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1, r NTRoDUcrr oN

It ìs; in many cases advantageous to have regulators which are more

compl'icated than ordinary PID-regulators. It is unfortunately a con-

sìderable problem to tune more complicated regulators because many

parameters have to be adiusted. One reason to des'ign self-tuning
regulators is to overcome the tuning problem.

The bas'ic self-tun'ing reguìator described in Aström and t¡J'ittenmark

(1973) was designed for a situation where the control problem could

be characterized as a min'imum variance control problem. This means

that the criterion can be described as to m'inimize the variance of
the output. The bas'ic self-tuning regulator was designed based on a
certainty-equivalence argument. The appropriate model of the process

and jts env'ironment i s thus estimated recursìve'ly. The control i s

determined as if the est'imated model 'is equal to the true model . There

are many problems whìch fit this problem formulation and the basic

self-tuning reguìator has also been shown to work very well in such

cases. There are, however, also stochast'ic control probìems where

mjnimum variance control is not approprìate. One case'is a non-m'inimum

phase p1ant. Another case is when large control signa'ls are required

to ach'ieve m'inimum variance. These cases can, however, be formulated

as linear-quadratic-gaussian (LQG) control problems. A self-tuning
regulator based on the LQG design technique was described in Aström

and l¡Jittenmark (1974). Other versions are given in Aström et al (1977).

The self-tun'ing regulator based on the LQG formulation has the drawback

of being more complìcated than the basjc self-tuning regulator. The

reason for this'is that the desìgn calculations which are done in each

step ìnvolve the solution of a steady-state R'iccat'i equation or

equ'ivalently a spectral factorization. A simpler algorithm was proposed

by Clarke and Gawthrop (1975). They proposed to use a LQG formulation
wìth a onø-AtØfr criterion only. This simplifies the algorithm consider-

ably, The algorithm can be made to work well ìn many cases but it is
not fool proof . Further d'iscuss'ions of the al gori thm are gi ven 'in

Gawthrop (1977).
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There are many problems which do not fit the stochastic control formu-
lation. Encouraged by the success of the self-tun'ing regulators for
stochastic control prob'lems, it is tempting to try a similar approach

in other cases. Using the certainty equ'ivalence argument the design
is straightforward. Start with a desìgn method for systems with known

parameters. Substitute the parameters of the known system model by

estimates which are obtained recursively and recalculate the control
parameters in each step. Self-tuning controllers of thìs type which

are based on po'le-placement design and least-squares estìmation are
discussed'in this paper. The controllers obtaìned are useful in many

s'ituat'ions. Forinstance they can be used to tune control loops when

the parameters or the controlled system is unknown or s1owly time-
-vary'ing. It is assumed that the main source of d'isturbances are

changes in the reference value or occasionally large d'isturbances that
have to be elinl'inated. The self-tuning regulator based on min'imum

variance control is not well suited for this case. The new self-tuning
controllers can be used to solve the servo problem and can thus be

regarded as useful comp'lements.

Self-tun'ing regulators based on poìe-placement design have been

d'iscussed by several other authors. A digìtal adapt'ive pole shifting
algorithm was d'iscussed in a dissertation by Edmunds (1976). This
al gori thm 'is f urther d'iscussed i n tllel I stead (1978) and l¡Jel I stead et al
(1978). In these works the emphas'is is, however, on the regulation
probìem and not on the servo prob'lem. The use of feed-forward is not
discussed. Wouters (1977 ) also proposes a stochastic po'le-placement

strategy. hfouters also focuses on the stochastíc regulation propert'ies
of the algorithm. The self-tuning controller proposed by Clarke can

also be discussed ìn a pole-placement framework. Our paper differs from

the previous treatments by focusing entireìy on the servo problem. In
our formulation the links to a deterministic design procedure are also
emphasìzed. Thjs makes it poss'ible to establish links to MRAS. See

Egardt (1978). Another feature of this paperis that the notions of
algorithms with implicit and explicit identification are introduced.
Several of the algorithms proposed in this paper are also new.
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The paper ìs organized as follows. Pole-placement design for systems

with known parameters is rev'iewed in Sect'ion 2. The suitabil'ity of the
pole-placement design as a basis for adaptìve control ìs discussed in
Section 3. It is shown that there are some difficulties wh'ich are

inherent jn the problem formulation. Adaptive poìe-placement algorithms
based on est'imatjon of the parameters in an explicit process model are

djscussed in Section 4. This leads to the so caìled øxyt.Lte,í-t schemes.

In Section 5 it is shown that some simplification of the adaptìve
algorithms can be achieved by'instead estimating parameters in a modi-

f ied process model . Th'is leads to the .ínyt.LLc,í-t schemes. Some simula-
tìons which illustrate the behaviour of adaptive algorithms based on

the pole-placement des'ign are given in Sectìon 6.
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2, POLE-PLAcEMENT DESIGN

Since the self-tuning regu'lators are based on a determin'istìc design

procedure for systems with known parameters a brief review of a pole-

-placement des'ign procedure is first given.

The material 'is not new. Part of it is known from class'ic texts on

sampled data systems f ike Ragazzini and Franklin (.l958). More recent

discussions on design of d'ig'ital control systems based on pole-place-

ment design are found in Andersson (1977), lnJìttenmark (1976), and

Franklin (1977). Due to the algebraic nature of the problem there are

strong s'im'i I ari t'ies to the correspondì ng desì gn procedure f or cont'i-
nuous systems. See Aström (1976). The discussion g'iven here 'is I imited

to single input systems. A treatment of the multivariable systems is
given by ldolowich (1974), Kucera (1975), Bengtsson (1977 ), and Pernebo

(r e78).

PROBLEM FORMULATION

Consider a process characterized by the rational transfer function

,. -BGp = f, (2.1)

where A and B are polynom'ials in the forward shift operator. It is
assumed that the polynomials A and B are relatively prime and that the

transfer function GO 'is causal . It is des'ired to find a regulator such

that the transfer function from the reference valrg Vr to the process

output y js given by the rational transfer function

^ _QGu = È G.2)

where Q and P are g'iven polynom'ials. It is assumed that Q and P are

relatively prime and that G¡y¡ 'is causal.
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DESIGN PROCEDURE

A general l'inear regulator which generates the control signaì u from

the comrnand signaì y. and the process output y can be represented as

Ru = Ty. - Sy (2.3)

where R, S, and T are polynomials in the forward shift operator. The

regulator can be real'ized as a dynamical system of order deg R whose

characteristic polynom'ia1 is R. A block d'iagram of the c'losed loop

system is shown in Figure 2.1.

--l

Feedf orword

yr

Process

Fígunø 2.1. Block dìagram of closed loop system.

The transfer function from the command sìgnal V,^ to the output of the

closed loop system is g'iven by

Controtte r

t-

I

I

u

The design problem is thus to fìnd the polynomìals R, S, and T such

that the closed ìoop transfer function G is equal to the des'ired

transfer function Gr. Hence

TB -A
AR + BS P' (2'4)

FeedbqckI

I

L

I

I

I

R

S B

A

R

T
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Aìgebraica'l1y the design problem is thus to find three polynomiaìs

R, S, and T such that (2.4) holds. This algebraic problem does not
have a unique solution. The lack of uniqueness can be exp'loìted by

the designer. To see how this can be done it is useful to have system-

-theoret'ic 'i nterpretati ons .

The degree of the polynomial AR+BS is normally higher than the degree

of the poìynomial P. This means that the polynomials AR+BS and TB

have common factors. By a direct comparison with state space design

composed of state feedback and an observer,'it can be shor,vn that the
common factors of T and AR+BS correspond to the observer poles. See

e.g. Aström (.l976). The poìynomial T can thus be factored'into two

parts, one part corresponds to the desired observer poles and the other
corresponds to the des'ired closed loop zeros which are not open ìoop
zeros. Even if the zeros of T are specìfied there remaìns a constant
factor which can be assigned arbitrarily. The polynom'ials R, S, and T

can be multip'lied by an arbitrary constant and the control law (2.3)
and the condition (2.4) wi1ì st'ill remain the same. In thìs paper thìs
arb'itrariness is eliminated by choosìng a normalizatjon of the poly-
nomial T. Having obtained this insight, it is now easy to obtain a

design procedure.

0ESIGN PR}CEDURE 2. 1 (G¿ne.na.L yto,Lø-'¡c.Lacenøni)

Data: Given polynomials A and B which characterize the process

dynamics and polynomials P and Q which describe the desired
cl osed l oop transfer funct'ion .

Step 1: Find greatest common divisor Q2 of B and Q. Factor Q and B as

Q = Q1Q2 
G.s)

B = 81Q2.

Step 2: Determ'ine desired observer po1es, specifìed by the polynomìal

Tl. Choose

T = T1Q1 . (?.6)
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Step 3: Solve the equat'ion

AR + BS = pB.,T]

with respect to R and S.

(?.7 )

u

There is a solution to the po'le-placement problem in the sense that
a causal stabilizìng regu'lator exìsts'if and only if 8., and P., are

stable, and

deg A - deg B., f deg P - deg Q.,

If these conditions are satisfied and if deg B < deg A then the de-

sìgn procedure 2.1 g'ives a stable causal reguìator if the observer
polyncmiaì Tl is chosen stable with deg T., > deg A - I and'if S has

lower degree than A. Since A and B are relat'ively prime there is a

unique solution to (2.7) with deg S < deg A. The cho'ice de9 T., =

deg A - 1 corresponds to a Luenberg observer and the choice deg T., =

deg A corresponds to a Kalman observer. In some cases it may be de-

s'irable to choose observers of higher order.

It is'straightforward to verify that the design procedure gives the

desired results. Insertion of (2.5), (2.6), and (2.7) g'ives

G
TB

Tr Qr Br Qz

AR+BS PT BI

Th'is shows that the closed loop transfer function is equal to the

spec'ified transfer function.

SPECIAL CASES

The calculat'ions requìred for the desígn procedure 2.1 are s'impìe enough

for off-line calculations. It is sufficient to have procedures for
finding greatest common d'ivisors and for solv'ing the equation (2.7).
Such procedures can be obta'ined based on Euclid's algorithm. In the

adapt'ive algorìthms the desÍgn calculations have to be repeated in each

iteration step. The computational burden may then be eonsiderable and

it is therefore of interest to see if there are special cases where the

design calculations can be reduced. Some examp'les are given below.

q
P

GM
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EXAMPLE 2.1 (AI-L f:noca.t^ zalLo^ cctncøLL¿d and 0 = 1l

Assume that the specifications are such that Q = l. The specifications
are normally such that the low frequency ga'in of the des'ired closed
ìoop ìs unìty. When q = 1 the polynomial P must then be normalized jn

such a way that P(ì) = l. It is assumed that th'is normalization js done.

Equation (2.4) gives

AR + BS = PTB (2.8)

0r

AR = (pT_S) B.

S'ince B does not d'ivìde A ìt must thus divide R. Hence

R = BRl.

Equation (2.8) can then be wrjtten as

ARI+S=PT. (2.9)

It often happens that A(z) = ,kA1(z). The equat'ion (2.g) is then parti-
cularly easy to solve. See Aström (1970). tr

In this partìcular case the design procedure is thus to choose P and T

and to solve (2.9) for R., and S. The regulator is then given by (2.3)
with R = BRl. A block d'iagram of the closed loop system is shown in

2reFì gu 2

T-

I

I

Controller
I

Process

Block diagram of closed loop system obtained
when al1 process zeros are cancelled. The
regulatoris ìmp'lemented as a real'ization of
BR.,u = Iyr-Sy.

yr

v U

I

I

I

I

I

L

B
7-

1

E-

T

Figunz 2.2.
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It 'is clear from Fì9. 2.2 that all process zeros are cancelled in
th'is partÍcular design. It then follows that the desìgn procedure will
gìve satisfactory results only when the cancelled polynomial is stable.
The procedure w'ill thus not work unless the process is minimum phase.

In pract'ice it is not suffic'ient to require that the zeros are inside
the un'it circle but it must be required that the zeros are'ins'ide a

critical area like the one shown in Fì9. 2.3.

lmz

Rez

Fígwtø 2.3. Critical area forprocess zeros.
tr

The simpfification obtained in the specìal case of Example 2.1 is that
Step I in the genera'l des'ign procedure is avo'ided. Another specia'l

case 'is gi ven bel ow.

EXAM?LE 2.?. (No pnoce..t^ za./Lo^ anø canee.U-ød)

Assume that the specificat'ions are such that the des'ired closed ìoop

zeros are equal to the process zeros, i.e. Q = B. The specjfications
are normaì'ly such that the low frequency gain of the desired closed

loop is unity. Since Q = B the constant factor of the polynomial P is
then chosen so that P(1) = B(l). It is assumed that this normalization
is made. Equation (2.4) then gives

AR + BS = PT. (2..l0)

The des'ign procedure'is thus agaìn to choose the polynomials P and T.

Equat'ion (2.10) is then solved w'ith respect to R and S and the

control leris then gìven bV (2.3). t

The simplìficat'ion obta'ined 'in the special case of Examp'le 2.2 js that
Step 1 in the general des'ign procedure is sìmpf ifìed.
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3 DISCUSSION ON THE ADAPTIVE POLE-PLACEMENT PROBLEM

Before presenting specifìc adaptive algor^ithms, it will be discussed

whether the pole-placement des'ign procedures are suitable for design
of adaptive regu'lators. There are several problems to be considered.

F'irst it may be too restrictive to specify all closed ìoop poles at
least for h'igh order systems. One possibìf ity to avo'id this diff iculty
for discrete t'ime systems is to specìfy only the dominant poles and

require that the rema'in'ing poles are close to the origin.

The pole-placement design procedure requ'ires that the observer po'les

are specified. The observer poles are not critical. Their choice should,
however, reflect the characteristics of the disturbances. If an estima-
tion procedure which gives the d'isturbance dynam'ics'is used e.g. in
the form of a controlled ARMA model ìt is natural to choose the observer
polynomiaì proportional to the polynomial which characterizes the
mov'ing average. In this paper this is not done and the observer polyno-

mial thus has to be chosen arbìtrari'ly.

Zeros of the process dynamics which can be cancelled present no problem.

Zeros which are outside the unit c'ircle orinside but close to the unit
circle present probìems. Since such zeros cannot be cancelled they must

be included as zeros of the closed loop transfer function. This gives

dìfficulties in the case of known parameters and even greater diffi-
culties in self-tun'ing regulators. Even if the poles of the closed loop
system are specified many propert'ies of the closed loop system w'ill
depend critically on the closed loop zeros. Hence if the primary speci-
fications are given in terms of properties like overshoot, bandw'idth,

static errors, etc. it is in general not possible to find closed loop
poles that gìve the desired propertìes unless the closed loop zeros are

known.

It follows from the d'iscussion that self-tuning controllers based on

poìe-placement desìgn can be reasonable for m'inimum phase systems and

for non-minimum phase systems in those cases where the process zeros

outside the unit d'isc only change moderately.
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4, SELF-TUNING coNTRoLLERS UsING EXPLIcIT IDENTIFIcATIoN

The basic'idea when using the separation principle to des'ign self-
-tuning regulators can be expressed as follows. Start with a des'ign

procedure for systems with known parameters. When the parameters are

not known they are estimated recursiveìy and the regulatoris re-
designed in each step, us'ing the estimated parameters. Since there js

no recursìve parameter estjmaton which is un'iformly best there are

many possibiljties even if the des'ign pninciple ìs fixed. There are

also many details which can be done ìn different ways and consequently

a large variety of possible adapt'ive algorithms. Some sìmp1e aìgorìthms

w'ill be discussed in thìs section. Least squares, whìch ìs one of the

simplest recursive estimation schemes wìll be used. This procedure

wi I I g'ive bìased estimates if there are stochastic disturbances wh'ich

are coloured noise. S'ince the d'iscussion is focused on the servo

problem the major disturbances are, however, command ìnputs. Th'is is
also compatible with the pole-placement design procedure which is not

suitable to handle trade-offs between measurement noise and process

noi se quantìtat'ively.

Some self-tuning algorithms will now be described in detajl. The para-

meter estimat'ion is discussed first.

LEAST SQUARES PARAMETER ESTIMATION

The parameters of the process model

AY=Bu

are estimated by I east squares. Thi s 'is discussed i n detai I 'in

Aström (1968). The model (4.1) can be explìcitìy written as

y(t) +aly(t-l ) +...+any(t-n) = b,u(t-k) +...+ bru{t-m-k).

Introduce a vector of parameter estimates

o = tâ, ân ôo ... ôrlt

and a vector of regressors

(4.1 )

(4.2)

(4.3)
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e(t) = [-y(t-l) ...-y(t-n) u(t-k) ... u(t-m-k)JT

The recursive least squares estjmate is then given by

0(t+1 ) = 0(t) + P(t+1 ) tp(t+l) e(t+l)

where

e(t+ì) = y(t+l) - 0(t)Tq(t+l)

and

(4.4)

(4.5 )

(4.6 )

p(r+l ) = io(r) - p(t)e(t+l )lo2- +,pTtrt*l )p(t)rp(r+t )l-lq(t+r ¡T'R(t)] ¡"r.

There are also other possib'il'ities to perform the least squares calcu-
lat'ions. Square root algorithms are useful if the prob'lem 'is poorly

conditioned. See e.g. Peterka (.l975). Fast algorithms can be used if
computing time is critìcal. See e.g. Levinson (1947).

cHOICE 0F À AND MODIFICATiONS 0F p-EQUATI0N

The factor À in equation (4.7) is introduced to discount past data

when performing the least squares. For the regulation probìem the

estimator is excited by the process disturbances which normally are

reasonably uniform in t'ime. It has been found empìrically that a value

of À between 0.95 and 0.99 works well in such cases. For the servo

probìem the major excitat'ion comes from the changes in the command

sìgna'l. Such changes may be irregular and it has been found that there
may be bursts'in the process output if equatìon (4.7) is used with À

less than one. The presence of bursts can be understood'intu'itively as

follows. The negative term in (4.7) represents the reduction in para-

meter uncertainty due to the last measurement. l¡lhen there are no

changes 'in the set point the vector Pç wì1.l be zero. There will
not be any changes in the parameter estimate and the negative term in
the right hand side of (a.7) will be zero. The equat'ion (4.7) then

reduces to

P(r+1) = | elt¡

and the matrix P will thus grow exponentialìy if À<1. If there are no

changes for a long time the matrix P may thus become very 1arge. A

change in the command s'ignal may then lead to large changes in the

(4.7)
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parameter estimates and in the process output. The large values of
the matrìx P may also lead to numerical probìems. Examples which

illustrate this behav'iour are found e.g. in Fortescue (1975) and

Morris et al (1977).

There are many ways to eìiminate bursts. Perturbat'ion s'ignals may be

added to ensure that the process is properly excited. The est'imation
algorithm may be modified. One possibility is to stop the updating of
the matrix P(t) when the signaì P(t)ç(t) 'is smaller than a given value.
Another possibility is to subtract a term like oP2(t) from the right
hand s'ide of (4.7) to ensure that the matrìx P(t) stays bounded.

SELF-TUNING POLE-PLACEMENT ALGORITHMS

An adaptìve poìe-placement algorìthm can now be described as follows.
The following steps are performed at each sampling period.

Step 1: Estimate the parameters of the model (4..|) by ìeast squares.

Step 2: Apply the pole-placement procedure as described 'in Section 2,

us'ing the process model (4.1) with the estimated parameters

obtained in Step 1.

An algorithm of this type is called an algorithm based on utinail-on
o[ ytnoee's,s panane,telut because the estimated parameters are the para-

meters of the process model 'in the standard form. in analogy w'ith the
terminology used for model reference adaptìve systems (MRAS), the algo-
rithm is also referred to as an aìgorithm using exyt.LLcí.t.í-dønLL{¡ica.tion.

Aìgorithms of th'is type require procedures for recursive parameter

estimation and procedures for the po'le-placement design ca'lculations.
The design calculat'ions are normalìy more time-consuming than the para-

meter estimatìon and it is therefore of interest to look at the special
cases of the design d'iscussed in Examples 2.1 and 2.2, where the design
calculations are simp'lified. A detailed description of the self-tunìng
algorithms obtained in these cases will now be given.
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EXAMPLES

Assume that the process to be controlled has zeros well inside the unit
disc, e.g. inside the critical area shown ìn Fì9. 2.3. It is then

reasonable to have a pole-placement design where aìl the process zeros

are cancelled. Under this hypothesis the pole-placement procedure can

be sìmplified as shown ìn Example 2.1. The correspondìng self-tuning
poìe-placement algorithm then becomes

ALG?RITHI/I El (Exyt.LLc,í,t a.Lgon i.thn. AnL frrLoce^A zuLo^ caneel,L¿d)

Data: Given specificat'ions 'in the form of the desired closed loop

poles and desired observer poles specified by the polynomials

P and T. It is assumed that P is normal'ized so that P(1) - l.
The poìynomial T can be normalized arbitrariìy. Compare with
txamp'le 2.1 .

Step 1:

Step 2:

Step 3:

Estimate the parameters of the model

Ay=Bu

by least squares.

Determine the polynomìals R1 and S such that

ARI+S=PT.

Use the control law

BRlu = Tyr - Sy.

The Steps 1,2, and 3 are repeated for each sampfing period. tr

REMARK

Cornmon factors of A and B should be el'im'inated after Step I to ensure

that the equation in Step 2 has a solution.

This algorithm cannot be expected to work well unless the corresponding
design procedure for systems w'ith known parameters works well. Since

all process zeros are cancelled the regulator will not be satisfactory
for non-m'inimum phase systems. Such systems can, however, be handled
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using the design procedure in Exampl e 2.2. The correspond'ing self-
-tuning control a'lgorithm is given by

ALG7RITHíÁ E2 (Exyt.LLe,í't a.[-goni'thm, No ytnoce.t,s zuLl^ cance't'Ledl

Data: Given specifications in the form of the des'ired closed ìoop

poles and the des'ired observer poles specìfied by the poly-

nomials P and T, where P and T are normalized ar:bitrarily.

Step 1: Estimate the parameters of the model

AY=Bu

by least squares.

Step 2: Normalize the polynomial P in such a way that P(1) = B(l).
Then determ'ine the polynomials R and S such that

AR+BS=PT.

Step 3: Use the control law

Ru=Ty.-Sy.

The Steps ì, 2, and 3 are repeated for each sampl'ing period. tr

REMARK

Possible common factors of A and B should be eliminated after the first
step to ensure that the equation'in Step 2 has a solutìon. Notice that
the polynomial P cannot be normaljzed a priori because the normal'ization

requires knowledge of the poìynom'ial B jn the process model.

Not'ice that with algorithm E2 the propertìes of the closed loop system

will change even if P and T are fixed because the closed loop zeros will
change ìf the process zeros change.

THE GENERAL CASE

It is now stra'ightforward to g'ive a self-tuning control algorithm wh'ich

corresponds to the general pole-placement des'ign procedure 2..l.
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ALG?RITH^Á E3 (G¿ne.na.L øxyt.(ic,i.t a,Lgon'í,thml

Data: Given the desired closed loop po'les and zeros and the desjred

observer poles characterized by the poìynomìals P, Q, and T1.

Step 1: Estìmate the parameters of the process model

AY=Bu

by 1 east squares.

Step 2: Eliminate common factors of A and ß. Let A and B denote the

poìynomial s obtained.

Step 3: Find the greatest common divisor Brof B and Q. Factor Q and

Bas

Q = QlBt

B = B1Br.

Step 4: Solve the equation

AR+BS=pB1T.,

for R and S.

Step 5: Compute the control s'igna1 from

Ru=Tyr-Sy,

where T = T1 Q1 .

The Steps 1 through 5 are repeated at each sampling peniod.

REMARK

To obtain a stable closed'loop system it'is necessary that the

specìfications are such that the unstable factors of B, are also
factors of Q.
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5, SELF-TUNING cONTRoLLERS USING IMPLIcIT IDENTIFIcATIoN

The design ca'lculations for the algorìthms djscussed in the previous

section may be time-consumìng. It is poss'ible to obta'in different
a'lgorithms where the design calculations are sìmp1ìfied considerably.
The self-tun'ing regulator jn Aström and Wìttenmark (1973) is a proto-
type for algorithms of thìs type. The basic idea is to rewrite the
process model in such a way that the design step 'is trivial. For

minimum variance control the process model can be rewritten so that
the parameters of the minimum variance regulator are the parameters

of the rewritten model. By a proper choice of model structure the

regulator parameters are thus updated dìrectly and the design calcu-
lations are thus eliminated. Algorithms of this type are called algo-
rjthms based on inyl(icrt idønLL(¡ica,tion of a process model . In the

simpìe cases the algorithms are also called algorithms based on

e,sLíma.tion oI n-øgu.La,ton yta,twnøtetu. Some examples of such algorithms

will now be gìven.

EXAMP LES

F'irst consider the problem discussed in Example ?.1. The process is
thus described by

Ay = Bu (5..l )

and'it is des'ired to find a feedback such that the closed loop transfer
function from the reference value to the output is l/P. It is assumed

that the polynomial P'is normal'ized so that P('l) = 1. In the case of
known parameters the desìgn is based on the solution of the equation
(2.9), i . e.

ARI+S=PT. (5.2)

The equations (5.1 ) and (5.2) give

PTy = AR.,V + Sy = Sy + BRlu = Sy + Bu

or

PTy = Sy + Ru. (5.3)
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The process can thus be represented either by (5.1) or by (5.3). The

representation (5.3) has the advantage that the regulator poìynomials

R and S occur explicìt1y in the model. If the model (5.3) is available
the pol e-pl acement desi gn 'is thus trivi al because the regu'l ator (2.3)

is obtained from the model (5.3) by inspect'ion. The follow'ing self-
-tuning control a'lgorìthm can now be obtained.

ALG)RITHM Il (Imyt.LLc,í-t a.Lgon í,thn, A.LL frlLoca/s^ zULo^ canceLL¿dl

Data: Gìven specifications in the form of the desired closed loop
poles and the desired observer poles specìfied by the polyno-

mials P and T. It is assumed that P'is normalized in such a

way that P(l) = l. The polynomial T can be normalized

arbitrari 1y.

Step 1: Estimate the parameters of the polynomials R and S in the
model

PTy = Sy + Ru (5.3)

by ìeast squares.

Step 2: Use the control law

Ru=Tyr-Sy. (5 .4)

The Steps I and 2 are repeated for each sampling period.

The least squares estimate is gìven by equations (4.5) and (4.7) where

rLto'U s o "'rmn-l
I

ç(t) = [y(t-.t+n-l ) ... y(t-L) u(t-t+m., ) ... u(t-t,)]

.0 = deg PT, ml = deg T, n = deg A

e(t) = PTy(t-1.) - e(t)Tç(t+l).

Notice that the control law (5.4) is characterized by three polynomials

R, S, and T. The polynomial T which represents the feedforward from

the command signaf is chosen arbitrarily. Its zeros correspond to the
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des'ired observer po1es. The polynomials S and R whose quotient corre-
sponds to the feedback transfer function are estimated dìrect1y. The

algorìthm Il is thus c'learly an algorithm where the regu'lator parameters

are estimated directly.

A comparison with the corresponding explicit algorithm E1 shows that
the ìmpl ic'it algorithm 'is a cons'iderable sìmp1if icat'ion because the

desìgn calculations are avoided.

An 'implic'it algorithm which corresponds to the problem in Exampì e 2.2

wìll now be given. It is thus assumed that the process is governed by

(5.1) and that it 'is des'ired to have a closed loop system with the

transfer function B/P. For systems with known parameters the desìgn ìs
based on the equati on (2.1 0) , i . e.

AR+BS=PT.

Combin'ing this equation with the process model (5..|) gives

PTy = ARy + BSy = BSy + BRu. (5.5)

If the po'lynomials P and T are stable, the model (5.5) is equivalent
to the model (5..|). The representation (5.5) has the advantage that the

regulator polynomials R and S appear explìcitly in the model (5.5). It is
is thus easier to determine the control law from the model (5.5) than

from (5..l). The self-tuning algorìthm now becomes as follows.

ALG)RITHM 12 (Imp,LLaíf. a.Lgon Lthn. No pnocQ-,s^ zalLo^ cance,L[-ødl

Data: Given spec'ifications in the form of the closed loop poles and

the observer poìes specified by the polynomjals P and T.

Step 'l: Estjmate the parameters of the model

PTY = SY + Ru

by ìeast squares.

Step 2: Fìnd the ìargest common factor B of R and S and factors R and

Sas

R=BR
S=BS.
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Step 3: Normal ize T by muìtìpìying 'it by the factor P(l )/B(l ) 'i.e.

T =r P(l)/B(l).
The control law 'is then

Ru=Ty.-sy.

REMARK

The normalìzat'ion of the poìynomial P cannot be made a priori because

the normal'ization requires knowledge of the polynomial B in the process

model.

A comparison w'ith the corÌ"espond'ing explicit algorithm E2 shows that
less calculations are required if the implicit algorithm is used. Not'ice

however that some calculations (ef imination of common factors) are

required to obtain the controller parameters from the estimated para-

meters. This calculation may be badly condjt'ioned.

THE GENERAL CASE

The general impl i c'it al gori thm i s obta'i ned f rom the general po1 e-pl ace-

ment desìgn procedure 2.1. Consider the equation (2.7). It follows that
Bl divides R. Introduce

R = 81R1.

D'iv'isìon of (2.7) by Bl gives

PTI=ARl+B2S

whereB=BlB2.Hence

PTly = AR'¡Y + BZSY. (5.6)

It follows from the process model (2.1) that

ARIV = R-,Bu = BZRlBlu = B2Ru.

Equat'ion (5.6 ) can thus be wri tten as

PTIV = B'SV + BrRu = Sy + Ru. (5.i)



21

This is the transformed system model which will be used to obtain the
'impìicit algorithm. Notice that the factor B, which corresponds to the
unstable zeros divides R and s. The genera'l implicit algorithm is now

obtai ned as fol I ows .

ALG)RITHM 13 (G¿nena,L .ímylLLc,í.t a.Lgoh,í.tfun)

Step 2: Find the ìargest common factor 82of R and s and factor R and

Step 3:

Sas

R=BZR

S = BZS.

Factor Q as

Q = Q1Br.

I ntroduce

T = QlTl.

The control law is then

Ru=TV.-Sy.

The Steps l, 2, and 3 are repeated at each sampling instant.

Data:

Step l:

Given the desired closed loop transfer function G¡y¡ = Q/p and

the desired observer poles specìfied by the polynomial Tl.

Est'imate the parameters of the polynomial R and s in the moder

PTly = Ry + Su (5.8)

by ìeast squares.

tr

REMARK

The design procedure requires that all unstable and poorly damped

process zeros are also zeros of Q. If an unstable factor of 82 is
found wh'ich is not a factor of Q then the specìfied Q must be modifjed
to i ncl ude th'i s factor.
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6, s IMULATI oNS

Some of the properties of the algorithms are'illustrated by simulation
jn th'is section. The simulations are made using the simulation program

SIMN0N, see tìmqvist (1975). The speciaì SIMNON system, written in
FORTRAN, for simulating a genera'l adaptìve controller described in
Gustavsson (1978) was used. The parameters of this program and the
special systems used are listed in the Appendix.0ther simulations are

found in hlesterberg (1977).

CHOICE OF PARAMETERS

There are several parameters which have to be selected'in the a'lgorithms.
Unless otherwise stated the folìow'ing parameters have been chosen.

Init'iaì values of alì parameters are chosen as zero except for rO = 2

in the ìmplicjt algorithms and b, = 2 in the explicit algorithms. The

initial value of the covariance matrix is chosen as ten t'imes the unit
matri x .

EXAMPLE 6.'| - Simpìe First Order System

The properties of the a'lgorithms when controlìing the system

y(t) - 0.9 y(t-l ) = u(t-l ) + e(t) + ce(t-l ), (6.1)

where {e(t)}'is a sequence of independent normal (0,o) random variables,
w'ill first be explored. It is assumed that the desired behaviour of the
closed 'loop system is characterized by the transfer function

GN
I

It ìs assumed that a first order observer with a po'le in 0.5 is used.

Hence

T = z - 0.5.

The process po'le at z = 0.9 should thus be moved to z = 0.7. s'ince the
process has no zeros the problems associated with cancellation of zeros

z - 0.7
_q

P
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do not occur. In the case of known parameters it follows from the

analysis in Sectton 2 that the controller

u (t)

will satìsfy the requirements. Solut'ion of the equation (5.3) g'ives

R=z

S = -0.32+ 0.35.

The behaviour of the closed loop system for the implicit algorìthm has

been expìored in three different cases. The forgetting factor À was

0.99 in all cases.
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CASE A (No nandom dÅ¿tunbance/s o = 0)

The behaviour of the closed loop system when following a square wave

command'is shown in Fig.6.l. The parameter estimates are shown ìn Fig.
6.2. Notice that the parameter estimates converge quickly and that the

closed loop response'is very close to the desired response already at
the second transient. Also notice that the major changes of the estimates

occur at the step-changes in the command input.

The diagona'l elements of the matrix P in the estimation algorithm are

shown in Fì9. 6.3. Notìce the exponent'ial increase of the matrix P(t)
between the step-changes. This growth which depends on the forgettìng
factor may ìead to bursts if the step-changes are far apart as was

discussed in Section 4.

Figunø 6.2. Est'imated parameters for system (6.1) with o = 0
controlled by the impìic'it algorìthm Il.
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500

Fígunø 6.3. Diagonal elements of the matrix P of the estimation
a'lgorithm for the system (6..l) w'ith o = 0 controlled
by the implicit algorithm I1.

CASE ß (Wh,í.tø lilLoce^^ noi's¿ e= 0, o = 0,1)

This case'illustrates the behav'iour of the system in the presence of
moderate disturbances. The amplitude of the step command is one unit and

the standard deviation of the disturbance is 0.1. The output and the

control signals are shown in F'i9.6.4 and the parameter estimates are

shown in Fig. 6.5. The results show that the algorithm is not particu-
'lar'ly sens'itive to a white noise disturbance. The diagonal elements of
the matrix P of the parameter est'imator are shown in Fì9. 6.6. A

comparison with the corresponding Fig. 6.3 for the noisefree case shows

that the presence of the noise will lim'it the growth of some elements

of the matrix P.

10

0

.x
a-

o
E

d_

o
a
C
o
Eo
c,

E
C
ogl
.9o



26

2

{t
E
C
,9
û

=o-
)
o
!
C
o
oo
Co
o
o
É.

1

1

1

1

FLgunø 6.4. Command signal V¡, output signal y, and control
sìgnal u for system (6.1) w'ith c = 0 and o = 0.1
controlIed by the 'impf icit algorithm I1.

0

E
C
.9
(n

õt-
Co
L)

'YT



27

2

1

¡

Øo
o
E.F
Øo

a
o
e
ot-
oq

5

x
t-

o
E
d_
its
o
û
co
Eo
o
E
C
o
O)

.9
O

5

Fígunø 6.5. Parameter est'imates for the system (6.1) with c = 0
and o = 0..l controlled by the 'implicit algorithm Il.

1

5000

Figunø 6.6. Diagonal elements
algorithm for the
controlled by the

s
j

ìx P of the estimation
)wìthc=0ando=0.1

of the matr
ystem (6.1

I

vtV

a

mpìicit algorithm Il.



28

CASE C (Con-oun¿d noi,sø c = 0.5, o = 0.1 )

This case illustrates the behaviour of the closed loop system when

there are coloured disturbances. In this case the least squares estj-
mates w'ill be biased as is seen from Fìg. 6.8. Since the disturbance
level js low the performance of the reguìator will still be adequate

as is seen from Fig.6.7 even if the estimat'ion enrors are substantial.
The bias in the est'imates can be elim'inated by usìng another recursive
estimator.
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The system described in this examp'le vvas also controlled by the
expìicit algorithm E1. The results were virtually the same as those
obtained by the implicjt algorithm I1 and the curves are therefore
not shown.

EXAMPLE 6.2 - Non-mìn'imum Phase System

Consider a system described by

y(t) - .l.5 y(t-1) + 0.7 u(t-z) = u(t-l) + l.l u(t-2). (G.z)

The system is clearly non-m'inimum phase because its transfer function
has the zero z = -.l..l. Any design method wh'ich attempts to cancel the
factor z + 1..l will thus fa'il. Assume for example that it 'is desired to
design a control law which gives a closed loop system with the transfer
fu nctì on

0.1225
'¿

z - 1.442 + 0.5625

The process (6..|) has the poìes

0.75 t i 0.37

and the desired closed 'loop system has the poles

0.72 x ì 0.21 .

The spec'ifications thus imply that the open-loop poles have to be sh'ifted
so that the damping Ís improved. S'ince the desired closed loop dynamics

has no zeros, the factor z + 1.1 of the open-loop transfer function must

be cancelled. This means that the control signa'l w'i1'l increase without
bound even in the case of known parameters. Any adaptive scheme based on

a des'ign procedure where the zero is cancelled will inherit thìs property.
F'ig. 6.10 shows what happens when the imp'licit algorithm Iì based on

cancellation of the process zeros is used. The output appears very well-
behaved after the first step. Because of the unstable cancelled factor
the control variable wi'11, however: ÇFow exponent'ially as (-l.l)t. Since
the unstable mode z = -1.f is cancel]ed by the process zero nothing ìs
seen in the output for a while. At t'ime 430 the input is, however, so

large that round-off is noticable. The cancellation is no'longer perfect
and the unstable mode is seen in the output too.

GM
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S'ince the process zero can not be cancelled it js necessary that the

specifications are changed so that the process zero z = -1.1 js also a

zero of the des'ired closed loop transfer funct'ion. Hence assume that it
is des'ired to have a closed ìoop system characterized by the transfer
f unct'ion

0.0583 (z + 1 .1 )
Gtut

,2 - t.lit* i.sazs

Assume in addition that the observer is requ'ired to have a double pole

at z = 0.5. The behaviour of the closed loop system obtained when the

expììcit adaptive regulator E2, wh'ich reta'ins all the process zeros, is
used to control the plant is shown in F'i9.6.12 and Fì9. 6..l3. It'is seen

from the figures that the algorithm wh'ich does not attempt to cancel the

process zeros works very weì1. Notice, however, that the closed loop

system obtained w'ill depend on the process zeyo.
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Figunø 6.13. Parameter estimates obtained when the system (6.2)
is controlìed by the algorithm E2.
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EXAMPLE 6.3 - Continuous Time Second Order System

This example illustrates the behaviour when the adaptive algorithms
are used to control contìnuous time processes. It is assumed that the
process 'is described by the transfer funct'ion

G(s) =
0. 864 (6.3)(s + s+ .2)

and that the sampling period of the digitaì regulator is I s. The

sampled process has the puìse transfer function

H(z) =
0.262+0.'16

(6.4 )z
z - z + 0.21

This transfer function has the zero z = -0.60 which is inside the unit
disc but poorly damped (6 nz 0.ì6). The performance of the adaptive
regul ators wi I I be exp'lored .

It is first assumed that the specifications are such that the settì'ing
time of the system corresponds to a large number of samp'ling periods.
Tobespecific'it is assumed that the desired closed loop poles are

z=0.t2¡ i 0.21 =0.15A60

This means that the settling tìme of the system is about 20 sampling
periods. The process zero at z = -0.60 corresponds to a mode with a

perìod of 2 sampling perìods. Since this mode is considerably faster
than the desired closed loop dynamics it can be expected that the
results obtained when the process zero is cancelled and when it is
reta'ined are similar. Even if the cancelled mode is poorly damped.it
will not be excited much because ìt is high frequent compared to the
desired closed'loop dynamics.

The characteristìc polynomial of the desired closed loop system js

P = zZ - 1.442 + 0.5625. (6.b)

Assume that the observer is specified to have two po'les at z = 0.5 i.e.
T = (z _ 0.5)2. (6.6)

The resul ts obta'i ned when usi ng the 'impf ici t adapt'ive control aì gori thm

Il based on cancellation of the process zero are shown ìn Fig. 6.14 and

Fig. 6.'l5.
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Figunø 6.15. Parameter estimates obtained when the system (6.3)
is control'led by the algorithm Il with P and T

siven by (6.5) and (6.6).

The cornesponding results obtained when using the expìjcit algorithm
E2 based on a des'ign where the process zero is retained are shown in
F'ig . 6. I 6 and F'ig . 6 .17 . The behavi our obtaì ned w'ith thes.e adapti ve

regulators 'is similar. The algorithm Iì gìves somewhat larger excur-
sions 'initiaì ìy but the parameter estimates converge a l'ittle faster.
Not'ice that the ìmplìcit algorithm is simpler but that more parameters

have to be estimated in this aìgorithm. The l'imiting behavìour of the

systems obta'ined is very similar as can be expected from the quaìita-
tive discuss'ion made in the beginnìng of this section. This can be

seen from F'ig. 6.'18 and Fig. 6.19 whic.h show the responses of the
systems in the time interval 400 to 450 s. hlith the resolut'ion used

in the graphs the output s'ignals can not be distinguished. These

poorly damped cancelled modes can, however, be traced in the control
signal in F'ig. 6..l8.

s00
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Fígultø 6,16. Command signal y¡, output signal y, and control
signaì u obtajneil when the system- (6.3) .is con-trolled by.the.algorìthm EZ with p and'T given by(6.5) and (6.6).
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Fígultz 6.'18. Command signa'l y¡, output sìgnaì y, and control
s1'gna1 u when the system (6.3) is controlled by
the_algorithm Il with p and T gìven by (6.5) aird
(6.6).
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the algorithm EZ with P and T given by (6.5) and
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EXAMPLE 6.4 - Same system as ìn Example 6.3 but different specifications

In this example the process discussed is the same as in Example 6.3. The

samp'led process thus has the pulse transfer functjon (6.4). It wjll,
however, be assumed that the spec'ifications require a much higher band-

width of the desired closed loop system. To be specific the extreme

case of dead-beat response is spec'ified. It'is thus required that the
desired closed loop system has all 'its poìes at the origin i.e.

P = 22. (6.7)

It is assumed as in Example 6.3 that the observer has two poìes at
z = 0.5 i.e.
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J= (z-0.5)2. (6.8)

The des'ired dynamjcs of the closed loop system now has a characteristic
frequency correspondìng to 2 sampling ìntervals (2 s). Th'is frequency
is the same as the frequency associated with the process zero at
z = -0.6. It can thus be expected that there will be a substantial
difference between the control designs obta'ined when the process zero

is cancelled and when it is retained.

l¡Jhen the adaptive algorithms Il and E2 are used the parameters will
converge qu'ickly in both cases. The behaviour obtained with the ìmpl'icit
algorithm Il which'is based on a desìgn procedure where the process zero

is cancelled is shown in F'ig. 6.20. Not'ice that the output is equaì to
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Fígunø 6,20. Command signal y' output signal y, and control
signal u when the system (6.3) is controlìed by
by the algorìthm Il with P and T given by (6.7)
and (6.8).
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the des'ired output onø sampìing period after the step-change in the
command signal. Also notice that the output is zero at the future
sampìing instants but that large deviations occur between the sampling
instants due to the poorly damped cancelled factor. Also notice that
the cancelled mode z = -0.6 is clearly noticable in the control sìgnal

The correspondìng behaviour obtained with the explic'it algorìthm EZ,

which based on a design where the process zero is retained, is shown

in Fig. 6.21. Notice that the process output reaches the desired value
á,uo samp'ling periods after the step in the command signa'l . The behaviour
is otherwise much superior to the behaviour obtained with the algorìthm
Il which was based on cancellation of the process zero at z = -0.6.

0

95 l. 0 I, 5 1.1

0s

95 400 40s 410

1

-1

a
E
C
.9
a

)
o-
)o
!
C
o
o
(J
C
O)¡-o
o
É.

E
C
ol'o

õt-
C

3-o s

Fíguttø 6.21 , Command signal y,^, output sìgnal y, and control
s ì gnal u when thê system (6. 3 ) 'i s controì I ed by the
algorìthm E2 w'ith P and T given by (6.7) and (6.8).
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APPEND I X

The examples in Chapter 6 were s'imulated us'ing a program package for
simulation of self-tuning reguìators, Gustavsson (1978). Th'is program

package is found on disc No. 9. All the necessary commands for each

s'imulated exampìe are listed in this appendix.

EXAMPLE 6. I

Ca.tø (al

External systems required:
Macro required: EX6l I

LET IVR. - 3

LET ISA. - 3

LET ISB. = ?
LET IVS. = I
SYST REG SYSI REF SCON3

EX6I I
PAR LAMB:O

REF, SCON3

Ca.tø (b)

External systems requ'ired:
Macro required: EX6l I

LET IVR. = 3

LET ISA. = 3

LET ISB. = 2

LET IVS. = I
SYST REG SYSI REF SCON3

EX6I I
PAR LAMB:0. I

REF, SCON3
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Ca,s¿ (c)

External systems required:
Macro requi red: EX61 I

LET IVR. = J

LET ISA. = 3

LET ISB. = 2

LET IVS. = I
SYST REG SYSI REF SCON3

EX6I I

PAR NSC: I

PAR LAMB: 0. I

PAR Cl:0.5

EXAMPLE 6.2

Lmyt.(iu-t a,Lgo,uí,thn U

External systems required:
Macro required: EX62I

LET IVR. = 6
LET ISA. - 3

LET ISB. = 4

LET IVS. - 2

SYST REG SYS] REF SCON3

EX62T

Exyt.(ic,Lt or-gonfühm E2

External systems requ'i red :

Macro required: EX62E

LET IVR. = {
LET ISA. = 3

LET ISB. = I
LET IVS. - 2

SYST REG SYSI REF SCON3

EX6zE

REF, SCON3

REF, SCON3

REF, SCON3
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EXAMPLE 6.3

Imyt.LLci,t a,Lgon í.thn 11

External systems requi red:

fi'lacro required: EX63I

ALGOR RK

LET IVR. = $

LET ISA. = J

LET ISB. = {
LET IVS. = I
SYST REG SYSz REF SCON4

EX63 I

Exyt,LLeif øLgoruhhn E2

External systems required:
Macro required: EX63t

ALGOR RK

LET IVR. = 4
LET ISA. = J

LET ISB. = 2

LET IVS. = I
SYST REG SYSz REF SCON4

EX63 E

sYSz, REF, SC0N4

SYS2, REF, SCON4
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EXAMPLE 6.4

0¿ad-bøaf. nøgu.Lafion wi,tl+ tLv- inyt,LLc,â aþctn í.thn 11

Exter"nal systems requ i red :

Macro required: EX63I

ALGOR RK

LET IVR. = [
LET ISA. = l
LET ISB. - 4

LET IVS. = 2

SYST REG SYS2 REF SCON4

EX63 I

PAR D2:0

PAR D3:0

SYSz, REF, SC0N4

Døad-b¿at nøgu,LaLLon wí,tLl tl'tz exyil-Loíf a,Lgon íflun Ez

External systems required:
Macro requ'ired: EX63E

ALGOR RK

LET IVR. = 4

LET ISA. = J
LET ISB. = I
LET IVS. = I
SYST REG SYSZ REF SCON4

EX63E

PAR D2:0

PAR D3:0

SYS2, REF, SCON4
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EXTERNAL SYSTEMS

CONI I NUÛUS SYSTEM SYS2
I NPUT U

OUÎPUT Y

STATE Xl X?
NER PX1 DX?
OUTPUT
Y ¡Bt r X 1+ B2,rX ?
DYNAM I CS
DXl¡-AtrXL-AZrX2ÒU
ÐX?:X1
A1,1L,fr6
A210.4¡2
81¡0
B? ¡ 0, åó4
ËNþ

D I SCftETE $YSTËM 86F
TI¡48 T

OUTPUT Y

TSAMP TS
O UTFUT
Y= I F llt¡U t rr PÉR )< ( Ê,5rPER-EpS )

DYN¡HIA
r s aþüf
FETIE
NIEFI
N lfllrt
EP3tflr90CIB1
DI¡1
ËND

OONNËCT ING SYSTEI.I SÇONõ
ÏIME T
UÍ. t REÊ I sY t SySX. t -y f RÊF t
U¡IRËffIËYIREFI
utsYslt*u¡ltREct
UZ I RËG }TU I $YS1 )
U[Ëv;0
FNN

OONNECI INß SYSTEIq SCON4
T lÌ''lF T
U1 IREË I ¡Y ISYS2] -Y INET I
U¡TREG]=YIRçF]
UISYS2ITURIREGI
U?IRËGI;UISYS?]
ULFV ¡ O

FNN

ÏIIFN N IVl ËtSE N IV2



I' ptnÇno Ëx6zH
FAF FEG ¡ 5
PAËt N1. ! 2
FAR N?I2
PAR THT4;ã
PAR POT ¡ 1Û
PAR PÚ2,11.0
PAR P0õ!10
PAR PO4 I 1T
pAÊ hrïl¡0.9Ê
PAR RËF ¡ I
PAR NFIS
PAR NF!õ
PAF N131
PAR D2t-7,44
PAR n3t0,5â?l
PAF Ë1I1
PAR F?i-T
PAR F5 I O. A9
PAR NSA I ?
PAR NSE S 2
PAR LA¡48: O

PAH A1 I -T ,5
PAR A2tg,7
PAR ß1¡1
PAR g2t1.l.
PAR PER ¡ 2OO
ENA

MACRO HXóF I

PAR REç t 4
PAR N1¡ 4
PAR N2 ? 2

MA0R0 Fxát" I

PAR REü I 4
PAR [I1' ?
PAR N?I1
PAR TH03 r A
PÅR Pç1!TT
PAR PO?¡IO
PAR F05: tt
PAÊ li{I!t0,9?
PAR REF I T
PAR NDI2
PAR NF¡2
PAÊ DI I T
PAR D? ¡.0 . 7
FAR F1i1
FAR t'? ¡ -0,5
PAR NSA:1
FAR NSË ¡ 1
pAR AL¡-0.ç
PAR E1 I1
FAË PER ¡ 2*S
HruD

MACRO ËXó3F
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REGIS
l\tl; 2
N?r2
THû4:2
p0t¡tfi
Pt2 | 1û
P03¡10
PB4!10
hfTl!0,9å
REF¡T
NN I U

NIFSS
Dttt
n2 ! -1.44
D3: 0 ,çf'25
Ft;l
Í 2t -1,
F5rCI.e5
PËR ! ?Of}

FAR
PAR
PAR
PAR
FAR
PAR
PAR
PAR
PAF
PAR
PAR
FAR
PAR
PAR
PAR
PAR
PAR
PAR
PÅR
ENU

PAR
PAR
PAR
P A,q

PAR
PÄR
PAN
PAR
PAË
PAÊ
PAR
PAR
FAR
FAR
PAR
PAF
PAH
PAR
Éñn

THOS:?
p01t 10
P0a¡10
PCI3 ¡ 1t
F04t1û
P05 ¡ 10
P0å r tt
tdï I ¡ 0.99
HEF ¡ 1
NÐI5
NF:tr
Ðtt1
Ðzt -L.44
Ð5 ¡ û ,5â25
F1:1
F2 i -f
F5:0.ä5
FËR I 2î0

HACfiO FX62l
FAË RËril4
PAR N1I4
ÊAR N2¡2
PAF 'IHÛ5I2
PAR POT I J.û
PAR FT?I1O
FAR P03310
PAFI PO4iTT
FAR P0r I t0
PAR F0ô: tn
pAR tdTl:0,9¿t
PAF,i RFF I1
PAR NNIS
PAÊ NF!õ
PAR D1¡1
PAR D2i*L,44
pAR Ð$:ü,5â3,5
PAR F1I I.
PAR F?1^t
PAt:? F3rû.eF
PAR NSA: E
PAR NS8 

' 
2

PAR LAMB ¡ O

PAR
PAË
PAR
PAfr
PAR
ENN

A1! -1 , T
A2 ! t.7
F1! 1
82tL,1
FËRr2Pg


