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1. INTRODUCTION.

The fundamental role of the Riccati equation for optimal control and
optimal filtering of linear systems is well known. For linear distri-
buted parameter systems it has been shown by J. L. Lions [8], and in
several other papers, see e.g. [12], [13], [5], that there is an ope-
rator Riccati equation (ORE), (or, equivalently, an integro-differen-
tial equation of Riccati type for the kernel) associated with various

control and filtering problems.

The solution to the ORE is an operator in the state space. In the case
of an infinite dimensional state space numerical solution of the ORE
may therefore be cumbersome and time consuming, or even impossible. The
interesting oﬁerator for the control problem maps the state space into
the space of the control vector, and it is constructed using the solu-
tion to the ORE. In [4] it has been shown that, under certain condi-
tions, it is possible to solve for this operator directly. This leads
to less extensive computations for the numerical solution if the space
of the control vector is of less dimensionality than the state space.
In many practical situations there are only a finite number of control
variables and also only a finite number of observations. In those ca-
ses, therefore, a substantial decrease in computational effort may be

achieved.

While [4] treats general control and observation spaces and distributed
control, we will here consider boundary control applied at a finite
number of points. Many real-life, distributed-parameter control pro-
cesses seem to be of this type. T




2. THE OPTIMAL CONTROL PROBLEM.
Consider the following formulation, [12]:

Let D be.a connected, opeﬂ domain of a r-dimensional Euclidian space
EY, and let S be the boundary of D. The spatial coordinate vector will

be denoted by
X =2(Xgs e Xr) €D

and the time will be denoted by t € T = (to, t1). Consider a time in-

variant matrix differential operator

T g . 5
Ae =0 wxs (.2 B3 00 gxg] * A0
= 1 \j=1 ]

where Aij(X) and Ao(x) are nxn self-adjoint matrix functions, with A=

]
= A...,
J1

Introduce the derivative with respect to the co-normal of the surface S
relative to the gperator Ax

3 § E 3
s 5 A..(8) cos(v,x.)] —
nA 321 \iz1 13 1 axj
where v is the exterior normal to the surface at a point £€ S, and
cos(v,xi) is the i:th direction cosine of V.

Q

Consider a linear, distributed-parameter system described by

35%%451 = sz(t,x) 3 z(to,x) = zo(x) - (1a)

where z(t,x) is a n-vector state function of t € T and x € D. The boun-
dary condition is given by
m

3z(t,E) _ , ;
F(gdz(t,g) + --a_nA.._ = i§1 5(g £5)Bsu (1) (1b)

where & € S, F(g) is an nxn matrix function and'ui(t) is a 2x1 control
vector applied at the point £; at the boundary,

Introduce




u(t) = col(u1(t), Gkl > um(t)) (2mx1) matrix)

Assume that the system described by (1) is well posed in the sense of

Hadamard. A p-dimensional output vector is observed:

-

y(t) = [ c(x)z(t,x)dx
D

where C(x) is a pxn matrix function.

The control problem is to determine u; (t) so that the cost functional

t1 T L T
J = [ [ly(t) Qy(t) + ult) Qou(t)]dt
%
is minimized. Q1'and Q, are positive definite symmetric matrices of

dimensions pxp and gfmxgfm respectively.

In [12] it is shown that the solution can be written

ult) = - [ K(t,x)z(t,x)dx

D
where

-1
K(t,x) = Q2 P(t,x) (¢mxn matrix)
where ,
i T ‘a T .
P(t,x) = col(B1 P(t,€1,x), e Bm P(t;Em,x)) (emxn matrix)

and P(t,x,x') is the solution to the Riccati equation

IPCE &%)

AT = A, P(t,x,x') - [Ax, P(t,x,x')]T -
(2a)
c( )T ) P Tol '
- X Q1 C(x') + P(t,x) Q2 P(t,x")
with the initial and boundary conditions
P(t1,x,x') =0
' “ (2b)
F(OIP(t e, + BBLLEX) g o e g ) e g
fa

Addition of distributed control terms leads to straightforward modifi-




cations. These are given in [12].
3. THE OPTIMAL FILTERING PROBLEM.

The problem of optimal filtering of linear distributed-parameter sys-
tems has been treated in detail and rigorously by Bensoussan [2]. Here
we will follow the formulation of [13].

In most practical situations the control equipment cannot be regarded

as perfect. To the right hand side of (1b) therefore should be added
a noise term-

m

where wi(t) is a gx1 vector white gaussian process with covariance
E w. (t) w,(t)L = I E w,(t) wi(t)L = 0 i3
1 i 2 i J

Furthermore, the variable y(t) cannot be observed exactly, but a noise-

currupted measurement
f\' .
y(t) = y(t) + e(t)

is obtained, where e(t) is a px1 vector white gaussian process with co-
variance

E e(t) e(t)! = R

2

An appropriate estimate, z(t,x), of the state function, z(t,x), is then
obtained from y(t) as follows:

22LX) - A 20t,x) + KCE,0 [F(6) = [ COx)a(t,x)dx] (3)
D
2(tg,x) = z_(x)
where
4 T. _ -1 . , ,
K(t,x)7 = Ry~ [ C(x") P(t,x,x")dx
D
and



P(t,x,x') is the solution of

R F T T TR OER OER B RO BRSO ERoEm Em @ Em o ==

Bp(tsi’xl) = AX P(t:xaxl) + [Alx' P(taxﬁx')]T -
- [ PCtx,8) co)Tae BT f cle) Pee,E,xaE + (he
D D

B T
+ iz1 Hy Hy 6(x-£.) 6(x'-£,)

with initial and boundary conditions
]

P(to,x,x') = 0

F(£) P(t,x,£) + AELXE) g x €D, £ €S (4b)
A
Clearly, the Riccati equation (4) is quite analogous to (2)., It corre-

sponds to an optimal control problem with boundary observations and

distributed control applied from a finite number of sources.
4. REDUCTION OF THE RICCATI EQUATION.

The equations (2) and (4) are partial differential equations in three
variables: time and two space variables. However, the sought func-
tions K(t,x) and %(t,x) depend only on one space variable. We will de-
rive equations directly for these functions. The derivation will be
formal inasmuch as existencerand uniqueness of solutions to the dis-
cussed equations will not be verified. The idea of the reduction ori-
ginated from certain problems in radiative transfer, see e.g. [3] and

[6] for a corresponding treatment of the finite dimensional problem.

Consider eq. (2). Differentiate it with respect to t:

_ T vy -1 Y vT -1 Y
Ptt = —Ax Pt - [Ax' Pt] + Pt Q2 P+ P Q2 Pt (5a)
where

_ 0
Pt = 3¥_P

and the arguments have been suppressed.




*---------...-'

n
If P were known, eq. (5a) could be regarded as a linear equation for

Py with initial and boundary conditions

P (tyx,x') = -CGOT Q Cx")
; ’ (5b)

F(g) Pt(t,g,x) + a_fi Pt(t,g,x) = 0 E €S, X €D
Consider the equation
& L(t,x) = =A_L(t,x) + b(t,x)T Q2 L(t) (6a)
3t g ity . 2
where
= T ' T .
L(t) = col(B1 L(t,51),...,Bm L(t,gm)) (¢mxp matrix)
with initial and boundary conditions
L(t,,x) = c(x)T /Q (nxp matrix)

! i (6b)

F(E)L(t,&;)+§_li.§%zg_)=0; £ €S
A

It is straightforward to see that °

P (t,x,x') = -L(t,x) L(t,x")T

[
']

with L(t,x) defined by (6) satisfies eq. (5).
Since
1

K(t,x) = Q; 'lg(t,x)

and

e,

~
~+
»

~r
!

T T -
= Ol(By L(t,£¢) L(t,x) 7 ,..0,BL Lit,e ) L(t,x) D=

~T0t) L(t,x)T

the equations




————-—-——------W

1

5 KCt,%) = =Q;" L(t) L(t,0T
(7a)
S L(t,x) = =A_L(t,x) + K(t,x)T L(t)
'a—_t « X = x s X s X
with initial and boundary conditions
K(t1,x) = 0
Llty,x) = ¢t /Q; . (7D)
F(E) L(t,E) + 5o— L(t,E) = O £ €S
A

determine the sought gain function K(t,x) directly without first deter-
mining P(t,x,x"')

Analogously, eq. (4) can be reduced to

ny - 4" n’
g’f K(t,x)T = R21 [ C(x') L(t,x")dx' L(t,x)'

D (8a)
3 YY) n, n n
37 L(t,x) = A L(t,x) - K(t,x) [ C(x') L(t,x')dx"
with intial and boundary conditions
N
K(t ,x) =0 (nxp matrix)
n rlq,
L(to,x) = (H1 G(x-£1),...,Hm 6(x—£m)) (nxgm matrix) (8b)

N 9 N
F(E) L(t,g) + s L(ts£) =0 £ € S
A

5. NUMERICAL SOLUTION.

Numerical solution of the ORE has been discussed in several papers. The

following three methods seem to be predominating:
Finite difference approximations
Galerkin methods

Eigenfunction expansion

The best choice of solution method probably depends on the problem for-



mulation, and it is difficult to give any general rules. We will here
briefly discuss how the mentioned methods can be used to solve the re-

duced Riccati equation (7) and how the computational effort is reduced.

-

Finite difference approximation has been discussed in e.g. [1]. When
it is applied to eq. (2) with, say, n = 1 and r = 1, a three-dimensio-
nal space must be discretized. For stability reasons the time step

must be kept quite small, and consequently numerical solution will be
time consuming. When the same method is applied to the reduced equa-
tion (7), the computation required is of an order of magnitude less,

since one space ivariable has been eliminated.

Galerkin methods have been applied to the ORE in [11], and for more ge-
neral control problems for parabolic systems in [10]. Then the kernel

P(t,x,x') is expanded in some coordinate function system:

P(t,x,x') = _Z' Pij(t) ¥ (x) Wj(x')

1,]
The expansion is truncated at some suitable number N, and ordinary dif-
ferential equations are derived for Pij(t), so that the orthogonal pro-
jection of the residual on the subspace spanned by Wi(x), i=1,...,N 1is
zero. The resulting equations have some resemblance with the matrix
Riccati equation. The same technique can be applied to the reduced
equation (7), which leads to N(&m+p) ordinary differential equations
instead of N(N+1)/2,

The eigenfunction method is d®scussed in e.g. [12], [13], [5] and [14].
It can be regarded as a special case of Galerkin's method with the co-

ordinate funtions being eigenfunctions of the operator Ax‘ Consequently,

the same reduction of the computational effort is obtained as for this
method. In [9] a similar reduction is discussed for the case when the

operator Ax is diagonal.
6. A NUMERICAL EXAMPLE.

Consider a heat rod of length A (45cm) with diffusion constant x (1.16
cmz/sec), conductivity constant p (3.8 W/cm °C) and cross section area
S(1.54 cm?). The heat flow at the left endpoint is controlled, while
the right endpoint is isolated. At either endpoint the heat flow is
disturbed by white géussian noise, wq(t) and w,(t), with variances r,
(3.4-10-3 W2). The output variable is the temperature at A/4 from the

oo

|
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T

right endpoint, and the temperature measurements are corrupted by white

gaussian noise with variance r, (4+1078 °c?y,

The numerical values given in paranthesis apply for a laboratory pro-

cess at the Division of Automatic Control, Lund Institute of Technology,

see e.g. [7].

Let the temperature at distance x from the left endpoint at time t be
denoted by z(t,x). Then

3z(,x) _ Kazz'(t,x)
ot - )
X

z(0,x) z,(x)  (known)

Su azcg;o)

ult) + /F; wy (£)

8z (t,A) _
Sy '——"-a-'-}%—-'* /E‘_,] W2(t)

y(t) = z(t,3A/4) + e(t)
where

E wi(t) wj(s) g Gij §(t-s)

E e(t) e(s) =p, §(t-s)
E wi(t? e(s) =0 .

Let the objective of the control be to minimize
t

1
E [ lqul(t) + q,2%(t,30/W)]at
! .

According to Sections 2-4 the solution is given by
A -

u(t) = [ K(t,x) z(t,x)dx
0

where



10
e 201 & N "
P z(t,x) =k > z(t,x) + K(t,x)[y(t) = z(t,3A/4)]
X : :
;(O,X) = zo(x)
2(t,0Y = u(t)
2(t,A) = 0

The function K(t,x) is the solution of

2

5T K(t,x) = J1/q1 L{t,0) L({t,x)
o L(t,x) = _K‘aiz L(t,x) + L(t,0) K(t,x)

K(t1,x) =0

§(x~-3A/u4)Vq,

L(t1,x) 2

3 _ 9 _
% L(t,0) = = L(t,A) = O 5 %

and the function K(t,x) is the solution of

o -

a n, _1 n n X n, 3 / n, )]
3T K(t,x) = r, [L1(t,3A/4) L1(t,x) + Lz(t, A/Y) Lz(t,x
a "\1 . 2 n, p\f?—' s ",
5T L1(t,x) =X ax2 L1(t,x) - L1(t,3A/u) K(t,x)
DY ey =k B Tt = Bo(t,an/) KCtux)

3t 20 TR T2 e AR d

N ;

K(0,x) = O

n,

L, (0,x) = /?; §(x)

n,

L,(0,x) = /F; 8 (x-1)

d v o _ ol

% Li(t,O) : 5% Li(t,A) =0 i=1,2

These equations have been solved using a straightforward difference
scheme with 100 grid points in the x coordinate. The numerical values
of the constants are those given in paranthesis. Furthermore, q; = 1

(W-2), qQ, = 8.5-10—4 (°C—2) and ty = 1000 sec. The solution is shown
in fig. 1.
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SK(tyx)
a. (W/°C cm)
t <900
t=940
t=950
&
X

P [ !
t=50 0.75L L x

Fig. 1. a) Optimal feedback function K(t,x) for the heat regulation
problem for various t. The final time t, is 1000 sec, and the numeri-

cal values of the constants are given in Section 6.

: N _
b) Optimal gain function K(t,x) for the Kalman filter associated with
the heat regulation problem stated in Section §.
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7. CONCLUSIONS.

It has been shown that the operator Riccati equation can, under certain,
frequently occuring conditions be reduced to equations that contain

fewer independent variables.

Therefore, numerical solution of the reduced equation requires less

computation effort than solution of the original equation.

A case with boundary control at a finite number of points has been con-
sidered. Combining this with the results of [4] for distributed con-
trol, the general case with both distributed and boundary control can

be treated straightforwardly.

It should be noticed that the reduction has been shown only for the ini-
tial condition P(to,x,x') = 0, corresponding to no terminal cost for

the control problem or known initial state for the filtering problem.

There seems to be no possibility to extend the results to general ini-

tial conditions, using the same approach.

However, when computing the steady-state solutions, which are frequent-
ly used in the control strategies, the initial condition can as well be

-

taken as zero.

L
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