upcoming
release. The activity described here is similar, but the changes we have studied
have had organizational impact. Such changes, and their related decisions, are
hard to make in a product-oriented project.

In Company D, the implementation proposal for the protocol framework
involved two different types of protocols, and a set of services for these proto-
cols. The decision to implement was made according to the standard project
model. Both protocol types were to be implemented in the upcoming project,
but part of the services were postponed to later projects. Regarding the change
of RTOS, the expert’s VOS solution was chosen, and local development man-
agement decided to roll it out onto a current project. This project had to start
implementation before the VOS was ready, and therefore local development
management decided that the VOS team would make relevant modifications of
the project’s code when the VOS was ready to be merged with the project.

In Company C the system-engineering group approved the implementation
proposal for the data router, but the architecture group did not receive project
resources to implement the proposal. They then decided to implement the data
router with their own resources. On the other hand, the HAL split was granted
resources by project management, because it had backing from developers, sys-
tem engineering, and the architecture group. The include-file restructuring was
urgent, but difficult to roll out. An attempt to automate rollout failed because
coding standards were not followed throughout the company. A second strategy
was to halt development over a number of days, and perform the changes
manually. This solution was too costly and eventually appropriate line man-
agement decided to roll the new structure out onto newly started projects, let-
ting old projects use the old structure.

Company B decided to launch the series of projects for the new generation
of products. Top management took this decision, and the content of each pro-
ject has slowly been decided throughout the first projects by top management,
product management and project management.

One conclusion from this activity is that it might be beneficial to restrict
functional content of a new product when introducing major architectural
changes. This was adequately done when introducing the IO and communica-
tion framework in Company D, as the number of services available to the pro-
tocols was restricted in the first release. Company B, however, has had problems
deciding on the final content of the first product to be released on the market.
Restriction of functional content is a tradeoff since customers will not accept
lower functional content, and the new architecture must be able to support fu-

 5. Analysis of Process versus Cases

Josef Nedstam 95

ture functional content. According to the theory of disruptive technology
(Christensen, 1997), presented in Chapter V, it can however be the case that
customers accept and want new, immature technology. Another tradeoff regard-
ing how many future features an architecture should enable concerns the debate
of programming for the future or, as XP (Beck, 1999a; 1999b) advocates, pro-
gramming only for the present.

5.6 Rollout
Implementation of technical aspects of changes is made successfully within
product-oriented projects. Implementing technical aspects elsewhere is more
problematic, since such implementations are not so easily embraced by develop-
ers in projects. The problem is that the process and organizational aspects are
often forgotten in product-oriented projects, and a standard procedure for car-
rying out such changes seldom exists, as opposed to carrying out a product-
oriented project.

In Company D the protocol framework was implemented as part of a prod-
uct-oriented project, but many departments that were intended to develop pro-
tocols have not yet had opportunity to give feedback on the framework. There
is therefore still a risk that some departments will object to the framework. The
VOS was developed in parallel with a product-oriented project. When the VOS
was ready the two projects were merged, and the VOS team had to make re-
maining modifications.

In Company C the architecture group developed the data router on an iso-
lated branch, which was later merged with the main branch. The problem was
that most of the prospective clients to the new data router had already imple-
mented their own solutions, and usage of the router was only recommended,
not required. Thus it did not provide the anticipated savings in memory foot-
print. The HAL split had been well prepared by both developers and architects
before decisions were made, and was rolled out in a project. The new include-
file structure was rolled out onto one project at a time across the organization.
The rollout coincided with an architectural change, which minimized overhead
when the key module responsible checked in the new file structure into the con-
figuration management system at project startup.

Company B has implemented their architectural changes in a prototype pro-
ject, and a product for the market is under development. The main problems
have been to settle on feature content, and as previously mentioned, the distri-
bution of work. The company was not prepared for the organizational change
they had to do in going from line-oriented development with frequent and
regular releases, to project-oriented development.

The case studies include examples of changes where the technical part has
been assigned to a certain project as a requirement, but postponed to later pro-
jects. There are also examples where the changes have been performed outside
of product-oriented projects, further decreasing the chance of embracing the
change. One of the cases made a satisfactory tradeoff, where the change of oper-

VII The Architectural Change Process

96 Strategies for Management of Architectural Change and Evolution

ating system was postponed to a later project, but prepared by an expert ahead
of the project start.

6. Validation
In this chapter two results are presented: that there is a general process for archi-
tectural change; and that this process can be improved according to our guide-
lines, both in terms of value for a company, and the impact an architect can
have. To study the generalizability of these qualitative results the validity has
been improved in two ways.

A workshop was held with architects and system engineers from industry.
Some of the companies from the initial study were present, along with some
other companies, but none of the individuals were the same. One architectural
change in progress was presented from each company, and it was possible to
map the status of these changes onto the general change process depicted in
Figure 15. However, some of the participants found it difficult to do the map-
ping by themselves. This still indicates that the presented process is indeed a
general description of how an architecture change is performed. During the
workshop, the complete process with guidelines and improvements was also
presented, and the participants proposed that the concept of feedback should be
introduced in the process, which is discussed in the conclusion.

In order to validate guidelines of the proposed process, a case study was
made on an architectural change in a company, Company E, which develops
radar systems, presented in Chapter III. This example is presented as the refer-
ence change found in Table 13, and shows when the suggested process is not
applicable.

Company E had developed three similar systems in succession and develop-
ers in the later projects decided to develop a framework for the radar tracking
functionality – a functionality that was similar between the three different radar
sensors found in the system. Due to long project lead-time, over 5 years, the
developers could implement this framework without having to rely on higher
level decisions. This level of liberty however also meant that acceptance of the
framework in other parts of the organization has been very low, especially from
management. Although opportunities for further reuse exist, there is no funding
or organization to turn the project-internal framework into an organization-
wide asset. The situation resembles the HAL split in Company C, where much
implementation was done ahead of any decisions to assign resources. In that
case the company decision process was however eventually followed. The pro-
posed process of architectural change can therefore be said to fit architectures
that are used over time and in many products, while changes to architectures of
single products developed within single projects may take place in other ways.
Further evaluation is however needed in order to package and confirm the util-
ity of the provided guidelines.

The type of systems studied here may also set bounds on the generalizability
of these results. On the sliding scale from “sell and forget” products, to infor-

 6. Validation

Josef Nedstam 97

mation systems based on a database, these systems are closer to the packaged
product end of the spectrum. The study has not included web-based systems,
which often have an architecture tightly knitted to the middleware they are
based on.

7. Conclusions
The case studies show that the need for architectural change can emerge from
various sources, and that various roles, such as managers, architects and devel-
opers, may take responsibility for initiating change. The decisions regarding
architectural changes are often carried out in the same way as companies make
decisions regarding functional changes, while the implementation of architec-
tural changes may take many forms, such as part of ordinary projects, parallel
but separate projects, independent smaller projects, or as new full-scale projects.

This study reveals three major differences between functional changes and
architectural changes. First of all, architectural changes are often more complex
than functional changes and affect large parts of the product without showing a
clear connection to a customer need. Secondly, architectural changes do not
only have impact across large parts of the product, but often across the whole
organization, and changes of process and organization are often overlooked and
hard to implement in product-oriented projects. Finally, while companies often
have mechanisms and resources in place to treat functional changes, such
mechanisms are rarely established for architectural changes, and it is also hard
to commit resources to activities without clear and direct customer value.

The suggested process is admittedly simplified, but must be seen as a first
and feasible step for companies that do not have processes in place for architec-
tural evolution, a situation deemed common from studying the described cases.
The simplicity of the process also keeps focus on its main benefits, namely:
identification of stakeholders; a defined sequence of decisions in order to gain
management and organization-wide support for the initiative; and analysis of
not only the technical, but also of the organizational implications of the initia-
tive.

With increased architecture process maturity, the notion of feedback could
provide further benefits from this architectural change process. In terms of the
IDEAL model (McFeely, 1996), this would involve adding a ‘Learning’ phase
to the end of the suggested process, tying back to the first phases of the process
for knowledge reuse in subsequent architectural changes. In the words of the
SEI Software Product Line initiative, the suggested process could then become a
Software Product Line Practice Pattern (Clements & Northrop, 2001), or
rather an architecture management pattern.

98

 Strategies for Management of Architectural Change and Evolution

 99

VIII Evolving Strategies for Software
Architecture and Reuse

To achieve their business objectives, software-developing companies
employ different strategies concerning architecture and reuse. These
strategies include component-based development, software plat-
forms, product lines and highly configurable code bases. Frame-
works for describing these strategies have recently emerged, present-
ing them in orders of “increasing maturity”, with researchers de-
claring specific architectural strategies to be more mature than oth-
ers. Such frameworks can be useful for helping a company to real-
ize a particular architectural strategy, but they do not provide
guidelines concerning which architectural strategies are appropri-
ate for companies in particular situations.

Different companies have different needs - the business context
and business goals of a company will determine which architec-
tural strategy is most suitable for that company. There is no uni-
versally “most mature” strategy. This work includes studies of the
architectural situations at thirteen companies in order to deter-
mine why and how these companies have moved between architec-
tural strategies and how these relate to reuse. The study presents a
framework for describing these, and provides guidelines for com-
panies about how to traverse the maze of architectural evolution.

From Nedstam, J. and Staples, M., “Evolving Strategies for Soft-
ware Architecture and Reuse”, submitted to Journal of Software
Process: Improvement and Practice, 2005.

1. Introduction
Since the late 1960s, software reuse has been seen as one way of addressing the
“software crisis” (Naur & Randell, 1968; Dijkstra, 1972). Many technical solu-
tions for reuse have been proposed and examined, from subroutines, to mod-
ules, objects, components, and to current research into Commercial-Off-the-
Shelf (COTS) components. These technical solutions have supporting tech-

VIII Evolving Strategies for Software Architecture and Reuse

100 Strategies for Management of Architectural Change and Evolution

nologies such as component libraries and configuration management systems.
Critics of general reusable components say that reuse must be domain specific
to be effective and efficient (Bosch, 2000). Reuse approaches using domain spe-
cific reusable assets are emerging, often with a strong emphasis on a common
software architecture for the products reusing these assets. However, the mana-
gerial and organizational impacts of changing to various styles of reuse-oriented
development have often been overlooked by researchers. To develop and main-
tain reusable assets, organizations need to commit resources, and need to intro-
duce roles, team structures, and processes that plan and perform reuse-related
activities. These fields of study have yet to be explored.

An architectural approach to reuse focuses efforts on the application domain
at hand, i.e. the scope of the architecture. It may also support organizational
adaptation, or at least put focus on issues of management and organization. A
comprehensive, managed and controlled architectural approach to reuse is given
in SEI’s Software Product Line (SPL) framework (Clements & Northrop,
2002), presented in Chapter IV. Such an approach may be too cumbersome for
small and medium sized companies to use effectively, and in response, light-
weight approaches to managed reuse have been developed by e.g. Krueger
(2001). These architectural approaches, as presented in Chapter IV, are pre-
scriptive, providing a solution to managed reuse for companies with specific
objectives in specific situations.

Descriptive studies have also been made, e.g. of how companies manage
software product lines (Birk et al., 2003), and Bosch has described a framework
of levels of product line maturity (Bosch, 2002). Bosch presents guidelines as to
which assets and organizational entities must be in place to successfully reach
any state of the framework. The maturity states of this framework are shown in
Figure 16 and are discussed in Section 5.

In summary, recent research into strategic reuse tends to advocate one strat-
egy, such as SPL or COTS components. However, different companies have
different business goals, have different resources available to meet these goals,
and have to do this under different external circumstances, as in the Technol-
ogy Adoption Life Cycle presented in Chapter V. The same architectural strat-
egy will therefore not necessarily be best suited to any company in all phases of
its evolution. The research goal of this study has been to provide guidelines and
recommendations for companies on how to determine their most suitable archi-
tectural strategy, and how to implement this strategy.

This is a study of how software companies in quite different situations have
gone about managing their reuse efforts. These studies have led to a framework
for architectural evolution – a framework which extends Bosch’s framework for
software product line maturity. Information has been gathered from 13 compa-
nies which have performed recent architectural initiatives, and relates to how
these companies have evolved along with their software architectures.

This introduction is followed by a brief method description. Section 3 gives
an overview of the studied companies, Section 4 gives the dimensions by which
the cases were classified, while Section 5 describes the suggested framework for

 1. Introduction

Josef Nedstam 101

architectural evolution and how the studied companies have traversed it. Sec-
tion 6 relates the observed states and transitions to the business goals of the
companies involved, and the paper is concluded by a general discussion and
summary.

2. Conduct of Research
The research in this study has mainly been exploratory, attempting to better
understand how decisions on architectural changes are made. Information has
been gathered from architectural initiatives conducted, or being under way, at
13 companies, all presented in Chapter III. Most of the 13 studied companies
participated in a workgroup entitled Platforms and Product Lines, lead by SPIN-
Syd (2005), a Swedish node of the Software Process Improvement Network.
Cases from other companies have been used in order to extend and validate the
results – four of these were extensions of the case studies presented in Chapter
VII, while one is a research collaborator of the Empirical Software Engineering
program of National ICT Australia.

The following description of the procedure of this research is summarized in
Table 14. Open interviews have been the main instrument for data collection in
this study. The participants of the SPIN workgroup represent eight of the 13
cases, and the focus for initial interviews was jointly discussed during three ses-
sions in the workgroup. These interviews were to focus on current or recent
architectural initiatives related to strategic reuse in the participating companies,
such as the introduction of platforms for software reuse. The interviews were
held to provide a description of the architectural initiative and its relation to the
business model of the company, the evolution of the company and of its prod-
ucts. An interview guide was established for these goals. The interview guide
would evolve during the course of the study.

Six participants volunteered to be interviewed, as they had recent experience
of architectural initiatives. Two of these had experience from two such initia-

Table 14: Conduct of Research

Activity Purpose

Preliminary Sessions Establish initial research goals, identify cases,
establish interview guide

Initial Interviews Gather information, evolve interview guide

Initial Analysis Determine and classify significant dimensions

Comparison to Previous Cases Evolve and validate dimensions

Classification of Information Establish dimensions and framework

Participant Feedback Validation of facts and dimensions

Further Interview Verification and extension of dimensions and
framework

Further Analysis Evolve framework

Peer Presentation Validation of results

VIII Evolving Strategies for Software Architecture and Reuse

102 Strategies for Management of Architectural Change and Evolution

tives; hence information from eight companies was collected from the work-
group. The interviewees were in most cases originators of the architectural ini-
tiatives, but their roles in the companies varied from developers to top man-
agement. All interviews were held in an open-ended fashion (Patton, 2001),
and also allowed for issues from earlier interviews to be brought up in subse-
quent interviews. In this way feedback from previous interviews extended the
interview guide throughout the study. Most interviews were carried out one-on-
one, but one interview also involved other employees from the same company.
One interview included a demonstration of the product involved, while one had
to be carried out over telephone. Information from another four companies was
extracted from the study presented in Chapter VII, while information from an
Australian company was collected in a more structured interview, following the
already defined dimensions of the initial analysis. Extensive notes were taken
throughout interviews, as they could not all be recorded on tape.

In order to draw qualitative conclusions, an analysis was made to extract the
significant dimensions from the collected data. These were classified in a fash-
ion such that the cases under study could be categorized along the dimensions.
Information from each company was tabulated according to the categories of
these dimensions. The classification of information was done in an open-ended
fashion, i.e. without multiple-choice alternatives, enabling the participants to
give feedback on both the facts of their companies, and on the discovered di-
mensions (Robson 2002, Patton 2001). The table used during the analysis is
not presented in this work, but Section 4 includes the key dimensions of that
table, while Table 15 gives background information on the companies, and Ta-
ble 16 provides information on the dimensions related to the architectural evo-
lution of the companies.

To minimize the threat to description, the participants have given feedback
on these descriptions in two steps, first from the original rich transcript, and
then from the material as it was presented in the resulting table. The threat to
interpretation has foremost been mitigated by avoiding premature hypothesiz-
ing. The threat to theory has been handled by exposing our findings to the re-
spondents, and to have intermediate results peer reviewed at workshops (Ned-
stam & Karlsson, 2004; Nedstam, 2004). A risk with the sample is that mostly
initiators of the various have been sources of information for this study. Further
studies will require input from other internal and external sources, but this
threat has been diminished by not focusing on whether the initiatives were sub-
jectively seen as successful or not.

3. The Studied Cases
The 13 studied companies have ranged from two to hundreds of developers,
and represent suppliers of proper products, suppliers of services based on prod-
ucts, or of consultancy services, but also companies that are predominately cus-
tomers using software components or proper products. These differences mean
that some companies work in a contractual situation, while others target their

 3. The Studied Cases

Josef Nedstam 103

products for an open market. Common for all companies is that they have initi-
ated managed reuse efforts, most often with an architectural approach. Table 15
presents a summary of the distinguishing features of the companies and of the
architectural initiatives studied at the companies.

Table 15: Overview of case companies

Comp Product Position Architectural
Initiative

Size Goal

B Software
development
tool

Market driven
product supplier

Core archi-
tecture

Medium New markets

C HW/SW
platform for
consumer
electronics

Contract driven
platform supplier

Packaged
platform

Medium Utilizing IP rights,
creating new market

F Consumer
electronics

Market driven
product supplier,
buyer of platform

Acquiring
packaged
platform

Large Utilizing branding
opportunity

D Control
systems

Contract driven
product supplier

Common
base

Large Maintain and develop
many systems

G Application
platform

Contract driven
platform supplier

Packaged
platform

Medium Prepare for large market

H Publishing Contract driven
product supplier

GUI frame-
work

Medium Portability to 2 plat-
forms

I Web applica-
tions

Contract driven
service provider

Application
platform

Small Streamline similar con-
sultancy projects

J IS develop-
ment tool

Contract driven
platform supplier

Application
platform

Small Kick-start for Informa-
tion System develop-
ment

K Medical
analysis

Contract driven
product supplier

Platform for
product line

Small Expand product portfo-
lio to similar applica-
tion domain

L Information
System

Buyer of infor-
mation system
platform

Outsourcing
application
platform

Medium Standardize a platform
for a wide array of in-
formation systems

M Combat
simulator

Contract driven
product supplier

Product line Medium Synchronize platform
evolution with applica-
tion projects

E Radar Contract driven
product supplier

Sensors
framework

Large Include more types of
sensors

N Card pay-
ment

Contract driven
product supplier,
also sold as ser-
vice

Software
product line

Medium Realize economies
across product set

VIII Evolving Strategies for Software Architecture and Reuse

104 Strategies for Management of Architectural Change and Evolution

The company names have been anonymized in this study. The Product col-
umn indicates the domain in which each company is active, with respect to the
studied architectural initiative. Position indicates whether the company is a
buyer or supplier of a product, platform or service, in order to get a perspective
on the value chain each company acts in. Architectural Initiative concretizes the
initiative that was the subject for the particular case, and is generalized into
states and transitions in Table 16. Size gives a rough indication of the number
of developers and users affected by the initiative and Goal indicates the primary
business objective of the initiative.

4. Dimensions from the Material
The first step of analysis was to find the main dimensions of the material. These
evolved during the study. Aspects of them are shown in Tables 15 and 16, and
an extract of the key dimensions from the working table are as follows:

� Product, Service: A description of what the company supplies to its cus-
tomers, which in some cases is the software platform or architectural initia-
tive itself. This has ranged from software development tools and informa-
tion systems, to control systems and consumer electronics, but also in-
cludes services, such as those provided by either institutions utilizing a
software platform or consultants.

� Business Strategy: This includes a company’s value proposition, sales strat-
egy and value generation. This information has been elicited in the study
in order to see if and how architectural initiatives are aligned to any busi-
ness strategy, and is further discussed in Section 6.

� Architectural Initiative: A description of the architectural initiative itself,
which has ranged from GUI frameworks to introducing extensive software
product lines, and packaging reusable assets as products of their own.

� Goal and Role of Initiative: The initiatives could be integral parts of a high-
level business strategy, or could be intended to address lower-level techni-
cal goals to satisfy specific quality attributes. The initiatives studied here
have covered those that have been integral parts of companies’ business
goals, startup companies where the architecture initiative was at the core of
the business idea, and software platforms and frameworks that have
emerged from technical decisions by individual developers.

� Quality Attributes: The “non-functional requirements” that are targeted by
the architectural initiative. Most initiatives aim to lower cost or time to
market through reuse, simplify change management, increase maintain-
ability or increase understandability, but others have aimed to enable
product portfolio differentiation by increasing variability and feature con-
tent.

� Evolution: The changes the company and the architectural initiative have
gone through, and how the company has balanced its long-term and short-

 4. Dimensions from the Material

Josef Nedstam 105

term focus. Analysis of these issues is at the core of the contribution that
this paper makes to the framework presented by Bosch, and is further dis-
cussed in Section 5.2.

� Organizational Structure and Funding: How the organization has been
structured around the architectural initiative and how funding and re-
sources have been distributed between the software platform and its prod-
ucts. The study includes companies that had specific organizational units
for the software platform separate from the organizational units for prod-
uct development, and other companies that have had quite different ap-
proaches.

� Scope and Variation: A description of how much of the products the plat-
form covers, what type of domain it covers, and how the platform accom-
modates variation in the products. The scope has varied from specific ap-
plication domain knowledge packaged in a platform for medical analysis
products, to general GUI frameworks. The companies have managed vari-
ability in different ways: by using configurable product bases managed to
various degrees; by performing customer projects that implement the re-
quired variability; or by focusing on one customer and after such a project
refactoring the generic parts of the resulting product.

5. A Framework for Architectural Evolution
The framework of maturity levels for software product lines proposed by Bosch
(2002), shown in Figure 16, was initially applied in an attempt to classify the
studied cases. The original framework includes: Independent Products, with no
reuse; Standardized Infrastructure, with reuse of externally developed generic
assets; Platform, with reuse of internally developed application domain specific
assets; Software Product Line, where variability of the platform components is
managed; Configurable Product Base, where products are generated from the
same product base; and the two composite states: Product Population, where less
strict adherence to the product line is allowed for, and Program of Product Lines,
where components of large systems are product lines themselves. The attempt
to apply the framework to these cases led to an adaptation of the framework. By
classifying the cases according to the dimensions identified in Section 4, new
states and possible transitions were found in the framework. The resulting states
are presented in this section, followed by the observed transitions.

5.1 States of Architectural Evolution
The “levels of maturity” for software product lines that Bosch presents are a
useful framework for companies that have business goals that can be supported
by a progression to product line development. However, some companies in
this study had other business goals. When their evolution was compared to
Bosch’s framework, additional states and transitions were identified, as shown
in Figure 17. In this discussion, and in Figure 17, Product Population is omit-

VIII Evolving Strategies for Software Architecture and Reuse

106 Strategies for Management of Architectural Change and Evolution

ted, a state with high component development maturity but with less focus on
an enforced architecture. Arrows – transitions – between states that have not
been seen in the 13 cases have also been omitted. The omissions have been
done to clarify the results with respect to the participating companies, and do
not imply that these states and transitions are invalid. The numbers in Figure
17 refer to the enumerated transitions found in Section 5.2. States that were
identified among the cases we studied were:

� Independent Products. In this strategy, each project developing a product
stands on its own, without relying on any company-wide architectural as-
sets.

Product
Population

Program of
Product Lines

Configurable
Product Base

Software Product
Line

Platform

Standardized
Infrastructure

Independent
Products

Figure 16. Maturity levels for software product lines (Bosch 2002)

 5. A Framework for Architectural Evolution

Josef Nedstam 107

� Standardized Infrastructure. Bosch makes a distinction between a Plat-
form and a Standardized Infrastructure, where the infrastructure is the se-
lected operating system, database manager, or any other externally devel-
oped generic software.

� Internal Platform. In Bosch’s original framework this state is labeled Plat-
form, a description that was not adequate to describe cases we studied. We
have therefore relabeled it to signify companies developing a platform in-
tended for internal use. An Internal Platform is therefore developed within
an organization, and is more application specific than an infrastructure
component, and is reused as-is.

� Software Product Line. Bosch makes the distinction between Platform
and Software Product Line when the platform also includes functionality
that is not used by all products, leading to a need for managing variation

Platform as
Product

Consultants

Internal Platform

Standardized
Infrastructure

Independent
Products

Consecutive
Releases from

Stable
Architecture

Platform
Customer

Software Product
Line

Configurable
Product Base
(Unmanaged)

Configurable
Product Base

1

2 2

3

4 5, 146

8, 9
10

11

12

13

Program of
Product Lines

9

12

Figure 17. Transitions in architectural evolution

VIII Evolving Strategies for Software Architecture and Reuse

108 Strategies for Management of Architectural Change and Evolution

between components that are similar but not the same, discussed in Chap-
ter IV. Compared to an Internal Platform, this state provides a complete
default product, with support for introducing customer specific variation.
This state was identified for companies that developed several products
that are marketed simultaneously, along the lines of the software product
line definitions found in Chapter IV.

� Program of Product Lines. This architectural strategy involves products
consisting of subsystems that are themselves managed as product lines. A
product is then developed by deriving its components from their respective
product lines, and integrating them. Company N used this strategy when
developing a system consisting of two rather independent subsystems
which communicated through a small remote interface.

� Configurable Product Base. In this architectural strategy, products are
generated or built from a common set of assets, and all products contain
the same source code. Variation between products is achieved by statically
or dynamically setting options provided by the assets. In Bosch’s model
this is considered a more mature state than Software Product Line.

� Configurable Product Base (Unmanaged). This state is similar to Con-
figurable Product Base, but companies in this state must run full-scale pro-
jects to derive a product from that product base. It is therefore also similar
to Consecutive Releases from Stable Architecture, but companies in this cate-
gory deliver and support several similar products simultaneously, not only
several consecutive releases of the same product.

� Consultants. Our study included consultancy companies with domain
expertise, some of which packaged their consultancy knowledge into prod-
ucts of various kinds, and this state is therefore included in the framework.

� Consecutive Releases from Stable Architecture. One company in par-
ticular, Company B, was able to produce new versions of their product on
a regular basis, based on the previous version, but without several simulta-
neous variants of the product, as in the product line case. The architecture
of the early versions of the product would allow such development for sev-
eral releases, which warrants inclusion of this state.

� Platform Customer. This state could in Bosch’s terminology be inter-
preted as Standardized Infrastructure, but as with Internal Platform, inclu-
sion of this state is an acknowledgement of the difference between a stan-
dardized environment consisting of e.g. an operating system, database,
and/or communication middleware, and a domain specific platform used
for developing products within a specific application domain.

� Platform as Product. In this strategy, a company markets a platform in-
tended for developing products or applications of a specific domain. These
companies are the suppliers for other companies using the Platform Cus-
tomer strategy. The study includes companies that have packaged their

 5. A Framework for Architectural Evolution

Josef Nedstam 109

platform as a product while still using it internally, companies that di-
vested their original product development in order to focus on selling the
platform as a product, and consultancy companies and startups that have
packaged their knowledge in a platform to be sold as a product.

5.2 Transitions in the Architecture Lifecycle
Figure 17 also shows the transitions between states that were encountered in
this work. Although the direct links from Independent Products to Standardized
Infrastructure and on to Internal Platform, as found in Bosch’s original frame-
work, are removed from this framework, these transitions are certainly valid.
The omission has been made to focus the following discussion on the observed
transitions. There are no doubt other valid transitions between the presented
states that have not yet been encountered, and there may well be other states
that have not yet been observed.

The fact that a company can move from one state to another does not pro-
vide much information, but the reasons for such transitions do. The transitions,
and their rationale in the studied cases, are presented here, numbered as in Fig-
ure 17:

1. New product generation: Consecutive Releases from Stable Architecture →
Independent Products. Company B was able to develop new versions of
their product in a line-oriented fashion at regular intervals for an extended
period of time. The line orientation was feasible as long as individual de-
velopers or feature teams could work within well-defined modules. Even-
tually the architecture of the product did not support new market re-
quirements, and the company had to develop a new product generation,
i.e. go back to Independent Products. This was a costly move as they also
had to switch over to project oriented development, which necessitates
more overhead than line oriented development. This transition is not al-
ways desirable, but is sometimes necessary, and requires necessary prepara-
tions.

2. Company split along platform interface: Internal Platform → Platform as
Product & Platform Customer. One company, Company A, struggling with
the distribution of resources between the internal platform and the prod-
uct oriented projects decided to split in two, Companies C and F, where
the company that supplied the platform, Company C, was free to sell it to
other customers – a novel approach to the balance between architectural
assets and products. On an idealized commodity market, such a transition
would reveal the inherent value of the platform.

3. Packaging consultancy knowledge as product: Consultants → Independ-
ent Products. One consultancy company, Company G, saw the opportunity
of packaging their domain knowledge into a product, and could do so by
an injection of venture capital. This transition is one way for consultancy
companies to get revenue based on value rather than time and effort.

VIII Evolving Strategies for Software Architecture and Reuse

110 Strategies for Management of Architectural Change and Evolution

4. Generalizing product into Platform as Product: Independent Products →
Platform as Product. Company G then realized that their domain knowl-
edge was more suitable for a platform than a proper product, and a change
in ownership enabled them to generalize their product into an application
server. While currently living off funding from customers, they are strug-
gling with the balance of long term and short term focus. Their current
approach is to refactor their product after every customer specific project,
and to avoid having separate development units concerned with their long
term and short term perspective.

5. Generalizing product into Internal Platform: Independent Products →
Internal Platform. Since the SPIN workgroup was focused on platforms,
this was the most common transition. Company A did this as their first
step before splitting into Companies C and F; Company H implemented a
GUI framework to support multiple operating systems; and in Companies
K, M and N the platform was the initial step to implement a product line.
The difficulty was in all cases to get a proper level of funding for the archi-
tectural initiative. Introducing a platform in order to save costs seems to be
difficult to get funding for, especially if it might mean delaying revenue
from products. Company H would in hindsight have standardized an in-
frastructure but no suitable GUI framework COTS components were
available at the time.

6. Packaging consultancy knowledge as Platform as Product: Consultants
→ Platform as Product. Company I, a consultancy company, decided to
take the step directly to a platform packaged as a product. The initiative
was to be done in parallel with two customer projects, funded by venture
capital. It was possible to get funding as the initiative was part of a growth
strategy, rather than for cost reduction.

7. Platform as Product from startup. A similar transition as transition 6
was performed by the startup company in the SPIN workgroup, Company
J, whose first product was a platform packaged in a development tool. Ac-
cording to their business idea, it is not feasible for companies to fund in-
ternal platforms, but they should be packaged as products or acquired
from external sources.

8. Increased scope leading to product line: Internal Platform → Software
Product Line. Company K found opportunities to diversify their product
portfolio based on their platform, leading them into a software product
line. As this is a growth strategy, funding for implementation of the soft-
ware product line is often easier to get.

9. Increased platform utilization leading to product line: Internal Platform
→ Software Product Line or Program of Product Lines. This transition is be-
tween the same states as above, but for different reasons. The companies
performing this transition, Companies M and N, had about the same
number of products in their portfolio before and after, and were driven to

 5. A Framework for Architectural Evolution

Josef Nedstam 111

software product line engineering in order to reduce cost or time to market
when developing or maintaining products. Since this is not a growth strat-
egy, these companies had to fund the architectural initiatives directly
through customer, or product, projects. Company N transitioned to Pro-
gram of Product Lines, because their system consisted of two distinct sub-
systems which were managed as separate product lines. The transition for
each subsystem would be similar to a transition to the Software Product
Line state.

10. Decreased scope for existing product line: Software Product Line → In-
ternal Platform. Company K later reduced their scope, and might now
have too extensive architectural assets.

11. Outsource existing IT resources: Standardized Infrastructure → Platform
Customer. One organization, Company L, decided to reduce risk by out-
sourcing their IT resources, and becoming a customer rather than a devel-
oper for internal use. The strategy aims at cost reduction, but it has proven
very difficult to estimate such savings. The organization has also realized
that the requirements engineering capability cannot be outsourced; they
still need to know what they want from their suppliers.

12. Synchronization between applications and platform in product line
setting. This is a constant evolution in the Software Product Line and Pro-
gram of Product Lines states, where development of architectural assets has
to be synchronized with development of products built from these assets.
This can be a cause of constant frustration for managers of these assets.
Companies M and N performed this process of constant evolution of the
product line and its assets. The inclusion of this transition also indicates
that the states are not discrete, that companies can be in between states for
lengthy periods of time while performing transitions.

13. From contractual development to off-the-shelf products: Independent
Products → Configurable Product Base (Unmanaged). Products developed
under contract are often independent from each other since there is no in-
centive for managed reuse. The company in this situation, Company E,
has a product that can be made into an off-the-shelf product, if the proper
generalizations are made.

14. Packaging project-internal platform without organizational support
structure: Independent Products → Internal Platform. The developers in
Company E have themselves implemented a framework capturing domain
knowledge, which could be the base for such generalizations, but no or-
ganization exists to manage such assets.

Table 16 gives an overview of the architectural evolution experienced by the
companies, by summarizing the transitions made. The companies are again
anonymized as in Chapter III, and the transitions are numbered as above. Driv-
ers indicate what made the companies perform each transition, and the organ-
izational acronyms are Domain Engineering Unit (DEU), Development De-

VIII Evolving Strategies for Software Architecture and Reuse

112 Strategies for Management of Architectural Change and Evolution

partment (DD), and Business Units (BU), as in Bosch (2002). Solution again
describes the architectural initiative, while Scope and Variation shows the diver-
sity of products each architectural initiative covered. The last column indicates
which quality attributes were important or affected by the transition, closely
related to Drivers.

Table 16: Observed transitions

 Org Tran Drivers Org Solution Scope Variation Quality attr

1 B 1 New market
reqs

Line to
project

Start from scratch One product, new
market, new standards

Family based Time to
market

2 C 5 Time to market DEU SW/HW plat-
form w own
resources

Specific type of con-
sumer electronics

Demographics,
geographic and
standards

Time to
market

3 C 2 Platform &
product con-
flicts

DD SW/HW plat-
form as product

as above as 2 and HW
peripherals

Performance

4 F 5 as 2 DEU as 2 as 2 as 2 as 2

5 F 2 as 3 BU Platform Cus-
tomer

as 2 as 2 as 2

6 D 13 Generic prod-
uct, generate
apps

DD Introduce frame-
works for HW

One product, which
must be configured for
a broad market in
control systems

I/O devices, comm
protocols, perf
needs

Integration,
performance

7 G 3 Product from
domain knowl-
edge

DD Develop reference
app

Abstract and narrow Immature market Functionality

8 G 4 Generalize first
product

DD Develop app
server

Following standard,
focused on big cust

PSTN and Inter-
net

as above

9 H 5 Several apps,
several plat-
forms

DEU UI framework Mac and Windows,
narrow market

Infrastructure Cost

10 I 6 Product from
domain knowl-
edge

DEU Tailor apps from
dev wizard

E-commerce Application serv-
ers, custom com-
ponents

Cost

11 J 7 Intern platf
hard to manage

DD Platform as prod,
packaged in
wizard

Information systems
presentation layer

Business logic
implemented
separately

Time to
market

12 K 8 Extend scope DEU Extract generic
parts of 1st prod-
ucts to SPL

2 types of medical
analysis

2 domains, UI not
in scope

Cost

13 K 10 Shrink scope DEU Platform w 1
product

1 type of medical
analysis

1 domain, UI not
in scope

Cost

14 L 11 Outsource
development

Acqui-
sition

Buy infrastructure Several medical info
systems

Functionality,
bureaucracy

Efficiency,
effectiveness

15 M 9 Customize
default prod

DEU Standardize
components on
platform

Tactical and strategic
simulators

Several simulator
views

Time to
market

16 M 12 Increase SPL
utilization

DEU Generalize spe-
cific components

as above as above as above

17 E 14 Reuse and CM DD Internal HW
framework

One product, increas-
ing capability

Several sensors Maintenance

20 N 9 Simplify plat-
form updates

BU File-level CM-
based SPL

Banking systems Branding, comm
protocols

Cost

21 N 12 Fight reuse
decay

BU Retroactive SPL
architecture

as above as above as above

 6. Relating Architectural Strategies to Business Goals

Josef Nedstam 113

6. Relating Architectural Strategies to Business
Goals

The study of architectural initiatives has included those implemented in re-
sponse to changing business strategies, those implemented as integral parts of
business strategies, and initiatives that have been more or less unrelated to any
business decisions. None of these scenarios are necessarily better or worse.
However, increased awareness and communication between the managerial and
technical side of the companies in this study could in many cases have led to
both management decisions that were more aligned to the capabilities of the
development department, and developer decisions that were more targeted at
the current business strategies. These issues have been affirmed by Hohmann
(2003) and Faulk et al. (2000).

Developers have to make technical decisions to help meet their organiza-
tion’s business goals, and should pursue opportunities of cost reduction through
reuse when this supports a business-critical objective. Senior management
should on the other hand pursue opportunities of mergers, acquisitions and
entering new markets, ventures that often will have technical impact. What is
needed is knowledge of which strategies for architecture or reuse will best bene-
fit the current business goals. With this knowledge, and knowledge of current
business imperatives, developers would have the tools to make the correct tech-
nical decisions. Senior management would on the other hand be helped in their
decision making by having a clear picture of which capabilities for reuse and
architectural evolution exist when performing major changes in business mod-
els. This section discusses economic issues surrounding the various architectural
strategies, and presents initial guidelines as to when each strategy is preferable.

6.1 Funding and Organizational Issues
The major management difficulty in most of the cases under study has been to
find the balance between investments in reusable assets and investments in
products sold to customers, i.e. the balance between long-term and short-term
investments. The problem is one of funding, but also has important effects on
resources, organization, and how to synchronize work.

In SEI’s framework for software product line practice, 9 strategies for fund-
ing product line activities are presented:

� Product-specific funding

� Direct funding from corporate sponsor/program

� Product line organization’s discretionary funds

� First product funds effort

� Multiple projects banded together to share costs

� Taxing of participating projects

VIII Evolving Strategies for Software Architecture and Reuse

114 Strategies for Management of Architectural Change and Evolution

� Product-side tax on customers

� Fee based on core asset usage

� Prorated cost recovery
The SEI framework also gives guidelines for their appropriateness with respect
to initiating and running a software product line, and developing products from
one. Bosch (2005) presents three funding strategies which are to be used with
increasing maturity of software product line engineering in an organization:
bartering, where product units developing similar components have informal
structures for sharing resources to generalize such mutual assets; taxation, as
above in the SEI framework, where projects spend part of their budget on mu-
tual assets; and licensing/royalties, where a price is set on these internal assets as if
they were available on the market.

Some of these funding strategies were identifiable and applicable to the stud-
ied cases, but many of the ones involving sharing costs between projects, such as
taxation, were unfeasible due to cultural and political factors. The collected ma-
terial also includes some interesting patterns that could extend the SEI guide-
lines:

� Architects often found it very easy to get funding for initiatives related to
growth strategies. Cost-saving initiatives were on the other hand harder to
fund – such funding was especially sensitive if the initiative would delay re-
lease of products, and therefore delay revenue. In these cases the initiatives
generally had to be funded directly by customer projects. These differences
could be related to which phase of the Technology Adoption Life Cycle –
presented in Chapter V – a company is in.

� In young companies and startups, venture capital funding can give more
liberties for long-term investments, compared to companies funded by
sales and customer projects. Longer-term investment allows for visionary
features and functionality, while short-term investments respond to fea-
tures springing out of customer requests.

� How does a customer-specific project determine the value provided by
using the architectural assets? Three approaches not conforming to the tra-
ditional product line strategy were found among the studied cases: Com-
pany A which split into Companies C and F, enabling the market to set
the price of the platform; Company J that from startup decided to build a
platform packaged as a product, reducing the difficulties of their customers
to manage development of internal platforms; and Company L which in-
stead decided to outsource most development. This can be seen in light of
Bosch’s licensing/royalties strategy (2005), which essentially is a way of
packaging internal assets as products. With such a strategy one also has to
be prepared to replace the internal asset with one available on the market,
showing better price/performance.

Independent of funding strategy, the companies still had organizational and
scheduling difficulties. Bosch presents some alternative organizational struc-

 6. Relating Architectural Strategies to Business Goals

Josef Nedstam 115

tures, three of which were represented among the studied companies. The one
Bosch favors for software product line engineering is the Domain Engineering
Unit (Bosch, 2000, 2002), where resources are dedicated to the development
and maintenance of reusable assets. The other two are the Development Depart-
ment, which develops all products and assets, and companies with a set of Busi-
ness Units, which are responsible for one product each.

To solve the problem of synchronizing resources and scheduling between
common architectural assets and product developing projects, one company
split in two along the interface of the platform, so one half, Company C, now
provides the platform as their product. In this way they have formalized the
communication paths between their previous Domain Engineering Unit, and
their Business Units. Because the platform is sold to other customers, they can
also more clearly see the value of what the Domain Engineering Unit produces.
Another company, Company J, was started with the intention of selling a plat-
form as a product, as they consider it too hard for companies to develop inter-
nal platforms.

Company E, which is contract-driven, had no organization or resources that
could package the developed framework in order for it to be reused internally.
Company M, with its software product line, had a constant problem of balanc-
ing resources between reusable assets and product-specific assets; product pro-
jects would not wait for new releases of reusable assets, but rather do their own
implementations of common but not yet developed functionality. One solution
to this problem was to not have a separate development unit for reusable assets.
Two of the companies, Companies G and J, used what Bosch calls a Develop-
ment Department that was mainly responsible for product development, but
would evolve architectural assets when necessary or between projects; they were
therefore not using Bosch’s suggested Domain Engineering Unit, to avoid syn-
chronization problems. One company that did have a Domain Engineering
Unit, Company H, constantly had some of its members as apprentices on the
product-developing projects, to simplify requirements elicitation for the reus-
able assets and set the correct expectations on these assets among other develop-
ers. Whether or not a Domain Engineering Unit is used, the flow and prioritiza-
tion of requirements from customers, over product projects, and down to the
platform has been a success factor.

6.2 The Case for an Architectural Investment
A problem for initiators of architectural initiatives is to present its business case,
as discussed in Chapter VII. Return on Investment is often said to be the focus
when making such decisions, and this might be true if the initiator or decision
maker is a product manager (Nejmeh & Thomson, 2002). The priorities of a
project manager would on the other hand be to stay on time and on budget,
while the role of the architect seldom is tied to any such particular responsibil-
ity. Other metrics, such as time to break-even, as discussed by SEI (Clements &
Northrop, 2002), or market share, might be more suitable cornerstones of a

VIII Evolving Strategies for Software Architecture and Reuse

116 Strategies for Management of Architectural Change and Evolution

business case for any architecture initiative. The business goals of the company
will determine how to make the business case for the architectural initiative; a
business case for an architectural initiative to support growth will be very differ-
ent from one to support cost reduction. None of the development level initia-
tors in this study made a formal business case, or even produced any figures
supporting the initiatives.

6.3 When to Use Each Architectural Strategy
Each architectural strategy has different impact on an organization’s ability to
meet different kinds of business objectives. For example, Kruger (2003) makes
the case for a product line explicit, when saying that the objective of a software
product line is to optimize software engineering speed and productivity by ex-
ploiting commonalities among products. However, a company with other ob-
jectives – such as high responsiveness to changing customer demands – may
have to employ a different architectural strategy.

The platform strategies are suitable if some core application domain knowl-
edge can be extracted from a set of products. A platform gets problematic when
it evolves as fast as the products built from it, since one platform should sustain
a number of products. If the platform and the products evolve at the same rate,
managed variation is needed, which leads to a Software Product Line. The plat-
form strategies have a narrower scope than infrastructure strategies, and the
Platform as Product strategy is therefore beneficial when a company has domain
specific knowledge which cannot be easily turned into a proper product, but
does not have a market position where it can impose an underlying infrastruc-
ture onto a large market. Platform Customer is superior to Standardized Infra-
structure if a company has a strong position in branding or applica-
tion/functionality, but not so strong a position in technology.

A company having problems maintaining its Internal Platform strategy may
divest either its products or its platform, and turn into a Platform Customer if
the stronger position is in branding and end user functionality, or into a Plat-
form as Product if the stronger position is in technology and intellectual prop-
erty. The problems of an internal platform can be resolved by organizational
measures such as rotating the developers of the platform out into the products,
or by improving the requirements process from end user and customer, to
products, and down to the platform itself. Managed evolution of and variation
in the platform can also lead to the Software Product Line strategy.

Companies with Independent Products that see no benefits from extracting
a common platform out of their products should strive to find a stable architec-
ture for each product. When the Consecutive Releases from Stable Architecture
strategy is in place, the company should be aware that this stable architecture
may nonetheless eventually pose limitations on the ability to support emerging
requirements or changing environments, and the specific product may have to
go through a painful phase of reengineering.

 6. Relating Architectural Strategies to Business Goals

Josef Nedstam 117

Consultants with exclusive knowledge within some domain will strive to be
reimbursed according to the value they generate for their customers, rather than
by the hour. One way of achieving this is for them to package their knowledge
in a product. Consultants may also package their knowledge in a product to be
able to show prospective customers a prototype of what the consultancy could
provide. If the consultancy is far away from end users, their knowledge can in-
stead be packaged as a Platform as Product. Paradoxically, as discussed in Chap-
ter V, product developing companies often tend to seek more stable revenues,
e.g. by adding services to their products (Cusumano, 2004), services which are
often charged by the hour, i.e. consultants with a quite specific domain – the
product.

7. Discussion
The work shows a link between overall business goals, and the architectural
strategies that best suit these goals. Companies need a sustainable competitive
advantage (Aaker, 2001), which is based on the way the company competes
(strategies, tactics), its basis for competition (resources, competencies), the mar-
ket it competes in, and the competitors in that market. A strategy for sustain-
able competitive advantage can be derived from analysis of these factors. If this
strategy is known to all parts of the organization, and is aligned to available re-
sources, competencies and architectural assets, an architect should be able to
determine the driving quality attributes for the products being developed.
These quality attributes and other organizational and technical constraints may
then guide the choice of architectural strategies.

In other words, the business imperatives of a company should be visible to
architects and developers. From these, and the framework given here, an archi-
tect should be able to determine the most favorable state of architectural evolu-
tion, possibly with help from evaluation frameworks such as the CMM (Paulk
et al., 1993), ATAM (Kazman et al., 1998), or the SPL Tech Probe (Clements
& Northrop, 2001). The alternative strategies for funding and organization
given in the framework presented here could then give the architect guidance to
perform any such transition.

Establishing a set of architectural evolution state transitions, such as the one
presented here, may enable us to show industry the existing options, the pros
and cons of these, and in which situations each option is feasible.

7.1 Validity of Findings
While Section 2 includes a discussion of the general methods that have been
applied to increase the validity of these findings, this section presents aspects of
validity that are specific to the companies involved and the results produced.

Information gathered from companies in the later stages of this research has
added new states to the framework, and new transitions between these states.
This is a clear indication that the framework is not complete. A complete
framework will however be hard to define, because competitive advantage often

VIII Evolving Strategies for Software Architecture and Reuse

118 Strategies for Management of Architectural Change and Evolution

can be found by finding innovative ways to compete, thereby possibly creating
new states and transitions in this framework.

The set of studied companies is broad in terms of types of industry, and the
generalizability in that aspect should therefore be high. It might, however, be
that different industries have different patterns of evolution, and therefore
should be studied separately.

The information from most of the companies in this study has been col-
lected from initiators of the topical architectural initiatives. The bias introduced
by this is hard to assess, but has been countered by not focusing on whether
these initiatives have been “good” or “bad” throughout interviews and feedback
sessions. Broader studies including other roles at these companies could there-
fore provide more confirmatory information.

The proposed model is mostly descriptive and non-predictive, so the main
threat to its validity is whether the existing states and transitions are either not
well enough defined to be used reliably by others, or are too specific to apply to
companies that did not participate in the study. These threats are partly coun-
tered by the model’s derivation from Bosch’s existing product line maturity
framework. Additional states in the model presented here are at a “similar” level
of abstraction to Bosch’s states, but address reuse strategies different to software
product line development. These new states reflect commonly described prac-
tices.

7.2 Further Work
Further work needs to be done to clarify this framework, and to identify a more
complete set of strategies for funding, organizing and managing architectural
initiatives. Such work, based on these and previous results, should focus on de-
scribing the process of architectural evolution, in order to guide companies and
individual architects to apply the benefits of an architectural approach to reuse.
This would involve more analysis of the relation between business and architec-
tural initiatives, and more analysis of ways to make business cases for different
types of architectural initiatives. The framework itself can also be validated by
further empirical studies, which would possibly extend the framework by iden-
tifying new states and transitions between states. The fidelity of the framework
could then be examined by having experts classify a set of companies according
to the framework, and measure the level of agreement between these classifica-
tions with e.g. a Kappa analysis (Fusaro et al., 1997).

8. Summary and Implications
This chapter has presented qualitative analysis of information gathered from
companies that have changed their architectural strategy for reuse. This analysis
has informed a framework that identifies software reuse strategies, their archi-
tectural basis, and styles of architectural evolution that support organizational
changes from one software reuse strategy to another.

 8. Summary and Implications

Josef Nedstam 119

This framework may show industry the range of options for such strategies,
the pros and cons of each, and in which situations each is feasible. The frame-
work provides a structure for the classification of organizations and their devel-
oped software. This will support further studies into areas such as alignment of
business goals with architectural reuse strategies, the development of business
cases for changes to such strategies, and effective team structures for such strate-
gies.

120

 Strategies for Management of Architectural Change and Evolution

 121

IX Open Source Business Models in
Practice: A Survey of Commercial
Open Source Introduction

Open Source Software development has evolved from being an un-
derground movement for hackers, to become a phenomenon that
attracts interest from commercial organizations. The possibility to
control the code, avoid vendor lock-in and accomplish cost savings
makes open source software attractive. This study presents a survey
of nine organizations relating to open source software in different
ways. The study has resulted in documentation and analysis of the
applicable business models, along with the gains and risks associ-
ated with open source software use and development. To succeed,
some prerequisites need to be fulfilled. A clear strategy is needed
and an organizational structure must be defined in order to assign
tasks and responsibilities. There must also be a strong advocate to
champion such a project and management support is crucial.

From Nedstam, J., Andersson, A. and Hässler, K., “Open Source
Business Models on Practice: A Survey of Commercial Open
Source Introduction”, Technical Report CODEN:LUTEDX(TETS-
7213)/1-14/(2005) & local 28, Department of Communication Sys-
tems, 2005.

1. Introduction
The concept of Open Source Software is fairly new in the business environ-
ment. For open source software, the source code of the software is available,
which makes it possible for a software developer to understand how it is struc-
tured. The developer is permitted to make changes and to distribute the code if
desirable. Open source software is usually developed in a so-called developer
community, where developers from all over the world can collaborate over
Internet on open source projects.

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

122 Strategies for Management of Architectural Change and Evolution

For a long time open source software was not considered to be useful outside
the hacker community, but today several organizations use open source software
in a commercial context. One example is Red Hat, an organization distributing
Linux. Even larger enterprises such as IBM and Sun Microsystems are nowa-
days investing in open source software projects. Companies that are not primar-
ily in the IT business also start to gain interest in open source software.

This work presents a survey of companies that have exploited open source
software commercially. It is a study of how they have introduced open source
software, which business models they have selected, but also of the risks and
opportunities they have discovered in open source software.

The research question for this work has centered on analyzing open source
software as part of viable business models in current industry practice. The
study has investigated which types of companies have been able to profit from
open source software, what the gains and risks are, the prerequisites for intro-
ducing open source software, the long-term implications of open source soft-
ware, and also license and legal issues surrounding open source software. The
work has been focused on open source software with licenses certified by the
organization Open Source Initiative (OSI, 2005), and not on other types of free
software.

This introduction is followed by a description of how the study was con-
ducted. Section 3 introduces features of open source software that have been at
issue for the survey; Section 4 describes the studied companies and how they
have approached open source software; and Section 5 presents lessons learnt.
Section 6 shows how the companies approached the open source community,
while Section 7 discusses the business models they have utilized to gain benefits
from open source software. Finally Section 8 concludes the study.

2. Conduct of Research
In this study, open-ended interviews have been used to gather information,
supported by an interview guide (Robson, 2002) developed from the research
questions. The participating organizations were chosen through snowball or
chain sampling (Patton, 2001). In this method interviewees are asked to rec-
ommend other persons that would be valuable sources of information. For
every interview, new recommendations are gathered, and the accumulated sam-
ple grows, like a snowball. After a certain time the study will converge when
recommendations reoccur. When applying this method to people with open
source knowledge in Swedish companies, the names of recommended persons
were soon repeated. Reasons for this might be that open source is not widely
spread in Swedish organizations, or that personal networks of individuals with
these responsibilities are disjoint.

The interviews were carried out with two interviewers taking extensive
notes, and all interviewees were given the opportunity to validate a written
summary of the interview. The material was then analyzed by establishing the
main dimensions of it. These were extracted from recurring themes in the inter-

 8. Summary and Implications

Josef Nedstam 123

views, and are presented in Section 5. The general conclusions of Section 8 have
been strengthened by presenting them to, and discussing them with practitio-
ners both skeptical and optimistic to open source software.

3. Open Source Software
This survey focuses on open source software with licenses in accordance with
the Open Source Definition from the Open Source Initiative (OSI, 2005). The
definition covers issues such as free redistribution, source code, derived works,
and distribution of license.

The development process in open source communities is usually character-
ized by parallel work, independent peer review, prompt feedback, highly moti-
vated and talented developers, increased user involvement and rapid release
schedules (Feller & Fitzgerald, 2003). Eric Raymond presents the metaphor of
the Cathedral and Bazaar, to contrast process-centric and open source develop-
ment (Raymond, 1998). When thinking the cathedral way, bugs are assumed to
be difficult to find and a few experts are assigned to this task. In the bazaar,
both users and developers might search for bugs.

Open source communities do not always correspond to the picture de-
scribed by Raymond. They might differ much in size and activity. Large open
source projects like the development of the Linux kernel or the Apache web
server are likely to profit from abundant peer review and feedback. They can
also easily attract skilled developers. However, this is not necessarily true for all
open source communities. Krishnamurthy (2002) presents a study of 100 ma-
ture open source software projects found on SourceForge (2005). There are few
developers in most of the projects, and most projects did not generate much
discussion. It is therefore not possible do draw conclusions about open source
projects in general by studying e.g. the Linux kernel development.

Feller & Fitzgerald (2003) describe some of the rules in open source pro-
jects. It is e.g. important to avoid forking of a project, in order to maintain fo-
cus and a critical mass of interested developers. Another important rule is not to
take credit for someone else’s work. It is not common that a formal develop-
ment process is used in open source projects. Tool support for version and re-
lease management is however necessary in this environment of distributed de-
velopment.

In open source communities tasks are chosen voluntarily by developers, and
no one can force anyone to perform a particular task (Seifert & Wieland,
2003). Therefore motivation is essential in open source software development.
Bergquist & Ljungberg (2001) liken open source development to the academic
way of sharing knowledge where no direct economic benefit is received from
each publication. Both modes of operation also include extensive peer review.

Regarding the quality of the output of open source projects, Siefert & Wie-
land (2003) argue that open source projects have better quality control since
developers do not have write access to the repository. Contributions from dif-
ferent developers are always evaluated before being integrated in the software.

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

124 Strategies for Management of Architectural Change and Evolution

Vixie (1999) believes that open source quality assurance is unorganized, but
that extensive field-testing helps to improve quality.

3.1 Software Licenses
A software license generally gives a non-exclusive right to install the program on
a limited number of computers (Olofsson, 2003). However, instead of limiting
the user’s right to the program, open source licenses increase the user’s right of
disposal at the author’s expense.

Several open source license models exist. Some licenses are very free in the
sense that they allow the user to do practically anything with the program, such
as the MIT License. Others are more restrictive and impose certain require-
ments on the user, such as the General Public License (GPL), which require
that any software derived from GPL software should be licensed under GPL
(Olofsson, 2003). GPL is the most commonly used open source software li-
cense, e.g. in the Linux kernel project. GPL allows for modification of a pro-
gram internally, to be used within a company for example, but if the modified
program is distributed the GPL takes effect. The Lesser General Public License
(LGPL) makes it possible for proprietary software development to use LGPL
libraries without applying LGPL to the software.

The MIT, or X License belongs to another group of licenses along with the
BSD License and the Apache Software License. These are very permissive, and
only require derived source code to contain reference to the license and previous
contributors.

A legal issue concerning open source software is the risk of patent infringe-
ment. It is easier to get access to the code of an open source program than a
proprietary program, which makes it possible to examine the open source code
searching for patent infringements. According to Golden (2004), there has
however been very few instances of patent infringement during the entire his-
tory of software – a trend which might be changing as software patent regula-
tions are changing.

4. Open Source Software Applications in Business
The open source movement has involved a great number of developers all over
the world. However, when it comes to applying open source in a business con-
text a whole new set of questions arises. In this section the case organizations’
experiences of using open source are presented and discussed. Brief presenta-
tions of the companies are given in Chapter III, and an overview is given in
Table 17. A number of gains and risks were revealed and are summarized in
Table 18. This section is followed by a discussion of some open source business
models.

 4. Open Source Software Applications in Business

Josef Nedstam 125

4.1 Company O
Company O first started using software in coin sorters 15 years ago. Most ma-
chines used by customers today are based on the original software platform.
This architecture has become unstructured over the years. A large mass of code
made it difficult to search for bugs or make changes. To overcome these prob-
lems a new modularized platform in C++ was suggested. This work was never
completed due to an overwhelming workload when writing device drivers. In-
stead of completing this new platform the old one was migrated from DOS to
Windows. A third platform is now being developed using open source software.
The ongoing project was initiated in August 2003 when the current project
leader started working at Company O, championing the open source software
effort. The introduction of open source software was combined with new work
procedures based on Extreme Programming, XP (Beck, 1999a; 1999b). The
main purpose of introducing open source software was to decrease the code
base, with an ambitious target of a new code base only 10% of the size of the
previous. A smaller code base would make the system easier to maintain.

A one-year period of convincing and presenting the concept preceded the
introduction of open source software at Company O. The project started off by
establishing an appropriate software development infrastructure. The first step
was to introduce the Concurrent Versions System, CVS, instead of the former
proprietary configuration management system. The extended infrastructure
involves among other things a build system and issue tracking. The developed
system still runs on Windows, but Linux is planned to be introduced when the
organization is ready. A system built on the new platform will shortly be rolled
out onto a product, and the size of the code base is 6% of the original, whereof
two percent points are test cases implemented in test-driven development
(Beck, 1999a; 1999b).

Table 17. Commercial organizations using open source software.

Company Founded in Number of Employees Revenues 2003 Net Income 2003

O 1966 400 $90 M $6 M

P 1984 350 $88 M $0.2 M

Q 1992 300 $35 M -------

R 1911 319 273 $89.1 billion $7.6 billion

S 1876 51 583 $20 billion -$1.8 billion

T 1981 30 $9 M -------

U 1999 180 ------- -------

V 1998 3 000 $480 M -$25 M

W 1983 1 300 $295 M -$40 M

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

126 Strategies for Management of Architectural Change and Evolution

4.2 Company P
As early as 1997, Company P started to gain interest in Linux and open source,
mainly because the servers from Sun, used at the time, were very expensive. The
involvement in Linux started with developers using Linux systems for compil-
ing. When the Linux project evolved, the possibility to run Linux on a proces-
sor without a Memory Management Unit (MMU) appeared. Company P de-
cided to try to develop Linux for the in-house developed processor, ETRAX,
and one developer was given a few months to complete the task. The project
was successful and in the year 2000 the first Linux-based camera was released to
the market. Since this release, all new products are developed on the Linux plat-
form.

Within Company P, there are certain groups assigned to keep an eye on the
Linux community. About ten people are responsible for updating the Linux
kernel versions as well as adjusting device drivers for new versions, and another
group is doing the same for applications. These groups also function as in-house
support for Linux.

Two open source development projects have been initiated by Company P.
In both projects, Company P first developed software in-house, and when the
first version was ready, the code was released to an open source community.
The first project was a Bluetooth stack, which today has been abandoned since
Company P no longer focuses on the Bluetooth area. The second open source
project was the Journal Flash File System (JFFS). Company P took care of the
JFFS for the first two years, and then handed it over to Red Hat. These projects
have contributed in making Company P well known in the world of open
source.

4.3 Company Q
Company Q develops integrated hardware and software solutions for embedded
real-time systems, and they started using open source software by curiosity re-
garding possible technical advantages. The first open source-related project at
Company Q was the construction of the Wireless Open Source Platform
(WOSP), which started off as a Master Thesis project. The WOSP is a system
that together with a WAP-browser makes it possible to retrieve wireless infor-
mation from an embedded system. It is also possible to control the embedded
system from the browser. The project involved a number of different open
source components that were of interest to Company Q. One of them was the
open RTOS eCos, which was migrated to an ARM7-processor. Then an open
Bluetooth-stack from Company P was migrated to eCos. The assignment was
very successful, and led to several following projects such as the Volvo Personal
Communicator (VPC) and the flight recorder StarFrec, both based on eCos.

 4. Open Source Software Applications in Business

Josef Nedstam 127

4.4 Company R
Company R researchers started using Linux in the mid 90’s, and considered it
to be an additional alternative to Company R’s AIX operating system. Com-
pany R has so-called Impact Teams and Business Development Teams to inves-
tigate new topics and to incubate and create new offerings to support the sales
teams to bring new products to the customer. The Linux Impact team started
to drive Linux and Open Source, especially on servers in 2000. Today, Com-
pany R has several thousands of clients using open source. Company R is in-
volved in a number of open source communities, and contributes with devel-
opment and bug fixing. About 300 Company R developers participate in com-
munity development. Company R has also launched the Eclipse open source
project. There is a central organization within Company R that monitors activi-
ties and contributions of different open source communities. According to
Company R, back-end Linux is mainstream and used by thousands of custom-
ers. However, there are not as many open source projects on the client side as
on the server side today.

When a customer wants to start using open source software, a number of as-
sessment services are offered by Company R, to investigate expectations, re-
quirements, the skills of the employees, the infrastructure etc. Company R does
not handle the open source software itself, and does not leave any warranty for
it. Instead Company R focuses on services like support and installation, archi-
tecture and consolidation. Regarding development of open source software
modules, Company R lets the customer decide what is to be open source, ex-
cept when disclosure or nondisclosure of deliverables is part of the contract.

4.5 Company S
Company S is one of the world’s leading organizations within telecom industry.
Six years ago, Company S released the in-house developed programming lan-
guage Erlang as open source, based on a decision not to get locked in with a
technology only used by Company S and a wish for other companies to take
part in the project. A couple of different products were based on Erlang at the
time. Today, an open source community for Erlang exists, but no larger organi-
zation has joined the project.

Company S started to gain interest in the Eclipse project in 2002 and joined
as a strategic member in 2004. There were two main reasons to start using
Eclipse. Within Company S, several hundred different development tools are
used and it is difficult to exchange experiences and techniques among develop-
ers. There is also much work with re-education of developers each time they
join a development project, since they need to learn new development envi-
ronments and languages. When using the Eclipse IDE these issues are solved,
since Eclipse has the same appearance for different tools and languages. This
gives a possibility to integrate tools and projects much easier.

Today, about 10-15 Company S developers work completely in Eclipse en-
vironments with development of Java based user interfaces. Two years from

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

128 Strategies for Management of Architectural Change and Evolution

now the plan is to have hundreds of Company S’s 20 000 developers working
in Eclipse. To make clear to suppliers that using Eclipse is part of Company S’s
strategy, a membership in Eclipse has seemed necessary. To be a strategic mem-
ber, Company S pays an annual fee. This membership allows the company to
join the board, and to make decisions about requirements, planning and archi-
tecture. Company S is involved in a number of other open source projects, and
there is a group consisting of ten people working with open source and stan-
dardization

4.6 Company T
Company T has 30 employees and works mainly as a distributor of develop-
ment tools for embedded systems. In recent years, there has been an increasing
interest from customers regarding open source software and the possibility to
save money by using open source products. This growing interest is the main
reason why Company T now acts as a distributor for Company U, an organiza-
tion providing an in-house developed Linux open source platform for embed-
ded systems.

4.7 Company U
In October 2004 Company U started an open source project, with the goal of
extending the Linux kernel with hard real-time abilities. IBM, Intel, Samsung,
Sony, and Siemens among others support the project. Company U has earlier
developed a patch to make the Linux kernel preemptible, and the 2.6 version of
Linux includes this feature as standard. The goal in the project is to shorten
latency times in the kernel to make them as short as in proprietary RTOSs ex-
isting today. The project is expected to finish by summer of 2005.

4.8 Company V
The Mobile Devices Smart Phone Division of Company V has in 2004 noticed
an increasing interest from customers regarding Linux for smart phones. As
more advanced mobile phones replace the ones used today, a different type of
operating system is required. There are four main brands of operating systems
on the market: Windows, Symbian, Palm and Linux. The main reason why
some of Company V’s customers are using or consider using Linux is the low
initial price. They can simply not afford to develop mobile phones with an ex-
pensive operating system. Another motivation can be the fact that the customer
is not big enough to get a source code license. The most common way to ac-
quire Linux for mobile phones is to buy it from a distributor, usually Company
U. Another, less common alternative, is to download Linux and tailor it for
specific needs in-house.

 4. Open Source Software Applications in Business

Josef Nedstam 129

4.9 Company W
Company W has been involved in, and affected by open source software in
many ways – as a vendor, a developer, a competitor and a user of open source
software. Company W sells tools and environments for developing open source
software, but since there are open source alternatives to Company W’s prod-
ucts, the open source movement is also a competitor. The main open source
competing product is Eclipse, which is gaining market shares from JBuilder,
one of Company W’s most important products. Since Eclipse is a competitor,
Company W has kept an eye on the Eclipse project and early became a board
member. The organization is still involved in the project, but mainly as a mem-
ber and does not participate with developers.

Company W has also played the role of open source developer when the da-
tabase Interbase was released as open source in July 2000. The measure origi-
nated from the decision that Company W should no longer focus on this area.
Instead of abandoning the project completely, the alternative of an open source
project was chosen as a way to offer customers an alternative for support and
development of the database. The IBPhoenix community created their database
Firebird with the released code. However it became clear that some of Com-
pany W’s customers preferred getting support from Company W and eventu-
ally the company reintegrated Interbase as a product of their own. Nowadays
Company W’s Interbase and IBPhoenix’s Firebird coexist. When developing
software Company W sometimes uses open source software in less business
critical parts of the systems. For example, the Apache web server has been in-
corporated in some products.

5. Lessons Learned from Open Source Software
The following section gives an analysis of the collected material from the or-
ganizations presented above. By studying the interviews from each company, a
number of positive and negative aspects of open source were found. The results
are presented in Table 18, and are further discussed in Sections 5.1–5.6 where
they are grouped in six different areas: Development, Security & Quality, Sup-
port, Procurement, Licenses & Legal Issues and Strategic & Organizational As-
pects.

5.1 Development
When using open source, two of the studied organizations emphasized that they
had managed to substantially shorten development effort, by writing less code
in-house. This may cut development costs and give a better time-to-market. On
the other hand it may cause developers to worry about becoming redundant
and there may also be resistance to learn a new language if this is required. This
was for example one of the initial problems when introducing open source
software at Company O.

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

130 Strategies for Management of Architectural Change and Evolution

At Company O developers became more motivated when they were intro-
duced to community thinking and could get “ego boosts” when contributing to
both in-house and community projects. Another gain was the increased compe-

Table 18: Companies experiences with open source software

 Gains and Improvements Challenges and Risks

Develop-
ment

Possibility to view and control the code
Possibility to modify the code
Increased competence of own developers
Knowledge exchange in the community
Developers get an “ego boost”
Shorter development time
Cheaper development costs
Easier to attract students

Strong and competent advocate needed
Time to integrate OSS components
Time to develop a new platform
Developers may worry about becoming re-
dundant
Resistance to learn a new language
OSS introduced “for fun”
Staff may fear being deskilled
Best developers occupied by a Linux kernel

Security &
Quality

Skilled/motivated developers in the community
Bugs can be fixed immediately
Good testing and feedback
Peer review within the community
Resources for testing instead of developing
Development for many OS’s and environments
Improved functionality

Code must be tested and verified even if it is
not developed in-house*

Support Freedom of choosing support from different pro-
viders

Need more software knowledge than when
buying proprietary products
Do not trust the community to solve all
problems
Support is not for free
Professional support is not always available
Need a general view of SW development*

Procure-
ment

Get access to interesting technology
No need for going through purchase department
Services and software associated with open source
software has in general a lower price

Spending time on downloading and evaluat-
ing open source software
Do not expect OSS to be for free
Lack of a specific software vendor
Important to establish requirements*
Important to look at all costs*
Strive to use standard components*

Licenses
& Legal
Issues

No license cost GPL is complicated
Give attention to GPL interfaces
GPL may interfere with functionality
Risk loosing customers not accepting OSS
Risk of patent infringement*

Strategic
& Organ-
izational
Aspects

Concentrate on core competence
Organizations cannot run large projects like
Eclipse alone – cooperation is needed
Relation between organizations in an open source
software project more relaxed and non-political
than otherwise
An opportunity to sell more products by releasing
one product for free
Sell add-ons to open source software
A sales argument
Can create goodwill
open source software is useful when a third party
needs to write an application

Top management support for OSS is crucial
Differ between commodities and core compe-
tences
OSS project may go in other direction than
wanted
Critical mass of participants for OSS project
A fear of failure
Difficult to find short-term gains
Difficult to evaluate if OSS is profitable
An OSS project may be abandoned
Need to incorporate components interesting
to others, rather than to yourself
Anyone may write an application

 * Also true for proprietary software

 5. Lessons Learned from Open Source Software

Josef Nedstam 131

tence developers achieved when working with open source. According to Com-
pany Q, there is a very efficient knowledge exchange in an open source com-
munity. An evident gain with open source software is that the code can be ex-
amined, controlled and changed as opposed to acquired proprietary software.
Open source may be the only way to get access to source code, as has been the
case for some of Company V’s customers.

Open source is in general appealing to engineers, and open source software
might sometimes be introduced as a technical challenge rather than as a good
business idea. A mistake can be to involve all the best developers in configuring
for example a Linux kernel, instead of developing products. It is also important
to know that it takes time to integrate different open source software compo-
nents. If a complete platform is to be integrated and adapted, the organization
must provide resources for this. When developing a new Linux platform at
Company P, two years of development work was devoted to attain the same
functionality as on the previous platform. To manage all these difficulties it is
important to have a strong and competent advocate leading an open source in-
troduction. At both Company O and P management supported the idea to in-
troduce open source software from the start.

5.2 Security and Quality
One commonly mentioned advantage of open source software is that high qual-
ity of code can be achieved. Within Company R it is believed that bug fixing
and improvement is handled fast and reliably in the community. Company O
argues that code of high quality can be achieved due to a large number of skilled
and motivated developers in the community, and the fact that peer review is
conducted frequently. Dedicated users, often developers themselves, result in a
large amount of testing and feedback. An extensive developer base results in
products being developed for many environments and different operating sys-
tems. Company Q points out that when you let someone else take care of de-
velopment, it is possible to put more resources into testing. If bugs are found,
they can be corrected immediately in-house, or by outsourcing the work.

It is important to know that the code received from the community must be
tested and verified just as much as the code developed in-house, before being
incorporated into products. It is also advised by Company Q that open source
software should not be used in safety critical systems, such as life-supporting
equipment, since it might be too unstable for these kinds of rigid requirements.

5.3 Support
When introducing open source software, it is essential for an organization to
change its approach regarding software support activities. Instead of simply
buying required support from the vendor providing the software, the organiza-
tion must take more responsibility for support, and this is done by for example
Companies P and O. Company O mainly relies on community mailing lists to
get support. Company P has an in-house Linux group that is responsible for

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

132 Strategies for Management of Architectural Change and Evolution

support. Many of the organizations in the study agree that more software
knowledge is needed when using open source software, compared to when buy-
ing proprietary software. Company Q suggests that someone must have a gen-
eral view of the software development within the organization when using open
source software. The positive side of the increased responsibility is the freedom
of choosing support from different providers to fit the needs and requirements
of the organization.

Company W mentions that professional support might not be available for
the chosen open source software. This is something to consider when evaluating
open source software products. Another important issue mentioned by Com-
pany Q, is that software problems sometimes need to be solved within the
company; do not trust the open source community to solve everything. Com-
pany R does not recommend customers to use open source as a primary alterna-
tive since Company R has products of their own for which they offer support.

5.4 Procurement
To make use of open source software is, for most organizations, a way to gain
access to an interesting technology. When working with proprietary software it
is customary to go through a purchase department to manage software acquisi-
tion. When using open source software this is not necessary, a circumstance that
gives rise to both positive and negative effects. The positive effect is that over-
head expenditures can be saved if there is no need to place orders, handle deliv-
eries etc. However, it is not advisable to let developers spend unlimited time on
downloading and trying out different open source programs since these activi-
ties can be very time consuming. Company Q therefore argues the importance
of determining the needed functionality. If a clear definition of wanted func-
tionality is provided, downloading can be limited to this area. To benefit from
open source software it is important to use standard software components. This
is pointed out by both Company Q and O. Most open source software is devel-
oped in areas where there is a general interest.

When an organization tries to assess the consequences of introducing open
source software it is important to consider all costs. Just because the software is
not bought the traditional way it does not mean there are no costs to take into
account. Most services and software associated with open source, such as sup-
port and open source applications, has a lower price than proprietary software.
However, it is important to recognize that there might be more difficulties with
open source software. Company T thinks that it is important not to expect
open source software to be for free. Total Cost of Ownership (Ferrin & Plank,
2003) should therefore be investigated when considering introduction of open
source software. Another factor to take into account is the relation towards an
open source community, which is different from the ordinary seller-buyer rela-
tion and therefore demands a different approach. This is discussed in detail in
Section 6.

 5. Lessons Learned from Open Source Software

Josef Nedstam 133

5.5 Licenses and Legal Issues
The most obvious gain of introducing open source software is the fact that in
most cases there are no license fees. This is mentioned by all the organizations
in the study. However, a license is attached to the software and it is important
to understand the conditions stated in the license, as described in Section 3.1.
One of the problems observed by several organizations is the difficulty to un-
derstand GPL. It is essential to know how to treat interfaces between protected
parts and GPL code. If this is not handled carefully there is a risk that code is
contaminated, which means that GPL must be applied to proprietary code.
Sometimes code that should have been placed in kernel space is located in user
space to avoid being forced to use GPL for this code. This might deteriorate
functionality.

Another difficulty concerning open source is the risk of patent infringement,
as described in Section 3. Within Company R, a central office handles all legal
issues, and all open source software projects must be committed by this office.
According to Michel Pyschny, Leader Business Development Linux, Central
Region at Company R, this office is aware of where the problems are on the
market. A way to control legal issues is to understand the code of the open
source software that is used. Pyschny thinks that legal issues can be a difficulty
when using and developing open source, and customers might think of this as a
threat. However, Pyschny does not see it as a showstopper for the open source
movement. Company R is waiting for statements from the EU on software pat-
ents. Company U offers clients a warranty in case of patent infringement and
takes the responsibility of any patent infringements that could be caused by the
software in their distribution. One of the studied organizations lost a client that
didn’t want to buy products with open source software because the risk of legal
conflicts with patent holders. One of Company W’s clients always asks for a list
of open source components. This implies a structured approach to open source
software issues and to keep track of open source software programs that are ac-
cepted within the organization.

5.6 Strategic & Organizational Aspects
An important aspect to consider is what strategic direction the business should
take, and how its organizational structure needs to be changed. Several of the
organizations in the study believe there are both positive and negative long-term
factors regarding open source software that are important to evaluate. Both
Company P and Q argue the advantage of being able to concentrate on core
competencies, instead of developing every component in-house. Company R
relies on open source software and can therefore concentrate on business proc-
esses and consulting services. According to Company S, some development pro-
jects are too large for one company to run alone, and therefore open source de-
velopment can be a solution. One example is Eclipse. Relations between organi-
zations in these kinds of projects often seem more relaxed and non-political
than in other situations where organizations interact.

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

134 Strategies for Management of Architectural Change and Evolution

It is important that management explicitly states what is to be considered as
commodities and which the core competencies are. This way there will be no
misunderstanding when deciding what to make open source and what to pro-
tect. According to Company R, many customers don’t know what open source
software means to their strategies, and studies with conflicting results confuse
IT Managers. Company R’s customers also find it difficult to know how to
build an IT infrastructure that fits open source software.

Introducing open source software may also create goodwill for the organiza-
tion, and could even be a sales argument. Company T mentions that open
source is very useful when a third party wants to write an application. This is
more easily done when the source code for the platform is available, and it is
possible to make modifications. This could be a threat as well, since anyone
may write an application to an open platform. As discussed in Section 7, there
are several ways to gain revenue from open source software. Company W ex-
plains that they sell add-ons to Eclipse as a way to make money on open source
software, and Company P talks about an opportunity to sell more products by
releasing one product for free and being able to sell more of another product.

A large challenge for an organization on the brink of introducing open
source software is the fear of failure, something Company P points out. In
many organizations there is a resistance towards open source software, and a
mistrust of the associated programs and development techniques. It is some-
times difficult to evaluate whether open source software is profitable, and it is
usually hard to find short-term gains. Therefore, top management support is
important, something Company P points out. Company R customers often
introduce open source bottom-up. This is feasible in their types of projects due
to Linux stability and reliability, but it would be ideal if the introduction of
open source was backed up by top-down strategic decisions.

There are several risks associated with open source projects. A project can
always go in another direction than the one wished for, depending on the de-
mands from different developers and users. Company P points out that this can
happen even when running an open source project of your own. It is sometimes
necessary to incorporate components which are interesting to others, rather
than to the owner of the project. Company Q mentions that if starting an open
source software project, a critical mass of participants need to be involved, oth-
erwise there is a risk that the project will be abandoned.

6. Relations to the Community
Besides the gains and challenges mentioned in the previous sections, a number
of different ways to relate to an open source community were also revealed in
the study. The most common way to relate to a community for the organiza-
tions in the study is to use open source software components in a product sold
to a third party. This is done by almost all of the companies in the study. Com-
panies P and Q point out that if something is corrected or modified in an open
source software product, it is important to return the modifications to the

 6. Relations to the Community

Josef Nedstam 135

community; otherwise this may result in migration problems when later ver-
sions of the components are introduced. It is also important to contribute to
the community in order not to be seen as a “free rider”, which may result in
difficulties in getting help from other developers in the project and getting your
parts integrated into the project. Company P has not noticed any resistance
against organizations making money on open source as long as they contribute
to the community.

When using open source software, it is important to have some kind of role
defined for handling the relation towards the community, which will mostly be
done through mailing lists. Mailing lists can be very useful in several different
ways. Companies O and P mention that it is possible to evaluate an open source
project by looking at events on their mailing lists, to see how many developers
that participate, and the characteristics of messages. For example, are people
writing general questions like “How do I get started”, or are they asking how
they can move on with a certain issue? Company O explains that it is also pos-
sible to get software support and help with questions such as how license condi-
tions should be interpreted.

Some of the companies have also released a product developed in-house as
open source software, for example Companies P, W and Q. In these cases it is
important that the released software is already useful to some extent, otherwise
community members will not be interested in continuing the development. For
the same reason, the product must be of general interest to others. Company P
describes that when managing an open source project it is to some extent possi-
ble to steer it in a certain direction, but other stakeholders’ opinions must also
be considered. Besides running a project, it is also possible to become an influ-
ential member in a project to have impact on developed functionality, which is
what Companies W and S have done when joining the Eclipse project as board
members.

7. Business Models
There are many ways to define a business model. Hohensohn & Hang (2003)
describe the concept as converting a business idea into a business model by ori-
enting it and positioning it in a market to gain revenues. For a better under-
standing of how an organization can find a business model based on open
source, the roles present on the market must be known:

� Developers: Private developers, professional developers and academic devel-
opers.

� Distributors: A distributor bundles and packages the software and offers
releases in a product-style.

� System integrators: An integrator provides services along the value chain.
The integrator offers consulting and customization of software for custom-
ers, and also integrates software into existing customer structures.

� Software and hardware companies: Sell software and hardware.

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

136 Strategies for Management of Architectural Change and Evolution

� Users: Home users, software developers, companies and institutions.
In many situations one person or company may have several of the roles above.
The roles show that there are many different ways for stakeholders to interact
with an open source community. Commercial organizations are interested in
open source only if they can find a role that generates revenue, therefore an ap-
propriate business model must be found.

Hohensohn & Hang (2003) describe different business models based on
open source software, some of which are discussed below. The main categories
are product-related and service-related business models. Some of the organiza-
tions in the study may fit into several models.

7.1 Product-Related Business Models
The product areas can be divided into operating systems, applications and ap-
pliances. Appliances are here defined as hardware combined with embedded
software.

� Operating System Distributors add modules to the kernel, fix versions, pro-
vide documentation and package the software. They make money on de-
riving a product from the software. Company U with their Linux distribu-
tion fits into this model.

� Open Source Software Application Providers develop new applications, create
releases and distribute different types of open source software or applica-
tions running on open source software. Products include applications, de-
velopment tools and administrative tools. Company W sells tools for open
source development and Company V has developed applications for mo-
bile phones with the Linux operating system. Company U’s Linux distri-
bution includes tools and packages for application development.

� Open Source Software Appliance Manufacturers develop appliances. This is
common when software itself is not creating revenues, and is provided
only as a supplement to hardware. By utilizing open source products, it is
possible to acquire software beyond what is possible with internal resources
and knowledge. This software can also, when managed right, be achieved
at low cost. This is the model that Companies O, P and Q are using for
their businesses.

7.2 Service-Related Business Models
Services regarding open source software are very similar to proprietary software
services.

� Open Source Software Distribution Vendors sell distributions together with
installation services and support. Distributors of open source software usu-
ally charge a low price for their software compared to proprietary alterna-
tives. The way to make money with this business model is instead to sell
after-sale services or to sell easy to install versions. Company U provides

 7. Business Models

Josef Nedstam 137

support and other after-sale services to the Company U Linux, and Com-
pany Q offers support services for delivered products.

� Open Source Software Project Investors support projects to get a larger prod-
uct portfolio. Companies W, R and S are supporting the Eclipse project to
obtain a certain power to inflict on the functionality developed for Eclipse.
Company U sponsors a number of Linux open source projects.

� System Integrators offer IT services, and mainly focus on large and complex
IT projects in existing IT infrastructure. Companies T, Q and V act as
consultancies offering different kinds of IT-services.

8. Conclusions
The organizations in Section 4 use open source software in different ways to
support their business. Some of these have open source software product-related
business models, for example Company U, which develops and distributes em-
bedded Linux. Other organizations such as Companies Q and V have models
related to open source software services. Some of the organizations use open
source software in embedded systems, for example Companies O and P. This
shows a span of feasible business models for open source software, and a linkage
to the theories on business strategy in Chapter V.

Open source software is often introduced bottom-up, since developers see
many gains with using open source in their daily work. These gains include the
possibility to control the code and to get assistance from other community de-
velopers. However, a bottom-up approach may not be the best way to start. For
an open source software introduction to succeed it is essential to have manage-
ment support and a strong advocate to lead the project. In a larger, bureaucratic
organization, management approval is required before initiating open source
software activities. In a small, more informal organization it might be possible
for one single initiator to introduce open source software and show fast results.
In both cases it is necessary to define a role concept in order to assign tasks and
responsibilities. To truly profit from open source software there must be a clear
strategy and the reasons for migration should be known. It must be defined
which parts are core competencies and which ones are not. This definition can
be applied as a guideline when deciding where open source software can be used
and if in-house code can be released. It is also important to know the conditions
of the open source software license in use. Some licenses are stricter than others.
GPL states that all software containing, using or linking to software licensed by
GPL must also be GPL. BSD is more liberal and has therefore been used in
various commercial applications. Finally, the relation to the community must
be clarified, such as discussions about upgrading, and how to make use of mail-
ing lists.

There might also be long-term strategic advantages. It is for example possi-
ble to launch large development projects if several organizations cooperate, re-
sulting in moderate costs for each organization. To make open source software a

IX Open Source Business Models in Practice: A Survey of Commercial Open Source Introduction

138

long-term strategy it is important to monitor community activities and be pre-
pared with alternative solutions for problems. To get respect from the commu-
nity the company needs to contribute to the project in some way and not just
exploit the work of others.

 Strategies for Management of Architectural Change and Evolution

 139

X Quantifying Benefits of
Architecture for Selecting
Components to Standardize

Traditional reuse, as well as component based and product line
oriented development, relies on identification and packaging of
standard components. Such efforts are often hindered by a lack of
interest in long-term technology investments from the management
side, and mistrust among developers regarding use of general com-
ponents which might not be optimized for every particular situa-
tion. This study analyzes an attempt at discovering which compo-
nents are most beneficial to standardize. The anatomy of a soft-
ware system is analyzed semiautomatically, with some component
attributes assigned values extracted from software development
tools, and others assigned subjectively. The whole system is then op-
timized with regard to which components should be standardized.
The validity of this approach is assessed from a measurement theory
standpoint and tested on data from the case organization.

From Nedstam, J. and Höst, M., “A Quantitative Model for
Valuation of Module Reusability”, submitted to 10th European
Conference on Software Maintenance and Reengineering,
2006.

1. Introduction
This thesis investigates different strategies for reuse, primarily as a means to in-
crease productivity. Reuse of standard components across organizations and
domains has not yet proven successful, although the previous chapter gives ex-
ample of one promising strategy. Many current efforts, such as software product
lines (Clements & Northrop, 2001) have focused on domain specific reuse,
which is said to be more efficient (Bosch, 2000). Low-level reuse across do-
mains is however common, in the form of standard libraries for particular pro-
gramming languages and environments. This study describes an effort to get the

X Quantifying Benefits of Architecture for Selecting Components to Standardize

140 Strategies for Management of Architectural Change and Evolution

best of both these worlds, an effort aiming to establish a standard library of
modules within a specific domain and a specific organization.

The initiative under study is being implemented at Company F, which de-
velops consumer electronics from a 3rd party hardware/software platform. The
developed products are all belonging to the same specific application domain,
and the platform is also specific to this domain. The company develops some
20 products each year – some with small variation such as internationalization,
while some vary to a greater extent, such as by focusing on high-end or low-end
market segments. The products contain some 150 to 200 modules, which con-
sist of an IDL (Interface Definition Language) file and a header file, and a
number of C files. Many of the modules are the same, or similar, in several
products. The initiative itself involves standardizing a number of these modules
which are common to all products. These standardized modules are called
Foundation Modules.

The research goal of this work is to study how customized measurement
models can be developed and used with credibility internally in organizations.
In the situation described in this study, a model has been developed at the case
company. The model is used to determine which modules should be included
in the resulting set of Foundation Modules. A further challenge with this model
is that it is not based on historical data, as e.g. the COCOMO model (Boehm,
1981). Since the initiative is new to the company, no such data is available, and
the model is therefore based on heuristics. The research has three main objec-
tives: to determine the validity of the model from a metrics theory standpoint
(Fenton & Pfleeger, 1998); to determine if the model and its actual results are
useful to the company; and to study what is required of the model to give it
credibility among decision-makers within the company.

This introduction is followed by a section which describes this concept of
Foundation Modules, with guidelines for using and creating them. Section 3
presents the model for selecting which modules should be turned into Founda-
tion Modules, while Section 4 shows how this model is used by way of a small
example. Section 5 presents results from running the model on an actual prod-
uct, where after the study concluded.

2. The Foundation Modules

2.1 Motivation
The primary motivation for introducing this standard library of Foundation
Modules is to minimize the amount of duplicated code. This will avoid incon-
sistencies with redundant functionality and data; reduce maintenance with re-
duced code size; avoid repeating updates and bug fixes to the same functional-
ity; and lead to reduced memory footprint.

A set of Foundation Modules will also lead to increased standardization in
the development environment. Different applications utilizing the library will
have a similar structure. This will make it easier for developers to understand

 2. The Foundation Modules

Josef Nedstam 141

modules they are new to, and also to introduce newly employed developers to
the company.

2.2 Guidelines for the Use of Foundation Modules
As with most architecture and design initiatives, this effort will be implemented
through a set of rules. Generally, a Foundation Module must be used if it pro-
vides wanted functionality, rather than implementing a new version of that
functionality. The architects responsible for the Foundation Modules must also
be contacted when other functionality needs to be duplicated, to determine
whether that function shall be turned into a Foundation Module. These two
rules are at the core of the Foundation Module concept. From a project point
of view new requirements on Foundation Modules must be synchronized be-
tween projects, so that the Foundation Modules will continue to benefit all
products.

2.3 Guidelines for the Implementation of Foundation
Modules

The Foundation Modules’ interfaces will be provided through header files and
IDL files, while the modules themselves usually will be implemented in C. The
interfaces should be stand-alone, i.e. not require inclusion of other include files
into the header and IDL files themselves, in order to simplify use of the Foun-
dation Modules. Internally, the Foundation Modules may only depend on
other Foundation Modules, or services provided by the 3rd party platform. They
must also follow the layered model which is required for the rest of the system.
These measures will simplify build and linking.

Modules in general will be subject to changes that might have impact on in-
terfaces. The company classifies interface changes according to three categories:
1. those that are breaking the compatibility of the API

2. those that are backward compatible, i.e. where a client can continue to use
a new version of an API

3. and those that also are forward compatible – called API Extension, where
calls can be made to dynamically determine the services provided by an
API.

Compatibility breaking changes to Foundation Modules should be avoided. If
deemed necessary, they must be approved by architects from the line organiza-
tion, or the architect responsible for the whole project. This action will then
require configuration management synchronization to introduce updated ver-
sions of the API’s clients simultaneously. A backwards-compatible API change
can be approved on a lower level, but will also need some synchronization since
such changes require new static configurations. Finally, the architect for the
individual Foundation Module can approve API extensions, and no additional
configuration management or synchronization work is necessary.

X Quantifying Benefits of Architecture for Selecting Components to Standardize

142 Strategies for Management of Architectural Change and Evolution

This should lead to introduction of more extensible APIs, a more line-
oriented development of Foundation Modules, and still allow for rapid response
to new requirements on extensible Foundation Modules. The purpose is how-
ever not to make every API extensible, as there is an overhead in using such
APIs. Interfaces that e.g. are not predicted to change do not need to be extensi-
ble.

3. A Model for Semiautomatic Assessment of
Foundation Module Candidates

This paper analyzes an in-house model used for selecting which modules should
be turned into Foundation Modules. The model gives a benefit score from a
weighted average of six attributes, and is balanced by a cost factor. The model
assumes that the strategic architectural decision to introduce an in-house stan-
dard library of Foundation Modules has already been made, and focuses on
guiding operational decisions about which modules should be part of this stan-
dard library. Since the standard library of Foundation Modules has yet to be
introduced, the model is not based on data collected on the benefits and costs
involved with turning modules into Foundation Modules, but rather on heuris-
tics on which attributes have bearing on a module’s suitability as part of a stan-
dard library. Some of these attributes have to be determined by judgment calls,
but the model is based on objective data which can be gathered from present
software development tools. The model has been developed by establishing a
clear goal of finding modules suitable for standardized reuse, with questions
relating to six attributes of suitability, leading up to specific metrics to deter-
mine this suitability, along the lines of the GQM approach (Basili & Rom-
bach, 1988).

3.1 Decision Support for Selecting Foundation Modules
The model aims at, for every module, answering the yes/no question: Is this
module suitable for turning into a Foundation Module? This question is asked
within the context of one specific product, but the future of each module is also
considered, both in the context of that product, and its future in all other prod-
ucts developed by this company.

Each module is only a part of a system, so the answer to this question will
depend on how other modules in this system behave. It will specifically depend
on the modules that use and are used by this module, and whether these mod-
ules are Foundation Modules or not.

The model is used for selecting new Foundation Modules, but can also indi-
cate that a module should no longer be a Foundation Module. If the decision
has been made to turn a module into a Foundation Module, that module
should be a foundation module as long as that set of products are still being
developed, or at least still conform to the same system architecture. If one how-

 3. A Model for Semiautomatic Assessment of Foundation Modules

Josef Nedstam 143

ever would like to take a module out of the set of Foundation Modules, the cost
for doing this must be analyzed through some other means.

The model focuses on the benefits of turning different modules into Foun-
dation Modules, and can currently be used primarily to compare and rank dif-
ferent modules, and selecting the most beneficial as Foundation Modules. The
benefit can be viewed as a percentage of the answer to the yes/no question, so a
yes, this module is suitable to turn into a Foundation Module equals a benefit of
100%, while no equals 0% benefit. Cost is modeled as a fixed limit on when it
actually is beneficial to turn a module into a Foundation Module. A limit of
50% would then mean that the model was very well balanced for the yes/no
question above. The value for each module is therefore benefit minus limit, and
a positive value indicates that the module would be beneficial to turn into a
Foundation Module in the analyzed setting. The cost model is therefore very
simplistic, in that each module incurs the same cost when turning it into a
Foundation Module, as the limit is the same for all modules. Both cost and
benefit are also relative, which makes the limit difficult to negotiate when set-
ting parameters for the model. The roles within the organization who will make
decisions based on the outcome of the model must agree on such parameters,
and parameters that are intangible, hard to comprehend the meaning and ef-
fects of, or external (Fenton & Pfleeger, 1998), i.e. not possible to measure
from the product itself, are harder to agree on (Lehtola & Kauppinen, 2004).

3.2 Generic Model Overview
The key idea from which the model is developed is that the dependencies be-
tween modules can be a basis for automatic assessment of the modules’ suitabil-
ity as Foundation Modules, as members of an in-house standard library. To
each dependency there is a required side, which relates to how the modules sup-
plying services to any module behave, and a provided side, which relates to how
modules accessing services of supplier modules behave. The behavior has been
classified according to the number of dependencies, and the stability of depend-
encies. Stability of a dependency can be affected by either changes in the inter-
faces between modules, or by modules being optional from product to product.
Suitability could also be affected by actual functionality of a module, but such
effects can not be automatically assessed, and must rather be assessed after the
model has given initial decision support. The suitability measure is therefore
divided into six components, as shown in Table 19.

As previously said, the benefit side of the model is a yes/no question on a
floating scale. This question is therefore broken down into six sub-questions in
three pairs, according to the components of Table 19. These three pairs of ques-
tions form the opinion the company has on which modules are most suitable
for reuse. A company with similar objectives could use the same generic model
as described here, but with their own concrete formulas, rather than the ones
given in Section 4. The three pairs concern whether modules are optional or
exist in all products; the way the interfaces to modules behave; and the number

X Quantifying Benefits of Architecture for Selecting Components to Standardize

144 Strategies for Management of Architectural Change and Evolution

of dependencies they have. The six questions are, in a generic form: Is module m
a good candidate as a Foundation Module with respect to:
Provided Existence Volatility, SPEV(m): its existence or optionality in future and

present products?
Required Existence Volatility, SREV(m): the existence or optionality of modules on

which it depends?
Provided Interface Volatility, SPIV(m): the way its interfaces are expected to main-

tain compatibility?
Required Interface Volatility, SRIV(m): the way the interfaces of modules on which

it depends are expected to maintain compatibility?
Provided Dependencies, SPD(m): the number of modules that depend on this mod-

ule?
Required Dependencies, SRD(m): the number of modules this module depends on?

The answers to these are given a value between 0 and 10, weighted and aver-
aged. The model for the value S(m) of turning one specific module m into a
Foundation Module is therefore of the form:

 S(m)=wPEVSPEV(m)+wREVSREV(m)+wPIVSPIV(m)+wRIVSRIV(m)+wPDSPD(m)+wRDSRD(m) (1)

The total score S(m) for each module is the average of these attribute scores,
weighted according to wX. The six values for S(m) range from 0 to 10, and the
six weights wX should add up to 100%. The weights must also be agreed on by
decision makers, and should reflect the value the organization puts on the six
attributes described in the next section, with respect to a module being turned
into a Foundation Module. This weighting is not trivial, as it just as the limit is
difficult to illustrate and comprehend. The decision makers therefore have to
understand the attributes described below. The weighting is however necessary,
as an average can otherwise not be made over the six ordinal attributes (Fenton
& Pfleeger, 1998).

The S(m) scores model the benefit of turning a module into a Foundation
Module. This benefit is balanced by Slim which is a limit for what score is
needed in order to get a positive answer to the question should this module be
turned into a Foundation Module, and can also be viewed as the cost of making a
module a Foundation Module. From the S(m) scores a set of modules is se-
lected to be Foundation Modules, such that the sum of differences between

Table 19. Model Components

Suitability with respect to: Required
behavior

Provided
behavior

Existence stability Yes/No Yes/No

Interface stability Yes/No Yes/No

Number of dependencies Yes/No Yes/No

 3. A Model for Semiautomatic Assessment of Foundation Modules

Josef Nedstam 145

score and limit over all of these Foundation Modules S, ()()∑
∈

−
FMm

SmS lim , is

maximized.
The scores S(m) depend on the scores of other modules in the system, spe-

cifically on whether these other modules are Foundation Modules. As the objec-
tive of the model is to select a set of Foundation Modules, this becomes an
equation system with as many equations as there are modules in the system. As
we shall see when the attributes are described in the following section, the indi-
vidual scores increase when more modules are selected as Foundation Modules.
The issue therefore becomes one of selecting modules with a high score (larger
than the limit) and then experimenting with the remaining modules to see if
their inclusion in the set of Foundation Modules increases the value of the oth-
ers enough to outweigh the additional cost. The actual strategy for finding the
best set of Foundation Modules is closely coupled to the concrete formulas in
the following section, and one strategy is given in Section 5.2.

3.3 Reusability Attributes of Modules
The model currently consists of three pairs of attributes, whereby each module
in the system is assigned values. These are the required attributes, which de-
scribe how well the suppliers of a module behave with respect to the module’s
ability to be a Foundation Module; and the provided attributes, which describe
the reusability of the module itself. The three pairs of attributes are existence
volatility, which is affected by whether the module, or its clients, is present in all
products; interface volatility, affected by how the interface to modules change;
and dependencies, affected by how many other modules depend on it, and how
many modules it depends on itself.

Figure 18 shows the scope of the six attributes, provided existence volatility
(PEV), required existence volatility (REV), provided interface volatility (PIV), re-
quired interface volatility (RIV), provided dependencies (PD), and required de-
pendencies (RD), when analyzing the center module. This module uses the three
modules below by accessing their interfaces, and provides its own interfaces to
its two client modules, depicted above. This scope is further discussed towards
the end of this section. These six attributes are also weighted against each other
with the weights wX of Formula 1, according to importance for any particular
system or situation. The six attributes are described below.

Existence volatility concerns whether the module is present in all products
that the company intends to develop. Functionality that is present in all prod-
ucts is more beneficiary to turn into Foundation Modules.
Provided Existence Volatility is concerning the existence of a module in all
future products. A Foundation Module should be present in all future products,
and the clients of such a module should be able to depend on this presence.
Required Existence Volatility is affected by the provided existence volatility of
the modules on which a module depends. For a module to be a good Founda-

X Quantifying Benefits of Architecture for Selecting Components to Standardize

146 Strategies for Management of Architectural Change and Evolution

tion Module candidate it should not have to depend on modules that may not
be present in every product.

The Foundation Modules should not only be present in all products, but
they should also have stable interfaces, and rely on such interfaces.
Provided Interface Volatility concerns changes to the interfaces that the mod-
ule presents to others. To be a good Foundation Module candidate, the inter-
faces of a module should not be subject to interface volatility. The provided in-
terface volatility is judged by estimating the changes a module will be subjected
to over the foreseeable future.
Required Interface Volatility concerns how the module interfaces which the
module depends on will change. Foundation Modules should not have to de-
pend on interfaces which are subject to compatibility-breaking changes.

The third pair of attributes treats the dependencies of modules. This is al-
ready partly covered by the previous attribute pairs, but these two attributes
focus on the number of dependencies modules have.
Provided Dependencies concerns how many clients a module has. A Founda-
tion Module can and should have many clients, as it is meant to be reused.
Normal modules should not have many clients, as changes, which are more
common here, then will impact more modules. The strategy of Foundation
Modules is meant to bring more clients to each new Foundation Module, and
therefore this relationship is less significant. However, the teams and module
owners of modules that have many clients are probably used to the problems
involved with adapting to requirements from several clients, and to adapting
their module with minimum impact on others. A module with many clients can

PD

PIV

PEV

RD

RIV

REV

Figure 18. Scope of attributes

 3. A Model for Semiautomatic Assessment of Foundation Modules

Josef Nedstam 147

also be turned into a Foundation Module to freeze it, so that it will cause less
disruptive changes to its clients. Modules with several clients may therefore be
more beneficial as Foundation Modules.
Required Dependencies reflects the types of modules this module depends on.
As aspects of this attribute already are covered by required existence volatility and
required interface volatility, see Figure 18, i.e. whether the suppliers to this
module always exist and whether their interfaces change, this attribute only
concerns whether the suppliers are Foundation Modules or not. The previous
attributes concern the behavior of the suppliers regardless of the concept of
Foundation Modules; this attribute models the change in behavior that the
suppliers will exhibit if Foundation Modules are introduced. A module will be a
better Foundation Module candidate if it only depends on other Foundation
Modules, as these are expected to exhibit less interface changes and exist in all
system configurations.

The six attributes are impacted primarily by the usage of a module in the
context of a particular product and system, but assessments are also made on
use of the module in other products. Existence volatility is e.g. concerned with
the future of a module in all coming products. The scope of each attribute
within the setting of a specific system context is shown in Figure 18. The figure
shows a module under study, having two clients and three suppliers, and the
scope of the six attributes. It can be seen from the figure that required dependen-
cies covers the same scope as required existence volatility and required interface
volatility, but as seen from the discussion above, these three concepts cover dif-
ferent aspects of supplier modules; especially as the former concerns the quality
of these dependencies, while the latter concerns the number of these dependen-
cies.

3.4 Determining an Optimal Set of Foundation Modules
The selection of Foundation Modules from the description of a system using
the model is theoretically done by solving an equation system with as many
equations as there are modules. However, the score for each module stays the
same or increases when other modules – modules which this module depends
on – are selected as Foundation Modules. Selection of Foundation Modules can
therefore be done by choosing those that from the initial setting – with no
Foundation Modules selected – that have a score larger than the cost Slim. This
might result in new modules which have a score larger than the cost, and the
procedure is repeated. When all such modules are selected, other modules can
be tried as Foundation Modules to see if they contribute more to the overall
score of other modules than what they themselves bring this score down. An
example of a strategy for trying out additional modules is given in section 5.2.
The resulting set must then be checked to see if it complies with the original
intentions of the concept of a standard library. Modules which are optional or
are expected to break backwards compatibility should also be taken out of the
equation initially.

X Quantifying Benefits of Architecture for Selecting Components to Standardize

148 Strategies for Management of Architectural Change and Evolution

4. Case Study Model Operationalization
This section gives the concrete formulas used in the model by the organization
in the case study, along with discussion of their rationale and behavior. These
formulas have been separated from the previous presentation as they are rich
with company-specific detail and exceptions to the general description of the
model. A tool for the model is presented, used with a small example system.
This example system provides some concrete insights into the model behavior,
while results from actual data are provided in Section 5. If these formulas are to
be used in another – but similar – setting, the actual scores given to each attrib-
ute could be altered, as long as the ranks between them are maintained, and
their relation to the limit Slim is considered.

4.1 Existence Volatility
The score for provided existence volatility for any module m, SPEV(m) is

0 for modules that may not be included in all likely future products
6 for modules for which an IPR license fee is paid, and
10 for non-licensed modules that will be present in all products.

So, for the question is this module suitable as a Foundation Module with respect to
its existence in future products, the answer is yes for modules that will be present
in all products, possibly for licensed modules present in all products, and no for
all other modules. Licensed modules are not given as high a value as internally
developed modules because the company has less control over them, and there-
fore cannot know whether they are able to include them in all likely future
products. 3rd party modules with standardized or open interfaces can however
be exempt from this exception, and given the higher value.

The score for required existence volatility for any module m, SREV(m) is

 SREV(m) = min(SPEV(each supplier to m)) (2)

because no Foundation Modules should depend on modules which might not
be present, or

 SREV(m) = 8 (3)

for modules which are only intended to be an isolation layer from other mod-
ules. This is not 10 as there is always drawbacks of not using e.g. a 3rd party
component directly, in performance or development effort.

A module will therefore never have higher required existence volatility than
the lowest provided existence volatility of any of the modules on which it de-
pends, except for the cases where the module is an isolation layer, which gives
an increase from the lower provided existence volatility.

The specific level of 6 is quite arbitrary, but makes sense on a ratio scale if
we agree to the following statements with respect to this attribute: a licensed
non-optional module is in general better than an optional module; a licensed
non-optional module is more good than bad, i.e. above 5; and a module which

 4. Model Operationalization

Josef Nedstam 149

acts as an isolation layer is better than one which has a licensed non-optional
module as client, with respect to required existence volatility.

4.2 Interface Volatility
Changes to module interfaces may take many forms, but are in this model clas-
sified according to three categories:

� Compatibility-breaking changes, where the interface no longer works for any
previous clients.

� Backward-compatible changes, where previous clients to the module still can
use the same method calls.

� Extensible APIs, where clients can determine the services provided by a
supplier dynamically.

The use of a backward-compatible module in several products unfortunately
necessitates high demands on static configurability, which means backward-
compatible changes are not as simple as they appear.

The score for provided interface volatility, SPIV(m) is therefore
0 for modules where compatibility-breaking changes will occur
6 for modules where backwards-compatible changes will occur, and
10 for modules with extensible APIs.

For backwards-compatible and extensible APIs this value is decreased by 2 if the
module has to be adapted for this compatibility, as an investment cost during
the process of converting the candidate to a Foundation Module. Modules
without client interfaces get the value 10. This means that the answer to the
question is this module a good Foundation Module candidate judging from the
volatility of the interfaces it provides is yes for modules with extensible APIs, no
for modules that make compatibility-breaking changes, and maybe for modules
that are only subject to backwards-compatible interface changes. The module is
also a slightly better candidate if its behavior with respect to interface changes is
already implemented.

These scores do cause some metrics theory concerns. They do give modules
a higher score for better compatibility, and higher score if this implies lesser
cost. But the combination of these two dimensions of this attribute gives scores
that are perhaps not as intuitively evident. The score 6 is given to a module
which has been prepared so that it only exhibits backwards-compatible changes,
and the score 8 is given to a module which after some investment will exhibit
an extensible API. This might be true, but the problem lies in that a cost is
woven into this measure of benefit. This cost of preparing a module for com-
patibility is not the same as the cost for turning this module into a Foundation
Module, but the two costs are certainly not orthogonal. A future improvement
of the cost modeling could alleviate this deficiency. If the decision makers agree
on the statement above, the model is still usable, and the problem merely theo-
retical.

X Quantifying Benefits of Architecture for Selecting Components to Standardize

150 Strategies for Management of Architectural Change and Evolution

The required interface volatility is in the standard case calculated as:

 SRIV(m) = 4 + min(6, min(SPIV(each supplier to m))) (4)

The exception is modules which are introduced purely to limit the effect of
such changes to the rest of the system, i.e. where the module acts as an isolation
layer. SRIV is then set to 8. Isolation layers might be suitable either when a mod-
ule is known to change interfaces often, or when several implementations of a
certain functionality are available. This is in both cases especially interesting for
3rd party components, which one wants to retain the option of exchanging with
other, possibly less costly, solutions.

This means that the required interface volatility varies from 4 to 10, an off-
set which intuitively represents a Foundation Module’s ability to protect other
modules from change. It could however instead be offset with the weight given
to this attribute, or with the relative cost by which the Foundation Module
score is compared. This discrepancy must therefore be considered when deter-
mining these weights. This attribute might get a higher impact than intended
because it never reaches 0, and the weight should therefore generally be low-
ered, in favor of the other attributes.

The value for an isolation layer is not 10, as there is always a memory and
performance overhead involved in adding a layer of indirection. It however also
means that a module with suppliers which after investment only exhibit back-
ward compatible changes is an equally good candidate as an isolation layer, and
this statement must be agreed upon by the decision makers using the model.

These scores do not have the same theoretical problems as provided interface
volatility, because both questionable scores are transformed to a contribution of
10 for this attribute. In other words: whether this module has suppliers which
currently only exhibit backwards-compatible changes, or suppliers who after
investment will exhibit extensible APIs, this module will still be a good Founda-
tion Module candidate with respect to this attribute. There is however yet an-
other theoretical problem with the exception made by isolation layers, in that
the exception also affects required existence volatility. These two attributes are
therefore not orthogonal, and the behavior of isolation layers in the model
should be monitored to see what implications this has. Formula 4 also creates a
tie for modules which have suppliers which will be backwards compatible, and
modules which are isolation layers.

4.3 Dependencies
The provided dependencies score is:

 SPD(m) = 7 + min(3, #direct clients to m) (5)

where the number of direct clients is determining the score. A special case is
modules that will never have any clients, which get a score of 10. This means
that the score for provided dependencies varies from 7 to 10. As in the case of
required interface volatility, this discrepancy must be offset with the weight for

 4. Model Operationalization

Josef Nedstam 151

this attribute, generally speaking by lowering this weight (or that the provided
dependencies score could be changed to range from 0 to 10). In the present set-
ting it represents that having many clients means that a module is a better can-
didate, but that a module with few clients is not necessarily a bad candidate.
Note that modules can get a score of 7 if they currently do not have clients, but
are expected to have clients in future products.

The score for required dependencies is:

 SRD(m) = 10 – 2 * min(5, #non-Foundation Module suppliers to m) (6)

Each additional supplier which is not a Foundation Module therefore dramati-
cally reduces the suitability of this module as a Foundation Module. The num-
ber 5 is however somewhat arbitrary, and should be reflected in an agreement
among decision makers that a module which depends on 2 non-Foundation
Modules is still a rather good candidate with respect to this attribute, but a
module depending on 3 such clients is a rather bad candidate.

In summary, some of the six individual attributes have theoretical deficien-
cies which must be considered when using the model. These deficiencies should
however be feasible to explain and discuss among a group of decision makers, as
should the implications of the various individual levels for the six attributes.

4.4 Extreme Attribute Behavior
Looking at extreme Foundation Module candidates, both good and bad, gives a
feel for how the model behaves. The perfect Foundation Module is present in
all future products, and so are the modules it depends on. It also is not expected
to break any interfaces, and neither are the modules it depends on. Finally it
only relies on other Foundation Modules and either has three or more clients,
or is expected never to have clients. This would give a score of 10 no matter
what the weights are set to.

On the other hand, modules which exhibit any of the following behavior
should not be considered for Foundation Modules: optional modules; modules
which are expected to break their interfaces’ backwards compatibility; and
modules that depend on several (5 or more) modules which are not Foundation
Modules. This means that a score of 0 in any of the attributes provided existence
volatility, provided interface volatility and required dependencies, should disqualify
a module. One can therefore not only look at the total score, but must also have
a multi-dimensional view of all six scores (Poladian et al., 2003). This feature of
the model forces decision-makers to not only consider the final score, but also
consider what that score actually represents.

The total score can also not reach 0 if either the weight for provided depend-
encies or required interface volatility is more than 0, and can in the extreme case
reach 7 out of 10. This must be considered when agreeing on Slim, which gener-
ally should be set quite high.

X Quantifying Benefits of Architecture for Selecting Components to Standardize

152 Strategies for Management of Architectural Change and Evolution

4.5 Example System Trial
To simplify usage of the model, a tool has been developed. The tool is shown in
Figure 19. It reads a dependency matrix of a set of modules, and a number of
parameters for the six scores in the module: whether the module is optional;
licensed; how it handles compatibility; if the compatibility is already present or
will be implemented when turning the module into a Foundation Module; if
the module is expected to never have clients; and if the module is an isolation
layer. These six parameters can be adjusted in the tool, and the tool gives the six
scores and the weighted sum for each module. When modules are selected as
Foundation Modules, the sum of their scores minus Slim is recalculated.

The screenshot of Figure 19 shows how the model is applied on the example
system whose dependency graph is given in Figure 20. It consists of ten mod-
ules in two layers:

UM1: A shell application, which can launch other applications.
UM2: An application present in all products.
UM3: A framework for addition of registered applications.
UM4: A registered application.
UM5: An optional registered application.
LM1: A memory allocation library.
LM2: A component registration and message interchange library.
LM3: A standard library.
LM4: An inter-process communication library.
LM5: A low-level library for a registered application.

These modules have parameters according to Figure 19, which also shows a
typical set of weights. In this example, modules UM5 and LM5 are disqualified
because they are optional, and LM5 is also disqualified, as it is expected to
break the compatibility of the interface it presents to UM5. No modules are
directly disqualified because they depend on five or more non-SFMs, but the
module with most suppliers, UM2, only has four suppliers. The example system

Figure 19. Foundation Module selection tool

 4. Model Operationalization

Josef Nedstam 153

is therefore no optimal test of the model. It does however show something of
how the model behaves.

The cost, or Slim, must be set very high. Although UM5 and LM5 are dis-
qualified, they still get almost half of the possible score. This suggests that the
model should first be used as a ranking of candidates, before Slim is better under-
stood among the decision makers in the company. The modules that end up
being selected in the example are intuitively good candidates, perhaps with the
exception of the application UM4. The other three are used by practically all
other modules and act as a standard library. UM4 is on the other hand a high-
level application, but gets high scores because it depends on a few stable mod-
ules and has no clients of its own. Running examples such as this shows to deci-
sion makers how the model acts, and what effect the various weights have. If an
example such as this does not provide results that are according to the com-
pany’s priorities, the weights or even the model itself must be changed. The
implementation of the model in a tool is also a way to document the model,
and such an implementation would be very familiar to a software developing
company.

4.6 Model Sensitivity
The example trial also shows which parameters the model is sensitive for. As
previously discussed the model has a linear sensitivity to the six weights – al-
though the two biased scores provided dependencies and required interface volatil-

UM4
(app)

UM1
(shell app)

UM5
(app)

UM3
(app fwk)

UM2
(app)

LM3
(stdlib)

LM2
(registry)

LM4
(IPC)

LM5
(app lib)

LM1
(memory)

Figure 20. Example system

X Quantifying Benefits of Architecture for Selecting Components to Standardize

154 Strategies for Management of Architectural Change and Evolution

ity never reach 0. The scores themselves are however not behaving linearly to
changes in the six parameters which have to be set for each module (seven with
the Foundation Module parameter). The sensitivity has been assessed by chang-
ing each parameter for all modules, based on the initial setting in the example
of Figure 19.

If all modules are made optional, their scores drop dramatically, although
one module still reaches a total score of 70. None would however be selected as
Foundation Modules in the example, from an original four. Provided existence
volatility becomes 0 for all modules, and so does required existence volatility –
but for the module which is an isolation layer. Required existence volatility also
remains very low when only upper-layer modules are non-optional. If the two
original optional modules are made non-optional, their score also increases
dramatically, from below 50 to above 75. A change in whether a module is li-
censed or not has the same type of impact on the same scores, but the change is
less dramatic. No licensed module will be selected at the 90 limit. If the origi-
nally licensed module is replaced with an in-house module, that module will be
selected, and so will one module on which this module depends.

A change in the type of compatibility a module exhibits has similar impact,
but instead on interface volatility. Most modules reach zero provided interface
volatility when they are expected to break their interfaces. The required interface
volatility does not drop as much, and the impact on the total score is therefore
less dramatic than the optionality parameter. One of the example modules still
receives a score above 90, but after re-selecting Foundation Modules, none of
them reach the 90 limit. Setting the compatibility to “Extensible API” results in
all modules receiving 10 on the provided score, and almost all on the required
score. All modules except the optional ones would be selected as Foundation
Modules in such a case. If all modules are to be adapted to exhibit the given
compatibility, provided and required interface volatility drops marginally for
some modules. This results in one of the original four Foundation Modules not
reaching the 90 limit.

Changing the parameter “not expected to ever have clients” is quite theoreti-
cal for most modules, as they already have clients according to the dependency
matrix. For the three modules in the example with no clients, the change is
marginal when altering this value. None of them change their status as Founda-
tion Modules. This also depends on that the weight for provided dependencies is
only 10%, the only score affected by this parameter.

Altering whether a module is an isolation layer affects two scores, required
existence volatility and required interface volatility. These scores are set to eight
when a module is an isolation layer, which means that the scores can either go
up or down. The existence score is weighted higher in the example. If the total
scores are maximized with respect to this parameter, no change is required in
selecting Foundation Modules. The low ranking module UM5 does however
increase from 48 to 64. If isolation layers are selected to minimize the score, the

 4. Model Operationalization

Josef Nedstam 155

remaining modules are affected marginally, and no change in the set of selected
Foundation Modules is necessitated.

If we only consider the Foundation Module selection itself, it affects the re-
quired dependency score positively. During selection of the four Foundation
Modules in Figure 19, UM3 was not above the threshold when selection
started, but gets a score above 90 when LM1 and LM3 are selected. UM2 and
LM4 push UM1 above the 90 limit, but not enough to warrant inclusion of
either of the pairs UM2 and UM1, or LM4 and UM1.

5. Trial on Actual Product
The model has been tried on a representative product under current develop-
ment. It contains some 165 modules, and the configuration management sys-
tem automatically provided the model with the dependency matrix which is the
basis for the analysis. It also gave the optionality and compatibility parameters,
i.e. whether modules have been present in all recent products, and the historical
rate of change in interfaces. Information of whether the modules were licensed
from 3rd parties was also present in the system, but difficult to extract. This in-
formation was instead provided manually by personnel at the organization.
Whether a module should have improved compatibility in the future is a deci-
sion that has to be taken during the process, and no data could be generated as
to whether a module is never expected to have clients, or whether a module acts
as an isolation layer. The omission of these three parameters has impact on the
validity of the trial performed, but as seen from the stability discussion above,
these three parameters have less impact on the results than do the others. The
additional effort required from the company was therefore not justifiable at the
expected low improvement of this initial trial of the model.

Specifics of the data set can not be revealed, but some general features of the
modules follow. 45 modules were optional, and therefore deemed impossible as
Foundation Modules. 4 modules were judged to break the compatibility of
their interfaces within the near future, and should likewise have been rejected
had they not already been, on account of also being optional. A considerable
number of modules were licensed from 3rd parties, most of which were also op-
tional. 5 modules were deemed to have extensible APIs which would not be
broken in the foreseeable future. A few modules had no clients, while one mod-
ule was used by up to 158 other modules. A small number of modules had no
suppliers, and the module with most dependencies had 98 suppliers.

5.1 Attribute Behavior
The required dependencies score behaved quite differently in the situation with
165 modules, rather than the 10 modules of the initial example. Only 13 mod-
ules had a required dependencies score above 0 before selection of Foundation
Modules started, and while selection of one Foundation Module only has a
small possible impact on each of the other modules, the impact on the total

X Quantifying Benefits of Architecture for Selecting Components to Standardize

156 Strategies for Management of Architectural Change and Evolution

score could sometimes be very large. This difference in behavior is expected, as
the model is tailored for systems of this specific size.

One of the modules with many clients was optional, which meant that re-
quired existence volatility was 0 for virtually all modules. This module was also
considered to break the compatibility of its interfaces in the near future, which
meant that only 7 modules received a required interface volatility of 10, while all
other modules had the minimum score of 4. In conclusion, all required scores
are strongly negatively correlated to the number of suppliers for that module.
No module with more than four suppliers received a score more than the
minimum in any of these three attributes when no Foundation Modules were
selected. This encompassed more than 90% of the modules.

5.2 Foundation Module Selection Strategy
The behavior of required dependencies requires a strategy for selecting Founda-
tion Modules, in order not to have to try all combinations. In the case of 165
modules there are 4.7x1049 possible combinations, and with a million calcula-
tions a second this would take 1036 years. The strategy implemented in the tool
is divided into three steps, where each step is iterated until it does not provide a
change in the set of selected Foundation Modules before going to the next step:

1. Select all modules with a score higher than the limit. Selection of Founda-
tion Modules increases the required dependencies score for client modules,
and iteration provides some additional modules that get enough increase in
required dependencies to get over the limit.

2. Select all modules, with a score less than the limit, which might provide
their client modules with a potential increase in score which is larger than
the drawback of selecting this sub-limit module. So if twice the number of
clients who potentially may benefit from selecting this module, adjusted
with the weight for required dependencies, is more than the difference be-
tween score and limit, the module is selected. According to the tool im-
plementation, a client may potentially benefit if it is not yet selected, and
twice the number of its non-Foundation Module suppliers, adjusted with
the weight for required dependencies, is more than the difference between
its score and the limit. This criterion could possibly be stricter, by e.g. con-
sidering that only five of these suppliers can actually play a role in increas-
ing the score for a client. Any criterion must however result in all resulting
Foundation Modules being selected, and possibly more, because the fol-
lowing and last step is a de-selection step. This selection step is also iter-
ated until no more modules are selected.

3. Finally deselect modules that contribute negatively to the total system
score. This way the false positives selected in the previous step are elimi-
nated. This step must also be repeated as the required dependencies score of
clients decrease during the de-selection procedure.

 5. Trial on Actual Product

Josef Nedstam 157

This strategy only requires around 10 iterations in the 165-module situation
and can be implemented easily in a tool. The tool presently requires the user to
request each iteration of the three steps manually, to better illustrate the strategy
to the user. The strategy intuitively seems to select the correct set of Foundation
Modules, but it has not been formally proven to do so. The strategy has been
deemed good enough, considering the required effort.

5.3 Foundation Module Selection Results
Usage of the strategy on the data set, for various limits, results in a number of
Foundation Modules described by Figure 21. Selecting this limit is up to the
decision makers who will use the model, as is the set of six weights. In this case
the same weights as in the example system of Section 4, Figure 19, have been
used. Initially these decision makers must use the model to understand the ef-
fects of different settings for the limit and the weights.

Unfortunately the current settings produce a great number of ties. A limit of
63 produces a set of 8 Foundation Modules, while a limit of 62 gives 37 Foun-
dation Modules. An appropriate set of initial Foundation Modules will proba-
bly contain between 8 and 37 modules. Of the 37, 18 are tied at a score of 63.
To select a number of modules in-between 8 and 37, those that have the small-
est positive impact on the total score can be taken out. In the present situation
these are generally modules with few clients which score just above the limit.
The model is however not to be used for automatic decision making, but rather

Figure 21. Number of selected modules with increasing limit

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Number of modules

Limit

X Quantifying Benefits of Architecture for Selecting Components to Standardize

158 Strategies for Management of Architectural Change and Evolution

for decision support. Discussing and selecting between some 30 modules rather
than some 160 modules is therefore basis for a more informed decision.

The near-step-function form of the graph could be explained by the near-
step-function nature of the six attributes, and also by the positive correlation
between some of these attributes – the step function behavior of any attribute
will imply the same behavior in other attributes.

The model is also adapted to the current state of design quality. If design
quality would be improved for all modules, the model would probably result in
even more ties than at present. This would require adjustments of the model.

6. Discussion and Related Work
In the field of software engineering several cost models have been suggested, but
benefit models are less frequent (Halling et al., 2004). One model which at-
tempts to quantify benefit is the CBAM (Moore et al., 2003). It operates on the
level of architectural strategies, where the decision to introduce the concept of
Foundation Modules would be one such strategy. It would therefore be difficult
to adapt to this specific situation. CBAM is based on a fixed architecture
budget, while this model also tries to show – or at least currently leaves it open
– how large such a budget should be. Other forms of benefit models that are
emerging in the field of architecture and design are based on options theory
(Asundi & Kazman, 2001; Bahsoon & Emmerich, 2003), where the flexibility
provided by various solutions is quantified. One difference in approach is that
the model presented here tries to quantify technical benefits from an internal
perspective, rather than benefits based on external business value. As the model
is used to support operational decisions, these internal benefits should be ade-
quate and relevant. These decisions should however be checked to be in line
with business decisions – e.g. that the optionality of modules is assessed from
business cases, and that the rate of interface change is in line with analyses of
market trends for related features.

Fenton & Pfleeger (1998) discuss two forms of reuse: reuse of existing mod-
ules found in previous projects or developed by other organizations; and inter-
nal reuse, where modules are called by several other modules within a system
developed by one project. In the first reuse form, size is often the interesting
factor when one wants to estimate the effort required for a project with or
without reuse. The size of reused modules is measured, but also the extent to
which they are changed in their new setting. The model proposed here cur-
rently does not consider the size of modules. This could be a line of further im-
provement, and is currently mediated in that the limit, or cost, is relative to
each module.

Internal reuse is more of a complexity or structural measure, and Yin &
Winchester (1978) propose one such measure:

 r(G) = e – n +1 (7)

 6. Discussion and Related Work

Josef Nedstam 159

where G is a graph of n nodes and e edges describing the modules of a system,
and their dependencies, akin to the dependency matrix used in the model pre-
sented here. This measure only counts the number of instances of internal reuse
in a system, and quite contradicts other structural measures of tree impurity
such as McCabe’s cyclomatic complexity (McCabe, 1982) – an attribute which
is said to have bearing on design quality (Ince & Hekmatpour, 1988). The
measure sought in this work is one that shows the reusability of, and the reuse
of, individual modules in a system. A measure by module analogous to that of
Yin & Winchester would then only count the number of clients to a module –
a measure which is only one of the six dimensions of the proposed model.

6.1 A Standard Library Comparison
Section 2 has described the rationale and design decisions behind this standard
library of Foundation Modules. It is therefore inviting to compare to the design
of other standard libraries. The rationale and constraints of the C++ Standard
Library are described by Stroustrup (1997). When describing the scope of the
library Stroustrup says “A standard library is something that every implementer
must supply so that every programmer can rely on it”. The library has a number
of roles: to provide language features such as memory management; to handle
implementation-defined language aspects; provide functions that are not opti-
mally implemented in the language itself; provide for portability of data struc-
tures; provide a framework for extending the library in line with its principles;
and provide a common foundation for other libraries.

Some of these roles are not relevant in the case of an in-house standard li-
brary for developing one type of product on one specific platform: the pro-
gramming language is already selected and the scope of any portability is re-
duced. The remaining roles do therefore not put as heavy design constraints
and demands on an in-house library, but it must still be complete and efficient
enough not to tempt developers to circumvent it. One aspect that should be
part of the library is in-house defined types and data structures used throughout
the system – modules should be able to communicate and pass parameters
without implementing duplicated functionality.

The C++ standard library has been designed with the following require-
ments and constraints in mind (Stroustrup, 1997):

� Invaluable and affordable to every programmer.

� Used by every programmer for everything within the scope of the library.

� Efficient enough to replace hand-coded optimization alternatives.

� Policy-free or with parameterizable policies.

� Primitive, where each component has only one role.

� Convenient, efficient and safe.

� Complete within its scope.

� Integrate well with built-in types and operations.

X Quantifying Benefits of Architecture for Selecting Components to Standardize

160 Strategies for Management of Architectural Change and Evolution

� Type safe.

� Supportive of commonly accepted programming styles.

� Extensible for user-defined types, to be treated the same way as built-in
types.

Most of these design constraints should be true for an in-house library as well.
Some of the constraints can however be relaxed in such a situation, where poli-
cies for usage of certain modules and sub-systems can be governed by design
rules, and the scope of accepted programming styles can be controlled by the
coding standard. Efficiency can also be tuned for the platform at hand, which
means that an in-house library can have a wider scope in these respects – less
functionality must be left out of the library for performance concerns. The ini-
tiative under study is also not only an attempt to create a standard library, but
an attempt to create low level reusable assets for a particular application do-
main. This means that not only every-day development problems should be
included among the Foundation Modules, but also functionality which may be
present in all products, which solves problems far beyond the scope of ordinary
standard libraries. The Foundation Module initiative is therefore something
more than a standard library in that it allows for quite specific functionality to
be included. It is also something less than a standard library, in that it does not
provide qualities such as platform independency.

How does the Foundation Module initiative fare in this comparison? The
principles of Foundation Modules described in the sections above partially
match the principles of the C++ comparison example. But as seen in Section 4,
the model for selecting the contents of this library of Foundation Modules is
quite mechanical. It should therefore be viewed as a tool to find candidates, but
the overall view of the standard library must be maintained. High-ranking can-
didates should be turned down if they are outside the scope of the library, and
inclusion of some high-ranking modules may mean that lower-ranking modules
within the same group of functionality also should be included. The modules
that are selected in practice should be compared against the principles, and the
model should be reviewed so it indeed gives decision support that follows the
principles.

6.2 Validity
The concrete model has been assessed from a metrics theory standpoint, as seen
from the discussion in Section 4. This assessment has shown future enhance-
ments which are possible when more is known about costs and how the model
behaves. The initial model was proposed by a practitioner at the company, who
also gave most of the feedback on the results of the implemented model. The
first step of strengthening the validity of these initial results must therefore be to
anchor it with more stakeholders within the organization.

There is a general form to the model, and in this paper it has been specified
with formulas and parameters which are company specific. The model could

 6. Discussion and Related Work

Josef Nedstam 161

therefore be adapted for companies who develop other types of systems, or who
have other priorities, but still have similar reuse goals as the ones that have
driven the development of this model. This possible generalizability must how-
ever first be confirmed through case studies on other organizations.

6.3 Further Work
Anchoring the model in the case organization should begin by identifying key
stakeholders to the model. The primary stakeholders are those who will make
decisions based on data from the model. In order to convince these roles of the
usability of the model, the technical assumptions which the model is based on
should first be agreed on among the developers who will be using and imple-
menting the Foundation Modules.

The cost model is simplistic, but a proper cost evaluation would require in-
dividual analysis of each module. This cost would also be difficult to compare
to the benefit generated from this model, as the cost could be determined in
absolute terms, while the benefit is on a ratio scale. A proper cost could on the
other hand be analyzed for the set of modules which are selected by the model.
The difference between cost and benefit is also a simplistic measure, and should
in the future be replaced with a proper Return-on-Investment measure. To be
worthwhile, a Return-on-Investment measure should be able to model also the
timing of when the investment will bring stated returns and benefits, such as
through Net Present Value analysis. This model is not yet mature enough for
such considerations.

The sometimes large number of ties the model produces degrades the use-
fulness of the model. This can be explained by that several attributes are close to
step functions. Provided dependencies varies between 7 and 10 as the number of
clients for a module varies between 0 and 3, and is thereafter 10 for any large
number of clients. Similarly, required dependencies shows a similar pattern for
the number of non-Foundation Module suppliers to a module. This could be
alleviated by measuring the magnitude of, rather than the number of, clients or
suppliers. This could be implemented by taking the logarithm of the module
count, at an appropriate base. Such a base should be chosen to reflect the spread
one wants in the particular score, and the spread of values in the data set; in our
case from 7 to 10 and 0 to 10 in the scores, and 0 to 158 and 0 to 94 in the
number of clients and suppliers.

7. Conclusion
The paper presents a model for assessing the benefit of reuse. The model has
been developed in-house at one company, but has general characteristics, and
could therefore be possible to adapt to organizations with similar objectives.
Since the goal of the model has been the main driver throughout its develop-
ment, the definition of metrics has naturally followed an informal GQM-like
process (Basili & Rombach, 1988). Publication of company-specific models,
such as the one presented here, may in the future lead to general conclusions on

X Quantifying Benefits of Architecture for Selecting Components to Standardize

162

how to assess benefit in Software Engineering, and how to transfer measure-
ment theory to industry.

 Strategies for Management of Architectural Change and Evolution

 163

XI Main Contribution

This chapter provides a brief discussion of the research questions of Chapter II
in relation to the presented studies. The results from each research question are
discussed, and the overall conclusions, related to the research goal of Chapter I,
are presented. Finally, opportunities for further work are presented.

But to introduce this final chapter, let us recapitulate the chapters of this
thesis. After the introduction, method and context description, the concept of
software product lines was introduced. It is one of the prime examples of an
architectural strategy for increasing productivity-related quality attributes
through reuse. Chapter IV presents a number of approaches to software product
line engineering, and discusses different ways to introduce and maintain a soft-
ware product line. The following chapter describes business and financial fac-
tors that influence the selection of software engineering strategies. It foremost
introduces one model to determine the position a business has on a high-tech
market – the technology adoption life cycle. Of specific interest to the market
for software engineering, the difference between product- and service-based
business models is also discussed. The end of Chapter V introduces a set of fi-
nancial concepts that can be used to evaluate software engineering investments,
and determine the cost of such investments.

The remainder of the thesis has presented the proper studies performed in
the course of this work. Chapter VI introduces a method for scenario-based
flexibility assessment of software development processes. More interestingly, the
case study for this method shows some of the linkage between software proc-
esses, software architectures, and the organizations that develop products guided
by these. This linkage is enhanced by contrasting the case study with a quite
different case – to show the difference between project-oriented and line-
oriented product development.

Chapter VII takes somewhat the opposite approach to investigating the
linkage between software processes and software architectures – by investigating
the process whereby software architectures are changed. The cases used to study
the architectural change process show that this is not merely a process of techni-
cal or technological change. It is also a process of organizational change, and
must be treated as such in order to be successful when performing architectural
change. Changes to software architectures lead not only to changes of the soft-

XI Main Contribution

164 Strategies for Management of Architectural Change and Evolution

ware, but also to changes in how this software is developed. This notion of ar-
chitectural change leads to architectural evolution – consecutive architectural
changes with an overall purpose. Chapter VIII presents a number of cases of
evolution of software architectures and overall development strategies. These are
combined into a framework of strategic evolution, which gives guidelines on
which approaches are beneficial in which situations, and how to go about im-
plementing them. One such strategy, open source software development, is
studied in-depth in Chapter IX, with information on how a number of compa-
nies have integrated this development strategy with their business models.

The final study goes back to the technical details of the architectural change
process. It presents one example of how a change initiator can go about prepar-
ing ground and gaining acceptance for an architectural change. A model for
determining the benefit of one architectural strategy is presented, and the valid-
ity of this model is analyzed from a metrics theory standpoint. The example
shows how established software engineering knowledge can be transferred to the
practice of software architecture. With these studies fresh in memory, the over-
all conclusions with respect to the research questions of Chapter II can be pre-
sented.

1. Contribution
The individual studies have provided results in various specific areas. The con-
cept of process flexibility assessment is introduced, along with an assessment
method. The method was based on scenarios, and general conclusions on sce-
nario generation and interpretation has emerged. Similar conclusions have been
provided while using process simulation to better understand the case studies.
Light has been shed on issues such as funding of architectural initiatives; chal-
lenges and opportunities with open source development have been analyzed;
and also the challenge of introducing metrics in practice. The studies as a whole
have however primarily aimed at the research goal presented in Chapter II. The
contribution of this work is described as a discussion of the research questions
and how they relate to results found in the presented studies, and a discussion
of general conclusions around the goal of this thesis.

1.1 Research Questions
Question 1: What is the linkage between architectural strategies and busi-
ness goals?

The business goals of the companies studied in this thesis, with regards to
the focus topics of the thesis itself – i.e. architectural strategies to improve qual-
ity attributes related to productivity – have been in the fields of cost savings,
lead-time reductions, entering new markets, inventing new markets and focus-
ing on core competencies. The business goals that have been covered in this
thesis, primarily in Chapters VII and VIII, are summarized in Table 19. As can
be seen from the table the quality attributes sought for by the companies in
their architecture-related initiatives are close to their business goals. In general

 1. Contribution

Josef Nedstam 165

they can be divided into those who want to spend and those who want to save.
Judging from the initiatives studied in this thesis, Companies K, L, M, E and N
have primarily been focused on saving, either in development and maintenance
cost, or in lead-time. Companies B, F, H and I have rather been spending, to
get more or newer products onto the market. All companies have however
struggled with doing both at the same time, primarily so Companies C, D, G
and J. If we look at the companies from Chapter IX, their goals have been to
focus on core competencies, and to save licensing and development costs. For
those who have primarily been using open source software, it has also been a
way to take control over future support and maintenance.

The prioritized quality attributes, such as the ones shown in Table 19, are
said to drive the architectural choices (Bass et al., 1998), or the architectural
transformations (Bosch, 2000). The quality attributes of Table 19, taken from
the case studies, are akin to the two quality attributes modifiability and reusabil-
ity from Table 1 in Chapter I. A quality attribute classification with higher fi-
delity would be needed to get a more exact relation between the quality attrib-
utes of the case companies with architectural techniques such as those presented

Table 19: Overview of case companies

Comp Qualities Goal type Goal

B Extendibility,
integrability

Expand Enter new markets

C Performance,
open interfaces

Innovate Utilizing IP rights by creating new market

F Lead time,
feature content

Expand, focus Utilizing branding opportunity and increase diversifi-
cation to increase market share

D Extendibility,
cost

Expand, cost Increase market share through integration of tech-
nologies; save costs.

G Standards,
infrastructure

Innovate Take business from early market of customized solu-
tions to mature market of standard solutions

H Portability Expand Portability to 2 platforms to increase market share.

I Lead-time Innovate Streamline similar consultancy projects, take business
from early customized market to mature standardized
market.

J Flexibility Innovate Capitalize on companies desires to outsource parts of
Information System development

K Extendibility Expand, time Enter new niche market by expanding product port-
folio; shorten lead-time.

L Cost, interop-
erability

Integrate, cost Standardize a platform for a wide array of informa-
tion systems; outsourcing development

M Lead-time Time, cost Shorten lead-time and decrease cost. Synchronize
platform evolution with application projects

E Extendibility Expand, time Shorten lead-time and increase product scope to in-
crease market share. Include more types of sensors

N Lead-time Cost, time Realize economies across product set

XI Main Contribution

166 Strategies for Management of Architectural Change and Evolution

by Bass et al. (1998). This thesis has focused on architectural efforts to enable
reuse, which naturally is related to savings in development cost and lead-time.
Benefits of reuse are modeled quantitatively in Chapter X. The initiatives the
studied companies have implemented have however also combined reuse efforts
with introduction of variability, which then has enabled also expansive business
goals, to diversify product portfolios and enter new markets.
Question 2: How does the software architecture relate to the organization
and the software process?

The clearest relationship between a software architecture and the organiza-
tion that develops products from it can be seen in the way development projects
are structured. Most organizations in this thesis divide their projects into teams
according to the components of the architecture, with roles responsible for each
module. This usually creates a matrix organization where resources dedicated to
specific tasks such as requirements engineering, design, development and testing
are taken from the line organization to populate projects. Individuals will then
specialize in their tasks according to the various software process phases, but
also specialize on the particular modules they are developing. Changes in the
anatomy of the architecture will then lead to changes in the structure of teams
within projects. However, alternative strategies of development exist, where
focus is shifted over to the features of the product, or the functions to be per-
formed in software development, rather than the modules of the product. The
research in this thesis however seems to indicate that the stability of the archi-
tecture has impact on the choices that can be made in these issues. Chapter VI
shows an initial framework for this linkage, while Chapter VII shows the im-
pact of individual architectural changes, and Chapter VIII shows examples of
when the whole strategy to development has to be changed.

Chapter VII also shows other linkages between software architectures, proc-
esses and organizations. Software architecture changes imply changes to the
rules of how software is developed, and since the software process concerns how
software is developed, the two have to be aligned when changes are made. A
further challenge with this is that software developers are inclined to change
what they develop, but not how they develop. Chapter VIII finally investigates
how to organize for development of architectural assets which are used by sev-
eral projects. Examples are shown of companies that organize development
around these assets, and those that maintain their organizational focus on the
products that are to be marketed. Some examples even show how the entire
business of the company changes as internally developed assets are turned into
products of their own.
Question 3: How do organizations carry out architectural changes, and
how can this process be improved?

The process for architectural change is the focus of Chapter VII. It shows
examples of architectural changes that are decided and performed as ordinary
technical changes, but which face opposition as organizational issues are over-
looked. A generic decision process is provided, which should help muster sup-
port for any change, and raise awareness of the impact on process and organiza-

 1. Contribution

Josef Nedstam 167

tion such a change can have. Examples of different strategies for rolling out de-
cided changes are also given, e.g. integrated with product-focused projects, or as
standalone projects later merged into product code with resources from the line.

One challenge for software engineers when convincing management of the
benefits of a suggested architectural investment is to present its business case. It
can also be difficult to convince other developers to change their ways, and
spend time and resources on what seems to be over-ambitious architectures.
Chapter X presents one example of how a quantitative model can be designed
and used to make the case for implementing a reuse-based architectural strategy.
Question 4: Which architectural strategies exist, with bearing on business
goals related to productivity?

Chapter VIII gives examples of several architectural and development strate-
gies, and shows a framework for how companies can achieve various business
goals based on these strategies. Companies should not automatically strive for
the highest possible level of architectural maturity, but rather asses their needs
and goals with relation to opportunities for reuse and increased productivity.
The dilemma of investing in architectural resources and reusable assets, with
e.g. approaches such as software product lines, is that when implemented, they
can provide shorter lead-times and quicker access to new markets – the imple-
mentation of such approaches can however delay release of products being cur-
rently developed. A company in such a situation therefore has to investigate the
opportunities given by other approaches, such as the ones presented in Chapter
VIII, or the light-weight approaches to software product lines, presented in
Chapter IV and employed by one of the cases in Chapter VIII. Chapter IX fur-
ther investigates how open source development can be used as a strategy to
reach goals of decreasing development effort, focusing on core competencies,
and gaining power in relation to partners and suppliers.
Question 5: How do software architectures evolve to continue supporting
business goals in an evolving environment?

Bosch (2000) presents reasons for, and ways to evolve a software product
line. These are on the levels of introducing a new product line, introducing new
products into a product line, adding new features to the products of a product
line, supporting new standards and infrastructures, and improving the quality
attributes of the product line. The work presented here has instead been inves-
tigating when and how to change strategy to architecture and development al-
together. These two views should however match.

Three generic strategies have been seen in the studies of this thesis: packag-
ing technology – either found in products developed by a company, or gained
by experience as a service company – in products for the market; maintaining a
stable architecture for streamlined development; and packaging and maintain-
ing reusable assets as internal components which can be used to develop a vari-
ety of products. A discussion of these three generic strategies follow.

This thesis shows examples of organizations that have gained a technological
advantage, and packaged this technology in internal reusable assets. Such or-
ganizations may see this technology as their main asset, and divest proper prod-

XI Main Contribution

168 Strategies for Management of Architectural Change and Evolution

uct development to instead market their technology as a product, or as a service.
The benefit of a product is that it has extraordinary potential for revenues,
compared to a service, where resources have to be spent on integrating licensed
technology with customers’ products. Such services will often bring revenues
based on the effort to do this integration, rather than based on the value of the
technology (Cusumano, 2004). The companies that in this thesis have managed
to capitalize on this opportunity of packaging internal technology assets as
products have done this from an architectural approach. The opposite has also
been true, for organizations that have divested technology, and focused on core
competencies closer to the end customer, such as added-value features, market-
ing and branding. These initiatives are easier to implement when there exist
structured or open interfaces between internal technology and external features.

An alternative has for some companies been to keep reusable assets internal.
With the right balance between these internal assets, and the products based on
them, they have managed to develop products customized for individual cus-
tomers, or differentiate their products for greater market coverage. This requires
a proper organization, an adequate process to channel requirements from cus-
tomers, through individual products, down to the internal assets, and strategies
to prioritize resources between individual products and internal assets. This is a
balance that is difficult to maintain, but that can provide great opportunities for
customization and differentiation. The cost to maintain this balance might
however be too high when market conditions change, and the organization
must be open to changes in strategies for development.

Other organizations have had one main product, which has been released in
continuous versions. The continuing ability to release such versions depends on
the stability of the software architecture – it must allow for the changes of the
product that the market demands. New versions must include enough new
functionality to warrant upgrades from old customers, or to attract new ones.
The architecture must also be maintained and adapted to continue facilitating
new requirements. Here is also a balance that is difficult to maintain – taking
resources for developing new features and place on maintenance of the architec-
ture. This balance will eventually tip over, so companies in such a situation
must be prepared to discontinue developing products from the old architecture,
and make significant reengineering of their product, to allow for new market
requirements.

1.2 Research Goal
The goal of this thesis was stated in Chapter II:

Help developers and architects utilize and evolve their soft-
ware architectures to better support the business goals of
their organizations, with respect to quality attributes related
to increased productivity.

 1. Contribution

Josef Nedstam 169

The combined answers to the research questions provide us with guidance in
fulfilling this goal. The thesis shows that opportunities exist for using architec-
tural strategies to reach business goals to save resources and lead-time, but also
to diversify product portfolios and thereby entering new market niches. Gaining
support for such strategies can however be difficult, especially for cost saving
strategies that require initial investments, or any strategy that risks delaying
revenues. The thesis gives guidelines and techniques to alleviate this, by quanti-
fying the benefits of architectural strategies such as flexibility and reusability,
and by pointing out the necessity to investigate the total impact of such changes
– not only to the products themselves, but also to the organizations developing
them.

The thesis furthermore gives long-term strategic guidance on which strate-
gies are beneficial for which evolutionary phases of a company or market. Initial
markets imply focusing on individual customers. If a market catches on, focus
should go back to further productifying the offering, to catch as much as possi-
ble of the market with one product that sets the infrastructure and standard for
such a market. Later, more mature markets, require companies to yet again dif-
ferentiate their products, with product varieties focused on certain market seg-
ments. In such varying phases of a market, architectural strategies must change.
Focus on individual customers often require individual projects for each prod-
uct, but similarities between such products can be extracted into internal reus-
able assets. Such generic assets can form the basis for a mass market product. If
opportunities arise to differentiate this product, management of variability in
the product can lead to a new phase of customization. Architectural efforts
should not only adapt to such a changing environment, but can also lead this
change. If this is to be successful, developers and architects must understand
market opportunities and business goals, or have effective communication with
marketing and business management within the organization.

2. Further Work
Further work for the individual studies has been presented in the respective
chapters. Further work aiming at the overall goal of this thesis should be cross-
disciplinary, with proper analysis of the business strategy of software developing
companies, in parallel with analysis of the architectural strategies used by these
companies. The work of this thesis, as it is now, has primarily been a bottom-
up approach to utilizing the full opportunities of architectural strategies to
reach business objectives related to productivity. It gives guidance on how ar-
chitects should act to make an impact, and what options they have to support
their organizations in varying business conditions.

Further work should therefore be done in cooperation with research in busi-
ness administration. Proper studies of the business environments of companies
such as the ones studied here could anchor or mediate the views held in this
thesis with business management in such organizations. Architects struggling to

XI Main Contribution

170

employ architectural strategies such as the ones presented here could then re-
ceive top-down support, to leverage the impact of architectural strategies.

Such studies could be combined with in-depth studies of practitioners who
are subjected to these architectural changes, and have to develop software ac-
cording to them. These studies could perhaps be performed as observational
studies. They would allow us to minimize resistance to architectural changes
from within an organization. The two viewpoints of business and developers
would also greatly strengthen the credibility and validity of the results presented
in this thesis, as a continuing search of evidence which disconforms to the theo-
ries that have emerged in this thesis (Glaser, 1992). The thesis has mainly fo-
cused on the perspective of an architect or similar role.

A common topic of the further work discussions in the various studies has
been to actually implement suggestions. This type of action research (Patton,
2001) would require generation of more in-depth and tangible conclusions, to
make suggestions about architectural change and evolution credible enough to
base decisions on. It would also provide proper feedback to, and validation of
the tools and processes for decision support presented in this thesis. The studies
in Chapters VI and X generated concrete suggestion or decision support for the
companies involved; in the concrete cases about which risks need to be miti-
gated first, which bottlenecks existed in the requirements process, and which
components should be generalized for reuse first. The decisions made based on
this and other information has however not been followed up in this thesis.
Other studies in this thesis have foremost generated conclusions general to all
involved companies, and not focused on supporting the individual companies.

 Strategies for Management of Architectural Change and Evolution

 171

References

Aaker, D. A. (2001), Strategic Market Management, 6th Ed., John Wiley & Sons:

Hoboken, NJ.

Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L. and Zaremski, A. (1997),
Recommended Best Industrial Practice for Software Architecture Evaluation,
CMU/SEI-96-TR-025.

Albrecht, A. J. (1979), “Measuring Application Development Productivity”, Proceedings
of the SHARE/GUIDE IBM Applications Development Symposium, Monterey, CA.

America, P., Hammer, D., Ionita, M. T., Obbink, H. and Rommes, E. (2005),
“Scenario-based Decision Making for Architectural Variability in Product
Families”, Software Process Improvement and Practice, 2005(10), pp 171-187.

Anastasopoulos, M. and Gacek, C. (2001), “Implementing Product Line Variabilities”,
Proceedings of the 2001 Symposium on Software Reusability, Toronto, Ontario, May
2001.

Ares, J., García, R., Juristo, N., López, M. and Moreno, A. M. (2000), “A More
Rigorous and Comprehensive Approach to Software Process Assessment”,
Software Process: Improvement and Practice, Vol. 5, No. 1, pp 3-30, John Wiley &
Sons, Ltd.

Asundi, J. and Kazman, R. (2001), “A Foundation for the Economic Analysis of
Software Architectures”, Proceedings of the 3rd International Workshop on
Economics-Driven Software Engineering Research (EDSER-3), Toronto, Canada,
May 2001.

Asundi, J., Kazman, R. and Klein, M. (2000), “An Architectural Approach to Software
Cost Modeling”, Proceedings of the 2nd International Workshop on Economics-Driven
Software Engineering Research, Limerick, Ireland.

Bahsoon, R. and Emmerich, W. (2003), “ArchOptions: A Real Options Based Model
for Predicting the Stability of Software Architectures”, Proceedings of the 5th
Workshop on Economics-Driven Software Research (EDSER-5), Portland, Oregon,
May 2003.

Bandinelli, S. C., Fuggetta, A., Lavazza, L., Loi, M. and Picco, G. P. (1995), “Modeling
and Improving an Industrial Software Process”, IEEE Transactions on Software
Engineering, Vol. 21, No. 5, pp 440-455.

References

172 Strategies for Management of Architectural Change and Evolution

Banks, J., Carson, J. S. and Nelson, B. L. (1996), Discrete-Event System Simulation, 2nd
Ed., Prentice Hall.

Basili, V. R. and Turner, A. J. (1975), “Iterative Enhancement: A Practical Technique
for Software Development”, IEEE Transactions on Software Engineering, Vol. 1,
No 4.

Basili, V. R. and Rombach, H. D. (1988), “The TAME project: towards improvement-
oriented software environments”, IEEE Transactions on Software Engineering, Vol.
14, No. 6, pp 758-773.

Basili, V. R., Caldiera, G. and Rombach, H. D. (1994), “The Experience Factory”, in
Marciniak, J. J. (Ed.), Encyclopedia of Software Engineering, Vol. 1, pp 469-476,
John Wiley & Sons, Inc., New York.

Bass, L., Clements, P. and Kazman, R. (1998), Software Architecture in Practice,
Addison Wesley Longman, Inc., Reading MA.

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T. and
DeBaud, J.-M. (1999), “PuLSE™: A Methodology to Develop Software Product
Lines”, 5th ACM SIGSOFT Symposium on Software Reusability (SSR’99), Los
Angeles, CA, May 1999.

Beck, K. (1999a), Extreme Programming Explained: Embrace Change, 1st Ed., Addison-
Wesley.

Beck, K. (1999b), “Embracing Change with Extreme Programming”, IEEE Computer,
Vol. 32, No. 10, pp 70-77.

Beckman, D. and Rigby, J. (2003), Foundations of Marketing, 8th Ed., Nelson.

Bergman, B. and Klefsjö, B. (2004), Quality from Customer Needs to Customer
Satisfaction, Studentlitteratur.

Bergquist, M. and Ljungberg, J. (2001), “The power of gifts: organizing social
relationships in open source communities”, Information Systems Journal, Vol. 11,
No. 4, pp. 305-320.

BigLever (2005), www.biglever.com, visited October 2005.

Birk A., Heller G., John I., Schmid K., von der Massen T. and Müller K. (2003),
Product Line Engineering: The State of the Practice. IEEE Software, Vol. 20, No.
6, pp 52-60.

Birrer, G. E. and Carrica, J. L. (1990), Present Value Applications for Accountants and
Financial Planners, Quorum Books.

Black, F. and Scholes, M. (1973), “The Pricing of Options and Corporate Liabilities”,
Journal of Political Economy.

Boehm, B. W. (1981), Software Engineering Economics, Prentice Hall PTR.

Bosch, J. (2000), Design & Use of Software Architectures: Adopting and Evolving a
Product-Line Approach, Pearson Education Limited, London.

Bosch J. (2002), “Maturity and Evolution in Software Product Lines: Approaches,
Artefacts and Organizations”, Proceedings of the 2nd International Conference on

Josef Nedstam 173

Software Product Lines (SPLC2), Lecture Notes in Computer Science, vol. 2379,
Chastek G J (Ed.). Springer: Heidelberg, Germany, pp 257-272.

Bosch, J. (2005), “Staged Adoption of Software Product Families”, Journal of Software
Process Improvement and Practice, No. 10, 2005, John Wiley & Sons, pp 125-142.

Caine, A. and Banks Pidduck, A. (2004), “f2 COCOMO: Estimating Software Project
Effort and Cost”, Proceedings of the 6th International Workshop on Economics-Driven
Software Engineering Research, Edinburgh, Scotland, May 2004.

Christensen, C. M. (1997), The Innovator’s Dilemma – When New Technologies Cause
Great Firms to Fail, Harvard Business School Press.

Clements, P. and Northorp, L. (2001), Software Product Lines: Practices and Patterns,
Addison Wesley, Boston.

Clements, P. (2002), “Being Proactive Pays Off”, IEEE Software, July/August 2002, pp
28-31.

Clements, P., Kazman, R. and Klein, M. (2002), Evaluating Software Architectures,
Addison-Wesley.

Cooper, R. G. (1990), “Stage-Gate Systems: A New Tool for Managing New
Products”, Business Horizons, May-June 1990, pp 44-55.

Cooper, R. G. and Kleinschmidt, E. J. (1993), “Stage gate systems for new product
success”, Marketing Management, Vol. 1 No. 4 pp 20-30, American Marketing
Association.

Cooper, R. G. (2000), “Winning with new Products: Doing it Right”, Ivey Business
Journal, Vol. 64, No. 6, pp 54-61.

Cusumano, M. A. (2004), The Business of Software: What Every Manager, Programmer,
and Entrepreneur Must Know to Thrive and Survive in Good Times and Bad, Free
Press.

D’Cruz, C. and Ports, K. (2003), “Strategic Analysis Tools for High Tech Marketing”,
Proceedings of the Portland International Conference on Management of Engineering
and Technology, Portland, Oregon, pp 408-415.

Dijkstra, E W. (1972), “The Humble Programmer”, Communications of the ACM, Vol.
15, No. 10, pp 895-866.

Dion, R. (1993), “Process Improvement and the Corporate Balance Sheet”, IEEE
Software, Vol. 10, No. 4, pp 28-35.

Dobrica, L. and Niemelä, E. (2002), “A Survey on Software Architecture Analysis
Methods”, IEEE Transactions on Software Engineering, Vol. 28, No. 7, pp 638-
653.

Evans, R., Park, S. and Alberts, H. (1997), “Decisions not Requirements: Decision-
Centered Engineering of Computer-Based Systems”, Engineering of Computer-
Based Systems (ECBS), Monterey, pp. 435-442.

Farbey, B., Land, F. F. and Targett, D. (1993), How to Evaluate Your I/T Investment: A
study of methods and practice, Butterworth Heinemann, Oxford.

References

174 Strategies for Management of Architectural Change and Evolution

Faulk S. R., Harmon R. R. and Raffo D. M. (2000), “Value-Based Software
Engineering (VBSE): A Value-Driven Approach to Product-Line Engineering”,
Software Product Lines: Experience and Research Directions (The Kluwer
International Series in Engineering and Computer Science, Vol. 576), Donohoe P.
(Ed.), Kluwer, Boston.

Feller, J. and Fitzgerald, B. (2003), Understanding Open Source Software Development,
Adison-Wesley.

Fenton, N. E. and Pfleeger, S. L. (1998), Software Metrics: A Rigorous and Practical
Approach, 2nd Ed., Course Technology.

Ferrin B. and Plank R. (2002), “Total cost of ownership models: An exploratory study”,
Journal of Supply chain management, Vol. 38, No. 3, pp 18-29.

Ford, D. N. and Sobek, D. K. (2005), “Adapting Real Options to New Product
Development by Modeling the Second Toyota Paradox”, IEEE Transactions on
Engineering Management, Vol. 52, No. 2, pp 175-185.

Fullan, M. (1991), The New Meaning of Educational Change, 2nd Ed., Cassell, London.

Fusaro, P., El Emam, K. and Smith, B. (1997), “Evaluating the Interrater Agreement of
Process Capability Ratings”, Proceedings of the 4th International Software Metrics
Symposium, Bieman J (Chair), IEEE, Washington, pp 2-11.

Gamma, E., Helms, R., Johnson, R. and Vlissides, J. (1995), Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA.

Garlan, D. and Shaw, M. (1996), Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall.

Glaser, B. G. (1992), Basics of grounded theory analysis: emergence vs forcing, Sociology
Press, Mill Valley, CA.

Grant, R. M. (1998), Contemporary Strategy Analysis, Blackwell Publishers Inc.

Golden, B. (2004), Succeeding with Open Source, Addison-Wesley.

Halling, M., Biffl, S. and Grünbacher, P. (2004), “The Role of Valuation in Value-
Based Software Engineering”, Proceedings of the 6th International Workshop on
Economics-Driven Software Engineering Research (EDSER-6), Edinburgh, May
2004.

von Hippel, E (2005), Democratizing Innovation, MIT Press.

Hofmeister, C., Nord, R. and Soni, D. (1999), Applied Software Architecture, Addison-
Wesley.

Hohensohn, H., Hang, J. (2003), “Product - and Service Related Business Models for
Open Source Software”, Tagungsband Net.ObjectDays, Erfurt, Germany,
September 2003.

Hohmann, L. (2003), Beyond Software Architecture: Creating and Sustaining Winning
Solutions, Addison-Wesley: Harlow, UK.

House, E. R. (1980), Evaluating with validity, Beverly Hills, Sage Publications.

Josef Nedstam 175

Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., and Nyberg, C. (2001),
“Exploring bottlenecks in market-driven requirements management processes with
discrete event simulation”, Journal of Systems and Software, Vol. 59, Elsevier
Science Inc., pp 323-332.

Ince, D. C. and Hekmatpour, S. (1988), “An Approach to Automated Software Design
Based on Product Metrics”, Software Engineering Journal, Vol. 3, No. 2, pp. 53-
56.

ISO 9001:1994, Quality Systems: Model for quality assurance in design, development,
production, installation and servicing, International Organization for
Standardization.

ISO/IEC 9126-1:2001, Software Engineering – Product Quality – Part 1: Quality Model,
International Organization for Standardization.

ITU (1992), Specification and Description Language (SDL), ITU-T Standard Z.100,
International Telecommunication Union.

Jamieson, D., Vinsen, K. and Callender, G. (2004), ”Measuring Software Costs: A New
Perspective on a Recurring Problem”, Proceedings of the 6th International Workshop
on Economics-Driven Software Engineering Research, Edinburgh, Scotland, May
2004.

Jarke, M. and Kurki-Suonio, R. (1998), “Guest Editorial: Introduction to the Special
Issue: Scenario Management”, IEEE Transaction on Software Engineering, Vol. 24,
No. 12, pp 1033-1035, IEEE, Washington.

Karlsson, E.-A. (Ed., 1995), Software Reuse: A Holistic Approach, John Wiley & Sons.

Karlström, D. and Runeson, P. (2005), “Combining Agile Methods with Stage-Gate
Project Management”, IEEE Software, Vol. 22 No. 3, pp43-49, IEEE.

Kazman, R., Bass, L., Abowd, G. and Webb, M. (1994), “SAAM: A Method for
Analyzing the Properties of Software Architectures”, Proceedings of the 16th
International Conference on Software Engineering, pp 81-90.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H. and Carriere, J. (1998),
“The Architecture Tradeoff Analysis Method”, Proceedings of the 4th IEEE
International Conference on Engineering of Complex Computer Systems, pp 68-78.

King, P.J.B. (1990), Computer and Communication Systems Performance Modelling,
Prentice Hall.

Kolakowski, L. (1972), Positivist philosophy from Hume to the Vienna Circle, Pelican
Books, 1972.

Kotter, J. P. (1996), Leading Change, Harvard Business School Press.

Krishnamurthy S. (2002), “Cave or Community?: An Empirical Examination of 100
Mature Open Source Projects”, First Monday, Vol. 6, No. 7.

Kruchten, P. B. (1995), “The 4+1 View Model of Architecture”, IEEE Software, Vol.
12, No. 6, pp 42-50.

References

176 Strategies for Management of Architectural Change and Evolution

Krueger, C. W. (1992), “Software Reuse”, ACM Computing Surveys, pp 131-183, June
1992.

Krueger, C W. (2001), “Easing the Transition to Software Mass Customization”,
Proceedings of the 4th International Workshop on Product Family Engineering, Lecture
Notes in Computer Science, vol. 2290, van der Linden F (Ed.), Springer, Berlin, pp
282-293.

Krueger, C. W. (2002a), “Filling the Technology Void for Industrial Software Product
Lines”, Proceedings of the 7th International Conference on Software Reuse, Austin,
TX, April 2002.

Krueger, C. W. (2002b), “Eliminating the Adoption Barrier”, IEEE Software, pp 28-31,
July/August 2002

Krueger, C W. (2003), “Towards a Taxonomy for Software Product Lines”, Proceedings
of the 5th International Workshop on Product Family Engineering (Lecture Notes in
Computer Science, vol. 3014), van der Linden, F. (Ed.), Springer, Berlin, pp 323-
331.

Kuvaja, P., Similä, J., Krzanik, L., Bicego, A., Koch, G. and Saukkonen, S. (1994),
Software Process Assessment and Improvement: The BOOTSTRAP Approach,
Blackwell Publishers, Oxford.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E. and Turski, W. M. (1997),
“Metrics and Laws of Software Evolution - The Nineties View”, Proceedings of the
4th International Software Metrics Symposium, IEEE, pp 20-32.

Lehman, M. M. and Ramil, J. F. (2003), “Software Evolution – Background, Theory,
Practice”, Information Processing Letters, Vol. 88, pp 33-44, Elsevier.

Lehtola, L., Kauppinen, M. (2004) “Evaluation of Two Requirements Prioritization
Methods in Product Development Projects”, Proceedings of the European Software
Process Improvement Conference (EuroSPI 2004), Trondheim, Norway.

Levitt, T. M. (1986), The Marketing Imagination, Free Press.

Lindsay, M., Dennis, M. (2001), “Product Cannibalization and the Role of Prices”,
Applied Economics, Vol. 33, No. 14, pp 1785-1793, Routledge.

McCabe, T. J. (1982), “Structured Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric,” National Bureau of Standards Special Publication No.
500-99, December 1982.

McFeely, R. (1996), IDEAL: A User’s Guide for Software Process Improvement,
SEI/CMU.

McKenna, R. (1991), Marketing is Everything, Harvard Business Review.

Merriam-Webster (1998), Merriam-Webster’s Collegiate Dictionary, 10th Ed., Merriam-
Webster.

Mills, H. D., O’Neill, D., Linger, R. C, Dyer, M. and Quinnan, R. E. (1980), “The
Management of Software Engineering”, IBM Systems Journal, Vol. 19, No. 4, pp
414-477

Josef Nedstam 177

Minichiello, V., Aroni, R., Timewell, E. and Alexander, L. (1990), In-depth
interviewing: researching people, Melbourne, Victoria, Longman Cheshire.

Moore, G. E. (1965), “Cramming More Components onto Integrated Circuits”,
Electronics, Vol. 38, No. 8.

Moore, G. A. (1991), Crossing the Chasm: Marketing and Selling Technology Products to
Mainstream Customers, HarperCollins Publishers Inc., New York, NY.

Moore, G. A. (1995), Inside the Tornado: Marketing Strategies from Silicon Valley’s
Cutting Edge, HarperBusiness.

Moore, M., Kazman, R., Klein, M. and Asundi, J. (2003), “Quantifying the Value of
Architecture Design Decision: Lessons from the Field”, Proceedings of the 25th
International Conference on Software Engineering (ICSE 2003), Portland, Oregon,
IEEE.

Naur, P. and Randell, B. (Eds., 1968), Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Oct 1968, NATO Scientific Affairs
Division, Brussels.

Nedstam, J. and Karlsson, E.-A. (2004), “Experiences from Architectural Evolution”,
Proceedings of the 5th Australian Workshop on System and Software Architectures
(AWSA2004), April 2004. Swinburne University of Technology: Melbourne,
Australia, pp 1-4.

Nedstam, J (2004), “Finalizing a PhD Thesis in Architectural Evolution”, Proceedings of
the 6th International Workshop on Economics-Driven Software Engineering (EDSER-
6), May 2004. IEE, Herts, UK, pp 71-74.

Nejmeh, B. A. and Thomson, I. (2002), “Business-Driven Product Planning Using
Feature Vectors and Increments”, IEEE Software, Vol. 19, No. 6, pp 34-42.

Nelson, K. M., Nelson, H. J. and Ghods, M. (1997), “Technology Flexibility:
Conceptualization, Validation, and Measurement”, Proceedings of the 30th Hawaii
International Conference on System Sciences, Vol. 3, pp 76-87, IEEE, Los Alamitos,
California.

Noori, H. (1990), Managing the Dynamics of New Technology, Prentice Hall.

Noppen, J. and Aksit, M. (2004), “A Case Study on Optimization of Resource
Distribution to cope with Unanticipated Changes in Requirements”, Proceedings
of the 6th International Workshop on Economics-Driven Software Engineering
Research, Edinburgh, Scotland, May 2004.

Olofsson, J. (2003), ”Upphovsrättsliga aspekter på licenser för fri programvara och
öppen källkod – en analys av tillämpligheten i svensk rätt”, The Swedish Law and
Informatics Research Institute, Stockholm University, IRI report 2003:1.

Opdyke, W. F. and Johnson, R. E. (1993), “Creating Abstract Superclasses by
Refactoring”, Proceedings of the 1993 ACM Conference on Computer Science,
Indianapolis, Indiana, pp 66-73.

OSI (2005), The Open Source Definition,
http://www.opensource.org/docs/definition.php, visited October 2005.

References

178 Strategies for Management of Architectural Change and Evolution

Padberg, F. and Müller, M. (2004), “On the Impact of Warmup Phases on the
Economics of Pair Programming”, Proceedings of the 6th International Workshop on
Economics-Driven Software Engineering Research, Edinburgh, Scotland.

Patton, M. Q. (2001), Qualitative Research and Evaluation Methods, 3rd Ed., Sage
Publications.

Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C. V. (1993), “Capability
Maturity Model, Version 1.1”, IEEE Software, Vol. 10, No. 4, pp 18-27.

Perry, D. E. (1994), “Issues in Process Architecture”, Proceedings of the 9th International
Software Process Workshop, pp 138-140.

Pfleeger, S. L. (1998), Software Engineering: Theory and Practice, Prentice Hall.

Pitkethly, R. (1997), “The Valuation of Patents”, Judge Institute Working Paper, 21/97,
The Judge Institute of Management Studies, Cambridge, England.

Poladian, V., Butler, S., Shaw, M. and Garlan, D. (2003), “Time is Not Money: The
case for multi-dimensional accounting in value-based software engineering”,
Proceedings of the 5th Workshop on Economics-Driven Software Engineering Research
(EDSER-5), Portland, Oregon, May 2003.

Pride, W., M. and Ferrell, O., C. (2003), Marketing: Concepts and Strategies, 12th Ed.,
Houghton Mifflin Company.

Rajlich, V. T. and Bennett, K. H. (2000), “A Staged Model for the Software Life
Cycle”, IEEE Computer, Vol. 33, No. 7, pp. 66-71.

Raymond, E. S. (1998), “The Cathedral and the Bazaar”, First Monday, Vol. 3, No. 3.

Regnell, B., Beremark, P. and Eklundh, O. (1998), “A Market-Driven Requirements
Engineering Process - Results from an Industrial Process Improvement
Programme”, Journal of Requirements Engineering, Vol. 3, No. 2, pp 121-129,
Springer-Verlag.

Regnell, B., Höst, M., Natt och Dag, J., Berenmark, P. and Hjelm, T. (2001), “An
Industrial Case Study on Distributed Prioritisation in Market-Driven
Requirements Engineering for Packaged Software”, Requirements Engineering
Journal, Vol. 6, No. 1, pp 51-62, Springer-Verlag Ltd., London.

Reifer, D. J. (2004), “Use of Real Options Theory to Value Software Trade Secrets”,
Proceedings of the 6th International Workshop on Economics-Driven Software
Engineering Research, Edinburgh, Scotland, May 2004.

Robson, C. (2002), Real World Research, 2nd Ed., Blackwell Publishers Inc.

Rogers, E. M. (2003), Diffusion of Innovations, 5th Ed., Free Press.

Royce, W. W. (1970), “Managing the development of large software systems: concepts
and techniques”, Proceedings of IEEE WESTCON, Los Angeles, CA.

Sanders, J. and Curran, S. (1994), Software Quality, Addison-Wesley.

Saaty, T. L. (1980), The Analytical Hierarchy Process, McGraw-Hill.

Josef Nedstam 179

Scriven, M. (1991), Evaluation Thesaurus, 4th Edition, Sage Publications, Thousand
Oaks.

SEI (2005a), http://www.sei.cmu.edu/productlines/framework.html, visited
October 2005.

SEI (2005b), http://www.sei.cmu.edu/productlines/sei_events.html, visited
October 2005.

Seifert, T. and Wieland, T. (2003), “Prerequisites For Enterprises To Get Involved In
Open Source Software Development”, Tagungsband Net.ObjectDays, Erfurt,
Germany, September 2003.

Sommerville, I., Software Engineering, 6th Ed., Addison-Wesley, Harlow, UK 2001

Soni, D., Nord, R., Hofmeister, C. (1995), “Software Architecture in Industrial
Applications”, Proceedings of ICSE 1995, Seattle, pp. 196-210

SourceForge (2005), http://sourceforge.net/index.php, visited October 2005.

SPIN-Syd (2005), http://www.spin-syd.org, visited October 2005.

Staples, M. and Hill, D. (2004), “Experiences Adopting Software Product Line
Development without a Product Line Architecture”, Proceedings of the Asia-Pacific
Software Engineering Conference 2004, Busan, Korea, IEEE Computer Society
Press.

Stern, C. W. and Stalk, G. (1998; Eds.), Perspectives on Strategy from The Boston
Consulting Group, Wiley.

Stroustrup, B. (1997), The C++ Programming Language, 3rd Ed., Addison-Wesley,
Reading, MA.

Suarez, P. and Patt, A. G. (2004), “Cognition, caution, and credibility: the risks of
climate forecast application”, Risk, Decision and Policy, Vol. 9, No. 1, pp 75-89,
Routledge.

TickIT (1995), The TickIT Guide: A Guide to Software Quality Management System
Construction and Certification to ISO 9001, British Standards Institution, 1995.

Vixie, P. (1999), “Software Engineering”, Open Sources: Voices from the Open Source
Revolution, O’Reilly & Associates, pp. 91-100.

Vähäniitty, J. (2004), “Product Portfolio Management in Small Software Product
Businesses – a Tentative Research Agenda”, Proceedings of the 6th International
Workshop on Economics-Driven Software Engineering Research, Edinburgh,
Scotland, May 2004.

Ward, A., Liker, J. K., Cristiano, J. J. and Sobek, D. K. (1995), “The Second Toyota
Paradox: How delaying decisions can make better cars faster”, Sloan Management
Review, Vol. 36, No. 3, pp 43-61.

Wohlin, C. and Regnell, B. (1999), “Strategies for Industrial Relevance in Software
Engineering Education”, Journal of Systems and Software, Vol. 49, No. 2-3, pp
125-134. Elsevier Science BV, Amsterdam.

References

180

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C, Regnell, B. and Wesslén, A.
(2000), Experimentation in Software Engineering: An Introduction, Kluwer
Academic Publishers.

Yin, B. H. and Winchester, J. W. (1978), “The Establishment and Use of Measures to
Evaluate the Quality of System Designs”, Proceedings of the Software Quality and
Assurance Workshop, pp 45-52.

Zahran, S. (1998), Software Process Improvement: Practical Guidelines for Business Success,
Addison-Wesley, Harlow, UK.

Reports on Communication Systems

101. On Overload Control of SPC-systems

Ulf Körner, Bengt Wallström, and Christian Nyberg, 1989.
CODEN: LUTEDX/TETS- -7133- -SE+80P

102. Two Short Papers on Overload Control of Switching Nodes
Christian Nyberg, Ulf Körner, and Bengt Wallström, 1990.
ISRN LUTEDX/TETS- -1010- -SE+32P

103. Priorities in Circuit Switched Networks
Åke Arvidsson, Ph.D. thesis, 1990.
ISRN LUTEDX/TETS- -1011- -SE+282P

104. Estimations of Software Fault Content for Telecommunication Systems
Bo Lennselius, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1012- -SE+76P

105. Reusability of Software in Telecommunication Systems
Anders Sixtensson, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1013- -SE+90P

106. Software Reliability and Performance Modelling for Telecommunication Systems
Claes Wohlin, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1014- -SE+288P

107. Service Protection and Overflow in Circuit Switched Networks
Lars Reneby, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1015- -SE+200P

108. Queueing Models of the Window Flow Control Mechanism
Lars Falk, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1016- -SE+78P

109. On Efficiency and Optimality in Overload Control of SPC Systems
Tobias Rydén, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1017- -SE+48P

110. Enhancements of Communication Resources
Johan M. Karlsson, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1018- -SE+132P

111. On Overload Control in Telecommunication Systems
Christian Nyberg, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1019- -SE+140P

112. Black Box Specification Language for Software Systems
Henrik Cosmo, Lic. thesis, 1994.
ISRN LUTEDX/TETS- -1020- -SE+104P

113. Queueing Models of Window Flow Control and DQDB Analysis
Lars Falk, Ph.D. thesis, 1995.
ISRN LUTEDX/TETS- -1021- -SE+145P

114. End to End Transport Protocols over ATM
Thomas Holmström, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1022- -SE+76P

115. An Efficient Analysis of Service Interactions in Telecommunications
Kristoffer Kimbler, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1023- -SE+90P

116. Usage Specifications for Certification of Software Reliability
Per Runeson, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1024- -SE+136P

117. Achieving an Early Software Reliability Estimate
Anders Wesslén, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1025- -SE+142P

118. On Overload Control in Intelligent Networks
Maria Kihl, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1026- -SE+80P

119. Overload Control in Distributed-Memory Systems
Ulf Ahlfors, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1027- -SE+120P

120. Hierarchical Use Case Modelling for Requirements Engineering
Björn Regnell, Lic. thesis, September 1996.
ISRN LUTEDX/TETS- -1028- -SE+178P

121. Performance Analysis and Optimization via Simulation
Anders Svensson, Ph.D. thesis, September 1996.
ISRN LUTEDX/TETS- -1029- -SE+96P

122. On Network Oriented Overload Control in Intelligent Networks
Lars Angelin, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1030- -SE+130P

123. Network Oriented Load Control in Intelligent Networks Based on Optimal Deci-
sions
Stefan Pettersson, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1031- -SE+128P

124. Impact Analysis in Software Process Improvement
Martin Höst, Lic. thesis, December 1996.
ISRN LUTEDX/TETS- -1032- -SE+140P

125. Towards Local Certifiability in Software Design
Peter Molin, Lic. thesis, February 1997.
ISRN LUTEDX/TETS- -1033- -SE+132P

126. Models for Estimation of Software Faults and Failures in Inspection and Test
Per Runeson, Ph.D. thesis, January 1998.
ISRN LUTEDX/TETS- -1034- -SE+222P

127. Reactive Congestion Control in ATM Networks
Per Johansson, Lic. thesis, January 1998.
ISRN LUTEDX/TETS- -1035- -SE+138P

128. Switch Performance and Mobility Aspects in ATM Networks
Daniel Søbirk, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1036- -SE+91P

129. VPC Management in ATM Networks
Sven-Olof Larsson, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1037- -SE+65P

130. On TCP/IP Traffic Modeling
Pär Karlsson, Lic. thesis, February 1999.
ISRN LUTEDX/TETS- -1038- -SE+94P

131. Overload Control Strategies for Distributed Communication Networks
Maria Kihl, Ph.D. thesis, March 1999.
ISRN LUTEDX/TETS- -1039- -SE+158P

132. Requirements Engineering with Use Cases – a Basis for Software Development
Björn Regnell, Ph.D. thesis, April 1999.
ISRN LUTEDX/TETS- -1040- -SE+225P

133. Utilisation of Historical Data for Controlling and Improving Software Develop-
ment
Magnus C. Ohlsson, Lic. thesis, May 1999.
ISRN LUTEDX/TETS- -1041- -SE+146P

134. Early Evaluation of Software Process Change Proposals
Martin Höst, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1042- -SE+193P

135. Improving Software Quality through Understanding and Early Estimations
Anders Wesslén, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1043- -SE+242P

136. Performance Analysis of Bluetooth
Niklas Johansson, Lic. thesis, March 2000.
ISRN LUTEDX/TETS- -1044- -SE+76P

137. Controlling Software Quality through Inspections and Fault Content Estimations
Thomas Thelin, Lic. thesis, May 2000
ISRN LUTEDX/TETS- -1045- -SE+146P

138. On Fault Content Estimations Applied to Software Inspections and Testing
Håkan Petersson, Lic. thesis, May 2000.
ISRN LUTEDX/TETS- -1046- -SE+144P

139. Modeling and Evaluation of Internet Applications
Ajit K. Jena, Lic. thesis, June 2000.
ISRN LUTEDX/TETS- -1047- -SE+121P

140. Dynamic traffic Control in Multiservice Networks – Applications of Decision
Models
Ulf Ahlfors, Ph.D. thesis, October 2000.
ISRN LUTEDX/TETS- -1048- -SE+183P

141. ATM Networks Performance – Charging and Wireless Protocols
Torgny Holmberg, Lic. thesis, October 2000.
ISRN LUTEDX/TETS- -1049- -SE+104P

142. Improving Product Quality through Effective Validation Methods
Tomas Berling, Lic. thesis, December 2000.
ISRN LUTEDX/TETS- -1050- -SE+136P

143. Controlling Fault-Prone Components for Software Evolution
Magnus C. Ohlsson, Ph.D. thesis, June 2001.
ISRN LUTEDX/TETS- -1051- -SE+218P

144. Performance of Distributed Information Systems
Niklas Widell, Lic. thesis, February 2002.
ISRN LUTEDX/TETS- -1052- -SE+78P

145. Quality Improvement in Software Platform Development
Enrico Johansson, Lic. thesis, April 2002.
ISRN LUTEDX/TETS- -1053- -SE+112P

146. Elicitation and Management of User Requirements in Market-Driven Software
Development
Johan Natt och Dag, Lic. thesis, June 2002.
ISRN LUTEDX/TETS- -1054- -SE+158P

147. Supporting Software Inspections through Fault Content Estimation and Effec-
tiveness Analysis
Håkan Petersson, Ph.D. thesis, September 2002.
ISRN LUTEDX/TETS- -1055- -SE+237P

148. Empirical Evaluations of Usage-Based Reading and Fault Content Estimation for
Software Inspections
Thomas Thelin, Ph.D. thesis, September 2002.
ISRN LUTEDX/TETS- -1056- -SE+210P

149. Software Information Management in Requirements and Test Documentation
Thomas Olsson, Lic. thesis, October 2002.
ISRN LUTEDX/TETS- -1057- -SE+122P

150. Increasing Involvement and Acceptance in Software Process Improvement
Daniel Karlström, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1058- -SE+125P

151. Changes to Processes and Architectures; Suggested, Implemented and Analyzed
from a Project Viewpoint
Josef Nedstam, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1059- -SE+124P

152. Resource Management in Cellular Networks -Handover Prioritization and Load
Balancing Procedures
Roland Zander, Lic. thesis, March 2003.
ISRN LUTEDX/TETS- -1060- -SE+120P

153. On Optimisation of Fair and Robust Backbone Networks
Pål Nilsson, Lic. thesis, October 2003.
ISRN LUTEDX/TETS- -1061- -SE+116P

154. Exploring the Software Verification and Validation Process with Focus on Effi-
cient Fault Detection
Carina Andersson, Lic. thesis, November 2003.
ISRN LUTEDX/TETS- -1062- -SE+134P

155. Improving Requirements Selection Quality in Market-Driven Software Develop-
ment
Lena Karlsson, Lic. thesis, November 2003.
ISRN LUTEDX/TETS- -1063- -SE+132P

156. Fair Scheduling and Resource Allocation in Packet Based Radio Access Networks
Torgny Holmberg, Ph.D. thesis, November 2003.
ISRN LUTEDX/TETS- -1064- -SE+187P

157. Increasing Product Quality by Verification and Validation Improvements in an
Industrial Setting
Tomas Berling, Ph.D. thesis, December 2003.
ISRN LUTEDX/TETS- -1065- -SE+208P

158. Some Topics in Web Performance Analysis
Jianhua Cao, Lic. thesis, June 2004.
ISRN LUTEDX/TETS- -1066- -SE+99P

159. Overload Control and Performance Evaluation in a Parlay/OSA Environment
Jens K. Andersson, Lic. thesis, August 2004.
ISRN LUTEDX/TETS- -1067- -SE+100P

160. Performance Modeling and Control of Web Servers
Mikael Andersson, Lic. thesis, September 2004.
ISRN LUTEDX/TETS- -1068- -SE+105P

161. Integrating Management and Engineering Processes in Software Product Devel-
opment
Daniel Karlström, Ph.D. thesis, December 2004.
ISRN LUTEDX/TETS- -1069- -SE+230P

162. Managing Natural Language Requirements in Large-Scale Software Development
Johan Natt och Dag, Ph.D. thesis, Febuary 2005.
ISRN LUTEDX/TETS- -1070- -SE+222P

163. Designing Resilient and Fair Multi-layer Telecommunication Networks
Eligijus Kubilinskas, Lic. thesis, Febuary 2005.
ISRN LUTEDX/TETS- -1071- -SE+136P

164. Internet Access and Performance in Ad hoc Networks
Anders Nilsson, Lic. thesis, April 2005.
ISRN LUTEDX/TETS- -1072- -SE+119P

165. Active Resource Management in Middleware and Service-oriented Architectures
Niklas Widell, Ph.D. thesis, May 2005.
ISRN LUTEDX/TETS- -1073- -SE+162P

166. Quality Improvement with Focus on Performance in Software Platform Devel-
opment
Enrico Johansson, Ph.D. thesis, June 2005.
ISRN LUTEDX/TETS- -1074- -SE+P139

167. On Inter-System Handover in a Wireless Hierarchical Structure
Henrik Persson, Lic. thesis, September 2005.
ISRN LUTEDX/TETS- -1075- -SE+90P

168. Prioritization Procedures for Resource Management in Cellular Networks
Roland Zander, Ph.D. thesis, November 2005.
ISRN LUTEDX/TETS- -1076- -SE+181P

169. Strategies for Management of Architectural Change and Evolution
Josef Nedstam, Ph.D. thesis, December 2005.
ISRN LUTEDX/TETS- -1077- -SE+192P

