LUND UNIVERSITY

An Introductory of a Window-Based Environment for Simnon on the Sun Workstation

Frederick, Dean K.

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Frederick, D. K. (1987). An Introductory of a Window-Based Environment for Simnon on the Sun Workstation.
(Technical Reports TFRT-7366). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 19. Aug. 2024

https://portal.research.lu.se/en/publications/448cd41f-8d0f-4686-9ca4-22152642a444

CODEN: LUTFD2/(TFRT-7366)/1-029/(1987)

An Introductory Study
of a Window-Based Environment
for Sitmnon on the Sun Workstation

Dean K. Frederick

Department of Automatic Control
Lund Institute of Technology
September 1987

Department of Automatic Control

Lund Institute of Technology
P.O. Box 118
S-221 00 Lund Sweden

Document name

Report

Date of issue

September 1987

Document Number

CODEN:LUTFD2/(TFRT-7366)/1-029/(1987)

Author(s)
Dean K. Frederick

Supervisor

Sponsoring organisation
The Swedish Board for Technical Development
STU-project 86-4049

Title and subtitle

An Introductory Study of a Window-Based Environment for Simnon on the Sun Workstation

Abstract

An initial version of Simnon has been created that runs on the Sun 3/50 workstation and makes use of the
SunView window system to provide an enhanced user interface. Commands have been implemented for:
creating a number of windows for plotting response curves, editing files, obtaining directories of Simnon files
and editing them, displaying the values of variables and parameters, listing numerical values of variables
versus time, and providing help on the window-related commands.

The general topic of using windows to obtain an enhanced user interface for Simnon is discussed as are specific
issues that had to be resolved in the course of this project. A number of suggestions are included for extending
this work so as to yield a more complete window-based version of Simnon.

Key words

tion; Simnon; Sun workstation

Computer Aided Control Engineering; Man-machine interaction; User interface; Graphics; Windows; Simula-

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 29

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

During the past several years the engineering workstation has come of age,
both in terms of its computational and graphical capabilities, and its moder-
ate price. Furthermore, the trend in that direction shows no sign of letting
up. Examples of such machines are the Sun Microsystems Model 3/50 and the
DEC microVax II, both of which have large high-resolution screens, powerful
central processors, and floating-point hardware. The cost of these machines
has gotten to the point where it is feasible to have a machine dedicated to
a single engineer, at least in many situations. This situation raises the im-
portant question of “What has happened to the user-interface capabilities of
the control-related software?”. As of the moment, the answer is “Not a great
deal”.

The basic issue in this type of work is “How can the user of the computer
be given better ways of specifying the problem to be solved, controlling the
actual solution process, examining the results of the solution in graphical form,
and repeating these steps in an iterative fashion while keeping track of all of
the models and parameters being used and the large collection of results that
will be generated?”.

Many of the ideas and tools that will be used in addressing this question
have their roots in the pioneering work done at Xerox’s Palo Alto Research
Center, which influenced the developments by the people at Apple, first with
the Lisa, and then with the Macintosh.

The idea of using a mouse with multiple windows, menus, and icons to
make a highly interactive and hopefully user-friendly environment is not at all
new. The key point as far as control engineers are concerned is that to date
these features have not been built into much of the control-related software.
There has always been a substantial lag between the time new terminals and
display devices become available and the time that a substantial fraction of
the control engineers are using them on a routine basis. For example, the
Tektronix 4010 storage tube terminal and the X-Y plotter were the dominant
graphical output devices for many years, to be followed by the DEC VT100
with retrographics, which provided an emulation of the Tektronix storage-tube
graphics. Although more versatile terminals such as the Tektronix 4025 are in
use today, the style is still basically that of the Tektronix 4010. Fortunately, we
have gotten away from the teletype days, although one does still see plots that
have been ’drawn’ in alphanumeric form on line printers. The work described
below represents one beginning of the inevitable transition to a new plateau
for the user interface. The necessary tools are here, both in terms of hardware
and the all-important software.

1.1 Previous Efforts

There have been several applications of windows, mouse-selectable menus, and
large-screen high-resolution graphics to date in the control system area. Prob-
ably the most advanced of these is the second-generation of System-Build by
Integrated Systems that provides a model-building front end to their MA-
TRIXX program (Shah et al., 1985). When run on a workstation such as the

3

Sun, this software allows the user great freedom and flexibility in generating
interconnecting blocks of subsystems in order to produce the overall model
for analysis and/or design. Pro-Matlab by The Mathworks (Little and Moler,
1987) makes limited use of windows by producing its graphical output in a
window that is separate from that in which the program is running. However,
the current implementation appears to support only a single graphical win-
dow, which means that when a second plot command is given, the plot in the
existing window is replaced by the new one and thus is lost.

John Edmunds of the Control System Centre at UMIST has ported his
comprehensive control analysis and design program CSS to run on the Sun
workstation, in addition to a variety of less capable terminals. However, he has
written his own windowing system rather than using that of Sun so as to gain
portability. A new analysis package from Lawrence Livermore Laboratory,
called Eagles/Control (Lawver and Poggio, 1985; Gavel et al., 1986), has been
designed to run on a microVAX workstation, in addition to the usual VT100
with retrographics. Some work done by the author while at UMIST in 1985
and expanded since then at Rensselaer Polytechnic Institute allows a portion
of the UMIST Control Design Suite (Munro and Bowland, 1984) to be run in
a window environment with prespecified windows for specific purposes.

1.2 The Necessary Ingredients

In the course of reading this report it should become apparent that the process
of converting a large conventional Fortran program to a window environment
requires a variety of resources and talents. First, one needs the appropriate
hardware, including a large high-resolution screen with roughly one million
pixels, a powerful processor that can support multitasking, and a capability for
doing floating-point arithmetic at a rate and precision suitable for demanding
control-type calculations. Perhaps less obvious are the needs for software and
an understanding of how to use the various software components effectively.

The key software ingredient that has not been encountered in the tradi-
tional Fortran-style programming is the window-related software and whatever
programming language that the software developer must use in order to inter-
face with it. In the case of the Sun we are talking about the SunView software
(Sun, 1986b) and the C language. An additional software ingredient is the
graphics language. In the case of the Sun, this may be the Graphical Kernel
Standard (GKS) (Enderle et al. 1984; Hopgood et al., 1983) ACM SIGGRAPH
Core System (Sun, 1986a), or ANSI Computer Graphics Interface (CGI). A
possible alternative would be Programmer’s Hierarchical Interactive Graphics
System (PHIGS) (SIS 1985; Shuey et al., 1986; Brown, 1985), although it is
not part of the Sun software at the moment.

The key point is that when one couples the very wide range of software
associated with the windowing system and graphics software with a knowledge
of the Unix operating system and an intimate knowledge of the application
programs (that are most likely written in Fortran), one has an extremely
broad-band software environment within which to work. The probability of
finding a single person with the full range of required talents is not great.
Hence, it is likely that a certain amount of teamwork will be required for the
development of window-based software on a timely basis.

1.3 Outline of the Report

This report describes some initial efforts that have been taken to develop a
modern work-station-based version of the simulation program Simnon that is
designed to run on a Sun Microsystems 3/50 workstation. Because only two
months have been devoted to the effort the achievements to date are only a
fraction of what the potential for this type of environment is. However, the
directions that must be taken to achieve a window-based version of Simnon
and the potential benefits of doing this are quite clear at this point.

In the next chapter we will look at some of the ways in which windows
can be used to advantage with Simnon. In Chapter 3 the accomplishments of
the past two months will be described. Extensions to the work to date are
described in Chapter 4. The report concludes with a summary of the activities
to date and some thoughts on what the future might bring.

2. Simnon with Windows

In this chapter we will discuss ways in which the technology of the engineering
workstation described in the previous chapter can be applied to the conven-
tional Fortran simulation program Simnon (/ist.r('im, 1985; Elgvist et al.,
1986) Although the discussion will be related to this particular program it
should be kept in mind that much of what will be said will apply equally well
to a wide variety of the programs that are commonly used for computer-aided
control system design (CACSD), both existing and yet to be written.

2.1 General Comments

In the chapters that follow we will get more specific and discuss the details
of various commands and program features. One other comment to be kept
in mind is that we are talking about user-interface features as they can be
implemented on today’s engineering workstations, but are paying no regard to
the question of compatibility with the large majority of terminals in use today.
Wahile the issue of downward compatibility is undoultedly important to many
people, such as those who must pay the bills for the design tools, it is being
excluded from present consideration so as not to inhibit our thinking. On the
other hand, every effort will be made not to get carried away. For example,
there will not be any discussion of color, as the author does not consider it
essential to making a significant iinprovement in user-interface quality for the
large percentage of CACSD applications.

2.2 The Major Parts of Simulation

In order to provide some structure to our discussion, let’s consider the major
components of a simulation project. We will start at the point where the
requisite analysis has been done and the user has a set of equations, parameter
values, and time functions that have heen expressed in reasonably correct, but
not perfect Simnon syntax in a collection of *. T’ files. The process from this
point on can be divided into the following four steps:

¢ model setup and debugging,

e simulation setup and debugging,
e production runs, and

o evaluation of results.

Figure 2.1 shows these major simulation tasks and the typical Simnon com-
mands that might be used in a simulation project as a function of time. It
is understood that these steps will be repeated in an iterative fashion as the
work proceeds and the user will most likely accumulate a large number of
plots corresponding to a variety of parameter values, and will probably end
up with several different versions of the model. A key point that will guide our
thinking is that the user will have a great deal of information to keep track
of, presumably more than can be kept in the mind at one time. Hence, there

SIMNON command Activity

edit

. develop subsytem models
edit develop connecting system
syst

K correct syntax errors
syst
store set up plots, parameters,
axes and data storage
plot
simu

. correct simulation errors
simu
simu

: generate results,

save and compare

time

Figure 2.1 Steps in a lypical Simnon scenario

will be a constant need for a variety ol information to he readily accessible, al-
though generally not always visible. Because of the large quantity and variety
of information to be accumulated, it will he important that one can readily:

e view geveral rather dillerent pieces of current information, and
e have visual reminders of that information that is not currently visible.

The first of these requirements suggests that we need several windows active
ot our screen al any one time, perhaps with some partially obscured, but
readily uncovered. The other item suggests the need for icons that will be
visible without taking up much of the precious screen space, but whose image
will remind the user of what specilic information it represents, such as a plot
for specific parameter values.

Next we will consider each of the three major simuJation components in
some detail, in terms of how the engineering workstation and its windows and
multiprocessing capabilities can be put to use.

2.3 Model Setup and Debugging

Among the problems that the user faces in this phase of the simultation process
are:

o keeping track of files and system names,

o responding to syntax errors, and

e editing files from within Simnon.

system directory =>

edit system =
check syntax =

continuous systems
discrete systems

connecting systems

Continuous Systems

NLPLNT.T [plant] nonlinear generator

L1PLNT.T [plant] linear generator, omega=270
L2PLNT.T [plant} linear generator, omega=300
TACHO.T [tacho] measures generator speed, rpm

W

Figure 2.2 Menus and a display for system files
Let’s have a look at each of these for ways in which windows can be used.

A subsystem directory window

A window can be created that will allow the user, via menus or some other
selection tool, to obtain a listing of all *.T" files within the present directory,
arranged by the type ol system (continuous. discrete, or connecting) and
containing the file name, the system name, and a brief comment string that
will remind the user aboul the details of the file. The macro files could also
be included as a separate category. IMigure 2.2 shows what the popup menus
and part of one of the displays in the window might look like. According to
the Sun conventions described in Appendix B of Sun (1986h), an arvow to the
right of a menu entry indicates that there is a submenu corresponding to that
item that will become visible il the cursor is dragged ofl the right edge of that
menu iten. As an alteruative to the popup menus, one might use the SunView
panel facility to create buttons on which the user can click for a selection.

Responding to syntax errors

It is nice to be able to edit files [rom within Simnon and to have the editor
invoked automatically when a syntax error is detected during the compila-
tion of the code following a SYST command. llowever, the use of an editing
window and the visual editor of the SunView system can provide significant
improvements over the present implementation. It should be possible to have

8

an editing window pop up automatically with the proper Simnon file loaded
and the offending line visible and highlighted. As an alternative to the Sun
editor we could presumably set up its our version of Simnon to invoke our
favorite editor.

A point that doesn’t involve windows is that it should be possible to have
a procedure for checking the syntax of the individual subsystem files prior to
giving the SYST command. If there was a syntax checker to do this as the files
are being created or after a specific file has been entered, many of the problems
that get detected only after the SYST command has heen given could be caught
at an early stage. Nounexpert users could be helped greatly by having such a
feature.

Editing

General editing and that which must be done in response to error messages
should be done in an editing window that can be left in its iconic state when
not in use or which can he made to pop up when needed. This editing window
might have a panel with some buttons for actions such as load, save, and
directory. It could be used in conjunction with the subsystem directory window
described above, or as an alternative the functions of the two windows could be
combined into one. The key point is that the editing should be done visually,
with directory information on the various .T files being available at the same
time,

2.4 Simulation Setup and Debugging

Once the model files are set and the SYST command has been given there are
a number of details regarding the simulation and the form of the graphical
output that must be specified. For many of these defaults will be used, with
or without the awareness of the user. We will now look at some ways in which
windows can be used to assist the user in the setup process and to keep track
of their values once they have been established.

Algorithm selection and error bounds

By issuing the ALGOR or ERROR command there could be a window displayed
that has a panel with buttons or a popup menn with algorithm selections. A
help item could give a brief discussion about the characteristics of the various
algorithms and some guidance in the selection, such as the advantages of using
a fixed-step method for multivalued nonlinearities.

Plotting setup

At pregsent one sets up the plots by issuing a sequence of commands such as
SPLIT, AXES, SHOW, ASHOW, and AREA and waits to see the results in graplical
form. It should be possible to use the graphical capabilities of the Sun to
provide a graphical means of setting up the plots, rather than through typed
commands. Fig. 2.3 shows a possible layout for a window that will have four
plots, with the variables and axes as shown. Where values are not given for
the coordinate limits, it would be understood that the scaling should he done
automatically by Simnon, i.e., the equivalent of the ASHOW command. Ideally,
the data could be entered on the setup display by using the mouse to let the
user specify the locations of the entries. To reduce the typing of known items

9

-
x1 R
u2 yi
-4 | |
0 time 5 0 time 5
12 —
X2 y1
ui
8 |
time y2

Figure 2.3 Graphical plot layout

there could be a list of all of the variables that are available [or plotting, and
the user could use the mouse to select the variables lor the individual axes
by pointing and clicking with the mousec. If the names are all short as in this
figure and there are only a few of them, such a feature would not save much
time or typing. However, with a number of variables the list would serve as a
reminder and would assure that typing errors were not introduced if the actual
words were selected from the list and transferred by the computer.

Status information

Lists are given in Iig. 2.0 of a number of the Simnon commands and of the
information that is associated with them, either as specified by the user or
as crealed by default. We see that there is a substantial amount of such
information and it is likely that the user will have difficulty keeping track
ol all of it, and may even he unaware of some ol it. It would he possible
to have a status window in which the current values of such information are
displayed and updaled automatically. In normal operation the user might not
wish to devote screen space to such a display so the window could be closed
and represented by its icon. lHowever, the information would be updated
automatically so as to keep it current. llence, it would take only a click of
the mouse on the icon to transform it into the status display with the values
assured to be current.

L0

Command Information

ALGOR algorithm type
ERROR error bound

INIT initial values

PAR parameter values
PLOT variable names
SAVE file name & values
SIMU start & stop times,

time increment, and
file name & storage increment

STORE variable names
SYST system file names
SWITCH various settings
AXES

AREA plot characteristics
SPLIT

SHOW

Figure 2.4 Informalion associaled with Simnon commands
2.5 Output from Production Runs

Once the model has heen prepared and the simulation and plotting param-
eters have been established, our user is ready to hegin generating numerical
and graphical data at a high rate. At this point the workstation and its win-
dows can be invaluable in organizing the data for display as gencrated and for
retrieval at a later time. Whereas the use of conventional programs and termi-
nals requires that the user make hard copies or put the results into a file, we
should be able to draw a number of plots and have them saved for later recall
in graphics windows. There must obviously be some limits on the numbers of
windows that can be created and that can be active at one time. However, we
now have the necessary ability to save results, particularly graphical results,
in a form that can be recalled in an instant.

Also it should be relatively straightforward to allow for graphical process-
ing of the plots in their display windows by doing such things as changing line
types. scaling. and adding labels and text. Part of the text added to a figure
could be used in the icon of the window so as to give the icon a distinctive
name.

2.6 Generation of Connecting Systems

A somewhat more advanced area in which the workstation's capabilities conld
possibly be used is in the development of the connecting system file. The usual
way that this task is done is to create the appropriate text file with an editor.
probably working from a block diagram of the system that shows the desired
interconnections.

An alternative approach would be to have the user create the files for
the continuous and discrete systems aud then issue a variation of the SYST
command. This command would allow the computer to generate lists ol all
of the block inputs, outputs, and the input signals to the system, in a form
such as that shown in Fig. 2.5. With the mouse the user would select the

11

OQutputs Inputs

[plant] y1 [plant} u1
y2 u2

[snsra] y [snsrb] u

[snsrb] y [snsrb] u

[etrir] y1 [ctrir} ut
y2 u2

ref1 out1

ref2 out2

dist1

dist2

Figure 2.5 Input/output lists for generating the interconnecting system file

desired interconnections, thereby obtaining a text file that would serve as
a template of the final connecting-system file. The next task would be to
complete the work with the text editor. inserting such items as gains, signs,
sununers, and specilying the input functions. One might also have a lihrary of
input functions, represented by buttons or appearing on a menu, that would
generate the appropriate code in the file. Such a facility could he considered as
a step between straight text editing and a full block-diagram-based graphical
editor.

2.7 Accessing Other Programs

When reviewing the results of a simmmlation rum one often would like to perform
some calewlations on the variables as they exist at that point in time. The
conventional way to do this is to use a calculator, keying in the particular
rariables, perhaps making some mistakes along the way. A better way. that
becomes possible with the multiprocessing capability of the workstation, is to
start up a new window with a program such as Matlab running in it which has
direct access to the variables and parameters in the Simnon data base. This
means that one could just type in the desired expressions to he evaluated,
without having to transfer the numerical values of the variables. Also the
expressions entered could he saved and reused with data [rom later runs.

2.8 SunView Conventions

As we have mentioned hefore, there are several different wavs {o get the same
result, as far as the user interface goes. l'or example. the SunView software
has a panel subwindow that allows for a variety of formats for the entry of
information. These include buttons. choices, and sliders. Also evervone is
familiar with the popup menu that is used extensively for control of the window
system by the user. Such menus and submenus can be constructed for use with
the application program and represent an alternative to the panel approach.
If one wanted Lo get fancy and incur the necessary overliead, it should he
possible to allow the user to specify a panel or a menu version ol the window
tools in a setup file. One advantage ol buttons is that the user sces the possible

12

choices on the screen at all times. Alternatively, with popup menus valuable
screen space is not taken up by the menu until it is requested by clicking
with the mouse. It might be said that the panels approach favors the less
experienced user while popup menus are more suitable for experienced users.
It is useful to note that there is material in Appendix B of Sun (1986h)
that describes what the people al Sun Microsystems consider to be good and
consistent usage. The creators of the SunView software have used these con-
ventions in their work and it would appear to be a good idea to stay very
close to them, at least until considerable experience has been gained with
windows. By using some of the tools that have been provided, such as the
window-based debugger dbatool and the icon editor, and by running the sam-
ple programns that are given in the SunView manual, one can rapidly get a feel
for what is certainly an acceptable style for the user-computer interaction.

13

3. Progress to Date

In the first two chapters we have discussed the general characteristics of the
engineering workstation and windows that make the combination such a pow-
erful tool for analysis and design. Also we have described in general terms
some ways that this tool can be applied to Simnon, and other CACSD pack-
ages. Now we will review the progress to date with Simnon. In order that this
report may be of more value to those who are embarking on such developments
in the near future we will also mention some of those things that didn’t work,
at least at the time they were tried. In reading this material one should keep
in mind that to date the experience base with these tools is still small and
consequently some of the details necessary for successful implementations are
not well understood at this time.

3.1 Window-Related Commands

Commands have been added to Simnon that automatically generate windows
that have been tailored to the specific objective of the command. The com-
mands that have been added as of this date and the types of windows that
they produce are:

e mkwin a graphics window for plotting

o wedit an editing window

e wfdir a directory facility for the .T files, with editing
e wdisp a window for the Simnon DISP command

e wprint a window for the PRINT command

e whelp lelp on the window-related commands

The operation of each of these commands will be described briefly below. In
each case the command is issued from the keyhoard, when Simnon is displaying
its prompt. When the Sun version of Simnon begins it will not prompt the
user for the type of terminal. The assumption is made that the code is running
on a Sun workstation with the high-resolution monochromatic display.

mkwin

A window such as that shown in Fig. 3.1 will be produced that contains a
canvas for drawing graphical output from Simnon and a set of buttons. If a
Simnon command that generates graphical output is given before any mkwin
command has been given, Simnon will automatically perform a mkwin oper-
ation to create a plot window. If a subsequent mkwin command is given a
separate window will be created with an identical canvas for drawing response
curves. The first window can be left active on the screen, closed to become an
icon, or deleted. Based on empirical evidence there is a limit of about five such
windows at present. The exact cause of this limit and its precise value are not
known at this time, but it is suspected that certain resources are exhausted at
some point as the number of graphical windows increases, thereby resulting in
the crashing of Simmnon. All of the usual Simnon graphics-related commands,
e.g., SPLIT and AREA, can be used with their usual arguments.

14

Figure 3.1 Plot window

wedit

A window, as shown in I"ig. 3.2, is produced for editing .T files by issuing
the wedit command. It consists of a small subwindow [rom which Unix shell
commands can he issued (referred to as a tty subwindow by SunView), a panel
with buttons for loading and saving files, {or doing a directory of the .T files,
and for quitting the window. There will be only one such editing window.
Should the user issue the command while the allowed one is in existence, an
appropriate message will he issued. At present syntax errors found during
compilation following a SYST command do not result in the editing window
being activated or loaded with the offending file. It is expected that this
feature will be added in the future.

wfdir

The window created by this command contains several buttons for generating
special directories of subsets of the Simnon . T files. as depicted in Iig. 3.3.
Specifically, one gets information similar to that described in IMig. 2.2 for the
following categories:

o all .T liles,

e continuous systems.

o discrete systems.

e connecting systems. and

e macros
There is also an editing button and clicking on it will cause a popup edit
window to appear within which a selected file can be edited. Also this window
can he used in conjunction with the editing window created by the wedit

command as a means of specifying the file to be edited. To do this the wfdir
command is given il the window has not yet been created and the user clicks

ing window

%o
Dir: (Tiiles) (Joad)
File: (save) (quit)
continuous system plant
input u
output y
state x1 x2

der dx1 dx2

dx1 =10.0*(-x1 + u)

dx2 = 2.0*(-x2 + fx1)
y =x2

1 = sign(x1)*k1

f2 = exp(-k2*abs(x1))
fx1 = f1*(1.0 - 12)

x1:0.0
x2:0.0
k1:4.56
k2:0.80
e end

Figure 3.2 Ediling window

!

File Drecory ' :

Dir:

(quit) (edit) (.Tfiles) ((macros)
(alisyst) (Ccontsyst) (discsyst) ((connsyst)

Figurce 3.3 lile directory window

16

Display window

CONNECTING SYSTEM nifbcon
VAR :out 2.8510

CONTINUQUS SYSTEM plant

STATE : x1 2.4427 x2 2.8510

INIT @ x1 0.0 X2 -1.000

DER :dxi -1.1687 dx2 2.1258

INPUT :u 2.3258

OUTPUT:y 2.8510

PAR ki 4.5600 k2 0.8000

VAR :fx1 3.9139 f1 4.5600
f2 0.14168

Figure 3.4 Display window

on the button for the type of .T file to he displaved. Then the selection is
made with the mouse and the "put’ function key (L6) is pushed. the mouse is
clicked on the space to the right of the word 'File:’ in the panel of the edit
window, and the 'get’ function key (L8) is depressed. At this point the file
name should be displayed in the "Ilile: slot of the edit window control panel.
Finally the user should click on it to select it. and then click on the 'load’
button. The desired file should appear in the editing window where it can
he modified using the Sun mouse-hased editor. At present we are not able to
distinguish hetween the various types of .T files. but the addition of such a
capability is a relatively straightforward matter, not involving the windowing
soltware.

wdisp

A display window is created, il one does nol already exist. and the text that
is produced by the Simnon DISP conunand will appear in this window. If the
command wdisp is given a second time the information will be updated but
the existing display window will he used. The window will have both vertical
and horizontal scroll hars to allow the user to view large displays without
the usual problem of having information roll ofl the viewing area and not he
retrievable. An example of such a window is shown in [ig. 3.-1.

wprint

This window is similar (o the display window described above. except that
the data presented are the results of the Simnon PRINT comiand. nawnely, the
numerical values of variables for a range of time points.

17

(quit) (plots) (Cedit) (disp) (print) (fdir)

*’% Quit close the window & show its icon

Plots make a new plotting window
Edit make a window for editing text (.T) files
Disp display values of all variables & parameters

at that point in time in a window

Print display values of stored variables for each
time point in a window

Fdir file directory facility

Figure 3.5 Help window

whelp

A window is created and a message that provides general help on the window-
related commands is displayed. The user can obtain more detailed help on
specific commands by clicking on the appropriate button, as shown in Fig. 3.5.
In Fig. 3.6 we see how the workstation screen might appear during a simulation
study. The main window contains Simnon commands that have heen typed
by the user. To the right we have a plotting window showing response curves.
Across the top of the screen there are a number of icons that represent windows
that have been closed. From left to right, these windows are: plot windows |
and 2, display, print, file directory, edit and help. Any ol these windows can
be activated by clicking on the appropriate icon with the mouse.

3.2 Drawing with SunCore

As was mentioned earlier. there are three graphics languages that Sun supports
at the moment. These are:

e ANSI Computer Graphics Interface (CGI),

o ACM SIGGRAPH Core System (SunCore), and

o Graphics Kernel Standard (GKS).
The GKS soltware was nol available to the author at the time this work
was being done so it was not considered for use. Between the other (wo
candidates, it was decided to use the SunCore language as described in Sun
(1986a) because it appears to he more versatile, although presumably at the
expense of more overhead. No extensive comparisons were made in arviving
al this decision and at this point it would be unfair to say that the CGI
system is inappropriate. The surface on which the drawing is done is a canvas
subwindow and the SunCore system allows the progratmmer to work in a world
coordinate system of his own choosing and to specify a viewport in terms of

I8

C]1 lijZ DisP PRINT T EDIT | HELP

| Plot window 3 |ii
>SYST SENSOR COMP P| quil

>INIT X1:2.45
>AXES HO0 12V -2 6
>PLOT X1 UY
>STORE X1UY
>SIMU 0 12 /CASE2

Figure 3.6 Typical display with an active plot window

device-independent units. The world coordinate system was taken to be that
of a Tektronix display, namely 4096 by 3120 units, since the Simnon graphics
is set up to work with these. The viewport coordinates were Laken as 1.00 by
0.75 so as to conform to the aspect ratio of the workstation display.

The Simnon code for doing the drawing was prepared by Tomas Schonthal
by modifying an existing but unused graphics driver. T'he modifications to the
code consisted of:

e crealing and selecting a view surface,

e opening and closing retained segmeunts, and

e using the SunCore commands for drawing and moving
[t is also necessary to initialize the Core graphics when Simunon is being started
and to termivate it when Simnon is being stopped.

There were two substantial obstacles to making all of this work. The first
was to get the fignres to appear on the intended window rather than on a
window that was placed directly over the one in which Simuon was running.
The second obstacle was avoiding having Shunon lose control and cease Lo
execute while the graphics window was in existence. A related problem is thal
when multiple graphics windows exist al the same time. some coordination is
required to make the plot appear in the desired window. rather than on some
other one or perhaps on all of the existing graphics windows. Because of the
importance of these topics to the task of porting existing code to a window
environment they will be discussed in the [ollowing two sections.

19

3.3 Drawing on the Proper View Surface

Before drawing can be done with the SunCore commands there must be a view
surface that has been hoth initialized and selected. There is a procedure called
get_view_surface that exists in the SunCore library (Sun, 1986a). However,
this procedure is set up with default values that make it grab the window
in which Simnon is running and cover it with a view surface, thereby wiping
out any further communication with Simmnon unti] that view surface has been
destroyed. With assistance from Gavin Bowe of UMIST and Dag Briick, this
routine was modified so that it performs correctly for the intended application.
Specifically, it selects the proper canvas subwindow, which is owned by the
frame of the graphics window being created by the mkwin command, as the
view surface for the subsequent drawing.

The problem of managing multiple view surfaces is handled by writing
code that can keep track of which view surfaces have been created, what their
’handles’ are (this is the way the window manager software refers to them),
and ensuring that only the desired one is selected when the drawing is being
done, with the others being in a deselected state. At the moment this code is
being developed by Tomas Schénthal.

3.4 Keeping Simnon and the Windows Functioning

If windows are to be nsed with Simnon in an interactive manner, it. is obvious
that the window manager must look after the windows while Simnon is running
and Simnon must be able to perform its calculations and respond to user
commands. The windows are serviced by a notifier program that must process
any accumulated inputs to a window at least four times per second (per Section
16.6 of Sun (1986D)) if the user is not to perceive delays in the response to his
clicks on the mouse or movement of the cursor. On the other hand Simnon
must be able to continue to do its calculations and look for and process input
from the keyhoard while the windows are being processed. This objective is
achieved in one of two ways, depending on whether the code for the window
in question is a procedure that is linked into Simnon or a separate executable
program.

In the former case, which has been used for the mkwin command, we call
the SunView C procedure notify_do_dispatch() that will call the window
notifier program periodically provided that the program (Simnon) is doing
some kind of read operation, such as looking for input while its prompt is
being displayed or reading data [rom a file. This approach covers almost all
of the Simnon commands except ASHOW and SIMU, because the execution time
required is sufficiently short that the user is not likely to notice any loss of
control of the windows. Tor the ASHOW command, there is no problem either be-
cause Simnon is reading data from a file while it is doing the drawing, thereby
assuring that any requests for window activity will be handled without delay.
Because the SIMU command does not involve any reading activity and can
monopolize the cpu for long periods of time, it is necessary to use a different
approach. There is another SunView procedure called notify_dispatch()
which activates the window notifier routine even if no input is being done. A
test was run where this routine was called from within a Fortran subroutine
that is called by Simnon each time that it completes an integration step, and
it did keep the windows active. T'his code has not been used on a regular hasis

20

yet because the extent to which its use would load the cpu was not known.
However, it clearly represents a solution to the problem and just requires some
care in its implementation.

When the window is being run as a separate program we use a different
approach. Here the SunView procedure window.main loop() is invoked after
the window has been created. This action then causes the notifier program to
respond to inputs to that window on a continuous basis. Because this is being
done in a program that is totally separate from Simnon there is no interference
between the two, and each can go about its own business.

21

4. Possible Extensions

As is usually the case with projects of short duration, one would like to have
more time to carry things further. With a bit more work the six types of
windows that have been created so far could be expanded to add some desirable
features and to make them operate in a more friendly manner than they do at
present. Also the code could certainly be improved to yield greater robustness
and better diagnostics. Additionally, there are some more substantial steps
that can be taken to yield a hetter product. Some of these steps would require
a nontrivial commitment of resources and time so it is not obvious that they
should be pursued. In any event, extensions of both types will be described
below.

4.1 Other Windows

In Chapter 2 we described a number of ways in which windows could be used to
achieve improved user interaction with Simnon. Beginning versions of several
of these have been made. Types of windows that might prove very useful but
which have not heen included at this point are:

e status display, and
e connecting system construction.

We will comment on both of these.

status display

A window that performs this type of function has been incorporated in the
developmental window-based pole-placement program that the author (while
oun leave at UMIST) and Torin Shepard (a student at Rensselaer Polytechnic)
have created. A similar approach should work here. The status information,
which has the characteristic that it does not change as rapidly as the variables
in the simulation, is written to a file whenever there is a change in any of its
elements. Then the window code is signaled about the change by sending an
escape sequence that is received and decoded by a special C procedure. When
this occurs, the window code knows that it should open the updated file and
display its contents in the status window. At this point in time it is not clear
whether or not the window code should be a separate program or a procedure
linked into Simnon, so both possibilities will he mentioned.

In the former case there is the problem of having Simnon tell the window
program that it should open the file and display the new contents. It might
be possible to send an escape sequence to do this. Alternatively, the window
program could check the time stamp of the specific file periodically, say once
per second, and detect when there has been a change.

In the second case, where the window code is linked into Simnon, we en-
counter unexplained crashes that have heen observed when a Fortran program
drives a window containing a text subwindow. If this problem can be resolved
in the future the communication task should be relatively straightforward,
presumably using an escape sequence.

22

Connecting-system construction

The development of such a window, as described in Section 2.6, would be a
fairly ambitious task, as il involves getting information from the Simnon data
base, as it would exist after a SYST command had been given, and generat-
ing output in a nonstandard form. Because the SYST command requires the
presence of a connecting system before it can be executed, it would take some
nontrivial modifications to Simuon in order for it to be able to provide the
required information about the inputs and outputs of the individual subsys-
tems prior to the SYST command. Likewise, once a display such as Fig. 2.5
has been generated, it would be necessary to be able to select specific inputs
and outputs and to have their names inserted into the appropriate strings so
the result will be a valid Simnon interconnection statement. One would also
have the task of specilying exactly how the whole process would work from
the user’s point of view, including the way in which external inputs would be
specified, and how summing junctions and other details would be expected to
behave.

4.2 Expanded Capabilities for the Present Windows

Because the present version of the window-hased Simnon is at a very early
stage of development, there are a number of ways in which the windows that
have heen incorporated can be improved. In general terms, the panel buttons
that have been used for the most part can be replaced or supplemented by
other mechanisms that are part of the SunView panel tools (see Chapter 9
of Sun (1986b)). Alternatively, one may use popup menus. It has been con-
jectured earlier that users may have preferences regarding these matters and
there is the factor of utilization of the screen space. In any event, the popup
menu is a key part of the Sun window system and it seems appropriate that it
should be employed with window-based Simnon. One consideration is that the
greater the flexibility the user has, the greater the overhead and consumption
of resources is likely to be.

Another feature that has heen used in the file directory window but not
in any others is the popup editing window. Here the editing window is not
seen until the user indicates by mouse clicks that a specific file is to be edited.
When this happens the subwindow in which the editing is to be done pops up
automatically, with the specified file displayed. When the editing operations
have been completed and the file saved, the user can click on the frame of the
editing subwindow and select the item done, which will cause the subwindow
to disappear, leaving just the original window. Obviously this feature can be
used to save the valuable screen area until it is needed for that specific task.

4.3 Icons with Variable Names

An icon represents a window that has been closed, providing the user with a
convenient reminder of the window’s existence and an easy way for the window
to be brought back to activity by clicking on the icon with the left button.
Where there may be multiple versions of a particular type of window it will
be important to incorporate a feature of the icon that will distinguish them.
This is possible, but some care must be given to the decision as to what the
distinction should be.

23

The most likely area where this problem will arise is the icon for graphics
windows containing plots. If a string of characters is used, such as the values of
one or two parameters, there will be a problem with space for the characters.
If sequential numbers are used there is likely to be a problem with lack of
recognition after a few windows have been converted to icons. To alleviate this
difliculty one could have a window that provides a directory for the graphics
windows, containing their sequential number for identification of the icon and
a string of modest length that identifies the parameter values to which it
corresponds. In fact, the string could be taken from the text that would have
been entered by the user as part of the title or a subtitle. This directory
window would have its own icon so it would not have to be visible at all times.

4.4 Extended Graphical Capabilities

One can imagine a wide range of graphical capabilities that could he added to
those windows in which plots are produced. These would be capabilities that
would allow the user to turn them into more finished products or to modify
them for subsequent use. Typical types of modification would be:

e changing line types for selected curves,

e labeling the curves in an unstructured way,

e changing the scaling and having the plot redrawn,

e removing a particular curve from an existing plot, and
o transferring a curve from one plot to another.

The whole question of heing able to perform interactive drawing is a matter
of some complexity and one that has application well beyond Simnon. One
characteristic to be kept in mind is the benefit to the user of being able to
see the effects of the changes in visual form, i.e., “what you see is what you
get”. It would be helpful if one could perform some simple types of interactive
drawing in order to prepare response plots for reports or visual presentations.

4.5 A Notifier-Based Simnon

It was mentioned earlier that the SunView software is configured in a notifier-
based form, as described in Chapters 2 and L6 of Sun (1986Dh). Briefly, this
means that the window software that the programmer develops consists of a
number of independent components, each of which has been registered with
the central notifier. When a particular component, such as a window, requires
servicing because of a mouse click on its border the notifier becomes aware
of this need and informs the service routine that will take care of it. 1In
this manner a variety of clients can be handled in an efficient way, with the
attention being devoted to those which need it. Likewise, clients that do not
require attention at the moment do not inmpose any load on the notilier.

If one examines the major components of a simulation run, as we did in
Section 2.2, it becomes apparent that Simnon can be thought of in terms of
the following four major components:

e model setup,
e simulation run setup,

e calculation of the respounses, and

24

o displaying the results and preparation of final copies.

Each of these components is only loosely coupled to the others, with infor-
mation being transferred between them via certain memory locations or files.
Although the first three must be done in the sequence shown on the first time
through a simulation, it is logically possible to have two or more components
being done simultaneously after that point. Also, there is no reason that two
or more cannot be going on simultaneously, provided that the user can keep
track of things. Yor example, if a lengthy simulation is in progress, the user
could be examining plots from a previous run and preparing for the next run
by making some modifications on one of the model files.

Given this generic decoupling of the simulation subtasks, it makes sense
to consider the possibility of decoupling the Simnon code into several sepa-
rate programs. One such decomposition would involve four programs, each
of which performs one of the categories listed above, and a central controller
that receives requests for activities from the user or one of the software com-
ponents and parcels out the required tasks to the appropriate component. In
addition, this controller software would oversee the flow of information be-
tween the components and the user. In a sense, the controller wounld look like
a small operating system, coordinating the activities of the four components,
monitoring the flow of information, and managing the available resources.

4.6 Modification of Simnon’s Command Syntax

To date a total of six cominands have heen added to the Sun version of Simnon
to support the windowing features. I seems likely that others will he added
as developments progress. Ilowever, it also seems likely that once more expe-
rience is gained with the window environment that one might want to create
a version of Simnon that gets most of its input from sources other than the
keyhoard, such as the mouse. One might make an analogy by comparing the
mouse-driven editor in Sun windows with a traditional line editor where all
input is via the keyboard. At this point in time it is difficult to predict how
things will develop over the next couple of years, but one should certainly keep
an open mind. It would be unfortunate to lose some of the power of this new
environment because of thinking that is still entrenched in the keyboard-entry
days.

Another consideration in the question of command-entry style is the im-
portance of retaining the macro capability of Simnon. Under no circumstances
should this feature be impaired.

4.7 Efficiency, Robustness and Diagnostics

The motherhood-type attributes of efficiency, robustness and diagnostics are
certainly desirable in any program and considerable attention should be given
to them before one considers a programming effort to be completed. Given
the exploratory nature of the work reported on here, it is safe to say that
major improvements can and should be made to the window-related software
that is being developed for Simnon. Because there are two major software
components operating in parallel, namely Simnon and the Sun windowing
system, it is particularly important that they not get in each others way and
that the combined package not become such a heavy consumer of resources

25

that response time suffers unduly. It should be kept in mind that there is
always a price to he paid for the windowing features that are added.

One way to improve efliciency is to make use of spare CPU time by doing
some of the tasks in background mode, perhaps at a lower priority than the
main task. For example, a considerable amount of CPU activity is required to
create a window before it can be displayed on the screen and used. The delay
caused by the window creation process will be a function of the complexity of
the window, but will typically be about four to five seconds. It seems likely
that the user can be kept unaware of much of this delay by having the windows
created as a background process with a low priority that is done when Simmnon
is running but the CPU is not particularly busy, such as when the Simnon
prompt is being displayed but the user has not completed a command entry
that requires processing. A number of windows that are likely to be wanted
by the user can be created and placed in a closed condition, represented by the
icon. Then, when the user either clicks on the icon or gives the appropriate
command to Simnon, the window can appear with very little delay, ready to
do its work.

It is essential that the code be prepared in a way that the user cannot
easily cause the window system to get out of synchronization with Simunon,
or to cause the program to crash. The window software is very complex and
makes use of many of the operating-system signals. As stated in Section 16.2
of Sun (1986b), the programmer must exercise great care in dealing with any
of these signals. Also, it has heen observed that a variety of situations can
occur that will cause Simnon to crash. Care should be taken to minimize
such happenings because users will prefer to use the conventional form of
Simmon if the operation of the window version is too unreliable, regardless of
the potential henefits of the window-based version.

26

5. Conclusion

In this concluding chapter we will take a look back at what has been accom-
plished to date, and speculate a bit about what the future might bhring.

5.1 Summary

Over the past two months a beginning has been made in the task of creating a
version of Simnon that can provide the user with a substantially improved user
interface by employing the hardware of a Sun Model 3/50 workstation and the
accompanying SunView software tools. Although only a modest windowing
capability has been created for Simnon to date, it is felt that a number of
the major problems to be encountered in applying this new environment have
been identified and overcome. These problems include:

e creation and selection of view surfaces for plotting responses,

e generation of windows both from Simnon and from separate programs,
and

e timing and notification problems to allow Simnon and the window system
to carry out their jobs in harmony.

In addition to overcoming the problems listed above, a total of six different
types of windows have been incorporated in Simnon, with enough features so
as to make them useful, although certainly not the last word.

5.2 Future Work

The existing windows can certainly be refined so as to become more useful
to the user and different means of actuation can be explored, such as popup
menus, buttons, and popup windows for editing,.

A number of ideas have been presented for extending the existing win-
dows that would require varying degrees of software development. Also, the
techniques developed here can certainly be applied to other software packages,
such as Idpac (Wieslander, 1980).

Two areas in which greater understanding is required are the causes of
the unexpected crashes that occur, especially when a text subwindow is being
driven from Fortran code, and the ahility to communicate between Simnon and
the windows. At present our understanding of the operating-system signals
that are involved in the window system is minimal and it is felt that they are
at the heart of the crashes.

Suggestions have heen made for changes of a more fundamental nature
that may become desirable, or even essential, as the usage and complexity of
the windowing system expands. These include the conversion of Simnon to a
notifier-based collection of programs. Additional ways in which the window-
based version of Simnon could be expanded include the incorporation of ex-
ternal programs such as Matlah so the user can perform ancillary calculations
directly upon the Simnon data base and pass the results back to Simnon or
on to other targets.

27

Acknowledgements

The work described in this report has been done as part of the Computer
Aided Control Engineering (CACE) project at Lund Institute of Technology
while the author was a visiting researcher in the Department of Automatic
Control. He is most grateful to the Swedish Board for Technical Development
(STU) {ov its support of this project under contract 86-4049 and for making his
participation possible. Particular thanks are due Tomas Schénthal who did
a significant portion of the programming for the window version of Simnon
and provided essential assistance along the way. The author is also grateful to
Sven Erik Mattsson, Dag Briick, and Leif Anderson for a variely of assistance
and support. Finally, Gavin Bowe of UMIST in the UK was most helpful in
sorting out some major problems in the early stages of the work.

References

ASTROM, K.J. (1985): “Computer Aided Tools for Control System Design—A
perspective,” in M. Jamshidi and C.J. Herget (Eds.): Computer-Aided
Control Systems Engineering, North-Holland, pp. 3-40.

BrownN, M.D. (1985): Understanding PHIGS — The Hierarchical C'lomputer
Graphics Standard, Template, The Software Division of Megatek Corpora-
tion, San Diego, CA, USA.

ELmquist, H., K.J. AsTROM and T. SCHONTHAL (1986): SIMNON — User's

Guide for MS-DOS Computers, Department of Automatic Control Lund
Institute of Technology, Lund, Sweden.

EnpERLE, G., K. Kansy and G. Prarr (1984): Computer Graphics
Programming (GIKS—The Graphics Standard), Springer-Verlag.

Gavern, D.T., B.S. LawvEer, G.P. LEDBETTER, F.L. McFAarRLAND, E.G.
MiNoOR, M.E. Pocd¢lo, R.M. SuectMan, J.I.. WanG and J.J. Woo
(1986): “EAGLES/Controls User’s Manual,” M-196, Lawrence Livermore
National Laboratory, Livermore, California, USA.

Horcoon, F.R.A., D.A. Duck, J.R. GAaLLoP and D.C. SUTCLIFTE (1983):
Iutroduction to the Graphical Kernel Standard (GKS), Academic Press.

LawveRr, B. and P. Pocaio (1985): “EAGLES Requirements,” Computer
Systems Research Group, Engineering Research Division, Lawrence Liver-
more National Laboratory, Livermore, California.

Lirtie, J. and C. MOLER (1987): “A Preview of MATLAB,” The
MathWorks, Inc., Sherborn, MA, USA.

MUNRO, N. and B.J. BowLAND (1984): “Computer Aided Control System

28

Design Software — User’s Guide,” Control Systems Centre, UMIST,
Manchester, UK.

Snan, S.C., M.A. FrLoyp aAnNDp L.L. LEHMAN (1985): “MATRIXY: Control
and Model Building CAE Capability,” in Jamshidi, M. and C.J. Herget
(Eds.): Computer-Aided Control Systems Engineering, North-Holland,
Amsterdam, The Netherlands, pp. 181-207.

SHUEY, D., D. BAILEY and T.P. MORRISSEY (1986): “PHIGS: A Standard,
Dynamic, Interactive Graphics Interface,” IEEE Computer Graphics and
Applications, 8, No. 8, August 1986, 50-57.

SIS (1985): Datorgrafi—PHIGS, Programmers Hierarchical Interactive
Graphics Standard, Technical report no. 306, SIS—Standardiseringskom-
misionen i Sverige, Sweden.

SuN (1986a): SunCore Reference Manual, Part No: 800-1257-03, Revision G
of 17 February 1986, Sun Microsystems, Inc., Mountain View, California.

SuN (1986h): SunView Programmer’s Guide, Part No: 800-1345-10, Revision
A of 19 September 1986, Sun Microsystems, Inc., Mountain View,
California.

WIESLANDER, J. (1980): “Idpac Commands — User’s Guide,” CODEN:
LUTFD2/TFRT-3157, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

29

