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1. INTRODUCTION

It is in many cases advantageous to have regulators which are more
complicated than ordinary PID-regulators. It is unfortunately a con-
siderable problem to tune more complicated regulators because many
parameters have to be adjusted. One reason to design self-tuning
regulators is to overcome the tuning problem.

The basic self-tuning regulator described in Astrom and Wittenmark
(1973) was designed for a situation where the control problem could

be characterized as a minimum variance control problem. This means

that the criterion can be described as to minimize the variance of

the output. The basic self-tuning regulator was designed based on a
certainty-equivalence argument. The appropriate model of the process
and its environment is thus estimated recursively. The control is
determined as if the estimated model is equal to the true model. There
are many problems which fit this problem formulation and the basic
self-tuning regulator has also been shown to work very well in such
cases. There are, however, also stochastic control problems where
minimum variance control is not appropriate. One case is a non-minimum
phase plant. Another case is when large control signals are required

to achieve minimum variance. These cases can, however, be formulated

as linear-quadratic-gaussian (LQG) control problems. A self-tuning
regulator based on the LQG design technique was described in Astrom

and Wittenmark (1974). Other versions are given in Astrom et al (1977).
The self-tuning regulator based on the LQG formulation has the drawback
of being more complicated than the basic self-tuning regulator. The
reason for this is that the design calculations which are done in each
step involve the solution of a steady-state Riccati equation or
equivalently a spectral factorization. A simpler algorithm was proposed
by Clarke and Gawthrop (1975). They proposed to use a LQG formulation
with a one-step criterion only. This simplifies the algorithm consider-
ably. The algorithm can be made to work well in many cases but it is
not foolproof. Further discussions of the algorithm are given in
Gawthrop (1977).



There are many problems which do not fit the stochastic control formu-
lation. Encouraged by the success of the self-tuning regulators for
stochastic control problems, it is tempting to try a similar approach
in other cases. Using the certainty equivalence argument the design

is straightforward. Start with a design method for systems with known
parameters. Substitute the parameters of the known system model by
estimates which are obtained recursively and recalculate the control
parameters in each step. Self-tuning controllers of this type which
are based on pole-placement design and least-squares estimation are
discussed in this paper. The controllers obtained are useful in many
situations. For instance they can be used to tune control loops when
the parameters or the controlled system is unknown or slowly time-
-varying. It is assumed that the main source of disturbances are
changes in the reference value or occasionally large disturbances that
have to be eliminated. The self-tuning regulator based on minimum
variance control is not well suited for this case. The new self-tuning
controllers can be used to solve the servo problem and can thus be
regarded as useful complements.

Self-tuning requlators based on pole-placement design have been
discussed by several other authors. A digital adaptive pole shifting
algorithm was discussed in a dissertation by Edmunds (1976). This
algorithm is further discussed in Wellstead (1978) and Wellstead et al
(1978). In these works the emphasis is, however, on the regulation
problem and not on the servo problem. The use of feed-forward is not
discussed. Wouters (1977) also proposes a stochastic pole-placement
strategy. Wouters also focuses on the stochastic regulation properties
of the algorithm. The self-tuning controller proposed by Clarke can
also be discussed in a pole-placement framework. Our paper differs from
the previous treatments by focusing entirely on the servo problem. In
our formulation the links to a deterministic design procedure are also
emphasized. This makes it possible to establish 1inks to MRAS. See
Egardt (1978). Another feature of this paper is that the notions of
algorithms with implicit and explicit identification are introduced.
Several of the algorithms proposed in this paper are also new.



The paper is organized as follows. Pole-placement design for systems
with known parameters is reviewed in Section 2. The suitability of the
pole-placement design as a basis for adaptive control is discussed in
Section 3. It is shown that there are some difficulties which are
inherent in the problem formulation. Adaptive pole-placement algorithms
based on estimation of the parameters in an explicit process model are
discussed in Section 4. This Teads to the so called explicit schemes.
In Section 5 it is shown that some simplification of the adaptive
algorithms can be achieved by instead estimating parameters in a modi-
fied process model. This Teads to the .implicit schemes. Some simula-
tions which illustrate the behaviour of adaptive algorithms based on
the pole-placement design are given in Section 6.



2. POLE-PLACEMENT DESIGN

Since the self-tuning regulators are based on a deterministic design
procedure for systems with known parameters a brief review of a pole-
-placement design procedure is first given.

The material is not new. Part of it is known from classic texts on
sampled data systems 1ike Ragazzini and Franklin (1958). More recent
discussions on design of digital control systems based on pole-place-
ment design are found in Andersson (1977), Wittenmark (1976), and
Franklin (1977). Due to the algebraic nature of the problem there are
strong similarities to the corresponding design procedure for conti-
nuous systems. See Astrom (1976). The discussion given here is limited
to single input systems. A treatment of the multivariable systems is
given by Wolowich (1974), Kucera (1975), Bengtsson (1977), and Pernebo
(1978).

PROBLEM FORMULATION

Consider a process characterized by the rational transfer function

N
6y = (2.1)

where A and B are polynomials in the forward shift operator. It is
assumed that the polynomials A and B are relatively prime and that the
transfer function Gp is causal. It is desired to find a regulator such
that the transfer function from the reference value y,. to the process
output y is given by the rational transfer function
_Q

GM _T (2'2)
where Q and P are given polynomials. It is assumed that Q and P are
relatively prime and that Gy is causal.



DESIGN PROCEDURE

A general linear regulator which generates the control signal u from
the command signal Y and the process output y can be represented as

Ru = Ty, - Sy (2.3)

where R, S, and T are polynomials in the forward shift operator. The
regulator can be realized as a dynamical system of order deg R whose
characteristic polynomial is R. A block diagram of the closed loop
system is shown in Figure 2.1.

Controller

Process

y | s o [ 1y
| R IA

Figure 2.1. Block diagram of closed loop system.

The transfer function from the command signal Yy, to the output of the
closed loop system is given by

B
AR +BS’

The design problem is thus to find the polynomials R, S, and T such
that the closed loop transfer function G is equal to the desired
transfer function GM' Hence

B _Q
AR+BS P (2.4)



Algebraically the design problem is thus to find three polynomials

R, S, and T such that (2.4) holds. This algebraic problem does not
have a unique solution. The lack of uniqueness can be exploited by

the designer. To see how this can be done it is useful to have system-
-theoretic interpretations.

The degree of the polynomial AR +BS is normally higher than the degree
of the polynomial P. This means that the polynomials AR +BS and TB
have common factors. By a direct comparison with state space design
composed of state feedback and an observer, it can be shown that the
common factors of T and AR +BS correspond to the observer poles. See
e.g. Astrom (1976). The polynomial T can thus be factored into two
parts, one part corresponds to the desired observer poles and the other
corresponds to the desired closed loop zeros which are not open loop
zeros. Even if the zeros of T are specified there remains a constant
factor which can be assigned arbitrarily. The polynomials R, S, and T
can be multiplied by an arbitrary constant and the control law (2.3)
and the condition (2.4) will still remain the same. In this paper this
arbitrariness is eliminated by choosing a normalization of the poly-
nomial T. Having obtained this insight, it is now easy to obtain a
design procedure.

DESIGN PROCEDURE 2.1 (General pole-placement)

Data: Given polynomials A and B which characterize the process
dynamics and polynomials P and Q which describe the desired
closed Toop transfer function.

Step 1: Find greatest common divisor Q, of B and Q. Factor Q and B as
Q = 0,0,
B = B1Q2.

(2.5)

Step 2: Determine desired observer poles, specified by the polynomial
T]. Choose

T =710 (2.6)



Step 3: Solve the equation
AR + BS = PB]T1 (2.7)

with respect to R and S. o

There is a solution to the pole-placement problem in the sense that
a causal stabilizing regulator exists if and only if B] and P] are
stable, and

deg A - deg B] < deg P - deg Q]

If these conditions are satisfied and if deg B < deg A then the de-
sign procedure 2.1 gives a stable causal regulator if the observer
polynomial T] is chosen stable with deg T] > deg A -1 and if S has
Tower degree than A. Since A and B are relatively prime there is a
unique solution to (2.7) with deg S < deg A. The choice deg T] =

deg A - 1 corresponds to a Luenberg observer and the choice deg T] =
deg A corresponds to a Kalman observer. In some cases it may be de-
sirable to choose observers of higher order.

It is straightforward to verify that the design procedure gives the
desired results. Insertion of (2.5), (2.6), and (2.7) gives

T8 1141840

S = mR+BS T P

=0 =
i B GM‘
This shows that the closed loop transfer function is equal to the
specified transfer function.

SPECIAL CASES

The calculations required for the design procedure 2.1 are simpie enough
for off-1ine calculations. It is sufficient to have procedures for
finding greatest common divisors and for solving the equation (2.7).
Such procedures can be obtained based on Euclid’s algorithm. In the
adaptive algorithms the design calculations have to be repeated in each
iteration step. The computational burden may then be considerable and

it is therefore of interest to see if there are special cases where the
design calculations can be reduced. Some examples are given below.



EXAMPLE 2.1 (ALL process zeros cancelled and Q =1)

Assume that the specifications are such that Q@ = 1. The specifications
are normally such that the low frequency gain of the desired closed

Toop is unity. When Q = 1 the polynomial P must then be normalized in
such a way that P(1) = 1. It is assumed that this normalization is done.
Equation (2.4) gives

AR + BS = PTB (2.8)
or

AR = (PT-S) B.
Since B does not divide A it must thus divide R. Hence

R = BR].

Equation (2.8) can then be written as

AR, + S = PT. (2.9)

It often happens that A(z) = zkA](z).The equation (2.9) is then parti-
cularly easy to solve. See Astrom (1970). o

In this particular case the design procedure is thus to choose P and T
and to solve (2.9) for Ry and S. The regulator is then given by (2.3)
with R = BR]. A block diagram of the closed loop system is shown in

Figure 2.2.
Controller
- ]
| I
| |
yl‘ l [
| | Process
y | _S 1 | u §| B | y
I 71 Ry B | A
| |
| |
e R e _

Figure 2.7, Block diagram of closed loop system obtained
when all process zeros are cancelled. The
regulator is implemented as a realization of
BR]u = Tyr-Sy.



It is clear from Fig. 2.2 that all process zeros are cancelled in

this particular design. It then follows that the design procedure will
give satisfactory results only when the cancelled polynomial is stable.
The procedure will thus not work unless the process is minimum phase.
In practice it is not sufficient to require that the zeros are inside
the unit circle but it must be required that the zeros are inside a
critical area like the one shown in Fig. 2.3.

Figure 2.3. Critical area for process zeros.
m]
The simplification obtained in the special case of Example 2.1 is that
Step 1 in the general design procedure is avoided. Another special
case is given below.

EXAMPLE 2.2 (No process zeros are cancelled)

Assume that the specifications are such that the desired closed loop
zeros are equal to the process zeros, i.e. Q = B. The specifications
are normally such that the Tow frequency gain of the desired closed
Toop is unity. Since Q = B the constant factor of the polynomial P is
then chosen so that P(1) = B(1). It is assumed that this normalization
is made. Equation (2.4) then gives

AR + BS = PT. (2.10)

The design procedure is thus again to choose the polynomials P and T.
Equation (2.10) is then solved with respect to R and S and the
controller is then given by (2.3). o

The simplification obtained in the special case of Example 2.2 is that
Step 1 in the general design procedure is simplified.
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3, DISCUSSION ON THE ADAPTIVE POLE~PLACEMENT PROBLEM

Before presenting specific adaptive algorithms, it will be discussed
whether the pole-placement design procedures are suitable for design
of adaptive regulators. There are several problems to be considered.

First it may be too restrictive to specify all closed loop poles at
least for high order systems. One possibility to avoid this difficulty
for discrete time systems is to specify only the dominant poles and
require that the remaining poles are close to the origin.

The pole-placement design procedure requires that the observer poles

are specified. The observer poles are not critical. Their choice should,
however, reflect the characteristics of the disturbances. If an estima-

tion procedure which gives the disturbance dynamics is used e.g. in

the form of a controlled ARMA model it is natural to choose the observer
polynomial proportional to the polynomial which characterizes the

moving average. In this paper this is not done and the observer polyno-

mial thus has to be chosen arbitrarily.

Zeros of the process dynamics which can be cancelled present no problem.
Zeros which are outside the unit circle or inside but close to the unit
circle present problems. Since such zeros cannot be cancelled they must
be included as zeros of the closed loop transfer function. This gives
difficulties in the case of known parameters and even greater diffi-
culties in self-tuning regulators. Even if the poles of the closed Toop
system are specified many properties of the closed loop system will
depend critically on the closed Toop zeros. Hence if the primary speci-
fications are given in terms of properties like overshoot, bandwidth,
static errors, etc. it is in general not possible to find closed Toop
poles that give the desired properties unless the closed loop zeros are
known.

It follows from the discussion that self-tuning controllers based on

pole-placement design can be reasonable for minimum phase systems and
for non-minimum phase systems in those cases where the process zeros

outside the unit disc only change moderately.
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4, SELF-TUNING CONTROLLERS USING EXPLICIT IDENTIFICATION

The basic idea when using the separation principle to design self-
-tuning regulators can be expressed as follows. Start with a design
procedure for systems with known parameters. When the parameters are
not known they are estimated recursively and the regulator is re-
designed in each step, using the estimated parameters. Since there is
no recursive parameter estimator which is uniformly best there are
many possibilities even if the design principle is fixed. There are
also many details which can be done in different ways and consequently
a large variety of possible adaptive algorithms. Some simple algorithms
will be discussed in this section. Least squares, which is one of the
simplest recursive estimation schemes will be used. This procedure
will give biased estimates if there are stochastic disturbances which
are coloured noise. Since the discussion is focused on the servo
problem the major disturbances are, however, command inputs. This is
also compatible with the pole-placement design procedure which is not
suitable to handle trade-offs between measurement noise and process
noise quantitatively.

Some self-tuning algorithms will now be described in detail. The para-
meter estimation is discussed first.

LEAST SQUARES PARAMETER ESTIMATION

The parameters of the process model
Ay = Bu (4.1)

are estimated by Teast squares. This is discussed in detail in
Astrom (1968). The model (4.1) can be explicitly written as

y(t) +aqy(t-1) +...+a y(t-n) = bgu(t-k) +...+b u{t-m-k). (4.2)
Introduce a vector of parameter estimates
6 = [3 A b b 1" (4.3)
'I LI n 0 o a m 5

and a vector of regressors
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o(t) = [-y(t=1) ...-y(t-n) u(t-K) ... u(t-m-k)1' (4.4)
The recursive least squares estimate is then given by

O(t+1) = 06(t) + P(t+1) @(t+1) e(t+1) (4.5)
where

e(t+1) = y(t+1) - 8(t) o(t+1) (4.6)
and

T

P(t+1) = [P(t) - P(t)0(t+1) [0® +6T (£41)P(t)p(t+1)1 To(t+1 )T‘P(t)] /.

There are also other possibilities to perform the least squares calcu-
lations. Square root algorithms are useful if the problem is poorly
conditioned. See e.g. Peterka (1975). Fast algorithms can be used if
computing time is critical. See e.g. Levinson (1947).

CHOICE OF X AND MODIFICATIONS OF P-EQUATION

The factor A in equation (4.7) is introduced to discount past data
when performing the least squares. For the regulation problem the
estimator is excited by the process disturbances which normally are
reasonably uniform in time. It has been found empirically that a value
of A between 0.95 and 0.99 works well in such cases. For the servo
problem the major excitation comes from the changes in the command
signal. Such changes may be irregular and it has been found that there
may be bursts in the process output if equation (4.7) is used with A
less than one. The presence of bursts can be understood intuitively as
follows. The negative term in (4.7) represents the reduction in para-
meter uncertainty due to the last measurement. When there are no
changes in the set point the vector Pp will be zero. There will

not be any changes in the parameter estimate and the negative term in
the right hand side of (4.7) will be zero. The equation (4.7) then
reduces to

P(t+1) = ~ P(t)

and the matrix P will thus grow exponentially if A<1. If there are no
changes for a long time the matrix P may thus become very large. A
change in the command signal may then lead to large changes in the
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parameter estimates and in the process output. The large values of
the matrix P may also lead to numerical problems. Examples which
illustrate this behaviour are found e.g. in Fortescue (1975) and
Morris et al (1977).

There are many ways to eliminate bursts. Perturbation signals may be
added to ensure that the process is properly excited. The estimation
algorithm may be modified. One possibility is to stop the updating of
the matrix P(t) when the signal P(t)p(t) is smaller than a given value.
Another possibility is to subtract a term 1like aPZ(t) from the right
hand side of (4.7) to ensure that the matrix P(t) stays bounded.

SELF-TUNING POLE-PLACEMENT ALGORITHMS

An adaptive pole-placement algorithm can now be described as follows.
The following steps are performed at each sampling period.

Step 1: Estimate the parameters of the model (4.1) by Teast squares.

Step 2: Apply the pole-placement procedure as described in Section 2,
using the process model (4.1) with the estimated parameters
obtained in Step 1.

An algorithm of this type is called an algorithm based on estimation

0f process parameters because the estimated parameters are the para-
meters of the process model in the standard form. In analogy with the
terminology used for model reference adaptive systems (MRAS), the algo-
rithm is also referred to as an algorithm using explicit {dentification.

Algorithms of this type require procedures for recursive parameter
estimation and procedures for the pole-placement design calculations.
The design calculations are normally more time-consuming than the para-
meter estimation and it is therefore of interest to look at the special
cases of the design discussed in Examples 2.1 and 2.2, where the design
calculations are simplified. A detailed description of the self-tuning
algorithms obtained in these cases will now be given.
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EXAMPLES

Assume that the process to be controlled has zeros well inside the unit
disc, e.g. inside the critical area shown in Fig. 2.3. It is then
reasonable to have a pole-placement design where all the process zeros
are cancelled. Under this hypothesis the pole-placement procedure can
be simplified as shown in Example 2.1. The corresponding self-tuning
pole-placement algorithm then becomes

ALGORITHM E1 (Explicit algonithm. ALL process zeros cancelled)

Data: Given specifications in the form of the desired closed Toop
poles and desired observer poles specified by the polynomials
P and T. It is assumed that P is normalized so that P(1) = 1.
The polynomial T can be normalized arbitrarily. Compare with
Example 2.1.

Step 1: Estimate the parameters of the model
Ay = Bu

by least squares.

Step 2: Determine the polynomials Ry and S such that
AR] + S = PT.

Step 3: Use the control Taw

BRyu = Ty, - Sy.

The Steps 1, 2, and 3 are repeated for each sampling period. o

REMARK

Common factors of A and B should be eliminated after Step 1 to ensure
that the equation in Step 2 has a solution.

This algorithm cannot be expected to work well unless the corresponding
design procedure for systems with known parameters works well. Since
all process zeros are cancelled the regulator will not be satisfactory
for non-minimum phase systems. Such systems can, however, be handled
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using the design procedure in Example 2.2. The corresponding self-
-tuning control algorithm is given by

ALGORITHM E2 (Explicit algonithm. No process zeros cancelled)

Data: Given specifications in the form of the desired closed loop
poles and the desired observer poles specified by the poly-
nomials P and T, where P and T are normalized arbitrarily.

Step 1: Estimate the parameters of the model
Ay = Bu
by Teast squares.

Step 2: Normalize the polynomial P in such a way that P(1) = B(1).
Then determine the polynomials R and S such that

AR + BS = PT.
Step 3: Use the control Tlaw

Ru = Ty, - Sy.

The Steps 1, 2, and 3 are repeated for each sampling period. o

REMARK

Possible common factors of A and B should be eliminated after the first
step to ensure that the equation in Step 2 has a solution. Notice that
the polynomial P cannot be normalized a priori because the normalization
requires knowledge of the polynomial B in the process model.

Notice that with algorithm E2 the properties of the closed loop system
will change even if P and T are fixed because the closed Toop zeros will
change if the process zeros change.

THE GENERAL CASE

It is now straightforward to give a self-tuning control algorithm which
corresponds to the general pole-placement design procedure 2.1.
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ALGORITHM E3 (General explicit algorithm)

Data: Given the desired closed loop poles and zeros and the desired
observer poles characterized by the polynomials P, Q, and Tq-

Step 1: Estimate the parameters of the process model
Ay = Bu

by least squares.

Step 2: Eliminate common factors of A and B. Let A and B denote the
polynomials obtained.

Step 3: Find the greatest common divisor B, of B and Q. Factor Q and

B as
Q=08
B = B]an

Step 4: Solve the equation
AR + BS = PB1T]

for R and S.

Step 5: Compute the control signal from
Ru = Tyr - Sy,
where T = T1Q].

The Steps 1 through 5 are repeated at each sampling period. o

REMARK

To obtain a stable closed loop system it is necessary that the
specifications are such that the unstable factors of B, are also
factors of Q.
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5. SELF-TUNING CONTROLLERS USING IMPLICIT IDENTIFICATION

The design calculations for the algorithms discussed in the previous
section may be time-consuming. It is possible to obtain different
algorithms where the design calculations are simplified considerably.
The self-tuning reqgulator in Astrom and Wittenmark (1973) is a proto-
type for algorithms of this type. The basic idea is to rewrite the
process model in such a way that the design step is trivial. For
minimum variance control the process model can be rewritten so that
the parameters of the minimum variance regulator are the parameters
of the rewritten model. By a proper choice of model structure the
regulator parameters are thus updated directly and the design calcu-
lations are thus eliminated. Algorithms of this type are called algo-
rithms based on Amplicit identiffcation of a process model. In the
simple cases the algorithms are also called algorithms based on
estimation of regulator parameterns. Some examples of such algorithms
will now be given.

EXAMPLES

First consider the problem discussed in Example 2.1. The process is
thus described by

Ay = Bu (5.1)

and it is desired to find a feedback such that the closed Toop transfer
function from the reference value to the output is 1/P. It is assumed
that the polynomial P is normalized so that P(1) = 1. In the case of
known parameters the design is based on the solution of the equation
(2.9), i.e.

AR, +S = PT. (5.2)

The equations (5.1) and (5.2) give

PTy AR1y + Sy = Sy + BR]u = Sy + Bu

or

PTy = Sy + Ru. (5.3)
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The process can thus be represented either by (5.1) or by (5.3). The
representation (5.3) has the advantage that the regulator polynomials
R and S occur explicitly in the model. If the model (5.3) is available
the pole-placement design is thus trivial because the regulator (2.3)
is obtained from the model (5.3) by inspection. The following self-
-tuning control algorithm can now be obtained.

ALGORITHM 11 (Implicit algornithm. ARL process zeros cancelled)

Data: Given specifications in the form of the desired closed loop
poles and the desired observer poles specified by the polyno-
mials P and T. It is assumed that P is normalized in such a
way that P(1) = 1. The polynomial T can be normalized
arbitrarily.

Step 1: Estimate the parameters of the polynomials R and S in the
model

PTy = Sy + Ru (5.3)

by Teast squares.

Step 2: Use the control law
Ru = Tyr - Sy. (5.4)

The Steps 1 and 2 are repeated for each sampling period.

The least squares estimate is given by equations (4.5) and (4.7) where

S
—
t+
~

Il

[y(t-24n-1) .. y(t-2)  u(t-2+my) ... u(t-2)]
£ = deg PT, my = deg T, n = deg A
e(t) = PTy(t-2) - 8(t) o(t+1). 5

Notice that the control law (5.4) is characterized by three polynomials
R, S, and T. The polynomial T which represents the feedforward from
the command signal is chosen arbitrarily. Its zeros correspond to the
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desired observer poles. The polynomials S and R whose quotient corre-
sponds to the feedback transfer function are estimated directly. The
algorithm I1 is thus clearly an algorithm where the regulator parameters
are estimated directly.

A comparison with the corresponding explicit algorithm E1 shows that
the implicit algorithm is a considerable simplification because the
design calculations are avoided.

An implicit algorithm which corresponds to the problem in Example 2.2
will now be given. It is thus assumed that the process is governed by
(5.1) and that it is desired to have a closed loop system with the
transfer function B/P. For systems with known parameters the design is
based on the equation (2.10), i.e.

AR + BS = PT.
Combining this equation with the process model (5.1) gives
PTy = ARy + BSy = BSy + BRu. (5.5)

If the polynomials P and T are stable, the model (5.5) is equivalent

to the model (5.1). The representation (5.5) has the advantage that the
regulator polynomials R and S appear explicitly in the model (5.5). It is
is thus easier to determine the control Taw from the model (5.5) than
from (5.1). The self-tuning algorithm now becomes as follows.

ALGORITHM 12 (Implicit algorithm. No process zeros cancelled)

Data: Given specifications in the form of the closed loop poles and
the observer poles specified by the polynomials P and T.

Step 1: Estimate the parameters of the model
PTy = Sy + Ru
by Teast squares.

Step 2: Find the largest common factor B of R and S and factors R and
S as

R = BR
S = BS.
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Step 3: Normalize T by multiplying it by the factor P(1)/B(1) i.e.
T=TP(1)/B(1).
The control law is then

Ru = Tyr - Sy.

REMARK

The normalization of the polynomial P cannot be made a priori because
the normalization requires knowledge of the polynomial B in the process
model.

A comparison with the corresponding explicit algorithm E2 shows that
less calculations are required if the implicit algorithm is used. Notice
however that some calculations (elimination of common factors) are
required to obtain the controller parameters from the estimated para-
meters. This calculation may be badly conditioned.

THE GENERAL CASE

The general implicit algorithm is obtained from the general pole-place-
ment design procedure 2.1. Consider the equation (2.7). It follows that
B divides R. Introduce

R = ByRy.
Division of (2.7) by By gives
PTy = ARy + BpS
where B = By1Bp. Hence
PT1y = ARyy + B,Sy. (5.6)
It follows from the process model (2.1) that
ARy = R]Bu = BZR]B]u = BZRu.
Equation (5.6) can thus be written as

PT]y = BZSy + BZRu = Sy + Ru. (5.7)
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This is the transformed system model which will be used to obtain the
implicit algorithm. Notice that the factor B, which corresponds to the
unstable zeros divides R and S. The general implicit algorithm is now
obtained as follows.

ALGORITHM 13 (General implicit algomnithm)

Data: Given the desired closed Toop transfer function GM = Q/P and
the desired observer poles specified by the polynomial Ty

Step 1: Estimate the parameters of the polynomial R and S in the model
PT]y = Ry + Su (5.8)

by Teast squares.

Step 2: Find the largest common factor B, of R and S and factor R and

S as
R = BzR
S = 825.

Step 3: Factor Q as

Q = Q]Bz-
Introduce
T = Q]T-l.

The control law is then

Ru = Tyr - Sy.

The Steps 1, 2, and 3 are repeated at each sampling instant. o

REMARK

The design procedure requires that all unstable and poorly damped
process zeros are also zeros of Q. If an unstable factor of B, 1is
found which is not a factor of Q then the specified Q must be modified
to include this factor.
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6. SIMULATIONS

Some of the properties of the algorithms are illustrated by simulation
in this section. The simulations are made using the simulation program
SIMNON, see Elmqvist (1975). The special SIMNON system, written in
FORTRAN, for simulating a general adaptive controller described in
Gustavsson (1978) was used. The parameters of this program and the
special systems used are listed in the Appendix. Other simulations are
found in Westerberg (1977).

CHOICE OF PARAMETERS

There are several parameters which have to be selected in the algorithms.
Unless otherwise stated the following parameters have been chosen.
Initial values of all parameters are chosen as zero except for ro = 2
in the implicit algorithms and bm = 2 in the explicit algorithms. The
initial value of the covariance matrix is chosen as ten times the unit
matrix.

EXAMPLE 6.1 - Simple First Order System

The properties of the algorithms when controlling the system
y(t) = 0.9 y(t-1) = u(t-1) + e(t) + ce(t-1), (6.1)

where {e(t)} is a sequence of independent normal (0,c) random variables,
will first be explored. It is assumed that the desired behaviour of the
closed loop system is characterized by the transfer function

|
z-0.7"

n

GM =

o

It is assumed that a first order observer with a pole in 0.5 is used.
Hence

T =12z - 0.5.

The process pole at z = 0.9 should thus be moved to z = 0.7. Since the
process has no zeros the problems associated with cancellation of zeros
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do not occur. In the case of known parameters it follows from the
analysis in Section 2 that the controller

will satisfy the requirements. Solution of the equation (5.3) gives
R =2z

S -0.3z + 0.35.

The behaviour of the closed loop system for the implicit algorithm has
been explored in three different cases. The forgetting factor X was
0.99 in all cases.

—
|

Reference and output signals

O =
._1 =
| | | | |
0 500
1
o
&
©
T
S -1 I T | I l
0 500

Figure 6.1. Output y, command y,., and control signal u for the
system (6.1) with 0 =0 controlled with implicit
algorithm IT.
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CASE A (No nandom disturbances o =10)

The behaviour of the closed Toop system when following a square wave
command is shown in Fig. 6.1. The parameter estimates are shown in Fig.
6.2. Notice that the parameter estimates converge quickly and that the
closed Toop response is very close to the desired response already at

the second transient. Also notice that the major changes of the estimates
occur at the step-changes in the command input.

The diagonal elements of the matrix P in the estimation algorithm are
shown in Fig. 6.3. Notice the exponential increase of the matrix P(t)
between the step-changes. This growth which depends on the forgetting
factor may lead to bursts if the step-changes are far apart as was
discussed in Section 4.

2
aL
)
BL
]
E 7
0 v . = ©
(]
S O
+ 0
E
2 - : &
E L
0 | | " 500

Figure 6.2. Estimated parameters for system (6.1) with o = 0
controlled by the implicit algorithm IT.
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Figure 6.3. Diagonal elements of the matrix P of the estimation
algorithm for the system (6.1) with o = 0 controlled
by the implicit algorithm I1.

CASE B (White process nodise c=0, o=0.1)

This case illustrates the behaviour of the system in the presence of
moderate disturbances. The amplitude of the step command is one unit and
the standard deviation of the disturbance is 0.1. The output and the
control signals are shown in Fig. 6.4 and the parameter estimates are
shown in Fig. 6.5. The results show that the algorithm is not particu-
larly sensitive to a white noise disturbance. The diagonal elements of
the matrix P of the parameter estimator are shown in Fig. 6.6. A
comparison with the corresponding Fig. 6.3 for the noisefree case shows
that the presence of the noise will limit the growth of some elements

of the matrix P.
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Figure 6.4, Command signal y., output signal y, and control
signal u for sys{em (6.1) with ¢ = 0 and o = 0.1
controlled by the implicit algorithm IT.
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Figure 6.5. Parameter estimates for the system (6.1) with ¢ = 0
and o = 0.1 controlled by the implicit algorithm I1.

10

Diagonal elements of P-matrix

0 I T l T i
0 500

Figure 6.6. Diagonal elements of the matrix P of the estimation
algorithm for the system (6.1) with ¢ = 0 and o = 0.1
controlled by the implicit algorithm I1.
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CASE C (Coloured noise ¢ = 0.5, o = 0.1)

This case illustrates the behaviour of the closed loop system when
there are coloured disturbances. In this case the least squares esti-
mates will be biased as is seen from Fig. 6.8. Since the disturbance
level is Tlow the performance of the regulator will still be adequate
as is seen from Fig. 6.7 even if the estimation errors are substantial.
The bias in the estimates can be eliminated by using another recursive
estimator.
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Figure 6.7. Command signal Yps output signal y, and control
signal u for the system (6.1) with ¢=0.5, 0=0.1
controlled by the implicit algorithm IT.
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Figure 6.8. Parameter estimates for the system (6.1) with

= 0.5, 0 = 0.1 controlled by the implicit algo-
rithm IT. Notice that the estimates are biased.

Diagonal elements of P-matrix
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Figure 6.9. Diagonal elements of P-matrix in est1mat1on algo-
rithm for the system (6.1) with ¢ = 0.5 and o = 0
controlled by the implicit a]gorithm I1.
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The system described in this example was also controlled by the
explicit algorithm E1. The results were virtually the same as those
obtained by the implicit algorithm IT1 and the curves are therefore
not shown.

EXAMPLE 6.2 - Non-minimum Phase System

Consider a system described by
y(t) = 1.5 y(t-1) + 0.7 u(t-2) = u(t-1) + 1.1 u(t-2). (6.2)

The system is clearly non-minimum phase because its transfer function
has the zero z = -1.1. Any design method which attempts to cancel the
factor z + 1.1 will thus fail. Assume for example that it is desired to
design a control law which gives a closed loop system with the transfer
function

0.1225
2% - 1.447 + 0.5625

GM:

The process (6.1) has the poles
0.75 £ i 0.37

and the desired closed loop system has the poles
0.72 + i 0.21.

The specifications thus imply that the open-loop poles have to be shifted
so that the damping is improved. Since the desired closed Toop dynamics
has no zeros, the factor z + 1.1 of the open-loop transfer function must
be cancelled. This means that the control signal will increase without
bound even in the case of known parameters. Any adaptive scheme based on
a design procedure where the zero is cancelled will inherit this property.
Fig. 6.10 shows what happens when the implicit algorithm I1 based on
cancellation of the process zeros is used. The output appears very well-
behaved after the first step. Because of the unstable cancelled factor
the control variable will, however, grow exponentially as (-].1)t. Since
the unstable mode z = -1.1 is cancelled by the process zero nothing is
seen in the output for a while. At time 430 the input is, however, so
large that round-off is noticable. The cancellation is no longer perfect
and the unstable mode is seen in the output too.
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Figure 6.10. Command signal y,, output y, and control signal u
when the non-minimum phase system (6.2) is con-
trolled by the algorithm I1 based on cancellation
of the process zeros.
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Figure 6.11. Parameter estimates obtained when the system (6.2)
is controlled with the adaptive algorithm IT.
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Figure 6.12, Command signal y., output signal y, and control
signal u when the system (6.2) is controlled by the

algorithm E2.
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Since the process zero can not be cancelled it is necessary that the
specifications are changed so that the process zero z = -1.1 is also a
zero of the desired closed loop transfer function. Hence assume that it
is desired to have a closed loop system characterized by the transfer
function

0.0583 (z+1.1)

Gy, = ;
- 1.44 z+ 0.5625

M Z2

Assume in addition that the observer is required to have a double pole

at z = 0.5. The behaviour of the closed loop system obtained when the
explicit adaptive regulator E2, which retains all the process zeros, 1is
used to control the plant is shown in Fig. 6.12 and Fig. 6.13. It is seen
from the figures that the algorithm which does not attempt to cancel the
process zeros works very well. Notice, however, that the closed loop
system obtained will depend on the process zero.

|
2-—’l--~1
v
B U
1 3 — | E
| e 2 e
Lt I
O 3 .
T 0
E
N
QL
-1
L
g | o= I= ' | !
-2 [ | | | l
0 500

Figure 6.13. Parameter estimates obtained when the system (6.2)
is controlled by the algorithm E2.
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EXAMPLE 6.3 - Continuous Time Second Order System

This example illustrates the behaviour when the adaptive algorithms
are used to control continuous time processes. It is assumed that the
process is described by the transfer function

0.864
(5+0.36) (s +1.2)

G(s) = (6.3)

and that the sampling period of the digital regulator is 1 s. The
sampled process has the pulse transfer function

0.26 z+0.16

22 -z 40.21

H(z) = (6.4)
This transfer function has the zero z = -0.60 which is inside the unit
disc but poorly damped (g ~ 0.16). The performance of the adaptive
regulators will be explored.

It is first assumed that the specifications are such that the settling
time of the system corresponds to a large number of sampling periods.
To be specific it is assumed that the desired closed loop poles are

z=0.72+10.21 =0.75/16° .

This means that the settling time of the system is about 20 sampling
periods. The process zero at z = -0.60 corresponds to a mode with a
period of 2 sampling periods. Since this mode is considerably faster
than the desired closed loop dynamics it can be expected that the
results obtained when the process zero is cancelled and when it is
retained are similar. Even if the cancelled mode is poorly damped it
will not be excited much because it is high frequent compared to the
desired closed loop dynamics.

The characteristic polynomial of the desired closed Toop system is
P =22 - 1.44z + 0.5625. (6.5)
Assume that the observer is specified to have two poles at z = 0.5 i.e.
T = (z-0.5)2. (6.6)

The results obtained when using the implicit adaptive control algorithm
IT based on cancellation of the process zero are shown in Fig. 6.14 and
Fig. 6.15.
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Figure 6.14. Command signal y,, output signal y, and control
signal u when the system (6.3) is controlled by the

algorithm I1 with P and T given by (6.5) and (6.6).
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Figure 6.15. Parameter estimates obtained when the system (6.3)
is controlled by the algorithm IT with P and T
given by (6.5) and (6.6).

The corresponding results obtained when using the explicit algorithm
E2 based on a design where the process zero is retained are shown in
Fig. 6.16 and Fig. 6.17. The behaviour obtained with these adaptive
regulators is similar. The algorithm I1 gives somewhat Targer excur-
sions initially but the parameter estimates converge a little faster.
Notice that the implicit algorithm is simpler but that more parameters
have to be estimated in this algorithm. The limiting behaviour of the
systems obtained is very similar as can be expected from the qualita-
tive discussion made in the beginning of this section. This can be
seen from Fig. 6.18 and Fig. 6.19 which show the responses of the
systems in the time interval 400 to 450 s. With the resolution used
in the graphs the output signals can not be distinguished. These
poorly damped cancelled modes can, however, be traced in the control
signal in Fig. 6.18.
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Figure 6.16. Command signal Yps output signal y, and control
signal u obtained when the system (6.3) is con-
trolled by the algorithm E2 with P and T given by
(6.5) and (6.6).
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Figure 6.17. Parameter estimates obtained by the algorithm E2
with P and T given by (6.5) and (6.6).
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Figuwte 6.18. Command signal y,., output signal y, and control
signal u when the system (6.3) is controlled by
the algorithm IT with P and T given by (6.5) and
(6.6).
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Figure 6.19. Command signal y,., output signal y, and control
signal u when the system (6.3) is controlled by
the algorithm E2 with P and T given by (6.5) and
(6.6).

EXAMPLE 6.4 - Same system as in Example 6.3 but different specifications

In this example the process discussed is the same as in Example 6.3. The
sampled process thus has the pulse transfer function (6.4). It will,
however, be assumed that the specifications require a much higher band-
width of the desired closed Toop system. To be specific the extreme

case of dead-beat response is specified. It is thus required that the
desired closed loop system has all its poles at the origin i.e.

P = 22, (6.7)

[t is assumed as in Example 6.3 that the observer has two poles at

z =0.5 i.e.
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T=(z-0.5)2, (6.8)

The desired dynamics of the closed Toop system now has a characteristic
frequency corresponding to 2 sampling intervals (2 s). This frequency
is the same as the frequency associated with the process zero at

z = -0.6. It can thus be expected that there will be a substantial
difference between the control designs obtained when the process zero
is cancelled and when it is retained.

When the adaptive algorithms I1 and E2 are used the parameters will
converge quickly in both cases. The behaviour obtained with the implicit
algorithm I1 which is based on a design procedure where the process zero
is cancelled is shown in Fig. 6.20. Notice that the output is equal to

N
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Figure 6.20. Command signal y,., output signal y, and control
signal u when the system (6.3) is controlled by
by the algorithm I1 with P and T given by (6.7)
and (6.8).
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the desired output one sampling period after the step-change in the
command signal. Also notice that the output is zero at the future
sampling instants but that large deviations occur between the sampling
instants due to the poorly damped cancelled factor. Also notice that
the cancelled mode z = -0.6 is clearly noticable in the control signal.

The corresponding behaviour obtained with the explicit algorithm E2,
which based on a design where the process zero is retained, is shown

in Fig. 6.21. Notice that the process output reaches the desired value
two sampling periods after the step in the command signal. The behaviour
is otherwise much superior to the behaviour obtained with the algorithm
IT which was based on cancellation of the process zero at z = -0.6.
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Figure 6.21. Command signal Yp» output signal y, and control
signal u when the system (6.3) is controlled by the
algorithm E2 with P and T given by (6.7) and (6.8).
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APPENDIX

The examples in Chapter 6 were simulated using a program package for
simulation of self-tuning regulators, Gustavsson (1978). This program
package is found on disc No. 9. All the necessary commands for each
simulated example are listed in this appendix.

EXAMPLE 6.1

Case (a)

External systems required: REF, SCON3
Macro required: EX61I

LET IVR. = 3

LET ISA. =3

LET ISB. = 2

LET IVS. =1

SYST REG SYS1 REF SCON3
EX61I

PAR LAMB:0

Case (b)

External systems required: REF, SCON3
Macro required: EX61I

LET IVR. =3

LET ISA. =3

LET ISB. = 2

LET IVS. =1

SYST REG SYST REF SCON3
EX611

PAR LAMB:0.1



Case (c)

External systems required: REF, SCON3
Macro required: EX61I

LET IVR. = 3

LET ISA. =3

LET ISB. = 2

LET IVS. =1

SYST REG SYS1 REF SCON3
EX611

PAR NSC:1

PAR LAMB:0.1

PAR C1:0.5

EXAMPLE 6.2

Implicit algonithm 11

External systems required: REF, SCON3
Macro required: EX62I

LET IVR. =6

LET ISA. = 3

LET ISB. = 4

LET IVS. = 2

SYST REG SYST REF SCON3
EX621

Explicit algornithm EZ

External systems required: REF, SCON3
Macro required: EX62E

LET IVR. = 4
LET ISA. =3
LET ISB. = 2
LET IVS. =2

SYST REG SYS1 REF SCON3
EX62E



EXAMPLE 6.3

Implicit algornithm 11

External systems required:
Macro required: EX631

ALGOR RK

LET IVR. = 6
LET ISA. =3
LET ISB. = 4
LET IVS. =2

SYST REG SYSZ2 REF SCON4
EX631

Explicit algonithm E2

External systems required:
Macro required: EX63E

ALGOR RK

LET IVR. = 4
LET ISA. =3
LET ISB. = 2
LET IVS. =2

SYST REG SYSZ2 REF SCON4
EX63E

SYS2, REF, SCON4

SYS2, REF, SCON4

46



47

EXAMPLE 6.4

Dead-beat regwlation with the implicit algorithm 11

External systems required: SYS2, REF, SCON4
Macro required: EX63I

ALGOR RK
LET IVR.
LET ISA.
LET ISB.
LET IVS. =2

SYST REG SYS2 REF SCON4
EX631

PAR D2:0

PAR D3:0

6
3
4

Dead-beat negulation with the explicit algorithm EZ

External systems required: SYS2, REF, SCON4
Macro required: EX63E

ALGOR RK
LET IVR.
LET ISA.
LET ISB.
LET IVS. =2

SYST REG SYS2 REF SCON4
EX63E

PAR D2:0

PAR D3:0
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EXTERNAL SYSTEMS

CONTINUOUS SYSTEM SYS2
INPUT U

QUTPUT Y

STATE X1 X2

DER DX1 Dx2

OUTPUT
YzBieX1+B24X2
DYNAMICS
DXi==AlaX1i=A28X2ey
Dx2=x1

A1311.56

A2:0.432

Bi:0

B2:10.,864

END

DISCRETE SYSTEM REF
TIME T

QUTPUT Y

TSAMP TS

OUTRUT

Y=IF MBD(T,PER)<(Q.5#PER~-EPS) THEN NIVl ELSE NIV2

DYNgmY
TSz

PE Mg
NIS=3
NIWRgrt
EPS¢§,00001
DT:3

END

CONNECTING SYSTEM SCON3
TIME T
ULIREGI=YISYS1]-Y[REF]
USIREGI=Y[REF]
VISYS11=UR(REG)
U2IREGI=U[SYS1)

ULEV:O

END

CONNECTING SYSTEM SCON4
TIME T
ULIREG)=Y[SYS2]-Y(REF])
USIREGI3YIREF]

UISYS21=URIREG!
U2IREG]=UISYS2]
ULEV:O

END
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MACRO EX62E

PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR

REG:S
N1:2
NZgi2
THCO432
PO1:10
PO2:110
PO3:10
P34:19

PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
END

WTI1:0.98
REF 1
ND:t3

NF3$3

Di:4
D2:-1,44
p3:0.5625
Fi:1
F2:i~1
F3:0,25
NSA:2
NSB:1?2
LAMB: O
Ali-1.5
A2:0.,7
BL:1
B211.14
PERI2GD

MACRO EXé3|

PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
END

REG:4
Nitd
N2t2
THOB:2
PO1:10
PO2110
PO3i10
PO4310
POS5310
POALLY
WTH:0.98
REF 1
ND!3
NF1 3
DL
D2i-1.44
D3:10,5425
F1:i1
F2i=1
F3:¢0.25
RER:I200

MACRO FX61|

PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
END

REG: 4
Ni:2
N2:1
THO3t 2
PO1L:10
PO2:10
POZ:10
WT1:n,99
REF 11
ND:2

NF 32
Dile1
RN2t=0,7
Fis3
FZ:'O-S
NSAz1
NSBi1
ALi-0.9
Bi1:1
PER: 200

MACRD EXé62I

PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
END

REG4
Nii4
N2i2
THOS:2
P01:190
PO2:10
PO3:10
PR4:10
POS:10
PR6:1D
WT1:0,98
REF 1
ND?3

NF 3
D11
D2=’1944
D310.5625
Fi:1
Fa2t=1
F3:D.2%
NSA:I2
NSB:2
LAMB: D
Aiz‘ivs
A2:0.7
Bl1:1
B2:1.1
PERI200
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MACRO EX63E

PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
PAR
END

REGLS
N1:2
NZt2
THO4:2
POL:i10
P2e1Q
PO3:10
PO4:10
REF:1
ND33
NFt3
D1:1
D2:-1.44
D3:0.5625
Fis1
F2i=1
F310.25
PER:200




