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Limit Cycles With Chattering in
Relay Feedback Systems

Karl Henrik Johanssgrvlember, IEEEANdrey E. Barabanov, and Karl Johan Astrdrallow, IEEE

~ Abstract—Relay feedback has a large variety of applications [9]. Another application of relay feedback is also in the design
in control engineering. Several interesting phenomena occur in of variable-structure systems [10]. The high-gain of the relay
?lm(%e rtla(lay syste:ns. I(;1t|h|§ paﬁer, sc?:larhnlga_r syst:emsr\]/vnh relay makes it possible to design a control system that is robust to
eedpack are analyzed. t iIs shown that a limit CycCle wnhere part - . .
of the limit cycle consists of fast relay switchings can occur. This parameter Va”f"‘t'ons apd dlsturb_ances. Hybrid CO””F" systems
chattering is analyzed in detail and conditions for approximating have both continuous-time and discrete-event dynamics. An in-
it by a sliding mode are derived. A result on existence of limit teresting class of hybrid systems are switched control systems
cycles with chattering is given, and it is shown that the limit cycles [11], in which a relay feedback system is the simplest member.
can have arbitrarily many relay switchings each period. Limit gyyitched controllers have a richer structure than regular smooth
cycles with regular sliding modes are also discussed. Examples -
ilustrate the results. controllers and can, therefore, often give better control perfor-
mance. There exist, however, no unified approach today to de-
sign switched controllers. An interesting application of relay
feedback is in the design of delta—sigma modulators in signal
processing [12], [13]. Delta—sigma modulators have replaced
I. INTRODUCTION standard analog-to-digital (AD) and digital-to-analog (DA) con-
evderters in many applications, because they are often simpler to
plement. The basic setup of a delta—sigma modulator is afilter

phenomena such as mechanical friction. Relay control is t a feedback loop with a quantizer, which can be modeled as

oldest control principle but is still the most applicable. AR relay. Modeling of quantization errors in digital control is an-

early reference to on—off control is [1] (as pointed out in [2])(,)th|_?r Totwlatlon ':jo Sl.téj.dy rela(;/ feedbta Ck.[14]' tant oh

in which Hawkin studied temperature control and noticed thtt tlml cyclesan ISI ]lcng(;rkljo is arc;z wo |rFTQ1por an hp ego:mzl:a

the relay controller caused oscillations. Simple mechanic gt can occurin relay feedback systems. Research on bo ese
ues was very active in the former Soviet Union during the

and electromechanical systems were an early motivation {3 . o .
studying models with relay feedback [3], [4]. Other applicationlsg505 ang 1f960‘3 .Maeior cgnirlbutlonls to 1tge W?[Lk %n Os?kl)l.la_
were in aerospace [5], [6]. A self-oscillation adaptive syste ons can be found in [3] and [4] (see also [15] on the describing

which has a relay with adjustable amplitude in the feedba t&mction m_ethod to analyze the_se_: oscillation:_;). Wh”? building a
loop, was tested in several American aircrafts in the 1950s [ .athematlcal f_ramewqu for S.“dm.g modes, |ntgrest|ng proper-
Recently, there has been renewed interest in relay feedb ER ofd|fferent|gl equations wﬂh@scontmuous r!ght-hand sides
systems due to a variety of new applications. Automatic tuni re found. Unlqu.etness an.d_ existence of §0Iutlons and smooth
of proportional-integral-derivative (PID) controllers using rela pendency on |n|t|§I condlltlons of a solution (all ngl knovyn
feedback is based on the observation that if the controller %hold for smooth differential equ_atlons) COUIC.’ ea3|ly_ be vio-
replaced by a relay, there will often be a stable oscillation lﬁ‘ed -by a nonsmooth s_ystem. This was a topic for d_|scu35|on
the process output [8]. The frequency and amplitude of t which, for.example, F|I|.ppov and Ne|mark took partin at the
oscillation can be used to determine PID controller paramér_stlnternanonal Federation of Automatic Control (IFAC) con-
ters similar to the classical approach by Ziegler and Nichoi S [16]. A standard rgiference on the concept of slolutlon.to
nonsmooth systems is Filippov’'s monograph [17]. Utkin's defi-
nition of sliding modes based on equivalent control is discussed
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response that is extremely sensitive to the initial condition [23ith z(¢) € R". Let G(s) = b(s)/a(s) = C(sI — A)~'B

It was shown in [22] and [23] that there exist trajectories havirdenote the transfer function of the system. The relay feedback
arbitrarily fast relay switchings even if an exact sliding mode is defined by

not part of the trajectory. A necessary and sufficient condition

for this is that the first nonvanishing Markov parameter of the {=1},  y(H) >0
linear part of the system is positive. It was shown by Anosov w(t) = —sgny(t) € { [-1,1], y(t)=0 @)
[24] that the pole excess is important for the stability of the {1}, y(t) <0.

originin relay feedback systems. Systems with pole excess thig&e that the relay does not have hysteresis. The switching plane
or higher are unstable. From a similar discussion, it is possiblegenoteds = {z:Cx = 0}.

to ponclude'that on.ly systems with polg excess two can have g, absolutely continuous functiar [0, 00) — R” is called
trajectory with multiple fast relay switchings [22]. a trajectory or a solution of (1) and (2) if it satisfies (1) and (2)
The main contribution of this paper is to give conditions fogmost everywhere. Note that a differential equation with dis-
existence of a new type of limit cycle. If the linear part of th@ontinuous right-hand sides may have nonunique trajectories;
relay feedback system has pole excess one and certain OB [17]. A limit cycle£ C R™ in this paper denotes the set of
conditions are fulfilled, then the system has a limit cycle wita|yes attained by a periodic trajectory that is isolated and not
sliding mode. Because the sliding mode is exact, it is easy 4q equilibrium [27]. The limit cycleC is symmetridf for every
analyze this system. If the linear system has pole excess tWog , it is also true that-z € £. Let the Euclidean distance
there exist limit cycles with arbitrarily many relay switching$,om a pointz to a limit cycle £ be denotedi, (). A limit
each period. In this case the map that describes one period ofgi)ae is then stable if for each> 0 there exist$ > 0 such that

limit cycle is quite complicated. A simulated example of such .(;(0)) < § implies thatd, (x(t)) < eforallt > 0.
a limit cycle was first shown in [22]. The fast relay switchings

give rise to (what we callghatteringor fast oscillations in the B. Sliding Modes
state variables (cf. [18] and [25]). An important step in being A sliding modeis the part of a trajectory that belongs to the

Eble to ana(;yzedthe :.'g."t cycl?sf appromtm?te thel C.hégter'%itching planexz(t) is a sliding mode for € (¢1,t2) with
y a second-order sliding mode. An accurate formula s derived ", ' ¢ Cux(t) = 0 for all ¢ € (1, £5). Sliding modes

in this paper for how the chattering evolves. It s.h(_)ws that t %e treated thoroughly in [17]. Let€ {1,...,n — 1} be the

chattgrmg may be attracted to a second-order sh_dmg mode 8le excess 0f¥(s), S0 thatC A" B 0 but CA*B = 0 for

pending on the system parameters. To study the limit cycle with_ » — 9 Then. the set

chattering it is shown to be sufficient to study a second-order ' "’ ' '

sliding mode instead of the complicated map describing the S, ={2:0z=CAr=-.. = CA" o =0}

chattering trajectory. The main result of the paper (Theorem 3

in Section 1V) gives sufficient conditions for the existence af called the-th-order sliding set (cf. [18]). A sliding mode that

a limit cycle with chattering. The technique of analyzing chabelongs to amth-order sliding set is anth-order sliding mode.

tering by sliding mode approximation is related to averaging Mve will in particular study first- and second-order sliding modes

perturbation theory [26], [27]. and the corresponding sefs = S andS..

The paper is organized as follows. Notation is introduced in There is an important distinction between first- and second-

Section 1l. Sliding modes and limit cycles are defined. Seorder sliding modes for (1) and (2).diB > 0 then a trajectory

tion 1l describes the phenomena of fast relay switchings thaith initial condition close to the setz € S;:|CAz| < CB}

we call chattering. It is proved that chattering takes place clogéll have a sliding mode. Such first-order sliding modes may

to a second-order sliding set. An accurate formula for the everven be part of a limit cycle, as we will see Section II-C. If

lution of the chattering is also derived. By using this result, it insteadCB = 0 andCAB > 0, then the set of initial con-

possible in Section IV to prove the main theorem of the papelitions that gives a (second-order) sliding mode is of measure

It states that there exist limit cycles with chattering. These limiero. What will happen then is that a trajectory with an initial

cycles can have arbitrarily many relay switchings each perioghndition close tdz € S»: |C A%z| < C AB} will wind around

An example of a chattering limit cycle is also given. The papéhe second-order sliding set. This phenomena give rise to a large

is concluded in Section V. number of relay switchings and is therefore named chattering.
Chattering is described in detail in Section lll. In Section IV, itis
shown that also chattering can be part of a limit cycle. Existence

Il. PRELIMINARIES of fast relay switchings and their connection to limit cycles are
discussed in [22]. From the analysis therein, it follows that if the
linear part of the relay feedback system has pole excess greater

Consider a linear time-invariant system with relay feedbactan two, then there exists no limit cycle with a large number of
The linear system has scalar inputind scalar outpus and it fast relay switchings.
is described by the minimal state-space representation

A. Notation

C. Limit Cycles With Sliding Modes

) This paper investigates complex chattering limit cycles. In
i(t) =Axz(t) + Bu(t) order to present the mechanism generating them, we briefly re-
y(t) =Cx(¢) (1) call the simple case when the limit cycle of the relay feedback
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system has an exact (first-order) sliding mode. See [23] for ffirst position. Moreoverg® = (0,1, 23)* = 2(0) denotes the

ther discussion and proofs. initial point of the (nonsliding) part of the limit cycle outsidg
Consider the relay feedback system (1) and (2) with state* = x(¢,) the final point of this party? = z(t,s+tq) = —z°
space representatiqa, B , C'), where the final point of the sliding mode part, and = (1,z§)T.

Sliding limit cycles are further analyzed in [28], where it is

r— 1 0 ... 0 L2 . . -
_Zl 0 1 0 shown that limit cycles with several first-order sliding segments
4 ) 2 i exist and can be analyzed similarly as previously shown.
—ap—1 0 0 1 [ll. CHATTERING
L —a, 0O0 --- 0 o .
-1 If CB = 0andCAB > 0,thenthe setofinitial conditions that
b gives asecond-order sliding mode is of measure zero. Instead tra-
B, = _1 jectories close tdxr € S»:|CA%z| < CAB} may give rise to
: chattering. In this section, a detailed analysis of the chattering is
Lbn—1 given and a formula is proved that shows that in many cases the
cC=[1 0 ... 0]. chattering can be approximated by a second-order sliding mode.

o ) In Section 1V, this result is used to show existence of limit cy-
Note thatCB, = 1 > 0. This implies that there is a subset ok|es with chattering. “Chattering” discussed here should not be
the first-order sliding set that is attractive in the sense that th@yed up with fast relay switchings occurring in systems with
set of initial conditions that gives a sliding mode is of positiveg|ay imperfections such as hysteresis. The system description
measure. here is exact. Chattering is a trajectory with a finite number of
There are several ways to derive the sliding mode for a difelay switchings close to a second-order sliding mode.

ferential equation with discontinuous right-hand side [17]. For consider the relay feedback system (1) and (2) with state-
linear systems with relay feedback, they all agree. System ghace representatigal, Bs, C), where

and (2) with parameterizatiod, By, C) has sliding set equal

to § = {z:Cz = 0} = {z:21 = 0}. The equivalent control r—ar 10 0
[10]iS teq = —CAz/CB; = —x2. Applying this to (1) gives —az 0 1 0
the first-order sliding mode ag = 0 together with the solution A= : :
to —an,1 0 0 1
w(t) IFlw(t) L —Qp 0 0 0
w=[x2 zn]" [0
cee Tn 1
where By=| I
by 1 0 0 :
—by 0 1 0 Lbn—2
= : S I (3) c=[1 0 ... 0].
—b,_2 0 0 1

Note that this parameterization corresponds to a linear system

~bpp 00 ... 0 with pole excess two, such thétB; = 0 andCAB; = 1.
Hence, we have the well-known fact that the sliding mode &nceCAB; > 0, trajectories close to the sgt € Sp: |3| <
stable in the sense that— 0 ast — c, if all zeros ofG(s) = 1} Will give fast relay switchings [22]. Due to the choice of
C(sI — A)~1Bj are in the open left-half plane. parameterization, the fast behavior takes place in the variables

Local stability of limit cycles with first-order sliding modesz1 andxz. Therefore, they are called tlobattering variables
can be straightforwardly analyzed by studying a Poincaré map opposed to theonchattering variabless, .. ., z,.
that consists of two parts: one part corresponding to the trajecThe second-order sliding mode can be derived similarly to the
tory being strictly on one side af and one (sliding mode) part first-order sliding mode in Section Il. Itis given by =z =0
corresponding to the trajectory belonging4o A limit cycle and the solution of

with first-order sliding modes is stable if all eigenvalues of
w(t) =Fow(t)

F11/6:1F Fit (A.’L’l — Bl)C T
=P (71— =""1 wap (7N TR wW=|T3 ... Tp
Wi=nh < TRy ) S 2 C(AsL — By) [ ]
xetts PI(4)  where

are in the open unit disc. The limit cycle is unstable if at least b 10 0

one eigenvalue is outside the unit disc. Héredenotes the pro- —by 0 1 0

jection Py (xo,...,2,)T = (z3,...,2,)%, P, the projection = : (5)
Py = (z2,...,2,)7, Py the projectionPsx = (z3,...,x,)7, b3 0 0O 1

ande; the unit column vector of length — 1 with unity in the —b,_s 0 0O 0
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A trajectory starting at a point(0) with z1(0) = 0, z2(0) # 0 0.01 -
sufficiently small, andx3(0)| < 1 will wind around the set
Ss. This follows from Theorem 1 given next, which states a /
. L . X 2 0 NN~
first-order approximation for the amplitude of the chattering.
Theorem 1:Consider (1) and (2) with parameterization
(A, Bs, C) and ordem > 3 over a time interval0, T, T > 0. -0.01, — 05 3
Let the initial state bex(0) = (0,22(0), z3(0), ..., 2,(0))",
wherez2(0) is a variable but:3(0), ..., z,(0) are fixed. Let
the switching times be denoted by € [0,7], £ > 1, i.e., let
t;. be the time instances such that(¢;) = 0. If |z3(¢)| < 1 z3
for all ¢ € [0, 7], then the chattering variablg satisfies
1 —1t . .
——— ma t 0, as|z2(0 0 6
time
and the envelope of the peaks of the chattering variables
given by Fig. 1. Chattering for a fourth-order system (solid) together with accurate
envelope estimate from Theorem 1 (dashed). Note that the chattering ends
th whenz; becomes greater than one. Furthermore, as predicted, the length of
z2(ty) = (—1)’“352(()) exp [—(al — bl)—} the switching intervals decreases until becomes close to one and then the
3 intervals increase.

1—23(t)\ "
. <?§(0)> +e(z20058) (1) qween the switchings increase again. Note that (7) and (8) are
) not proved follz3(¢)| — 1 and that the expressions are singular
wheree; (22(0);t)/22(0) — 0asz2(0) — 0 uniformly forall  for |z3(0)] = 1. This case needs further research.

k. Example 1: Consider
Proof: See the Appendix. |
Remark 1:The nonchattering variablesz,, = (s) = (s —¢)?
(x3,...,2,)T are close to the corresponding sliding mode (s+1)*
w(t). This follows from that the solution of a linear system, .h state-space representation
depends continuously on the initial data. Hence
—4 1 0 0 0
Tnc(t) =w(t) + e2(z2(0);7) ) 6 0 1 0 1
-1 0 0 0 ¢?

fort € [0, T], whereea(z2(0);t)/22(0) — 0 asz2(0) — 0and
F5 is given by (5).

Remark 2: The variablers(t) is almost constant ové®, 7]  anq relay feedback. L&t = 0.2. Fig. 1 shows a simulation of
compare(_JI to the chattering \{arlal_zd@(t). Therefore_, (7) gives the system starting in(0) = (0,0.01,—0.5,1.0) (solid line)
that the sign ofi, — b, determines if the chattering i, has an  yggether with the continuous estimate of the envelope,afb-

y(H)=[1 0 0 0]a(t)

increasing or decreasing amplitude. . tained from Theorem 1 (dashed lines). We see that the estimate
The following resultis a formula for the number of switching$rom the theorem is accurate. The chattering ends vhee-
on a chattering trajectory. _ comes greater than one. Note that the switching periods increase
Theorem 2:Given the assumptions of Theorem 1, th@ose to the end point of the chattering, as was mentioned in Re-
number of switchings on the interv@l, 7] is equal to mark 3. The estimated number of switchings from Theorem 2 is
7 K = 151, while the true number is 152.
K ! ! (1 xQ(O))l/g/ exp [(a b )t}
=7~ |5 — 43 1 — 01/
|z2(0)] | 2 0 3 IV. LIMIT CYCLES WITH CHATTERING

x (1- x%(t))w’ dt + e3(x2(0); T)} (8) In this section, the main result of the paper is presented. We
B B will show that limit cycles with chattering can be analyzed, sim-
wherees(z2(0); T) — 0 asz2(0) — 0 uniformly for T € ilar to limit cycles with first-order sliding modes, by using The-
[0, 7). orem 1. This will lead to conditions for existence of chattering
Proof: See the Appendix. B limit cycles. A chattering limit cycle consists of two symmetric
Remark 3: Equation (7) captures the behavior of chatteringalf-periods, each of them has one chattering part (which has a
quite well. Consider a chattering solution that starts wittand finite, typically large, number of relay switchings) and one non-
x2 small and|z3| smaller than one. Since, changes rapidly chattering part.
in comparison withzs, (7) tells thatz. oscillates with expo-  To prove existence of a chattering limit cycle, we need to con-
nentially decreasing amplitude i > ;. The length of the firm that the chattering is sufficiently close to a second-order
switching intervals will decrease as decreases. ARes| ap- sliding mode. The analysis of chattering in Section 11l showed
proaches one, however, it follows from (8) that the intervals b#iat the chattering variable, can be approximated to a high ac-
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curacy by a product of one time-dependent factor and one factor 4

depending only on the nonchattering variablesee (7) of The- \

orem 1. The variabless, .. ., z,, are almost constant compared 2

to the chattering variables andz-, so the second factor of (7) ; 7
is almost constant during chattering. If the first factor, which is 0 ‘
an exponential function ity is decreasing, then there is contrac-

tion in the chattering variable,. It then follows from (6) that 2 |
there is also a contraction in the chattering variahleDuring
the chattering, the variables, . . ., z,, can be approximated by é

. . X T . -4,

the differential equation for the sliding mode with an accuracy 1 !

proportional to the amplitude af%. If also this differential equa- T2 0

tion gives a contraction, then the two contractions form a con- 0.1 0.2

tracting mapping for the full system. Such a system has a limit : ' z
cycle containing one chattering part and one nonchattering part.
This is formulated in the following theorem Fig. 2. Limit cycle with chattering for a system in Example 2. The dashed line
. o is the second-order sliding s&t.

Theorem 3:Consider (1) and (2) wite > 4 and let
b(s)/a(s) = C(sI — A)y~'By. Assumeb(s) = ¢"~2b(s/e)
with b(s) = "2 + bys" 2 + ... + bn—2 and letF» be
defined ag, in (5) but withby, replaced by, If the following
conditions hold:

1) matrix A is Hurwitz and the eigenvalue of with largest
real part is unique;

small. The trajectory aof = Az — B, will thus approach a point
close to(xy, x2,23) = (0,0, 1). The assumption of Theorem 1
is thus fulfilled if ¢ is sufficiently small.

Remark 6: The JacobiamV, of the Poincaré map consisting
of one part outsidé& and one (exact) second-order sliding mode
part is given by

2) by_o > 0; . .
3) the solution of 5 el \ po s (Az' — By)C
, _ We=h <I elTF2;/> S <I C(Axt — BQ))
t) =Fra(t) x Ao P
@(0) =(1,by,...,b, 3)7
where the notation is similar to (4).
reaches the hyperplane = —1att = 7 > 0,itholds ~ Remark 7:A ball with center inz(0) = (0,0,1,by,
that|w, (¢)| < 1fort € (0,7), andwz(7) < —by; ..., b,_3)T and radius proportional tg*~? is invariant under
4) efetey > Oforallt > 0, wheree; = (1,0,...,0)7  the system dynamics, as is shown in the proof of the theorem.
andey = (0,0,0,1,0,...,0)%. Note that although this ball captures the recurrence of the limit
Then there existsy > 0 such that for every € (0,¢p), (1) cycle (and although the ball can be made arbitrarily small), it
and (2) have a symmetric limit cycle with chattering. does not follow that the limit cycle is stable.
Proof: See the Appendix. | The key condition of Theorem 3 is that the zerosCé(s)

Remark 4: The number of relay switchings each perioghould be close to the origin. The other four conditions are, for
can be made arbitrarily large by choosiag> 0 sufficiently example, always fulfilled in the following fourth-order case.
small. This follows from that a second-order sliding mode for Proposition 1: Suppose the dimension of (1) and (2his=
the system is long if the unstable zerosh¢f) are close to the 4. If all poles of G(s) = C(sI — A)~! B, are real and stable,
origin (i.e., if ¢ is small). Therefore, the number of fast relall zeros are real and unstable, a&{D) > 0, then Conditions
switchings each period of a chattering limit cycle increasdg—4) of Theorem 3 are satisfied.
as the distance to the origin for the unstable zeros decreases. Proof. See the Appendix. |
Note also that if the unstable zeros are close to the origin theriThe following example illustrates a chattering limit cycle.
a1 —b; > 0, becausé; = ¢b; andA is Hurwitz. It then follows Example 2: Consider the system in Example 1 again. The
from Theorem 1 that the variables andz, have decaying parametet = 0.2 gives zeros that are sufficiently close to the
amplitudes during the chattering. Hence, the chattering bringsgin to give a limit cycle with chattering. Fig. 2 shows the
the trajectory close to the second-order sliding set. limit cycle in the subspacéz,z2, z3). The fast oscillations

Remark 5: The location of the zeros @ s) has a nice geo- close t0S; = {z:Cz = CAx = 0} during the chattering
metric interpretation. First note that the assumptibps, > are magnified in Fig. 3. Fig. 4 shows the four state variables
0 and A Hurwitz imply positive steady-state gain 6f(s) = during the chattering. In agreement with the analysis above, the
C(sI — A)™'By,i.e.,G(0) = b,_a/a, > 0. The stable equi- chattering starts at3(¢) = —1, ends atrz3(¢) = 1, andz4(t) is
librium point of & = Az — B, is equal tot = A~1B,. Hence, almostconstant. By approximating the chattering with a second-
G(0) > 0 gives thatCZ < 0. Therefore, a relay switching is order sliding mode, it is possible to get a rough estimate of the
guaranteed to occur for any trajectory witf0) = x¢ such that behavior. For the example, this leads to a nonsliding time of
Czo > 0. Itis easy to see that belongs to the hyperplanet,, = 7.5 and a sliding time of,; = 4.3, while for the chattering
{2:CA%x — CABy = 0} = {x:23 = 1}. A Taylor expansion limit cycle simulations give the times 7.4 and 4.2. The Jacobian
of G(s) shows thatC'A~1 B, is small, if all zeros ofb(s) are in Remark 6 i, = —0.0025. Note that the existence of the
close to the origin (compared to the zeros:6$)), i.e., if e is  limit cycle in this example is not formally proved by Theorem
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1 : feedback. It is shown in [22] that for systems with pole excess
three or higher there exist limit cycles with only a few extra
0.5 switchings each period.
3 g APPENDIX
05 A. Proof of Theorem 1
' Considerz(0) with z1(0) = 0, z2(0) small, andz3(0)| < 1.
1 Fort > 0 up to next switching instant, it holds that
0.05
0 z(t) =Mz (0) + (e — A ' Byu
2 t2
-0.05 _g 0 _g’ =z(0) + ¢t (Az(0) + Bau) + B (A%2(0) + ABou)
1 x 10

t3
+ — (A%2(0) + A’ Byu) + s(t)t*

Fig. 3. A closer look on the winding around the second-order slidingset 6

dashed line) for the limit cycle in Fig. 2. .

( ) Y g whereu = +1 is constant and

0.01 . : . . ' A€ A3 (A2(0) + B
|I€(t)| < max ||6 ( ‘T( )+ 2“) ||
z1 ot £c(0,t) 24
-0.01 : ; . : ' Note that it follows fromCAB, = 1 > 0 that there will be

0.02F - , - — 3 a next switching ifz,(0) is sufficiently small. For the sake of
s of /\/\/W/WVWWWM‘-: simplicity, introduce the notation
-0.02t_/ . . . . L

5 3 5 3 4 ay =CAz(0) = 22(0)
1 ' ' ' ' s =CA*3(0) + CAByu = £3(0) + u — a122(0)
T3 ot 1 ~
1’11/4/_ ~z3(0) +u
1 5 ] 5 s p g =CA3z(0) + CA*Byu
' ' 24(0) + bru — a1 (23(0) + )
¥4 08¢ 1
. . . . . where the last equation holds if the ordet> 4. If n = 3, this
0 0 1 2 3 4 equation and the following still holds, but with, = 0. Note
time thatajuw = —|ay| < 0 and thatyas < 0. Now, assume that

is the next switching instant, i.ez(t) = z1(¢) = 0. Then, it
Fig. 4. Chattering part of the limit cycle in Example 2. The behavior is Wep]0|dS that
described by the presented theory. Note the chattering iand x>, how this
chattering starts when; = —1 and ends whem; = 1, and thate, is almost a2t2 a3t3

constant. 0=x1(t) =t + — + o + O(t*) 9)
3, because the theorem does not provide a bound on how clasd
to the origin the zeros have to be. £2
CAz(t) = 22(t) = oy + ot + @y +O(#?) (10)
V. CONCLUSION

for smallz. Introducetg as an approximation @fto the accuracy
A large number of fast relay switchings can appear in linegg O(#3) through the equation
systems with relay feedback if the linear part has pole excess
two. This chattering was analyzed in detail in this paper and a oty aztd
sufficient condition for existence was derived. It was also shown wt ==+ =0 (11)
that chattering may be part of a limit cycle. The limit cycle Ca'?’hen, since for smal

have arbitrarily many relay switchings each period. The main

result of this paper stated that the chattering in the limit cycle 1 _ 1 " 1/3 +0(8)
can be approximated by a sliding mode. 1+/1-58 2 8
Chattering occurs in systems with pole excess two. Maw
. o . e get
consecutive fast switchings can, however, not occur in systems
with higher order pole excess. This can be understood intu- 4| |
itively, since a system whose first nonvanishing Markov param- to = \/m
eter M is of orderk have fast behavior similar ta//s*. A o] + /a3 = =5

double integrator gives a periodic solution with arbitrarily short _ 2]ay| < 2 alag,) Ol
3

period, while higher-order integrators are unstable under relay T o] a2 ay) (12)
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aszs(0) = a3 — 0. It is obvious from this expression thatFurthermore
to has the same order a§ asa; — 0. For this reason, the

expressiong)(t*) and O (af) are equivalent for every > ~ 475 :A2
0. In particular, fromz(t)) = aito + O (t3) we have that 3(1 - =3(0))
z1(r) = O(23(0)) asz2(0) — 0 for all 7 € [0,%,], which x [ay (23(0) — 1) + by (23(0) + 1) — 2253(0)z4(0)]
prtl)versl (?.II ing, it will be sh hat»(to) i ional +0(e1)
n the following, it will be shown that.(ty) is proportional
to z2(0) and the relation (7) will be derived. L&t = 2(to) —(t+1) [bl —a_ 1 22:(0)(2a(0) 51“73(0))}
be the starting point for the next part of the trajectory in the 3 3 1 - 23(0)
chattering mode between two successive switchings. The map +0 (o).

a1 — «y describes the envelope e(¢) in the chattering o . . . . .
mode. By substituting with #, and taking into account that This gives the differential equation associated with the peak

aras < 0 at any switching point, we get from (10) and (11)2/ues of the chattering variabte(t) as

that . B bi—ar 1 2%3(t) (T4(t) — b173(2))
$2<t>=$2<t>[ 5 3 - 73(t) }

~ ¢

a1 =1 + Oégto -3 <Oél + %) + O (Oé%)
) where(zs, . ..,7,)7 = w is the solution to the sliding mode

=—20; — §a2t0 +0 (o}f) . equationw = Fyw with F5 given by (5). We have

Then, (12) gives Z3(t) = a(t) — bizs(?).

Therefore, the associated differential equation can be rewritten

ap=—om <1—§'a1§3>+(9(a?) as
@3
d = bl — a1 1 d i _o
=-a <1 + 3“—;’2t + O(t2)> (13) Slog (@) = ——5— + 5 2 log (1-75(1)) .
Integration of this equation leads to the formula fgrand the
where the last equality follows from (9). The chattering variablgroof is completed. -

x2(t) thus shifts sign in successive switching points. After ne-
glecting these sign shifts, the last equation looks very similgr. Proof of Theorem 2
to a one-step iteration of a numerical solution of a differential

equation. Next, we show that such a differential equation eXisst\f/itchings on a trajectory. The monotonous functica #(r)
and that it describes the envelopesgf?) at the switching in- i, jicates the time instants of switchings for an integer argu-

stantsty. It is surprising that this equation can be analyticallynem:t(k) — #, is switching instant numbek. Equation (14)

mtegratfad. . I . . in the proof of Theorem 1 states that the increments of this
Consider three successive switching points at the time in

2 == TTUF Hlinction can be approximated as
stants 0¢, and¢ + ¢. The relay output. has opposite sign in
the intervalg0, ) and(¢, ¢ + ¢). This influencesy, andas, SO 4 lzo(Hk
thatthey shf)(w a)gap ir(1 two chcessive switching points, whereas tk+2) —t(k) = % +0 (ig(t(k))) :
they are close with a step of two switchings. Denoten three
successive switching points lay, &, anda; . Denote bya, Since the increments are smallag0) — 0, the functiont(r)
and as the corresponding values for, and as. It was previ- can be approximated by the solution of the differential equation

ously proven that

Introduce a slower time associated with the number of

d - 2|2 (#())|
. . 2 aras & =Ty
@ =—a(14+7)+0(af) y=-3 —5
9 2 The inverse function = 7(¢) satisfies
~ ~ ~ ~ ~ 13
C)é1=—061(1+’}/)+0(043) Y=z =5 - _
1 3 a} 17(5):1—@(5)
. N dt 2lz2(2)]
Therefore, after two successive switching points
It remains now only to substitute, with the expression given
zo(t + 1) = 22(0) [1 +y+74+O((t +’£)2)] . in Theorem 1 and integrate over |

Straightforward calculations using (12), (13), an&" Proof of Theorem 3

asts = 23(0) — 1 + O(ay) show that We will show that a trajectory starting close to the second-
order sliding setS; has one part outsidé and one chattering
part. By application of Theorem 1 and the fixed point theorem,
it will be proved that two such parts form a limit cycle.

~ Ao
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Consider the trajectong(t) defined in Condition 3) and let All entries V}, are positive, because of the following argument.
W = —w(7). Then it holds that?; = 1. Letxz(¢) be a solution Sincea(s) is a stable polynomial and()\) = 0, it holds that

of (1) and (2) with

2(0) = (0,0,1, Wae,. .., W, 2" 3T,
It follows from the assumptiom,(7) < —b; in Condition 3)
thatjig(()) = 6(W2 — bl) > 0. With 371(0) =0 andj:Q(O) =0,
this implies thatz; (¢) > 0 andu(¢t) = —1 for small¢ > 0.
Thus, the solution can, for smalk> 0, be written as

z(t) = A7 By + e (2(0) — A™'By)

where
0 1
0 b ai
A_1B2 _ 1 _ n—2 as
. Up .
_bn—3 An—1
i 0 1
0 - a
n—2
= 1 — bni ag
. (479
L byge™™? Gn_1
and
0
0
-1 0 _
.’L’(O)—A By = (Wg—bl)f
(Wn72 - 57173)6”_3
1
_ ai
n—2
+bn,26 as
n
Ap—1

Denote byt,. the first instantt whenz;(¢) = 0. This instant
exists because: (t) — —b,—2/a,—2 < 0ast — oo by Con-
ditions 1) and 2). Note that

M (2(0) — A7V By) =¢* (0,0,0, e(Wa — b1),0,...,0)"
+0(e)
=e(Wy — by)ettey + O(H2).

a(s) = (s—\)c(s) for some stable polynomia(s) = cos™" 1+
-+ ¢,—1. Obviously,ag = cg, ar, = ¢ — Acp—1 for1 <k <

n —1, anda,, = —Ac,—1. We prove by mathematical induction
thatc,_; = Vi, forall 1 < k < n. It then follows thatVy, is
positive. First, note thaty = 1 = V;. Assume that;_; = V;
forl < ¢ < k. Then

Ck = ap + Ack—1 = ar + AV = Vk+1.

Sincet,. — oo ase — 0, it holds thatz(t,.) = A1 B, +
~v[V + o(1)], whereo(1) — 0 ase — 0. The scalary follows
from the equationz;(t,.) = 0 and is, hence, given by =
bn_g/an = Cn_QEn_Q/CLn > 0.

Define the vector-valued functioX (t) = (X(t)),_, by
the equation

X(t) = z(t 4+ tne) + (0,0, 1,b1, ..., bp_3)?, t>0.

Then, X(0) = A[(0,1,Va,...,V,_1)T + o(1)]. All entries
X (0), k > 2, are proportional te" 2 and negative for suffi-
ciently smalle, sincex < 0.

For small¢ > 0, it holds thatz;(¢) < 0 andu = +1. A
quick jump occurs, becausg(tn.)+u = 2 > 0. The motion is
similar to the one described in the proof of Theorem 1. It follows
that it takes the time\t; . = |X»(0)| + O(X2(0)) to reach
X1 (At;_) = 0, whereX»(0) = A + o(e"~?). Therefore,
since X (0) = AX(0) — 2B,, we have
i 0

-1
X(At_) =\ Vo — 2eby + o(e"72)

L Voot — 2¢"72b, o
r 0

-1
=y | V2 | +0(e72).

—Vn—l

For smalle, all the entriesX,(At;_), & > 3, remain negative.
For smallt > 0, X{(At;_ + ¢) is positive andw = —1. It
follows from the (1) and (2) that the functioki(¢) satisfies

X =AX —(0,0,...,0,b,_2)7

whenevern, = —1. The structure of the m.atr'm indicates that
if Xp, <Ofork > 3andX; > 0thenX; < 0fork > 2.

The first entry of the first term of the right-hand side is positiv&'ence, the values ot (Afy - +1), k = 2, decrease, the value
for all > 0, because? ¢'*e, > 0 by Condition 4). Denote by Of X» becomes negative, ar, (¢) reaches zero dt= At;_ +

A the eigenvalue oft with the largest real part. Thexnis real

At = Aty. All the entries ofX(¢), 0 < t < Aty, andb,,_»

and negative by Condition 1). The corresponding eigenvectord€ Proportional te”~*. Therefore, the time lengthi¢, , of the

Alis
1

A+ ay
V = )\2+CL1)\+CL2

A4 @A b a oA a,

motion withw = —1 does not tend to zero as— 0, in contrast

to At;_. Itis easy from the relatiol\t; < At;, to derive
that X1 (At1) < Xx(0) for £ > 3. The same argument proves
that these “nonchattering” variables decrease on the next switch
intervals provided thats(¢) is not close to one. All conditions

of Theorem 1 hold on the interval; € [-1 + 6,1 — 6] for

any fixedé > 0. Hence, the chattering mode starts at the point
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z(tue), Where we recall that,. is defined as the firsttime instantin D.. The fixed point defines the limit cycle. This concludes
whenz, (t) = 0. the proof.

The trajectoryx(t), t > t,., can be approximated according
to Theorem 1 and Remark 1. The nonchattering part of the st&e Proof of Proposition 1
(23,...,2,)" is close to the solution of Conditions 1) and 2) are obviously satisfied. To show Con-
) =Plt), > ition 3. st assume thl(s) = (s = u)(o = ) where

w(tnc) :(17 6517 IR 6n735n—3)T'

o \prtpe 1)
Make the following change of variables: = ¢(t — t,.) and w(t) = { — o 0} w(?)
Wr(7) = wi(t) /¥ ~Lfork = 1,...,n — 2. Itis easy to see that 1
the new state vectar(r) satisfies the equation w(0) = [—(IM n m)}

(1) =Fow(r), 7>0
@w(0) =(1,by,...,ba_3)7.

which has the solution

B _ 1 NQGHH _ uleuzt
According to Condition 3), this trajectory reaches the hy- wit) = po — i1 [/ﬁe“zt —u%e”lt}
perplanew; = -1 attimer = 7, ie,w(7) = —1.

The condition|w;(t)] < 1 implies that the sliding mode
for a trajectory that starts ir(O,O,u?(O))T is not broken

Hence, there exists > 0 such thatw, (7) = —1. Itis easy to
see thatw, (t)| < 1fort € (0,7). Furthermore

on the interval(0,7). This gives that the end point of the (7) = — (ur + po)n (7) — M2 (4™ — e
sliding mode corresponds t@(7) = —W or equivalently 2 ! 2/ p2 — p1
w(tng + tsl) = —(Wl, GWQ, caey Gn_?’Wn,Q)T, where the < — (Nl + MQ)zfjl(%) = _Bl-

sliding time is given byt = 7 /. N _ o _
According to Theorem 1, the chattering variabigt) is pro-  Thus, Condition 3) holds ifi; 7# 1. A similar calculation
portional to the initial values,(t,.) = O(¢"2). Thus, starting shows that Condition 3) also holds;if = .

from the pointz(0) the trajectory reaches the pointt,. + Finally, to check Condition 4), note thaf ¢, is equal to
ta) = _(a;(()) + O(Gn—?)) by passing through the nonchatthe impulse response of a system with transfer function
tering part and the chattering part. Denote the corresponding 1 1
map byo., i.e., — =
Pbye as) = A)(5— )
¢e(2(0)) = —a(tnc + ta1)- where); < 0 are the eigenvalues of. The impulse response
Next, it will be proved that the mapping. can be defined in is equal to
a neighporhood of Fhe point(0) and that.thi.s mapping is a LHa Y = e Mtsxe M S 0
contraction. The existence of a symmetric limit cycle follows
by the fixed-point theorem. where£ ! denotes the inverse Laplace transform ammbnvo-
Let D, be the ball in the hyperplane; = 0 with a center |ytion. This completes the proof. H
at z(0) and with the radiug™—2. Consider a trajectory:(t)
starting from apoinfﬁ(o) € D.. Similarly to the traject9ryc(t), REEERENCES
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