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ABSTRACT

Adaptive controllers
in this report. The
model of the process

squares method. The

of a certain structure are considered
parameters in a difference equation
are estimated on-line using the least

current parameter estimates are used

to calculate the parameters of the feedback law that governs

the process. The resulting adaptive controller is called

a self-tuning algorithm. It is shown that the convergence

properties of such algorithms can be investigated by ana-

lysing an associated ordinary differential equation. The

analysis is applied to specific examples of self-tuning

algorithms,
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1. SELF-TUNING REGULATORS

Adaptive control of dynamic systems has been extensively
discussed during the last ten years. An important special
case 1s when the process parameters are known to be time
invariant, but the values are unknown. For this case the
control algorithms should be such that they converge to the
optimal control algorithms that could be derived if the sys-

tem characteristics were known. Such an algorithm is called

a self-tuning regulator.

Most suggested adaptive and self-tuning regulators are based
on the assumption that the real time estimation of the para-
meters of the process can be separated from the determina-
tion of the control signal. See fig., 1.1. In many cases
the control signal is determined without taking into consi-
deration that the estimates of the parameters are uncertain.

A more sophisticated type of controllers are those which
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Fig. 1.1 - Schematic block diagram for adaptive regulators.



consider the parameter uncertainties when the control sig-
nal is determined, but do not make anything to obtain

better estimates. The dual controllers, see Feldbaum (1960,
1961), represent a further degree of sophistication where the
input signal is chosen to increase the accuracy of the para-
meters in the same time as the controller tries to make as
good control as possible. The two activities of the dual
controller are mutually contradictory and there must be a
compromise between the identification and control activities
of the controller. The dual controllers have attractive
features, but it is very difficult to get practical sclutions

to the dual control problem,

In this report the behaviour of self-tuning regulators with
a structure as in fig. 1.1 is discussed in the case when
the identifier is based on the least squares (LS) method.
However, the techniques put forward are applicable to more

general identification schemes.

Special attention will be paid to the case when the con-
troller is a minimum variance control law based on current
estimates. This self-tuning regulator is discussed in Astrdm -
Wittenmark (1973).

The central question for the analysis of such a regulator is
of course: Will the regulator convefge to the desired one?
Techniques and basic theorems to answer this question are
presented in this report. Specific examples of self-tuning

regulators are analysed using these tools.

In Chapter 2 the LS method is defined, and known results are
repeated for easy reference. A class of self-tuning regu-
lators is strictly defined. The main problem in the analysis
of the regulators is that the feedback is time varying. This
makes the input and output sequences non-statiocnary and the

usual consistency results for the L3 method are inapplicable.



A theorem on consistency that is valid in the present case

is proved in Chapter 3.

In general the result of the identification depends on the
feedback law. This introduces essential non-linearities
inte the identification process. To handle this problem an
ordinary differential equation (ODE), which is connected
with the regulator, is derived in Chapter 4. Stability of
this ODE is shown to be equivalent to convergence of the
regulator. Also, the paths of the ODE define "expected

behaviour! of the regulator.

In Chapters 3 and 4% the controller is not specified. 1In
Chapters 5, 6, and 7 most of the analysis is concerned with
the self-tuning regulators discussed in Wittenmark (13873).
In Chapter 5 the behaviour near or outside the stability
boundary of the closed loop system is discussed. The regu-
lators are shown to stabilize the closed loop system even if
the model noise does not agree with the ‘true noise charac-

teristics.

In Chapter 6 the ODE defined in Chapter 4 is investigated
for some self-tuning regulators. It is shown that the regu-
lators do not convefge for general noise structures.
Actually, it was indicated by extensive simulations, Astrdm -
Wittenmark (1973), that the reguiators converge in general,
Only after using the analysis of Chapter 6 could examples be

constructed for which the regulators do not converge.

In Chapter 7 the ODE is solved numerically for a number of

cases of interest.

In Appendix A the proof of Lemma 4.1 is given. The results
of the report hold for several different model structures.
In Appendix B it is shown how other model structures can be
handled, and the modifications of the results shown are also

given there.



2. PRELIMINARIES

The class of self-tuning regulators to be treated is for-

mally defined in this chapter. In Section 2.1 some diffe-
rent models for least squares identification are discussed.
Off-line and on-line algorithms for least squares identifi-
cation are given in Section 2.2, In Section 2.3 algorithms
of stochastic approximaticn type are introduced. The class
of self-tuning regulators is defined in Section 2.4, and

in Section 2.5 the special algorithms "STUREG" and "STUREL"

(self-tuning regulator) are introduced.
2,1 Models,

Assume that the system can be described by the difference

equation
y(t+l) + a;y(t) + ... + a y(t+l-n) =
= bou(t—k) + .. * bmu(t—k—m) + v(t+l) (z.1)

where k 2z 0, {v(t)} is a sequence of random variables and

where {y(t)} is the output and {u(t}} the input of the system.
The usual model for least squares identification has the same
structure as (2.1) and in general allﬂthe constants a;,...,
an s bD""’bm are estimated. In connection with self-tuning

regulators, cf. Astrdm - Wittenmark (1973), it is in some

cases meaningful not to estimate bD'

It is possible to rewrite (2.1} as

y(t+k+1) + aly(t) to... t “ny(t'n+l) = gou(t) + ...+
+'s;,u(t-m') + e(t+k+l) (2.2
where {e(t)} is a process formed as a moving average from

v(t),...,v{(t-k). The variable m' equals m+k, see Astrdm -

Wittenmark (1973). Thig modification proves tc be of great



value when contrel laws are synthesized as shown in Section

2.5,

Also in this case 1t is suitable to consider B, @s an a
t

priori known constant. Then, by introducing B = Bi/BO,

(2.2) can be written as

y(t+k+1) + uly(t) oot any(t—n+l)
+ .. 4 sm,u(t—ﬂ)} + e(t+k+1)

The model of the system then is
y(t+£+l) + &ly(t) E S &ﬁy(t~ﬂ+l)
b B uCt-m)] + e(t+k+l)

~

Here as is the estimate of as and Bi

Bg is regarded as a priori known and

is, however, not realistic to assume

is exactly known. Therefore, some of the

report w1ll deal with the case when Bo

the value B , which may be different

= BO[u(t) + Blu(t—l) +

= éo[u(t) + ... +

the estimate of Bi.

is not estimated.

(2.3)

(2.4)

It

that the value of Bo

analysis in this

is assumed to have

from BO. The order

5]

n, m and the time delay k may not be the same as the true

onesg. ot

In this report (2.4) is used as the basic model,

since this

structure is used in the self-tuning algorithms STUREQO and

STUREl, defined in Section 2.%. However,

the other model

structures can be treated formally in exactly the same way.

This is shown in Appendix B,

2.2 Least squares identification.

Introduce
~ ~ ~ ~ .\ T
B = (al, IR Bl, C e Bm)



and

x(t) = <4y(t),...,~y<t-£+1>,éou<t—1>,...,éou(t-ﬁ>)T

Then (2.4) can be written ~ '
gCerks1) = 07 x(£) + Boult) + e(trk+l) (2.5)

The LS criterion for this model ig (initial value effects

are neglected):

[y(s) - Bu(s-k-1) ~ 07x(s-k-1)1° (2.6)
1

n ot

1
Voo = ¢
S

This function is minimized by

g(t) = P(t)h(t) ' (2.7)
where
-1 1 t g - T
P (L) = T T x(s-k-1) x(s-k-1) (2.8)
s=1
and
1 t R ~ ~
h(t) = £ 2 fy(s) - Bou(s—k—l)] x{s-k=-1) (2.9
g=

1 :

If {v(t)} in (2.1) is a sequence of independent random

variables, then the LS noise condition is said to be satis-

fied. Then e(t) and e(s) are independent for [t-s| > k.
If the LS noise condition is satisfied, n > n, 5 > M, ﬁ = Kk
and B = B> then it can be shown that 6(t) tends to the
n® B1se cesBp )T w.p.1 (with probability
one) as t tends to infinity, see Astrom (1968). This ques-

true value (al,..., o
tion is further discussed in Chapter 3.

The solution (2.7) can be written recursively as



o

a(t+l) = 8(t) + T

P(E) x(t-R)[y(t+]) = Bu(t-k) - 8(t) Tx(t-k)] -

t+4+1
£4x (k) TP(H)x (t-k)

(2.10)

Plee+1) = P # %%I Ex(t-k) x(t-k)T - P ()]

t+1
tex (t-k) TP(£)x(t-k)
will be replaced by 1. Recursive formulas can also be

given for P(t) directly, Astrdm (1968).

In asymptotic analysis the factor

2.3 TIdentification using stochastie approximation.

A suitable identification criterion for model (2.4) is
_ : . T S\ q2
J(8) = Ely(t+1l) - Bou(t—k) - 87 x(t-k)] (2.11)

where the expectation is taken with respect to e(t+1),

e(t), ... . Naturally (2.11) cannot be computed when only
a finite number of data y(t), u(t) are known. One approach
is to replace (2.11) with the estimated mean value (2.8).
This has been discussed in Section 2.2. Another approach is
to apply the Robbins-Monro scheme, see e.g. Tsypkin (1973)
to the derivative of (2.11). This ‘gives

6Ct+1) = 8(t) + y(t+1) x(t-K)[y(t+1) - g ult-k) - x(t-k)T 8(t)]
: (2.12)

The sequence of scalars {y(t)} must satisfy certain conditions,

Tsypkin (1973), which are further discussed in Chapter 4.

Common choices of the sequence are

y(t) = % (2.13a)
. -1
t_k 2 .
y(t) ={ © |x(s)] (2.13b)
s=1
vty = £ xe-ioT x(e-x0) 7 (2.13¢)



Algorithm (2.12) is clearly quite similar to (2.10). The
latter one requires more computation and more memory

storage than (2.12). In return it converges more rapidly.

2.4 Self-tuning regulators.

Suppose that the input to the process, u(t), is determined
as a feedback from old inputs and outputs. Suppose also
that the coefficients of the feedback law are calculated

from the current LS-estimates of the process parameters:

u(t) = fat), x(t)) (2.14)

This type of adaptive controllers, which are based on a
straightforward separation between identification and con-
trol, is discussed by e.g. Kalman (1958), Peterka (1370),
Astrtm - Wittenmark (1971), (1973) and Peterka - Astrém
(1973).

The equations (2.10), (2.12) and (2,14) thus define a class
of self-tuning regulators. They have the form:

.’\, ~ ~ T ~
p(t+1l) = 8(t) + y(£+)S()x(t-k)[y(t+l) - s ult-k) - 8 (t) x{(t-k) ]

(2.15a)
u(t) = £lo(t), x(t)) (2.15D)
Linear regulators
u(t) = PCe(t)) x(t) {(2.15c)

form an important subclass of the algorithm. Two choices of

S(t) will be considered. Let P(t) be defined by

e leer1y = Pty + (D) IxCt-ROx (t-10T - PTH()] (2.15d)



Then S(t) is taken either as

S(t) = (L) (2.15e)

T4y (t+1) [x(t-K)TPCt)x(t-k)~1]

or

s(t) = 1 (2.15 )

tr P lete1)

The sequence {y(t)} is a sequence of deterministic scalars.
If v(t) = 1/t, the choice (2.15e) gives the recursive least
squares algorithm, and €2.15f) gives the stochastic appro-
ximation algorithm (2.12) with (2.13b).

For future reference, the regulators with S(t) as in (2.1be)
will be called self-tuning regulators of LS type. Correspond-
ingly, with S(t) as in (2.15f) they will be called self-
tuning regulators of SA type. Equation (2.15) will be used as

a basic reference.

Various conditions on the noise sequence {e(t)}{({v{(t)})will

be considered. In Chapter 3 and in Section 6.2 the LS noise
condition is assumed to be satisfied. Then e(t+i+l) and x(t)
are independent if ﬂ 2 k. In the rest of the analysis the con-
ditions are much less restrictivel‘ They will be defined for
each case, cf. (4.12) and (5.3).

2.5 Minimum variance control and self-tuning regulators.

Consider the system (2.3). Suppose that the L8 noise condi-

tion is satisfied. If the input is chosen as
- 31 - - - - _
u{t) = Eg [ aly(t) . any(t n+l} + Blu(t 1) + ... %

+ Bm,u(t—m’)] (2,162



10.

then the output is
y(t) = e(t)

Obviously, no other control law can yield lower variance of
the output. The feedback law (2.16) is therefore called the
minimum variance controller, It is discussed at length in
Astrdm (1970).

If the parameters of model (2.3) are unknown, the minimum
variance control law (2.16) cannot be computed. It is
suggested in Astrdm - Wittenmark (1973) that the coeffi-
cients of (2.16) should be chosen as the LS-estimates of
the system parameters. This means that f(e(t), x(t))in
(2.15) is chosen as

£lo(t), x(t)) = -1 o) x(t) (2.17)

8O

The self-tuning regulator of SA type with this feedback law
is called STUREQ (self-tuning regulator). The corresponding
algorithm of LS-type is called STURELl. These regulators
are discussed in e.g. Peterka (1970) and Wittenmark (1973),
They have also been applied to industrial processes, see
e.g, Cegrell - Hedgvist (1973) and B?risson - Wittenmark
(1973).

Example 2.1. The behaviour of STUREL will be illustrated on
the system

yt+l) + a y(t) = b ut-1) + v(t+l) (2.18)

where a = -0.9, b = 1 and v(t) = e(t) - 0.4 e(t-1), {e(t)}
being a sequence of independent, random variables with
distribution N(0,1). The LS noise condition is thus not
satisfied for (2.18). The minimum variance controller for

the system (2.18) is given by



1.

ul(t) = -0.45 y(t) - 0.5 u(t-1) (2.19)
This controllier gives in each step an expected loss

- 2 _
E y(t)® = 1.25

Without any control the loss is 2.32 per step. When using
the self-tuning regulator the parameters a and B are esti-

mated from the model
y(£+2) + ay(t) = B [uCt) + su(t-1)1 + e(t+2)
using a stochastic approximation method, STUREG, or the

least squares method, STUREL. Hence, in this case m = m',

n = n. The control law is then simply

ult) = {&y(t) - Eu(t—l)}

UO>|}_-

G

The system has been simulated with STUREL using éo = 1. The
sequence {y(t)} was chosen as 1/t and the initial covariance
matrix P(0) was 0.1 times a unit matrix. The parameter
estimates from one simulation are given in figure 2.1. Very
quickly the estimates are quite close to the optimal ones.
The quality oftthe control can be determined from the accu-
mulated loss sgl y(s)z. The accumu}ﬁted loss at t = 2000
when using STUREL is 2447, while when using the optimal
regulator (2.19) the loss is 2430. The accumulated loss is

shown in figure 2.2.

- The good behaviour is somewhat unexpected. The LS-identifi-
cation gives biased estimates in case the variables {v(t)}
are dependent, Astrdém - Eykhoff (1971). Also, for depen-
dent noise the minimum variance control law is not given

by (2.16). These two effects, however, compensate each
other. It is shown in Astrém - Wittenmark (1973) that if

the regulator converges it must converge to the minimum vari-
ance control regulator. One of the main questions treated

in this report is whether the algorithm actually converges,
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Fig. 2.1 Parameter estimates when the system (2.18) is con-
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Fig. 2.2 The accumulated loss when the system (2.18) is con-
trolled by STUREL.
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3. LEAST SQUARES IDENTIFICATION OF CLOSED LCOP SYSTEMS

In Section 2.2 least squares identification of parameters in
different equations was described. The convergence proper-
ties of the method are well known in case the input is per-
sistently exciting and independent of the noise, Astrém -
Eykhoff (1971). However, for adaptive regulators, the in-
put is determined as output feedback and will consequently
be correlated with the noise. Moreover, the coefficients

in the feedback law are time varying and depend in a complex
way on previous input and output. The convergence under

such conditions is treated in Section 3.1.

Tn Section 3.2 the results are applied to the self-tuning
regulator STUREl. This analysis concerns bagically the con-

vergence of the regulator parameters.

It should be emphasized that the results of this chapter are
valid only if the assumptions made about the model structure
are true. This means that the LS noise condition is assumed
to be satisfied. Furthermore, 8, and the time delay k must
be known, and the model orders must not be underestimated
(i.e. ﬁzn, ﬁam'). The convergence properties when these
assumptions no longer are true are discussed in the following

chapters. _.

3.1 Consistency of least squares estimates.

Consider a system that is described by (2.3):
y(t+k+l) + agy(£) + ... + o y(t-n+l) = B lult) + Byult-1) +
oo.. F sm,u(t—m')] + g(t+k+1) (3.1)

Suppose that k and BO are known constants, and that upper

bounds n and m respectively for n and m' are known. Then



T4,

the model of (3.1) is

y{t+k+1l) + &ly(t) S &ﬂy(t—ﬂ+l) = éOEu(t) + ...+
+BruCt-m)] 4 eCtk+l) (3.2)
Introduce

8, = (ap, a s Osenns0, By B1s0s.nis0)5 n - n and

m - m'zeros respectively.

Then (3.1) and (3.2) can be written

y{t+k+l) = BOT x(t) + poult) + e(T+k+1l) (3.4)
y(t+k+l) = 07 x(t) + B_ult) + eCtekel) (3.5)

To show consistency (with probability cne, w.p.1l) of 8 the
following assumptions are usually made (see e.g. Astrdm -
Eykhoff (1971)):

o {e(t)is a stationary sequence of random vari- (3.6a)
ables with zero mean values and bounded fourth
moments, such that £(s) and e(t) are independent
for |t - s| > k.
&) The polynomial (3.6b)

+

zn+k + o Zn-l + ... o0
1 n
is stable, i.e. all rcots have magnitude less than
one.
o The input sequence {u(t)} is independent of {e(t)}(3.6c)
o The input sequence is persistently exciting of (3.6d)

order m.

Condition (3.6c) excludes systems with feedback. To show
consistency also for closed loop systems the following

assumptions are introduced:
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{e(t)} is a sequence (not necessarily stationary) (3.7a)
of. random variables with uniformly bounded second
moments and zero mean values, such that e(t) and

e(s) are independent for |s - t| > k.

N

lim sup % b yz(t) < w.p.1l (3.7b)
N+ t=1
1 N 2
lim sup § Z U (t) < = w.p.1l
N+co t=1
o u(t) is independent of e(s8) s > t + k (3.7¢)
1 N 2
o {6|1lim inf X s [e” x(t)]° = 0} = {0} w.p.1 (3.7d)
N> t=1

Clearly, (3.7abc) corresponds to (3.6abc) and are weaker con-

ditions. Condition (3.7d) deserves some discussion. Let
w(t) = [ult-1) u(t-2) ... aCt-m)1"

y(t) = [y(t)  y(t-1) ... y(t-n+D)}"

Thus .

x(t) = :X(t)
Boult) .

Then conditiorn (3.6d) can be written

N
lim % z[euT _q(t)]2 exists w.p.l and is strictly positive for
N+ 1

~

any non-zero vector eu-of dimension m.

The relationship between (3.6d) and (3.7d) is now quite clear,
We have:
T -

ol x(r) =0t (o) + B o, " ult)
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If the system is open locop, i.e. if (3.5¢) is satisfied, it

is easy to show that

N
lim inf % by [eT x(t)}2 = 0 implies w.p.l that By = 0., Thus,
N+ 1

in this case (3.7d) means

N

1iminf%z[eTu(t>}2=o s 6 =0
u-—

N+ 1

which essentially means that {u(t)} must be persistently
exciting., It is, however, somewhat weaker, since it does not
require that the limit exists. In case the system operates
under output feedback, relationships between u and y exist.
Condition (3.7d) states that these relations must not be of
a certain kind. For example, if n o= 2, & = 1 and the feed-
back is u(t) = -y(t), then (3.7d) is not satisfied. The
vector 8 can be chosen as (0 1 l)T and all terms are identi-

cally zero.

The condition is formulated for limit inferior, since it is

not known that the limit of

N
Lrope” x(o?
1
exists. This would require stationarity of the closed loop

system, and might not be true in a number of applications.

0f the conditions (3.7) only (3.7d) is restrictive in prac-

. tice. It can be interpreted as an identifiability condition
for systems operating in closed loop. Such problems are
discussed in a more general context in Gustavsson-Liung-
S8derstrdm (197%). Conditions that are sufficient for (3.74d)

to be satisfied are given there.

A theorem on consistency for LS estimates can now be formula-

+ed, The main tool tc overcome the difficulties with non-
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stationary processes {y{(t)} and {u(t)} is the convergence
theorem for martingaltes, see Doob (1953).

Theorem 3.1 Consider the system (3.1). The system parame-

ters 8, are estimated using an ordinary least squares crite-
rion (cf. Section 2.2). Suppose that (3.7) is satisfied.
Then the estimates §(t) converge with probability one to

their true values as the number of data tends to infinity.

Proocf: Let k = 0 for convenience. The LS criterion to be

minimized with respect to 8 at step N is

N
v (e) = ¢ B Ly(erD) - pou(e) - o7 x()1? =
1 N T 2
ol ?L [(eo~e) x{(t) + e(t+1)]" =
N N N
-1 3 een? s 2% P e(til) (o,m0) k() ¢ 2 [(o,-0) (1))
c g (1) (2) (3)
- VN + 2 VN () + VN (?1_

Let the minimizing 8 be dencoted by 6(N). Let P, be the
g-algebra generated by{e(0),e(1l),...,e(t)}. It is no loss of
generality to assume that Eg(t)2 = 1. Then

E(le(t+D)y()1%|F} = y()’
Let

s(t) = v+ 1 s(0) = 1

it ™+

r=]

and consider

z{t+l) =

t
I e{r+ldy(r)/slr), z(1l) =0

r=1

The sequence [z(t), F.l is a martingale, since



18.

Blz(t+3)[F ] = z(t) + Ely(t)e(t+1)/s(t)|F 1 =

= 2(t) + %%%% Ee(t+1)[F) = z(t)

Consider
N 5 N
E Z(N)2 -1 E(z(m? - Z(r~l)2) =Ex EBla(m? - z(rnl)QJF
r=2 r=2
N , ) N-1 , ,
= E 1 E[(z(r) - z(r-1)) [Fr—l] =E I y) /s(r)
r=2 1
N-1 N1 1
< E i fs(r) - s(r-1)1/s(r)s(r-1) = E i o= T7 s(r)]s 1

Hence z{(N) converges with probability one due to the martin-
gale convergence theorem. Kronecker's lemma (see e.g. Chung
(1968)) now gives that

N
1
z I
SN : e(t+l) y(t) > 0 w.p.l as N>,
Since

N . s for N> N. f 3.7b)
s(N) © rom (

this means that

e(t+l) y(t) » B8 w.p.l as Now,

=z

1
N
~ This is the first element in the column vector

e(t+l) x(t)

=l
ol =

Repeating the argument, it can be shown that also the other

elements of the vector tend to zero w.p.l. Hence, the term

r-l]
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v(z)(ei= % [Q)~B]T L oe(t+l) x(t)
1

tends tb zero uniformly in 6, w.p.1.
As the second step in the proof it will now be shown that

Ye, 3 NO (that depends on the realization) and 61 such that
. (3)
if N > N_(w), then |6 -8 [ > e =V " (8) > 8, (3.8)

If (3.8) is true, then

. (1)
VN(e) > VN(BO) + 51/2 (where VN(BO) = VN y for ]8 - eol > &
and N > N(w). Since 6(N) minimizes VN(G), this implies that

6(N) » 8 w.p.l as No»e, i.e. the assertion of the theorem.

Suppose that (3.8) is not true. Then there exisis a éequence

{EN} such that

c > |3yl > ¢

and
N.
v T 2 .
v, (e +8. ) = — % [6 x(t)]® » 0 as 1i»» for a subsequence
N.* "o "N. N N.
i i i1 i
. . +
{og !
i
Let 8 be a cluster point to this subsequence. Then with
N .
Ry = 3 & x()x(p)T
1
(3) A _ =T = = T - T % T = %
Vi (6,#6y ) = 8 Ry 8 - 2(8-8,; )7 Ry 8 + (8-6 )" Ry (8-8, )
i i i i i i i i
Y]
But Ry is bounded according to (3.7b), |8 - BN'I tends to
i

zero along a subsequence and éTRNi § > & according to (3.7d).
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Hence VN-(B)(80+8N,) cannot tend to zero and (3.8) follows.

1 1
This concludes the proof of the theorem. o
Remark: In case k > 0, the sum VN(2) has to be split up into
k sums:
k-1 N
vy = £ = e (ktepr1) Lo _-01" x(kt+r)
r=0 t=1

in order to apply the martingale theorem.

In case (3.7d) does not hold, the estimates may converge to
several different limits depending on the realization. The
set of possible convergence points is characterized in the

following corollary, which is obtained by a slight modifica-

tion of the proof of the theorem.

Corollary: Suppose (3.7abc) holds. Define the set
.1 X T 2

D, = {6]1im inf §{ l(e-8 )" x(t)]" = 0}

1 Noo 1

(which depends on the realization ).

Then 6(N) + Dj w.p.l.T ‘
Furthermore,

N
lim & = o) x()1% = 0 w.p.l

Noe 1

Remark. The corollary can be seen as a special case of Theo-

rem 5.1 in Ljung (1974b).

+By this it is meant that inf le(N,w) - 8] » 0 as N-»= a.e.uw
8ED (w)




2 Self-tuning regulators.

3.

In this section Theorem 3.1 is applied
regulator STUREL, described in Section

the corollary of this theorem,

g{N) ~ DI w.p.1l as N+o

21,

to the self-tuning
2.5, According to

It will be shown that all elements in Dy actually give the

desired minimum variance contrcl law.

then the feedback law (let B, = 1)
u(t) = 3T x(t)

gives the output

y(t) = e(t)

Since

y(t+l) = eoT x(t-k} + u(t-k) + ¢(t+1)
this implies that

(BO~E)T x{(t) = 0 ail t.

Consider a feedback law

F(a™h) u(t) = 6(q™ 1) y()

where
F(z) =1 + £ + + f“z];wl
- lz LI I m
~_T
G(z) = g) *t Bpz F ...t glz

and q_:L is the backward shift operator.

That is, if EeDI,
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If the polynomials F(z) and G(z) have common factors, this
feedback law will generate x(t)-vectors that lie in a cer-

MmN 1ot the subspace corresponding to

tain subspace of R
the minimum variance control law be denoted by H. The

dimension of this subspace is m - m' + n - n. .

'We will by a somewhat heuristic argument show that

¥eD. = (aﬂ—%lﬁ

I

This implies that all elements in Dp give the minimum vari-

ance control law, since

aet) = ¥ x(6) = oy x(t) + (8 -8 )T x(t) = o x(t)

0
and
y(t) = e(t)
for x(t)EH.

Suppose first that 6(N) gives the minimum variance control
law for some N. The produced x(t) then belong to H and the
obtained estimates 8(k), k=N,... must then satisfy

¥

(a(k) - eo) L H

since, according to the corollary of Theorem 3.1

(o) x(£)1% » 0 as k »
1

-
FTO o

t

These estimates consequently also give the minimum va: _ance
control law, which shows that minimum variance control will

continue if it once has started.
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Suppose now that the estimates e(Nk) tend to a point 8% that
does not give minimum variance control. Then the produced
x{(t) are not orthogonal to 60 - 6%, and the obtained new es-
timates will move away from 6*. When doing so, the produced
x(t) will eventually span either the whole space or H. 1In
both cases an estimate that gives minimum variance control

results, and according to the discussion above, it will con-

tinue thereafter.

-~ A

Hence, if n > n, m 2 m', DI consists of parameters which
give the desired minimum.variance control law, so even if
the estimates do not converge to their true values, they
will still give the desired controller. It also follows
that ifn = n, m o= m', the estimates will actually con-

verge to the true parameter 0,.
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4, TOOLS FOR CONVERGENCE ANALYSIS

4,1 Background.

In Chapter 3 the self-tuning regulator STUREl was analysed
in case the assumptions about orders and noise characteris-
tics were true. It was remarked in example 2.1 that this
self-tuning regulator has desired behaviour alsoc in some
cases when the assumptions are not satisfied. The analysis
of these cases cannot be formulated as consistency -ques-
tions for the identification. This is clear, since there
no longer are any "true" parameter values and no consis-

tent estimates.

When the LS noise condition is not satisfied, the estimates
will in general be biased. The bias depends on the feed-
back law. The effect is clearly seen from the following

examnlne

Example %,1 Consider the system

y(t+1) + ay(t) = u(t) + e(t+l) + celt) (4.1)

where {e(t)} is white noise with variance A and [c| < 1,

The following model is assumed: ot
y(t+1) + ay(t) = ult) + e(t+1l) (4.2)
It is straightforward to show that if u(t) is chosen as

white noise with variance yu, independent of e, then the LS

estimate of & tends to

b

2
_eAall g ) (4.3)
A{l+c“-2ac)+yu

e
1

On the other hand, if u(t) is determined as output feedback,

u(t) = g y(t)
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then the LS estimate of s tends to

N _ 2
C-a- S (1 (a-g) ") 4u)

1+ c2 - 2(a-g) ¢

For the self-tuning regulator, STUREl, the feedback
coefficient g at time t 1is chosen as the current estimate
of . It is thus time varying, which makes it difficult
to analyse the behaviour of the algorithm. In Astrdm -
Wittenmark (1973) an attempt is made to heuristically
analyse it when applied to the system (4.1)}. The feed-
back coefficient is assumed to be fixed = &k over a long
time period. During this period the estimated of o con-
vergeas to

c(1- (a=a)?)

= a - 5 - ' (4.5)
1 + ¢ - Z(a—ak) c

which is taken as the next feedback coefficient, etc. It
is then argued that if (4.5) converges to the desired regu-
lator (o = a-c), this shcoculd be taken as an indication of

convergence of the self-tuning regulator.

In this heuristic analysis the important feature, that the
feedback cocefficient actually changes in every step, is
neglected. To include it, consider'fhe change of the esti-
mate over just one step, instead of over a very long time

period. The estimate of a at time t, oy is given by (2.15).

2oy + L5yl +oay(e) - ulo)

r yvZ (k)
1

Since u(t} is chosen as aty(t) we have

- o y()y(e+l) 1 L1
e ; = N T - T y(tly(t+1) (4.6)
1 1
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The first factor is disregarded in this intuitive discussion.
Consider Ey(t)y(t+l). This value of the covariance function
depends on the feedback coefficient, since the closed loop
behaviour is affected by the feedback. The expectation
exists only if the closed loop system is stable. Let the
feedback be

u(t) = ay(t)

and denote

E y(t)yt+l) = £(a)

~

In (4.6) the difference &t+l —oy tends to zero as t tends to
infinity. Hence an increasing number of sample points, say T,
are rgg%ired to change o a given small distance. Let

At = % 17k. The change is caused by a large number of
random variables y(t)y(t+l), which all have approximately

the mean value f(&t). It is reasonable to assume that due to
some "law of large numbers," the change is proportional to
f(&t):

A ~

Gppp = at.+ AT f(at)

This scheme can be seen as an approximation to the ordinary

differential equation (ODE):

+

« = fla) (4.7)
8]

- From the example it seems plausible that the trajectories of

(4,7) in some sense describe the sequence of estimates. In

fact, in Section 4.2 it is shown that stability of (4.7) im-

plies convergence of the algorithm. In Section 4.3 it is

shown that the trajectories of (4.7) actually can be inter-

pfeted as "expected paths" for the sequence of estimates.

The results are shown for the general linear self-tuning re-

gulator (2.15) with (2.15c¢). The regulator is treated as a
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general recursive algorithm:
s(t+1). = 8(t) + vy(t) QCt, 8(t), ..., 8(0), e(t+1)) (4.8)

Similar convergence results for such algorithms are shown in
Liung (1974).

4.2 Convergence,

Consider the class of self-tuning algorithms (2.15) with
iinear feedback (2.15¢). Some additional assumptions about
the noise, the gain sequence {y(t)} and the closed loop

behaviour are first introduced.

Introduce
£(0) = E x(t) [y(t+k#l) = o° x(t) - g_u(t)] ' (4.9)
- T
Gl(e) = E x(t)x(t)
(4.10)
G,(8) = E x () Tx(t)

where the expectation shall be taken, assuming that the sys-

tem is regulated by the time invariant feedback law

ult) = F(a) x(t)

It shall be assumed that the input and output sequences have
reached stationarity, i.e. effects of initial values are neg-
lected. This statement deserves some discussicn. In the
algorithm (2.15) strict stationarity for the input and out-
put sequences is never achieved, mainly due to the time
varying feedback. The expected change in the variables
actually depends on all previous feedback laws. It would be
quite impossible to calculate the expectation values in (4.9},

{4,10) taking such dependences into account. It is therefore
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a significant result if these effects can be neglected. The
functions f and Gi are simple functions of certain cova-

riances,

Stationarity can be achieved, and hence the functions f and
Gidefined, only if the closed loop system obtained with
ul{t) = F(o) x(t) is stable. Therefore a condition that
assures that the closed loop system is not unstable all the

time must be introduced:

The feedback regulator is such that there w.p.l ex-

ists a subsequence Nk’ (which may depend on the rea-
lization) such that G(Nk) belongs to a closed subset

of the area that gives stable closed loop systems,

and such that]x(Nk)lis bounded. If the area which ('+1l)
gives stable closed loop systems is unbounded, it is
assumed that the estimates are prevented from tend-
ing to infinity by some suitable projection algorithm,
cf. Ljung (197%) Chapter 5.

The convergence of the algorithm (2.15) also depends on the
sequence {y(t)} and on the noise {e(t)}. Assume that e(t)
is obtained as filtered white noise:
c(q™h '
e(t) = =42 e(t) : (4.12)
D(q ™)

where {e(t)} is white noise, C(z) and D(z) are polynomials
and q_l is the backward shift operator. The polynomial D(z)
. is assumed to have all zerces outside the unit circle.
Further assume that

“p
Ele(t)| s Cy p integer (4.13)

The sequence {y(t)} is taken as
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y(t) =~th_ 1/p <81 ¢ > 0, (4.14)

Theorem 4.1 Consider the algorithm (2.15) with linear feed-
back (2.15¢c). Suppose that the feedback law F(8) is

Lipschitz continuous and such that the stability condition
(4.11) is satisfied. Let (#.12) - (4.13) hold for the noise
and for the gain sequences. Let f(g), Gl(e) and G,(&) be
defined by (4.9), (#4.10). Consider the ODE

%7 0(t) = 8, (1)F(0(1)) (4.15a)
S 85(0) = 8501 = 5,16 (8())5; (1) (4.15b)

where for the LS algorithm (2.15e) 1 = 1, and for the.SA algo-
rithm (2,15f) i = 2, Assume that it has a stationary point
(6*,5*%) that is globally asymptotically stable! Then the so-
lution of (2.15), 6(t), tends to 6% w.p.l as t tends to infi-
nity.

Remark: Notice that for the SA algorithm,s2 is & positive
scalar. Then, instead of (4.15), it is sufficient to require
that the CDE

g? 6(1) = £(a8(1)) ' (1.18)

is asymptotically stable. Notice also that (4.15b) can be
written

-1

si‘l(T) = 6;(9()) ~ 55 (1)

e

Prcof: The theorem is proved quite analogously to theorems
3.1 and 4.1 in Ljung (1874).

TIn the region where S, is strictly positive (definite}.
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The proof is technically involved. The basic idea is how-
ever, simple. The idea is that the sequence {8(t), Si(t)}

behaves like solutions to the ODE (4.15). In the proof the

intuitive arguments on page 26 are formalized. The fol-

lowing lemma characterizes the local behaviour of the esti-

mate sequence and a connection with the ODE (4.15) is es-

tablished.

Lemma 4.1

Suppose 6(n) and 8 belong to the area where £

and G; are defined. Let m(n,Ar) satisfy

m{nszAt)

g y(k) + At as noe

n

Suppose that |x(n)| < C (C may depend on the realization).

Then for sufficiently small At and (6(n),S;(n)) sufficiently

close to (8,

e(m(n’ AT))

Si(m(nsﬁ'f))

1 —
+ Rz(n,AT,B

where

;)

1

6(n) + ArSif(é) + Rl(n,ar,é, 84 + RQ(n,AT,E,Si)
(4.17)

8;(n) + ar[- S, G;(8) 5;

— ' —-—
+ Si] + Rl(n,Ar,e,éi) +

’Si)

|R1(1)(naﬂTa§=§i)[ < st-K{|o(n) - 8] +[S;(n) - 55|} + Ao
and
R (')(n AT,6,5.) 0 1

2 ,47,8,5:) > 0 w.p.l as n>e, o

The lemma is proved in appendix A. It implies that fer large
n, 6(n) will follow the ODE (4.15) locally. Consider from
now on the SA algorithm and assume that (%.16) is asymptotical~

ly stable.

The LS case is treated analogously.
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From Krasovskij (1963) the existence of a Lyapunov function
Y(6) for the ODE (4.16) is inferred. The function V is

infinitely differentiable, positive definite and has a nega-
tive definite time derivative along solutions to (4.16). It
is readily shown that (4.17) implies that, for sufficiently
small At and large n, and 8(n}, Sz(n) sufficiently close to

g, §2 we have

Vi (m{n,at)) < V(8) - AT§26/2 (4,18)
where
d Voo -
-8 = g7 v(e(r)) =V (8) £(8)
T —
6=¢
Consider from now on a fixed realization w. In order to use

eq. (4.17) a sequence {e(nkfm)} tending to 6(w) as ny tends
to infinity will be considered. The existence of such a
sequence follows from (4.11). The argument & is suppressed
in the sequel. Now, applying (4.17) and ¢(4.18) to the
sequence {e(nk)} gives, cf. Ljung (1974)

V(e (m(n 54133 < v(g) - 8,(n )at8/84

It is quite clear that SZ(Hk) is, possibly after extraction
of a new subsequence n,, bounded from below by a positive con-

stant. Hence
Ve (m(ny ,a71))] < V(B) ~ At+d'

In lemmas A.2 and A.3 in Ljung (1974) it is formally shown
that the inequality above, which holds for any clusterpoint
§ #0*, and sufficiently large n, implies that 8(n) + 0%

as n+« for the chosen realization. This holds for almost

every realization (ef. Ljung (1974)) and the theorem follows.
=]
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Let us apply the theorem +o the system in Example 4,1, gov-
erned by the self-tuning regulator STUREL. Clearly, F(o) =
= -8 is Lipschitz continuous. It is quite straightforward
to show that (4.11) is satisfied, see Section 5.1. Let the
noise {e(t)} be normally distributed and take y(t) = T
Then (#.12), (4.,14) are satisfied. Let the feedback be

u(t) ay(t). The function

fla) E y(t)y(t+l)

is then easily calculated and the ODE (4.18) is

o« = - (c-ate) (l-c(a-a)) defined for |g-a] < 1 (4,19)

1 - (a—-a)2

1-c(c~-2)

5 defined for [z—c[ < 1
1 - (c-2)

Z = =Z

Clearly, the solution z* = 0 is globally asymptotically stable,
It now follows from the theorem that

al{t) > a-c as tow

which gives the minimum variance contwol law u(t) = (a-c) y{(t).

In Chapter 6 more general systems are analysed.

The theorem is formulated for linear feedback laws. In a
number of applications the input is limited. If, in such a
case, the open loop system is stable, then (4.11) is trivially
satisfied and the ODE's are defined everywhere. This kind

of nonlinear regulator requires some minor modifications of
the proof of Theorem 4.1. Limitation of the input signals
naturally affects the function £(8). Therefore limitation

may affect both convergence and limit point.



33,

It is relevant to ask what connection Theorem %.1 has to stoch-
astic Lyapunov functions. These have been discussed e.g. by
Kushner. {1967). A stochastic Lyapunov function is a positive
supermartingale. It is assumed that the process for which con-
vergence shall be shown (i.e. {6(t)} in the present case) is

a Markov process. However, for the present application {e(t)}}
is not a Markov process. Also, a Lyapunov function for (4,15)
is generally not a stochastic Lyapunov function for the se-~
quence of estimates. This means that it is more difficult to
find a stochastic Lyapunov function for the sequence of esti-
mates than to show stability for (4.15). This is illustrated

in the following simple example.

Example 4.2 Consider the algorithm

Coy1 TSt Yn(en—cn); Y, ¢ 1/n
where {en} is a sequence of independent, random variables with
zero mean values and unit variances. This example is much

simpler than the algorithms considered in Theorem 4.1, It is

readily shown that the correspeonding ODE is

the stability of which easily is shown, e.g. by means of the
Lyapunov function V{(e) = 1/2 o2, However, V(c) is not a

stochastic Lyapunov function for e since

) - vle) le, e} = ~l/n e+ 25 (e f+1)/2

E{V(cn+ o, ",

1

The RHS is greater than zerc for c, = Q.

4,3 Behaviour of the algorithm.

The ODE (4.15) is important not only for the question of con-
vergence. It can, ir fact, be shown that the trajectories of

(4,15) alsc govern tihie behavicur of the sequence of estimates
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{8(t)}; obtained from (2.15).

The result is formulated as follows. Let {8(t)}be generated
by (2.15). _Introduce a fictitious time t by

T = vy (t)

n

He 3

Suppose that the estimates €(t) are plotted against Tyl

&

d.—-\
=t
~e

Let §(t; Ty s 80t ), S(t)) be the solution of (4.15) with

initial valle B(to), S(to) at time r. . Plot also this

. . . . o
solution in the same diagram:

t § (‘ETto,e(tos. Sit,)

~ ”~ -~
// ~ P ~_
.,
\K. -
7 . 7N -~
. rd e
\:_ J/
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Let I be a set of integers. The probability that all points
p(t); tel simultaneously are within a certain distance e from

the trajectory is estimated in the following theorem:

Theorem 4.2 Consider algorithm (2.15) with the same condi-

tions on {e(k)} and {y(k))} as in Theorem Y4.1. Denote

t
. = & y(s). Assume that the right hand side of (4.15)

is continously differentiable. Denote the solution of {(4.,15)
with initial condition e(to), s(ty) at © = T Dby ¥ (1 TLoa
6(t ), S(t. )). Consider the ODE (%.15) lineaPized around®this
solution. Suppose that there exists a quadratic Lyapunov
function for this linear, time varying ODE. (See e.g. Brockett
(18706)). Let I be a set of integers, such that inf [ri— lez

= D > 0 where i4] and i,J€Il. Then there exists a K, § and

e}
o2 Such that for e < e, [y(t Ix(t )] < & _.

P {sup |6(t) ~ §(r 3 7, , 8t ), St 0] > e} <

€l to
t>to
r N
$ Kq z y(j)r T gD (4,20}
r s
£ j=t
o)
where N = sup t, which may be e, o
tel

The proof is based on Lemma 4.1 and follows from this lemma
in exactly the same way as Theorem 6.1 in Ljung (1974) is

proved,

Since the sum

I y(i)P

1

is convergent, the RHS of (4.20) can, for fixed ¢, be chosen
arbitrarily small by taking ts sufficiently large. Thus, the
theorem states that the trajectories of the ODE (4.15) arbi-
trarily well describe the behaviour of the algorithm (2.15)
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for sufficiently large time points.

It should be remarked that, although the proof of Theorem 4.2
provides an estimate of K, it is not practically feasible to
use the theorem to obtain numerical bounds for the probabi-
lity. The estimates are too crude. The main value of the
theorem is that a basic relationship between the trajectories

and the algorithm is established.

To summarize, Theorems 4.1 and 4.2 state that analysis of the
time invariant, deterministic ODE (4,15} gives valuable in-
sight intoc the behaviour of the time varying, nonlinear stoch-
astic difference eguation (2.15). In Chapter 6 the CDE's

that correspond to the self-tuning algorithms, STUREO and

. STUREl, are derived and analysed.
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STABILIZATION PROPERTIES

The self-tuning regulators STUREl and STUREOD, were defined
in Section 2.5. They were originally, Wieslander - Witten-
mark (1971), designed for control of system (2.1) when the
LS noise condition is satisfied. The analysis in Chapter 3
shows that the regulators have desired behaviour in this
case. If the noise has a more general structure, the para-
meter estimates will be biased. The bias depends on the
control law and this in turn depends on the current esti-
mates. This makes it quite difficult to follow the estima-
tion process. The performance outside the stability region

of the closed loop system is considered in this chapter.

To apply Theorem 4.l it is required that the stability
condition (4.11) is satisfied. In Section 5.1 it is shown
that both self-tuning regulators have this desired property
for quite general noise sequences. The time delay k must
be known, and the orders of the system must not be under-

estimated.

In Section 5.2 a stronger vresult is shown for STURELl, It

is shown that

y(k)2
1

=z =
1 ™=

k

is uniformly bounded in N w.p.l. This result ensures a
stable behaviour of the clcsed lcop system. This holds alsc
if the open loop system is unstable. Thus STUREl stabilizes

any system, provided the time delay is known.

5.1 A general stability property.

The stability properties of the self-tuning regulators, STUREL

and STUREO, are investigated in this section. It is shown

that these regulators satisfy the condition (%.11). To make
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the discussion easier to follow, some of the arguments are
kept on a scmewhat heuristic level. It shouid, however,
meet no difficulties to convert the discussion into a for-

mal proof,

Consider the system (2.3) and the model (3.4). Assume that
k = k, and that m 2 m', n 2 n. TFor simplicity in the for-
mal treatment, the time delay k is supposed to be zero in

this section.

Form the following vector from the parameter values &y Bi
and the estimates ai(t), Bi(t)
B B. B .
Bet) =lay = =2 ag(t), vy o) = =2 a (), ..., - 22 an(n),
Bo Po Bo
B B A B+ B B.. .
,A—'—,,— Bl(t), ---g,\__T_Bmp(t): ---)"°A—OB];1(t)]T
Bo Bo Fo Bo 8o
Then, with u(t) = - } e(t)T x(t), (2.1%a) and (2.3) can
be rewritten as Bo
. TB "
FE+1) = F(E) - y(t+1) S(t) x (O x(t)T =2 B(t) - e(t+1)]  (5.1)
Bo
y(t+1l) = §C)T x(£) + e(t+1) - (5.2)

The sequence g(t) is supposed to satisfy

()2 <K N> N (5.3)

=
It =

t=1

where K may depend on the realizaticn. For STUREL

Pt)”
1+ v (41 [x PR ()-1]

S(t) =
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where P(t) is given by (2.15d). TFor STURED

S(t) = — L
T

£ £Pix(s) x(s)

s=1 °
where

t

e y(s) 1 (1-vy(3)); gzz v(t)
5 j=s+1

Decompose §(t) into one component parallell to x(t), denoted

by Bu(tj and one orthogonal to x(t), ei(t):

§Ct) = ¥+ ¥ 1) (5.4)
The symmetrical matrix x(t) x(t)T has all eigenvalues but one
equal to zero. The non-zero eigenvalue is x ()T x{t), and
the corresponding eigenvector is x(t). Hence

x(6) x0T §6) = x0T xe) ¥, (1)

Introduce also

Cov(te1) x()T xCt)

M) ! (5.5)
T g x(s) x(s) '
1 8

Clearly

0 £ A (L) 1 (5.86)

Eq. (5.1) can now be written

8
Bt+1) = ¥(0) =a(t) == Fp(1)  + v(+1)S()x()e(t+l)  (5.7)

Bo
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When |x(t)| is sufficiently large, say 2z K , the last term in
(5.7) can be neglected, and the following relation is obtained:

| 8 B2
1B+ |2 = 1B ]? - 2aey =2 3, )% +an? 2 3, (t)]?
BO BO
(5.8)
B
If 0 « =— < 2, it follows from (5.8) and (5.5) that
BO
l%(t+1)]2 3 ['é’(t)]2 - cx(t)|%"(t)|2 c >0 (5.9)

From (5.2) follows that for large [x(t)|

y(t+l)|2 = |8 (£)]? lx(t)l2 < |8 (t)]? + max(y(s)?, u(s)?)-un
I If A

t<gst-n
(5.10)
Assume that the system is minimum phase, i.e. that the
polynomial
B(z) = 8_ + 8,2 + B 22 + + B zm'
o} 1 2 ne m'

has all its zeroes outside the unit circle. Then |u(t)| is

not significantly much larger than |y(t)}.

Assume now that (4.11) does not hold, i.e. that the feedback

+

u(t) = -2 o(t)T x(t)

Bo

gives an unstable, closed loop system for all t > N. We will
lead this assumption into contradiction. Pistinguish between
" the following two cases:

Case a.

. Y

lim sup |§(t+1) - §()f = 0

tow

In this case the feedback law and hence the parameters of
the closed loop system change arbitrarily slowly as t in-

creases. Conseguently |x(t)| increases exponentially for
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sufficiently large t. This implies that (5.9) holds, and
also tﬁat x({t) is bounded from below by a strictly positive
number. From (5.9) now follows that |3"(t)| + 0, which from
(5.10) implies that |y(t)| and [x(t)| start to decrease when

Igﬂ(t)! is sufficiently small. This contradicts the expo-

nential increase of [x(t)],

Case b.

iim sup |6(t+1) - ()| = § > 0O

treo
According to (5.7) such "Jjumps" in the estimates are possible
only if |x(t)| assumes arbitrarily large values. Therefore
(5.9) is valid as soon as the estimate Jumps. A jump may
cause |x(t)] to decrease drastically. In fact, it is the
only way for |x{t)| to decrease if the closed loop system is

unstable. Consider the following figure

Ix@) |

%

»

It BV At
lM
T | T —>
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The only possibility for |§(t)| to increase is when (5.9)

is not valid, i.e. when [x(t)| < K'. Now, each such period

must be preceded by a jump; |3(t+l)[ g [g(t)! - 6., Also,

the length of a period when [x(t)]| < K' is essentially bounded

by a fixed length. The unstable modes are excited by the '
noise terms and |x(t)|quickly starts to increase. During

such a period |8(t+l) - §(t)] is arbitrarily small, and the

possible increase in [g(t)] becomes eventually less than

§/2, Hence, it follows that [3(t)| decreases with the net

amount of at least §/2 infinitely many times which, of

course, is impossible.

Consequently the assumption that 8(t) belongs to the area
which gives unstable, closed loop systems for all t > N is
contradicted and (4.11) follows.

The self-tuning regulator STUREl is treated analogously.

To summarize, the regulators STURE0 and STUREl satisfy con-
dition (4%.11) in case the time delay, k, is known {(only the
case k = 0 has been treated in this section), and in casé
the system orders are not underestimated. The estimate éo

must be so good that

B
0 < <2 <2 . (5.11)

Bo ' .
The process has been assumed to be minimum phase. The noise

e(t) may be guite general as long as

: 1 N 2
lim sup 5 I e(t)” < W.p. 1
N=+e 1

It has so far only been shown that (5.11) is a sufficient con-
dition for the -stability condition to hold. The following

simple example shows that (5.11) is in fact also necessary.
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Example 5.1 Consider the system

y(t+1) '+ ay(t) u(t) + e(t+l)
and the model

éU(t) + e(t+1)

y(t+l) + &y(t)
where

> 1

B = 753

*Then, with y(t) = 1/t and « = 0

bl = ary s YOOYCERL) 0 (248)alt)y(0)F | y(t)e(tel)
t

t t
L y(s)? L y(s)? I y(s)?
1 1 1
Suppose that &(O) > % . Neglect the noise term y(t)e(t+1).

Straightforward calculation sheows that then o(k) alternates
between positive and negative values so that |e(k)| tends to
infinity. Consequently, this system has no stabilization pro-

perty. 0

Remark. Notice that the upper bound on BO/BO that is necesg-
sary to obtain a stable behaviour depends on several features

of the regulator. For example, if {y(t)} is chosen as

1 -8

YOO = et
| x ()|

then the closed loop system will have the stability property

(4,11) as soon as BO/BO is positive.

Also, 1f the copen loop system is stable and the input to the
system is limited, then clearly the overall system is stable

and (4.11) holds trivially, irrespectively of ﬁo/go.
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5.2 QOverall stability of STURE 1.

To give an idea of the stabilization property of STUREl, con-
sider first Example 4.1, It was there shown that a white
noise input signal with variance yu gives the following esti-

mate of g

N ca(1-a?)
A(1+c2—2ac) +u

]
t
jat}

Consequently, the bias depends on the signal to noise ratio.
A large variance of the input gives small bias. In a simi-
lar manner, the bias depends on the regulator parameter if

u(t) is formed as ocutput feedback
u(t) = g y(t)

Then the estimate is

. _ c(l-(a—g)z)
¢ = a 5 _
l+te"-2(a~g)lc

If the closed loop is almost unstable, i.e. |a—g| is close

to 1, then the bias term is small.

The example suggests that unstable, or nearly unstable,
closed loop systems give system parameter estimates with
insignificant bias. This, in turn, gives a closed loop
system with all poles close to the origin. NThus the closed
.loop system is stable, in the sense that % i y(t)2 cannot
increase without limit. This result is formally proved in

the following theorem:

Theorem 5.1 Consider self-tuning regulator STURELl applied

to the system (2.3). The sequence{e(t)} in (2.3) may be any

Sequence such that
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i N y
lim sup 7 2 e(t)” < = w.p.1 {5.12)
N> 1

Suppose ‘that the time delay, k, is known and the system

orders m' and n are not underestimated. 80 is assumed to

be known. Then

y(t)2 < o w.p.1 (5.13)

=2l
=

lim sup
N

If the system is minimum phase, then also

. 1 N 2
lim sup § = u(t)” < » w.p.1 (5.14)
N+ 1

Proof: Introduce §(t) as in Section 5.1. Then

yOtrk+1) = O Tx(t) + e (t4k+1) (5.15)
Denote
.tr

1 2
r, (t',t) = = L Y(S)
yy -’ t t i
Then

1 tt - ¢

Pyy(t‘,o) = %‘f ryy(t’O) + ‘—__t"1_— Pyy(tryt)

Suppose that %im sup ryy(t,o) = «. Thén it is possible for
oo :
arbitrarily large K to find t,t"' such that

% g %1 g 1

K g ryy(s,o) g c K t < s < t! ey > 1
Pyy(t',D) x> ¢ K

Then

%¢ ryy(t,O) + X ;,t ryy(ti’t) 5 clK
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and Pyy(t,o) is not a negligible part of ryy(t',O). Not
all terms in ryy(t',t) must be larger than c;K. However,
y(t) cannot increase arbitrarily fast, and a number of

terms must be larger than K. This number increases as cq
increases. Choose cl such that at least n + m terms are

larger than K. Introduce as in (2.9)

x(s-k-1) x(s—k—l)T

R(t) = P7H(t) = £
1

3]

oot

The LS critericn (2.1) can then be written

ng(s-kul) e(s) + %
1 s

E(S)Q
1

1

t
X

It e ot

u AT y 1
Vt(a) 6"R(t)6 + 2 T

S

. © . . . .
Since 8 = 0 is a possible choiee, the optimal §(t) must

yield a value less or equal to

8(8)2
1

1

"o oot

1
T

v, (0)
t S

This implies that

‘ t
YO TR ¥ t) + 2/t 1 Sy x(s-k-1)els) < 0
s=1
Hence
v T a2 ot o 2
[6(t) R(t)O(Et)]" ¢ L/t £ 6(t) x(s~k-1)e(s) g
s=

1
t T T t oy

¢ 4/tl £ 8(t) x(s-k-1)x(s-k-1) e(t)|«|1/t r €°(s)
s=1 s=1

' (Schwarz inequality) or

HKl(w)
ryy(t,O)

R(t)

——r e (5.16)
Pyy(t,O)

Yoy T

11 ™ cf

B < ¢ 5(8)2/ryy(t,0) <

s=1

Now take K >>K; and choose t,t' as above. Eg. (5.16) then

implies that §(s) must lie arbitrarily close to the null space of
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R(s)/ryy(s,O) for t s~s < t! (5.17)
Since

R(s) = ¢ R(O + 22F R(s,t) ana L5 172

we also have that all 6(s), s = t, ..., t' lie arbitrarily

close to the null space of R(t)/ryy(t,o).

From the assumption that (5.13) does not hold, it follows
that y(s) is "large" for a number of s = t, ..., t', In
view of (5.15) this means that 8(s)* x(s) also is "arge",
Since §(s) is arbitrarily close to the null space of
R(t)/ryy(t,o), x(s) cannot belong to the range space of
R(t)/ryy(t,o). (Since the matrix is symmetric the null space

and the range space are orthogonal). Consequently

t
b X(S)X(s)T
T+l

1

o
R(t',t) = ET—j“¥

gets a significant contribution from matrices with range
space not belonging to the range space of R(t)/ryy(t,ﬁ).

In other words, the rank of R(t)/ryy(t,o) isAles? than that
of R(t')/ryy(t‘,o). Repeating the argument n + m times,

it follows that

R T t s
(t )/ryy(t 0)

has full rank, yielding the only possible choice § = 0 (i.e.
the true parameters). This gives y(t) = e(t), which contra-
dicts the assumption that ryy(t,O) increases without limit.

If the system is minimum phase, the inverse system is stable.
1f the input of the inverse system, y(t), satisfies (5,13,
then the output, u(t), must satisfy (5.,14). o
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This stabilization property of STURELl is an important fea-
ture. It implies that the regulator stabilizes the system

even if the parameters do not converge.
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6. ANALYSIS OF THE SELF-TUNING REGULATOR "STURE".

Theorems 4.1 and 4.2 provide a tool for analysis of the class
of self-tuning algorithms defined by (2.15), In this chapter
the regulators STUREC and STURELl are considered. The basis

of the analysis is the ODE defined in Theorem 4.1. In Sec-
tion 6.1 the ODE's that correspond to the present regulators
are determined. These equations are investigated in Section
6.2 under the assumption that the LS noise condition is satis-
fied.

One important result in Astrém - Wittenmark (1973) is that
the regulator seems to be equally well behaving also for more
general noise structures. That this really might be the case
is shown in Section 6.3. There it is proved that the regu-
lator converges to the optimal one in a simple case when the

LS noise condition is not satisfied.

In Section 6.4 the differential equations for the general
case are linearized around the desired solution. Analysis
of the linearized equations shows +that they may be unstable,
provided the noise has certain properties., Thus, in these

cases the self-tuning algorithms will not converge,

6.1 Derivation of the associated differential equations.

The regulators STUREO and STUREL are given by (2.15) with
ult) = 8 (t)Tx(t)

8(t+1) = 8(t) + y(t+1)S(E)x(t-K)[y(t+1) - 6(t) x(t-k) +
Fot=K) T (t=K)] (6.1)

When computing to corresponding ODE, the two last terms can-
cel. For the algorithm of SA-type, STUREO, the ODE (4.16) is
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—p. (k+1,8
] ryx( 58)
,—ryy(k+n,9)
6= (6,2)

(k+2,8)

8o

BoTuy

Boruy(k+l+m,e)

b -

where ryy(i,e) is the autocorrelation for the staticnary

process defined by

, B
y(t+k+l) =[go - — é]x(t) + e(t+k+1) (6.3)
BO
B - B '
Here 6, = (al ree G 0, ... 0, 79 Bl’ . 79 Bm, Oy vuv 04
BO E3'0

Eq. (6.2) is suitable for numerical solution of the ODE.

This is further discussed in Chapter 7.

For analysis it might give better insight to rewrite (6.1)

using (6.3), provided k = k

w

B(t+1) = 6(t) + y(t+1)S(OIx(t-k){x (t-k)[8 _~ == 0(t-k)] -
' , o
- 6(t) + a(t-k) + e(t+1)} : (6.4)

w

The ODE (4.16) corresponding to this form of the algorithm

then is

. B
S8 = 6.() (o, - =2 6) + Elx(t-K)e(t+1)] (6.5)

Bo

where Gl(e) = E x(t)x(t)T, and where all expectations are

evaluated, given that the feedback law is constant and ex-
pressed by u(t) = - %— 8 x(t).

Bo
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For the regulator STUREl the ODE corresponding to (4.15)

becomes

g = 8(1) f(a(1))

CL[Q.:
~

. (6.6)
3{rt) = 8(1t) =~ S(T)Gl(B(T>)S(T)A

@1&
i}

where G,(0) is defined as above and f(g) is the right hand
side of (6.2). This ODE contains more variables than (6.2)
and may be more difficult to analyse theoretically for this
reason. In Ljung (1972) a reparametrization of (8,P) » ¢

is made, so that the transformed ODE has the structure:

d -
gz © ° hl[h2(C)] - C - (6.7)

where the range space of h2 has the same dimension as o,
This structure can, as shown in Ljung (1972}, be utilized

for the analysis in some cases.

In a number of cases theoretical stability analysis is prac-
tically impossible. Then, numerical solution of the ODE's is
a possibility to obtain detailed information about the stabi-
lity that may suffice from a practical point of view. Eq. (6.6)

can be used straightforwardly for numerical solution.

6.2 Convergence in case the LS noise condition is satisfied.

The case when the self-tuning regulator STURED is used is
treated in this section. If the LS noise condition is satis-

fied, the noise is independent of x(t-k)}. Hence (6.5) is

[an
o™

a7 © =Gl(e)(80———e) . (6.8)

Now take y(t) = th_ 3 s > 0. In Section 5.1 it was shown
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thatethe.stability condition (4.11) is satisfied in case
0 < Eg < 2., Suppose that E|EUﬂ|B < C,where 8 > U4U/a. Then

o
all conditions of Thecrem 4.1 are satisfied.

The analysis in Astrdm - Wittenmark (1973) implies that in

case m = m' and n = n, there is only one stationary point of

(6.8), namely 6% = ;]

o'

ST

Since gﬁe) is a non-negative definite matrix, all sclutions
tend to this stationary point unless they tend tc the bound-
ary of the area where the closed loop system is stable and

Gl(e) defined.

It should therefore also be shown that the trajectories of
(6.8), near the boundary of the area where the closed loop
system is stable, point into this area. This conclusion is
indicated in the analysis of Section 5.1, but no formal

proof of it will be given here.

Assuming this result, it now follows from Theorem 4,1 that
s(N) - Bo 8, w.p.1 as N»e, which gives the desired minimum

. o )
variance controllern,

In case the open loop system is stable and the ocutput of the
controller (i.e. the input to the systeﬁ) is limited, the
ODE (6.8) is defined everywhere. Then there are no problems
with stability regions and asymptotic stability of (6.8)
follows straightforwardly.

6.3 Analysis of a simple system.

So far, in Chapter 3 and in the previous section, convergence

of the regulators STUREO and STURELl has been shown in case the
LS noise condition is satisfied. Convergence for a simple sys-
tem for which the LS noise condition is not satisfied is shown

‘in this section. See also the analysis on page 32.
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Example 6.1 Consider the system

y(t+1) + a y(t) = b ult) + e(t+l) + c e(t) 3 [c| < 1
where the sequence {e(t)} is white noise with zero mean value

and unit variance. The minimum variance control regulator

for this system is

u(t) = (a=c)/b y(t)

The regulator parameter is estimated using the model

y(t+l) + ay{(t) = pult) + e(t+l)

where B is a priori fixed but not necessarily equal to b, In

this case with one regulator parameter the regulators STURED
ans STUREl are identical. The feedback law is

ult) = a(t)/p yit)
From (6.2) the corresponding ODE is

o = ~ryy(l)

where

(c—a+ab/pl){(l-c{a-ab/g))
1- (a—ab/g)2

ryy(l) =

The desired convergence point o* is a* = (a-c)B/b

Introduce z = o — a*. Then

(l-c(c- % zZ)) b
2 ;oo lel < as ez Bl e
1 - {e-z b/p)

It is easy tc show that the last factor in (&.9) is positive
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where it is defined. Hence, (6.9) is globally asymptotically

stable if b and B have the same sign.

The stability condition (4.11) is satisfied if 0 < % <2, as
shown in Section 5.1. Hence Theorem 4.1 assures that a(t)

tends to o w.p.l as toe,

Summing up the results of this section and of Section 5.1 we

have

o If % < 0, the regulator will not converge. The closed
loop system becomes eventually unstable, whereafter the

pole of the closed loop system is forced to infinity.

0 If 0 <« % < 2, the regulator converges to the desired

value w.p.1l.

o If % > 2, the regulator converges to the desired value
as long as the closed loop system is stable. However,
there is a non-zero probability that the estimate tends

to infinity.

6.4 Linearization of the differential equations.

Consider the system
y(t+1) + aly(t) + ... any(t—n+l) = ult) + ... 4+ bmu(t—m) +
+ e(t+l) + cle(t) + ... 4 cne(t-n+l) (6.10)

‘where {e(t)} is a sequence of independent, random variables
with zero mean values., Suppose that this system is controlled
by the regulator STUREQ., Then the corresponding ODE is (6.2)
with k = 0 or (6.5). Suppose that the correct model orders

m and n have been chosen. Then the only stationary point of
the ODE is the minimum variance control law, cof. Astrdm -
Wittenmark (1973), given by
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b .sb_)

g% = (al—cl,...a -c m

n n* 71°°

We will now linearize (6.5) around this solution. The result

is formulated as a lemma.

Lemma 6.1: Consider the system (6.10) controlled by the regu-
lator STUREO. Assume that the system is minimum phase. Linea-
rization of the corresponding ODE (6.5) around 6% gives with

A = B - 8%

AB = Mao (6,11)
where
T e(t) 7]
M = -E : [8Ct) ... S(t-n+1) Y1) ... J(t-m))
e{t-n+l)
u(t)
| u(t~-m)
where
S(t+1) + cy&(t) + ... + c &(t-n+l) = e(t+1) (6.12)
G(t+1) + cl'u“(t) o+ cn’&<~t-n+1> = u(t+l) (6.13)
and
u(t) + blu(t—l) : bmu(t—m) = (al—cl)e(t) +
+ ...+ (an—cn)e(t—n+1) (6.14)

Prooctf: Let

A

8 = (al,...an, bl""’bm)

where ;i is the estimate of a. . Then M = %3 £(8). Denote

the elements of M by mij' Then
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mes == ug— (3) i, 3 £ n

J 3a. vy

i

Mo, o,y = - —2 r (3) igsm j £ n

J{i+n) b vy T b

i

m, . . 2 » (3+1) ig<n j £ m

(j+n)i . a uy s 0 s

=
i
m(j+n)(i+n) = ;;— Puy(j+l) 1 g€m, 3 £m
1

Now

2 o (3) = == E y(0y(t+]) = E [_i_ y<t>]y<t+j) +

. da.
8ai aal a,
] .
+ y(t) —— y(t+3)
da.,
i

Since y(t) = e(t) in the point in which the expression is

evaluated, the first term in the RHS is zero.

Cénsider —— y(t+j). Introduce the polynomials

o

aai
A(z) = 1 + alz + ... + a z

2

B(z) = z + blz +
A(z) = 1 + ;lz + +
2 2
B(z) = z + blz +
Clz) = 1 + c.z + ... +

1

Then the closed loop system is given by

{ACq—l)é(q_l

A

) - B(a T {AGQ™) - 1}1y(t) = Ba He(g M ett)

where q”:L is the backward shift operator.
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~

Take the derivative with respect to a.:

(A0 HBg™D - Bla™HiA™) - 112 vy -
aa.
i
- B(qg H—2 A hHy(t) = 0
24 .
i
The derivative is to be evaluated at 6 = 8% i.e. A = A - C + 1,
B = B. Then y(t) = e(t) and
AB - B(A-1) = BC
Hence
Bla hictg™Hh2e vty = Blg ™D o7 e(t)
9da.
i
Introduce &(t) by
Clq™H8(t) = e(t)
Then
3 .ru .
- y(t) = e(t~-1)
94a.
1
and
NS = E e(t)¥(t+3-1) = E e(t-3)8(t-1)
o4 . yy
1

Consequently, the upper left block matrix of M is

e(t)
-p | frece) ool Et-nt)]
e(t-n+1)

The rest of the lemma is proved analogously. o
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The properties of (6.11) will now be discussed. It is easily
seen that the upper left block in the matrix M is triangular
with =1 in the diagonal. This means that in case there are
no b-parameters to estimate, the linearized equation is asymp-
totically stable. However, the diagonal elements in the

lower right block are more interesting. They are, see Astrdnm
(1970) , given by

B ult) §(8) = 3= § oy by, (2) dz

where

_ (Alz) - C(2)) (A*(z) - Cx{(z))
(buu(Z) - B(z) B*(z)

is the autospectrum of u. Here A*(z) = z" A(z—l), etc.

The element E u(t) U(t) can be made negative with arbitrary
magnitude. To do so, choose the parameters CysevnsC SO
that C(exp(iw)) has negative real part for some w. This is
possible as soon as the degree of C(z) is greater than or
equal to 2. Then choose A and B so that the system Uﬂqnl)—
- C(q{H]/B(qnl) has a resonance for the frequency w. In

this way ‘it is possible to make
ny
tr M = - [n+mE u(t) u(t)]

positive. This means that M must have at least one eigenvalue

with positive real part.

" An example of such a system is given below.
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Example 6.2. Consider the following system

y(t+l) = 1.6 y(t) + 0.75 y(t-1) = u(t) + ult-1) +
+ 0.9 u(t-2) + e(t+l) + 1.5 e(t=-1) + C.75 e(t-2) . (6.15)

For this system the C-polynomial has a mpegative real part

on thé‘unit circle for 1.78 < w < 2.48, The system 1/B(z)
has a sharp resonance for w = 2.,10. This is sufficient to
make (6.1%),i.év the differential equation linearized around

8 = 8%, have positive eigenvalues.

According to Astr8m - Wittenmark (1973) there is only one
possible convergence point; 6*. Since this has proved to

be an unstable staticnary point of the ODE (4.16), the self-
tuning algorithm is not likely to converge. According to

the results of Section 5.1 the estimates do not tend to infi-
nity. Thereforethey must vary in a bounded area without

converging to any point.
The minimum variance regulator for (6.15) is given by
u(t) = =3.1 y(t) - u(t-1) - 0.9 u(t-2) (6.16)

{n figute ?.1 the behaviour of STUREL with éo =1, n o= 2,
m = 2 and k = 0 is shown. The sequence {y(t)} was chosen
such that it decreases very slowly in order to accentuate
the behaviour of the system. The initial values are the
values of the optimal regulator (6.16). The average loss
per step from cne simulation was about 2.90, while the op-
timal regulator gave the average loss 1.02 for the same

necise sequence.

From figure 6.1 it is obvious that the algorithm tries to
reach the optimal values. When the estimates come close
to the optimal ones, they are thrown away. This behaviour

is in good agreement with the results of the analysis.
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tes

ima

»

Parameter est

Fig, 6,1 Parameter estimates when the system, (6.15) is controlled by
STUREL. The dashed lines show the values corresponding to
the optimal controller,
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7. NUMERICAL EXAMPLES
In this chapter some of the theoretical results in the pre-
vious chapters will be illustrated through some numerical

simulations.

Example 7.1 The first example will show the significance

of the expected trajectories obtained through the differen-

tial equations described in Chapter 4. Consider the system
y(t) + a y(t-1) = b u{t-1) + e(t) + c e(t-1) (7.1)

where a = ~0.85, b = 1 and ¢ = -0.45. The sequence {e(t)}
is white noise. The optimal control law is given by
a-c

ul(t) = 5 y(t) = -0.5 y(t)

Let the model be
y(t+l) + &y(t) = ult) + e(t+1)

with G,(8) = ryy(O), the differential equations (6.6) for the
self-tuning algorithm STUREl will be

(c~a-ba)(1l-c(a~ba))

a = -S «r (1) = -8.
yy 1 - (a—boc)2
(7.2)
: 2
s=8-8 .1 (0)=38- 821} 4 lezatba) ?]
vy 1 - (a-ba)

The equaticns (7.2) are simulated using a program package,

SIMNON, for simulation of nonlinear differential equations

available at the Division of Automatic Control in Lund, Ssee
Elmgvist (1972).

Figure 7.1 shows the trajectories for different initial values

¢ when S(0) = 5. The system (7.1) is alsc controlled using
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STUREl, with

]
X

y(t) = 3

rt

The values used in the algorithm were CY = 0.002 and s = 0.0BY45,
According to Theorem 4,2 the time in the differential equa-
tion (7.2) is related to the number of samples, N, through

l .

N
Y(i) = ¢ z 3
1 Y i=1 i

The value of s was chosen rather small in order to get a
reasonable value of N. With the chosen values, 5 time units
correspond to 4000 steps. Figure 7.2 shows the parameter
estimates for different starting values of the parameter «.
The initial value of S was S(0) = 5. The parameter estimates
correspond well with the trajectories of the differential

equation.

If cY or 8(0) are increased, the estimates will vary more in
the beginning, but after a short period of time the estimates
will behave as in figure 7.2. If o is outside the stability
boundary of the closed loop system, then Eq. (7.2) is not
valid. The self-tuning regulator has, however, a stabiliza-
tion property, cf. Chapter 5,and will rapidly give an estimate

which makes the closed loop system stable. o

Example 7.2 Consider the system

Ty(t) + a y(t-1) = u{t-1) + b u(t-2) + e(t) + ¢ el(t-1) (7.3)

with a = -0.99, b = 0.5 and ¢ = ~-0.7. The optimal control
law is
ult) = —_é—i—gi y(t) = ——0:28 — ¥(1)

1 + bg 1+ 0.5¢q



63.

—

\__

_\

—

<]
L
2
]
£
5
a -2 T . T T T
0. ] 2 3 4 5
Time
Fig. 7.1 Trajectories for the initial values « () = 0, -1
and -1.8 respectively of the equation (7.2) .and
where S5(0) = 5.
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0_ _ 2000 4000
Time
Fig. 7.2 The parameter estimates for different starting

values when the self-tuning algorithm is used

with 8(0) = 5, ¢ = 0,002 and s = 0.0845 on
the system (7.1).
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In the self-tuning algorithm STUREQ the parameters have been

estimated from the model
y{(t+1) + ay(t) = u(t) + éu(t—l) +e (t+1)

The differential equations are in this case

o -s -Pyy(%)
3 . (2)
1y (7.1)
p-1 o1
S = S + ryy(D) + ruu(o)

The equations for o and g are difficult to analyse. The
equations have been simulated with different starting values
of the parameters o« and g8 and with S(0) = 10. The phase
plane is shown in figure 7.3. At the beginning parts of the
trajectories every 2nd time unit is indicated. From the
starting point o{0) = -1.5 and a«(0) = -0.1 it takes about 9.7
time units before the estimates are within a distance of 0.1
from the convergence point. Corresponding curves are shown
in figure 7.4 for one realization when the system is controlled
by the self-tuning regulator STUREO. The values o, = 0.002
and s = 0.1 were used. The value of cY is much smaller than
one would use in a practical ease. This value was, however,
chosen in order to better see the agreement between the para-
meter estimates and the trajectories of the differential

equations (7.4).

When the self-tuning regulator STURE1l is used, the differen-

-tial equations will be

» - 1
o . Pyy( )

(7.5
r., €0) -r_ (1)

-ryu(l) ruu(O)
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Parameter B3
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I I
-3 -2 -1
Parameter

7.3 Phase plane of the differential equations (7.4} for

different starting values when S(0)} = 10. The para-

meter values corresponding to the optimal regulator

are indicated by a dot. The triangel shows the sta-

bility boundary of the eguations (7.4). At the first

parts of the trajectories every 2nd time unit is marked

Parameter 3

-3 -2 -1 0
Parameter a ;

7.4 Phase plane of the parameter estimates when the sys-

tem (7.3) is controlled by the self-tuning regulator
STURED with CY = 0.002, s = 0.1 and S(0) = 10.
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The phase plane of (7.5) is shown in figure 7.5. Compared
with STUREO the trajectories in this case are leading more
directly to the optimal point. The starting directions of
the parameter estimates are determined by the initial value
of S, which in this case was 10+I., The convergence time is
also shorter in this case. TFor the starting values a(0) = -1

and g(0) = -0.1 the convergence time is about 5.7 time units.

Parameter 0

-1

=3 -2 -1 ¢
Parameter o -

Fig. 7.5 Phase plane of the differential equations (7.5) for
different starting values. The initial value of §

was 10+.I. Every second time unit is indicated in

the beginning of the trajectories.

Example 7.3 1In this example the differential equations of
a more complex self-tuning regulator than STURE0 and STUREL
are simulated. In the previous examples the control law

was linear in the parameter estimates, but in this case the

.control law is determined in a more complex way.

5
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Considér the system
y(t) +a y{t=1) = b u(t-3) + e(t) (7.8)

where a = -0.9 and b = 1. The parameters a and b are esti-
mated using (2.15f) with the model (B.u4), (see appendix B).
The minimum variance regulator based on the estimates is
then computed as

231
u(t) = a’/b — y{(t) (7.7)

1 - aq_l + éZq

The corresponding differential equations are given by (4.16):

ye
>

= - - 0) + L 2

a Pyy(l) a ryy( ) b ryu( )
. (7.8)

b = ryu(3) + a ryu(Q) - br,, 0
Trajectories of (7.8) are shown in figure 7.6. Since the LS

noise condition is satisfied, the estimates converge to the
true parameter values. The covariance function of the closed
loop system, ryy(U), corresponding to the estimates in

figure 7.6 is given in figure 7.7, It is interesting to nc-
tice that the expected variance of the output actually

increases for some values of a, b.

The examples in this chapter show that the differential
equations defined by (#.13) and (4.16) are very useful for
the analysis of the different self-tuning algorithms. It

is possible to determine the transient behaviour, as well

as to investigate the convergence properties. The diffe-
rential equations also have the advantage that the stoch-
astic part is removed from the analysis. It is, however,

in most cases difficult to analyse the differential equa-
tions. When only one parameter is estimated, it is possible
to carry through the analysis. One example 1is given in

Wittenmark (1973). If the system contains two cr more para-
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Fig. 7.6 Trajectories of (7.8) corresponding to the esti-
mates of the system (7.6) when the control law
is (7.7). The initial values were a(0) = -0.1
and b(0) = 0.1 ‘
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Fig. 7.7

The variance function ryy(O) corresponding to the

estimates given in figure 7.6.
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meters, it is difficult to investigate for instance the
stability. The differential equations can, however, be
simulated and much insight can be gained in this way. The
computations will be rather extensive even for systems of

low order.

The self-tuning regulators can without any difficulties be
simulated with many parameters, but many simulations have
to be done in order to investigate the convergence proper-
ties. The self-tuning algorithms are also more timecon-
suming than the differential equations since the time in
the differential equations is related to the number of
steps threough v = g y(t?, and the number of steps per time

unit is rapidly increasing since y(t) is decreasing.
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APPENDIX A. PROOF OF LEMMA 4.1

Lemma 4.1 Suppose 6{(n) and 8 belong to the area where f

and G, are defined. Let m(n,At) satisfy

m({n,At)

P vy(k) > At as nr e

)
Suppose that {x(n)] < C (C may depend on the redlization).
Then for sufficiently small At and (G(n),Si(n))sufficiently

close to (§,§i)

6(m(n,At)) = 6(n) + Ar§if<§) + Ry(n,87,6,5;) + R2(n,AT,§,§i)
(A.1)

- - - - 1 - -
Si(m(n,AT)) = Si(n) + AT[—Si Gi(ﬁ) Si+si] + Rl(n,Ar,e,Si) +

1 [
+ Ry(n,87,8,5,) (A.2)
where

(") = & = < 2
Ry “(n,87,8,5.)| < areK{|o(n) - 8] + [S;(n) - §;[} + A(a1)
and
R (')(n A1,8,S:) > O 1 '

2 a T By ¥ W.D. as noe, a

Procf: To abbreviate notation the term

()T x(t) - Bult-k) = x(£)T[e(t) - 8_Flo(t-k)]

in (2.15) will be omitted, since it is treated in the same
way as x(t) y(t+k+1l)., The variable k will be taken as zero.

The analysis will be carried out for a given, fixed realiza-
tion w. Many of the variables below depend on w, but this
argument is suppressed. The technical problem with non-

‘countable unions of null sets can be treated in the same way



75,

as in Ljung (1974), appendix A, and is not explicitly dealt

with here.
Consider first

m{n,aAt) -
% y(tYx(tI)x(E) (A.3)
n

It will be shown that, if |e6(n) - 8| is sufficiently small,

mi{n,At) T B B
L y{tIx{tIx(t)" = ArGl(B) + R3(n,AT,8) + Ru(n) (A.Y4)
n
where
1R, (nync,8)] € 6t-Co{[0(n) = 8]} + Cpe(am)?
3 AT S 2 3
and
Ru(n) + 0 w.p.1l as n+=,
The vector x(t) can be seen as a state vector for the system
(2.3) with feedback u(t) = F(e(t)) x(t). The closed loop
system can be written on a state space form:

x(t+1) = ACe(t)) x(t) + Be(t+l)

Let x{(t) t = n,... denote the sequence of vectors that are

obtained by

X(£+1) = A(8) x(t) + Be(t+ly; x(n) = x{n)
" _

Let x(t) = x(t) - x{1)

Then (A.3) can he written as

min,At) - m(n,&t)

P (DX(DRCOE + P v (OIROY¥OT + ¥RmTT (a5

n n
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Consider first the second term of (A.5). We have

- ~t-n btk o -

x{(t) = A x(n) + ¢ A Be(k); A = A(e) (A.6)

k=n

and

N 1 t ok ) .

x(t) = z I A.] - A Be (k)3 A, = A(e(3i)) (A.7)
k=n k+1 3 ]

Since F(¢) is Lipschitz continous we have
[AG(£)) - A8)] < Cyle(t) - o]

Since § gives a stable closed locop system

t-k

1 < 1

¢ C. 2

|At~k| :

If m%§kle(t) - 8| is sufficiently small, say less than §, it
n<t<k
follows that

| 1 A, - Et_kl ¢ max |8(i) - 5[-C7-A§_k Ay <1

K+l nsict !

for t ¢ K. 1Introduce gq(n,t) = max |6(i) - 8|. Assume that
ngigt

lo(n) - 8] < & and |Si(n) - §] < § and denote by K(n) the

first number 2 n such that

or

W
(o]

o (K(n)) - e

lSi(K(n)) - 3] 28
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Introduce

k(n,at) = min(m(n,at), K(n})

Then
[X(£)] & qln,t)ev(t) t ¢ k(n,at)
where

T
v(t) = 1 C,at ¥[Be(x)]

- 7 73

k=n

Similarly

|x(t)] ¢ w(t) + C5l§—n]X(N)|

Hence the second term of (A.5) satisfies

k(n,At) - -
Py X R T  RO¥ T <
.
k(n,At) ’ k(n,At) .
s 2q(n,k(n,At))e T y()v(t)® + Cg = y(£)A o (A7)
n n

The first term of (A.5) is quite similar to the first term of
(A.7): both are formed as sums of products of stochastic
variables (x(t) and v(t) respectively) that are obtained from
white noise ({e(t}}) through exponentially stable filters
(giving first e(t) and then x{t) and v(t)). The convergence

of such sums is considered in the following lemma:

Lemma A.1 Let the random variables f,(t) and f2(t) be gene-
rated from white roise {e(t)} with zero mean value and unit

varliance:

fi(t) = gi(t,k) e(t-k) i = 1,2

e 8

k=0

vhere lgi(t,k){ < CAk A< 1 1

1
=
]
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Suppose E[e(t)lup < C and that the sequence {y(t)} satisfies
(L, 1),

Then

T+l
) Y(t)[fl(t)-fz(t) -~ Ef (£)+f,(t)] » 0 w.p.l

t=nk

as k»=, where the subsequence {nk} satisfied

Mev1 1
lim sup &£ y(t) = L < 5
k—>oo nk
Proof of Lemma A.l: TFor simplicity denote n =n and nk+l: m
and £,(3)+£,(3) - Ef;(3)+£,(J) = £(3) and consider
m 2p
n
m m - [ * .
= IB Z » .E Y(jl)‘l.n.chzp)f(jl)'llc'f(32p)|s
:Il'—'n ]2p:n
2 m m . : .
< y()P 1 veu X lEf(jl)'...'f(32P)[ g
]l:n ]szn
2p
T (ki+£i)
P m m ® = { 2p 1
g y(n) pX ‘o I z b b z K A
3q=n jzpzn kl:O Rlzo k2p"0 22 =0

[E[e(jl—kl)e(jl—z e IR AR [e(jzp—kzp)e(jzp-£2 ) -

1 P

-8 1]
N

Since e(j) and e(k) are independent for 3 = k, the expectation

in the above sum is zero unless for each r
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jS - ks jsr_ 81
Jp = Kk, = (or _ and i, = %, = {or (A.8)
g 7 %5 Jgr ™ Pgt

for some s, s' ¥ ».

Regard k;, 2 and jl""’jp as fixed. Then the other j

i p+l?
.,j2p are determined by (A.8) (up to permutations, the
number of which depends on p and not on m-n}. Hence p of
the outer summing indices can be eliminated. Summing first

over k; and £, gives a finite result C(A) depending oniy on A,

Thus
m 2p 2

[El: vy | ¢ y@)*F C(r) <

. i.=n j_=n

11 P . (A.9)

net g
ne g

¢ v 2Pem-mPec) ¢ y(m)?Peym P (v) < v(PC,(v)
The second inequality follows from

(m-n)y(m) ¢ y(t) < 2L (A.10)

‘:5MB

From (A.l1l0) we also have

[? - l}.m—s ¢ 2L/n '
n

or

=13
n
-
+
)
[

(A.11)

o318

1
¢ op—T ¢ Const

This inequality implies the last inequality in (A.9).
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From Chebysjev's inequality it follows that

n
K+1
. Bl 2 (eGP
o nk
P(l = y(3IE(GY] > e) s — <
j=nk £ p
< Y(nk)P°C3/62P (A.12)
Now

CY t <

1n e 8

: yin P ¢ 1 y(0)P =

1 t=1

since sp > 1. Application of the Borel - Cantelli lemma
yields, in view of (A.12) and (A.13) that

Tx+1

z y(t)F(t) > 0  w.p.l as k » =

Tk

and Lemma A.l1 is proved. o

With this lemma applied to (A.5) and (A.7) we obtain

t

k(n,At) T
z y (E)x(tIx(t)
n

1

kin,at) I o
o= z Y(OE[x()x(t)"] + R (n) + Rgin,A1,8) (A.14)

n

where Rs(n) + 0 w.p.l as n ~ =, and where
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|R6(n,A%,5) <

kin,at) 2 kin,at)

¢ latn,k(n,at))e & vV’ ¥ ¢z vyt g
n n
) m(n,At)
¢ qln,ki{n,st))[E v(t) ] £ y(£) + Ro(n) <
n.
< ClO g{n,k(n,At))*4at + R7(n)

with R7(n) + 0 as n + =». The same result naturally holds

for

kin,ax) T
T y(E)x(t)x(t+]l)
n

Consider now (y(t) = DT x{t))

kin,AT)
lo(k(n,at)) - 8(n)| = | Iy (t) 5, (t-1) x(t)y(t+1)] g
n

_ kin,At) T _
< 1S, £ y(t) x(t) x(t+1)” D|+ max |[S, - S.()
i i i
n nstgk

*

}((n,AT) T — -
o y(B)x()x(t+1) " D] <«(]S; [+8)(Cqq-at+Rg(n)) (A.15)

n

]

where R8(n) + 0 w.p.l as ne e

-1 -1 i k(n,at) T -1
1S, T(k(n,atd = 8, T = |z vy (O Ix(Ox(0)T S, T <
n

s 872Cqy Rg(n); where Rg(n) » 6 w.p.l as noe

It follows from (A.15) that e(k) and Si(k) can be made to
differ arbitrarily little from e(n} and Si(n) for large n.
This means that, for sufficiently small At, k(n,Atr} = m(n,At1)

for sufficiently large n. It alse follows that
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sup }e(n) - B(t)| < Cygedt *+ Rlﬂ(n);
ngtem

Rlo(n) + 0 w.p.l asn -+ «
(A.16)

sup |S(n) - S(£)] < Cqyrht + Ryq(nds
nstsm

Rll(n) >~ 0 w.p.l asn > «

Combining (A.14%), (A.15) and (A.16) we obtain for sufficient-
ly small At

m
lo(m(n,87)) = 8(n) - S;[E x()x(t+1)D] I y(£)] s
n

E

P

*Re(n) + Rg(n) + max IS, - s;(t

«[]8) Re(n) + Ro(n)] s
ngtsm 5 6

i

A

|8, [*Rg(nd[1 + Cypedr + Ryj(n) + |8, - s3] +

+

[q(n,m(n,AT))-ClD-AT + R7(n)] 1+ Cqytdr Rll(n) +

4

15, - s; (] S oaamn
Now using that
E x(t)x(t+1)D = £(8)

mi{n,At)
b y(t) + A1 as n-oe
n

and
a(n,m(n,at)) s Cygedt + Ryp(n) + le(n) - e

and rearranging the terms of (A.17) gives the desired relation
(A.1). Eq. (A.2) is obtained analogously. o
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APPENDIX B. RESULTS FOR OTHER MODEL STRUCTURES

In Section 2.1 four different model structures were briefly
mentioned. One of them, (2.4), was chosen as the basic model
and has been used throughout the report. In this appendix
it is shown how the other model structures can formally be

treated in exactly the same way as (2.%4).

B.1l Model structures.

The chosen model (2.4},

y(t+ﬁ+1) + &ly(t) + oo.. 4 &ﬁy(t+l—ﬁ) = éo[u(t) +
. ' (B.1)
+ Blu(t—l) + ... 4 5$u(t—m)] + g(t+k+l)

will be referred to as model A.

In case the variable Bo is estimated, a more natural model

structure is, cf. (2.2)

y(t+k+1) + a y(t) + ...+ a y(t+l-n) = Boult) + Bpult-1) +
N N . N (B.2)
+ ...+ 3£u(t~m) + e(t+k+1)

This model will be referred to as "model B."

In the models A and B, the system (2.1) is written on "predic-
tor form," which is suitable for the self-tuning regulators
STUREO and STUREL. More straightforward models are

y{t+1l) + ély(t) + ... + ;ﬁy(t+1~ﬁ) = Bo[u(t~i) + ...+
(B.3)

+ Eﬁu(t—ﬂ—ﬁ)] + é(t+1)

and
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YOE+L) + ayy(t) + ... + a’y(t+l-n) bou(t-k) + ... +

-~ A -~ ~ (B.l‘l')
+ bﬁu(t—k-m) + e{(t+l)

These models will be called "model ¢" and "model D respec-
tively. Clearly, if k = 0, models A and C and models B and

D, respectively, are identical.

B.2 Modifications of the results of Chapter 2,

Introduce

- . R
Oy = (al, cees G0y By wee, Bm)

B AA - AA T
6 = {ay, oo, ars By ; Bn)

{B.5)

~ An ~ AA T
8o = (al, OIS bl’ s bm)

- AA -~ ~ f\A T
0p = (al, cees @z, b@: by, vuis bm)
8% =(a a3 0 0, 8./8 B, /6, 0 T
A l) "0y n’ 2 L -] ? l o’ AL | m1 OD ] 3
(hn - n and m - m' zeroes respectively) ‘ (B.6)
G _ T
eBh(al’ cers G 0, ..., 0, BO’ Bl’ e er: 0, y 0D
eg = (al,_..., s 05 vvvs 0, Bybo/b, wuuy bb /b, 0, ...,
02 = (a ,oa_, D 0, b , b b, 0 07T
D 13 L] n) b} 3 ] O’ 13 . bl m) 3 3
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xa(T) = [-y(t), ..oy -y(y+l-n), B u(t-1), ..., BouCt-m 1T
xg(t) = [-y(t), .v, =y(t+l-nd, u(t), u(t-1), ..., u(t-m)]T

(B.7)
X(tmk) = [-y(£), .oy yCe+1on), bou(t-1-%0, .., houCe-kemy)T ’
xp(t=k) = [=y(t), ..., y(t+l-n), u(t-K), u(t-k-1), v, u(t-k-m)T

Then formulas (2.5) to (2.15) are valid for any subscript
A, B, C, or D, provided all explicit B, are set to zero for

models B and D. For model C, BO should be replaced by SO.

The minimum variance control law (2.17) has no direct counter-
part for medels C and D. TFor model B, u(t) should be chosen
as the solution of

6p(t)" x (1) = O (B.8)

B.3 Modifications of the results of Chapter 3.

Theorem 3.1 and its corollary are valid for all model struc-
tures if in (3.7d) the corresponding x-vector according to
(B.7) is chosen. The discussion in Section 3.2 can be carried

out for model B if
noe 6T (1) = 0 v
o
is replaced by
rt W - "
6 x(t) =0

and the corresponding modifications in the following are made.

B.4 Modifications of the results of Chapter u,

The only modifications necessary are directly implied by the
modified form of (2,15).
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B.5 Modifications of the results of Chapter 5.

Here oﬁly models A and B are relevant, since the discussion
ig concerned with the special regulators STUREQO and STUREL.
The discussion in Section 5.1 and the proof of Theorem 5.1

are based on the variable

Wy
g(t) = - 0, (%)

If this is replaced by

—_ o —_
(t) = og BB(t)

and BO/BO is replaced by 1, the discussion remains unaltered,

Consequently the results of this chapter, like those of
Section 3.2 are valid for STURE with model B (i.e. the

variable Bg is estimated) without any restrictions on B and

B

o




