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Preface

These are lecture notes that were written in connection
with a short course on stability problems given in the
spring of 1980. They were produced under some time press-
ure, which gives an excuse for the sometimes sloppy nota-
tion ("stable" and "asymptotically stable" are used in-
discriminately etc.). The object of the course was to
give an introduction to various ramifications of the
standard stability theorems. The reader is thus assumed
to be acquainted with the basics of stability theory

(frequency domain criteria, Lyapunov functions etc.).

Eva Dagnegdrd has typed the manuscript with customary

professionalism.

Lund in June 1980

Per Molander
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CHAPTER 1. FREQUENCY DOMAIN STABILITY CRITERIA

The frequency domain stability criteria developed in the
early sixties (notably the Popov criterion, the circle cri-
terion) soon gained popularity due to their simplicity and
the relative ease with which they could be fitted into the
framework of classical control theory. However, in their
original form they apply only to nonlinear systems which can
be separated into a linear part (normally characterised by
its transfer function G(s)) and one single nonlinearity. The

generic configuration is shown in Fig. 1l.1.

uft) @e(t) 6ls) y(t)

-fly)

Fig. 1.1 - The generic configuration.

By contrast, the functional analysis based methods used
originally by Sandberg and Zames lend themselves as easily
to more complicated operators. The drawback of this approach
is the difficulties that arise as the general results (as
formulated in the small gain theorem or the passivity theo-
rem) are to be adapted to special situations. Consider for
instance the configuration of Fig. 1.1 but with a feedback
loop consisting of several (=p) nonlinearities. The small-
gain theorem guarantees stability for this set-up if the
loop gain, i.e. the product of the gains of the linear and
the nonlinear operators, is less than one. However, these

gains depend on the norm chosen on RP. There remains thus



the as yet unresolved problem of optimizing the choice of

this basis.

The multivariable generalisations of the Nyquist criterion
form a natural point of departure for an overview of the
frequency-domain criteria for stability of systems with
multiple nonlinearities. The chapter therefore starts with
a short account of the characteristic gain approach, which
is the true generalization of the Nyquist criterion to
multivariable feedback systems, and the diagonal-dominance
based criteria, which are only sufficient and intended to

form a tool for synthesis of multivariable systems.

1.1 Linear systems

1.1.1 The generalised Nyquist criterion

Consider the linear feedback system given by

AxX + Bu
Cx + Du (1.1)

I

x
b4
u = - ky

As usual, x € R®, u and Yy €IRp, A, B, C, and D are matrices
of appropriate dimensions, and k is a scalar. To facilitate
the discussion, D will be set equal to zero in the sequel.
Normally, the number of inputs will of course be exceeded
the number of outputs (as obtained from direct measurements
or via observers), but before closing the loop, the system
must in any case be "squared down". Notice also that more
complicated feedback gain matrices than k+I can be included

in C.

The problem is to study how the stability of the closed loop
system varies as a function of the feedback gain k. Let I'n

denote the negatively oriented curve in the complex plane




given by (R large)

iw - R< w<R
T
R i T T
Re -'2"SGS—2—-
Let G(s) = C(sI—A)_lB be the transfer function of the open

loop system. The Nyquist criterion for the case p= 1 can

then be stated as follows:

Theorem 1.1. (Nyguist criterion) The system given by Eqg.

(1.1) is closed-loop stable if and only if

i) uncontrollable and/or unobservable modes are stable,

and

\

ii) the number of anti-clockwise encirclements of the
point (—i, 0) by the image of I'y under G(+) equals the
number of right half-plane poles of G. =

The proof is a straightforward application of the principle

of the variation of the argument.

In the multivariable case, G(s) is a matrix, and it turns
out that stability can be decided from the behaviour of the
eigenvalues of this matrix, normally referred to as the
characteristic gains. Introduce F(s) = I, +k-:G(s), the so-

P
called return-difference matrix. For the determinant of

F(s) one obtains using Schur's formula ([1]):

det(F(s)) = det (Ip+k-c(s1n—A)'lB) =

sIn—A B
= det / det(sIn—A) =
-kC I



In -B SIn—A B
= det det / det(sIn—A)
e I, -kC I,
( sI _-A+BkC 0
= det / det(sIn—A)
-kC I
¥ P

det (SIn - A+ BkC)

det (sIn-A)

But det(sI,-A+BkC) and det(sI,-A) are the closed-loop and
open-loop characteristic polynomials (CLCP(s) and OLCP (s))
respectively, and the following relationship, originally
due to Desoer and Chan ([2]), has thus been established:

CLCP (s)

det(F(s)) = BEels)

(1.2)

From (1.2) the stability of the closed-loop system can be
determined from a study of the scalar quantity det(F(s)).

To eliminate the dependence on k, notice that

P P
det(F(s)) = T A, (F(s)) = kP 1 Ay [k 1.1 _+G(s)] =
i=1 i=1 P
P
= kP 1 [k t+ar.(c(s))].
i=1 .

The variation of the argument as PR is mapped under
det(F(s)) can thus be obtained as the algebraic sum of the
variation of each of the eigenvalues in the above product.
As in the ordinary Nyquist criterion, the loci can be drawn
for G(s), and the stability problem for various k-values
can be resolved by moving the point (—L,O). The multi-

variable form of the Nyquist criterion thus reads:



Theorem 1.2. (Nyquist criterion, multivariable form) The

system given by Eq. (l1.1) is closed-loop stable if and only
if

i) uncontrollable and/or unobservable modes are stable,
and
ii) the algebraic sum of anti-clockwise encirclements of

the point (—%, 0) by the set of characteristic gain
loci equals the number of right half-plane poles of
G. =

For a more detailed proof based on the theory of algebraic

functions, see MacFarlane and Postlethwaite ([3]).

Example 1.1. ([4]) Let

-2 0 1 0.6 2.4 -1.6
, B = , and C = %

0 -1 1 0.5 4.8 -4.8

1 s-1 S
This yields G(s) = i
1.25 (s+1) (s+2) | _¢ g=2

The characteristic gain loci, i.e. the eigenvalues of G(s)
as s traverses FR are shown in Fig. 1l.2. (Actually these
loci live on a two-sheeted Riemann surface, but they have

been projected into the ordinary complex plane.)

The following stability results are obtained:

i) For -« < —% < -0.8 there are no encirclements of
—%, 0), and the closed-loop system is consequently
stable for 0 ¢ k < 1.25.

ii) For -0.8 < —% < =0.4 there is one clockwise encircle-
ment of (—%,0). The closed-loop system is thus unstable
for 1.25 < k < 2,5.
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iv)

V)

w=0-08

-1-00
w=+0105

Fig. 1.2 - The characteristic gain loci of Ex. 1.1l.

For -0.4 < -% < 0 there are again no encirclements.
The closed-loop system is stable in the region
2.5 < k < =,

For 0 < —% < 0.533 there are two clockwise encircle-
ments. The closed-loop system is unstable for
-o < k < =-1,875,

For 0.533 < —% ¢  there are no encirclements. Stabil-
ity obtains for -1.875 < k < 0.

-



Notice that cases iv) and v) correspond to positive feed-

back. =

1.1.2 Stability criteria based on diagonal dominance

In some cases it is possible to conclude stability without
actually computing the eigenvalues of G(s). The procedure

is based on a result by Ger3gorin.

Lemma 1l.1. Let A = {aij} be a complex matrix and define
Q, = {z €€; Jz-ayl < .Z_Iaij|}'
J#i
Then the spectrum of A is contained in U ;. If the Qi's
i

are disjoint, there is precisely one eigenvalue in each ;.

The lemma is of course efficient only if the off-diagonal
elements are small compared to the diagonal elements. In
this case one speaks of "diagonal dominance" in a qualita-

tive sense. Diagonal dominance also has a precise meaning:

Definition 1.1. A is said to be diagonally row dominant if

> @ Ja,

|a i
j#i J

iil

and diagonally column dominant if

z |a
j#¥i

la. .| .
ii ji

It is diagonally dominant if it is row or column dominant

or both. =

If the diagonal elements of G(s) are plotted for all s

surrounded by a circle of radius r,(s) = I |gij(s)| (or

J*1

Ei(s) = I |g i(s)|), this will generate p bands in

jei I



the complex plane, referred to as Ger§gorin bands. For each

s one may select either r; or Ei‘ The following result

follows from the generalised Nyquist criterion.

Theorem 1.3. ([5]) Let each of the bands swept out by g4,

i=1,2, ...,p, exclude the point (—l,O). Then the closed-
loop system given by Eq. (l1.1) is stable if and only if

i) uncontrollable and/or unobservable modes are stable,

and

ii) the algebraic sum of anti-clockwise encirclements of
(-i, 0) by the Ger¥gorin bands equals the number of
right half-plane poles of G(s). =

For reasons peculiar to certain authors, the Ger$gorin
bands are sometimes drawn for G_l(s) instead of G(s), and

the resulting graph is called the inverse Nyquist array.

The appropriate stability theorem is the generalised inverse

Nyquist criterion.

Theorem 1.4. ([4]) The closed-loop system given by Eq. (1.1)

is stable if and only if

i) uncontrollable and/or unobservable modes are stable,

and

ii) the algebraic sum of anti-clockwise encirclements of
(-k, 0) by the set of inverse characteristic gain loci,
minus the algebraic sum of anti-clockwise encircle-
ments of the origin by the gain loci, equals the number

of right half-plane poles of G(s). =

Theorem 1.3 may be modified accordingly.

Example 1.2. The inverse Nyquist array of a (2x2)-system

is shown in Fig. 1.3.



AERYL
f Wt

AU

A S <A
> q-‘;_a

Fig. 1.3 - An inverse Nyquist array. The GerSgorin
bands are based on the rows.

1.2 Nonlinear systems

Consider now the configuration of Fig. 1.1 but with several

nonlinear feedback loops:

X = Ax + Bu
Cx (1.3)
- o (y)

u

As before, x € Rn, u and y EIRp, A, B, and C are matrices
of appropriate dimensions, and ®(+) is nonlinear, possibly

timevarying function from RP to RP subject to

| ®(oq) - 2(o,) || < K|loy~o0,|] for all ¢ € rP. (1.4)
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| denotes any norm on RP, and in fact the stability

results obtained from a straightforward application of the

standard small gain theorem may often be sharpened by a
judicious choice of this norm. The case when é(+) is not
centered may be taken care of by a loop transformation (see
[6]1, p. 204).

The derivation of the small gain theorem will not be re-
peated here (see [7], ch. III). In short, the trivial solu-
tion of (1.3), (l1.4) is globally asymptotically stable if
the product of the gains of the linear and the nonlinear
links is less than one. The gain of &(+) is K, and a short

computation shows that the gain of the linear part is

1

sup {max A.[[GT(—iw) G(iw)]i]}.
w>0 i 1L

GT(—iw)G(iw) is a positive-semidefinite matrix, and the

eigenvalues Ai are called the singular values of G(iw). To
check the stability condition, it is thus sufficient to

plot the singular values as functions of w and see if they
are contained in the interval [0, %— e] for some € > 0. As
was pointed out above, the singular values depend on the
norm (or, equivalently, on the basis). This will be capital-

ised on in § 1.2.3.

Referring to the theorems given in § 1.1, it is natural to
ask if anything can be said on the stability of the non-
linear feedback system from a plot of the eigenvalues of
G(iw) . The answer is, broadly speaking, no, as can be seen
from the following example, which is adapted from Rosenbrock
and Cook ([81).

Example 1.3. Considerxr

4
s+ 3 -s-(s+l) 2

G(s) = e
0 s +3 (s+3)
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with the nonlinear feedback

0 0
¢ (o) = o.
-€ 0

The norm of &(+) is €. The eigenvalues of G(s) are both
S73’ SO° the characteristic gain loci are contained in a
ball of radius 2/3. However, the transfer matrix of the

closed-loop system is

. -
(s-1) 2

s+3  L(s+1)
G(s) = €
2e s+3

which is unstable. =&

1.2.1 Normal transfer functions

Under certain conditions, the eigenvalues of G(s) yield all
the information necessary for the solution of the stability
problem. This happens when G(s) is normal, i.e. commutes

with its adjoint.

Theorem 1.5. Given the nonlinear feedback system (1.3),

(1.4) . Then the origin is stable if G(s) is normal and the
characteristic gain loci of G are contained in a ball of

radius (%-e) for some & > 0.

Proof. The theorem was proved in a very general setting by
Freedman, Falb and Zames in [9]. In the context studied here,
it is sufficient to notice that normality of G(s) implies
that the maximal singular value equals the modulus of the

maximal eigenvalue., =

Unfortunately, the assumption on normality is a restrictive

one.
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1.2.2 Diagonal dominance criteria

Since the characteristic gain loci contain too little
information, they must be supported by something that in
some sense measures the deviation from normality. Diagonal

dominance is such a measure.

Theorem 1.6. Consider the nonlinear feedback system (1.3),
(1.4). Let G(s) = {gij(s)} be the transfer function of the

linear part and assume that ¢(+) is diagonal, i.e.
o(+) = {diag (@i(°))}.

Then the trivial solution is stable if there are numbers

ei, i=1,2, ...,p, subject to

p

Z Giz < 1,

i=1
such that

, . 1

sup {]g..(lw)|-+ z |g..(1w)|} < == (1.5)

030 ii ] ij eiK

(or sup {|gii(iw) + I |g.i(iw)|} < glﬁ ).

w30 j#i J i

Proof. See Rosenbrock [10]. =

Condition (l1.5) means that the Ger&gorin bands should be
contained in circles that have been shrunk by a factor ei
compared to the single-variable case. The dependence on the
parameters ei is somewhat awkward, and as p grows, the
criterion becomes more and more conservative. This can be

avoided by modifying somewhat the GerS$gorin bands.

Theorem 1.7. Given the conditions of Thm. 1.6 but with

inequality (1.5) replaced by
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lg; 5 Gw) | + gy, (Gw) | L@

==

sup {[g..(iw)|+ ) <
w30 11 j#i 2 /

Then the trivial solution is globally asymptotically stable.

Proof. See Cook [11]. =

According to (1.7), the row or column based Gerdgorin

bands should be replaced by the Gerggorin mean bands,

generated from circles whose radii equal the arithmetic
mean of the row and column based circles. Theorem 1.7 has

also been proved for operators in Hilbert space (see § 3.1).

1.2.3 Other criteria

It was pointed out above that the estimates obtained from
the singular values plot may be improved by a change of
basis. This has been exploited by Mees and Rapp ([12]).
Assume that G(iw) can be diagonalised by the transformation
T(iw) :

Tl (i0) G(iw) T(iw) = A(iw) = diag (A;(iw)).

A new norm on RP may then be defined by

-1
Ially = Il za]

The maximal singular value induced by this norm equals the
spectral radius. The problem is that T varies with w.
However, the singular values may be estimated using the

inequality

-1
lall =zl [lall TT ] =max [A;]- e,
i
where p is the condition number of T. The stability condi-
tion is thus that the loci Ai(iw)-p(iw) be contained in the

usual circle of radius 1/K- €.
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p (iw) measures the deviation of G(iw) from normality. When
G(iw) is normal for all w, p(iw) = 1, and Theorem 1.5 is

regained.

A problem arises if G(iw) becomes singular or near singular
for some w-value. In this case p(iw) - «, and the criterion
is useless. One way to overcome this difficulty is to close
the loop with a feedback matrix and then to study the effect

of additional feedback, linear or nonlinear.

A systematic way of studying the effect of variations of
the norm on R® has been devised by Araki ([13]). Consider

first the following example.

Example 1.4. ([13]) Given the standard configuration with
0.6 0
(1+s) (1+2s)
G(s) =
0 0.6
(1+3s) (1+0.58)
and
@(01,02) = (ol-+2.5(p(02L O.l(p(cl)-+02),
where @(+) is subject to |@(o)| < |o|. Using the ordinary
norm on [RZ, ||z||2 = z§-+z%, yields
l|lc]] = 0.6
lle|| ~ 2.86,

so the condition of the small gain theorem is not satisfied.

If the norm on R? is changed into ||z||2(l 5) = 22 +25 22, the
4

1 27
induced norms of G and ¢ become

HG||(1,5) = 0.6  (unchanged)

”Qll(l,S) ~ 1.5,
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so stability can be deduced from the small gain theorem.

Araki's result is very general and particularly suited for
composite systems (see further § 2.2). Here only two special
cases will be considered, namely when G and ¢ are diagonal,

respectively.

Definition 1.2. (cf. [14]) A square matrix is said to be an

M-matrix if
i) the off-diagonal elements are non-positive, and

ii) the principal minors are all positive. =

Theorem 1.8. Given the standard configuration with G(s) =

= {gj5(s)} and

(D(Glr 021-°-r o) = (®1(011021~°-r Op)l (92(011 021---1 Op)r

P

R wp(ol,cz,...,op)).

i) Assume that G is diagonal with the characteristic loci
contained in a ball of radius 1/K - e. Assume further
that ¢ satisfies

| &
[mi(ol,cz,...,op)| < ) Bislos]|s i=12...,p.

51

j=1 *J
Define the matrix A = {aij} by
aji = K = Byy
aij = - Bij i % 3.

Then the closed-loop system is stable if A is an

M-matrix.

ii) Let G(s) = {gij(s)} be arbitrary but assume that ¢ is
diagonal (i.e. 5 depends only on oi) and is contained

only in the sector [-K,K]. Define
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1 .
= - sup |9g,.(iw)
K 030 i1 |

- sup |g,. (iw) | i j.
wz0

o}}
Il

ii

a, .
1]

Then the closed-loop system is stable

M-matrix.
Proof. See [13]. =

Remark. The M-matrix condition covers all
usingIRp—norms of the form

d z%, all d, > 0.
1 1

lzllg = 14

1l 1 F0
'—l

1

if A is an

that can be done
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CHAPTER 2. LYAPUNOV FUNCTIONS REVISITED

The pros and cons of the input-output approach as compared
to the classical Lyapunov function methods have been the
object of much debate. In short, the I-O view often provides
simpler methods of proof, particularly for equations not
obtained from ordinary differential operators. The Lyapunov
function, on the other hand, has its merits in cases where
global stability does not obtain, since it provides a

means to estimate the domain of attraction.

Considexr the equations

x = f(x,t) (2.1)

and

x = £(x,t) + g(x,t). (2.2)
x =0 is supposed to be the equilibrium point under study.
Suppose that this point is asymptotically stable. What can

be said about the solutions of Eqg. (2.2)?

This question is classical and has led to concepts such as

total stability and integral stability, depending on whether

bounds on g(+,t) are given in the supremum norm or some
LP-norm. Asymptotic stability of the equilibrium can in
fact be shown to imply total stability. The proof consists
in generating a Lyapunov function for the free system
(2.1), which can then be used to provide bounds for the
solutions of the perturbed system (2.2). The reader is
referred to Hahn [1], § 56, for the details.

The reverse problem, namely that of studying Lyapunov
stability given I-O-stability, is considered in § 2.1. The
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general result is fairly natural, and the interesting
part is rather to see how the general Lyapunov functions
specialise in various standard configurations. As a by-
product, a simple proof of the Yakubovich-Kalman lemma is

obtained.

§ 2.2 is devoted to the study of composite systems.

2.1 Generation of Lyapunov functions for input-output

stable systems

This section follows Willems [2] closely. It is well-known
that for linear systems, input-output stability holds if
and only if the A-matrix has all its eigenvalues in the
open left half-plane, provided that the system contains no
unstable uncontrollable and/or unobservable modes. It is
obvious that some minimality condition must be satisfied

also in the general nonlinear case.

First a few definitions. P, denotes the truncation opera-

T
tor:
f(t) t < T
(Pp£) (£) =
0 t > T,

and QT = l-PT.
subject to the input u(-:) that has initial condition xy at

The solution of a differential equation

time t0 will be denoted by x(t; xo,to,u). Recall that a
function V(x,t) is decrescent if there exists a function
B: RY » R" with g(0) =0 and V(x,t) < B(||x||) for all x and

t. It is positive definite if there exists an a: rRY » RT

which is monotone increasing, and V(x,t) > a(|[x]|). It is

radially unbounded if further

lim a (o) =+,
g-*+co

(For the application of these concepts in Lyapunov theory,

see Vidyasagar [3], Chapter 5.)
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Definition 2.1. The state space of a dynamical system is

said to be uniformly reachable if for any X and to there

exists a T and a u with

2
I ey ml1® < elixglD

subject to x(to; 0, tO—T, u) = X Uniform observability

holds if for all Xy and t0 there exists a T such that

2
” Pt0+T QtO Y('I X(';XOI tO' 0), 0) ”

is positive definite and radially unbounded in Xpe ®

As Lyapunov function candidates the following two functions
will be considered:

2
I

’

i)  Vgp(x,t) = inf [[ Py Qt0 u

where the infimum is taken over all t > tO and u with

x(t; 0, tol u) = x.
L. 2
ii) Vo(xrt) = H Qt Y('l x(.;xl t, 0)1 O) ”

VR is defined if the state-space is reachable, and Vo is

defined if further the dynamical system is I-O-stable. From

Vo(x,t) = [ | y(1s x(15x,t,0), 0) 1% ar
t

it is clear that Vo is monotone nonincreasing along the

solutions of the free system. To see that this holds also

for V_, consider VR(x(tl;x, t, 0), tl) where t; > t, and let

RI
x(ty; %, £, 0) = Xq. By definition,
V_(x,,t;) = inf || B, Q, u]l?
R'™W1’"1 tl t0 .

The state can be taken to Xq by first taking it from O at
time t0 and then applying zero control till time tl' This
is a suboptimal control for taking the state from O at t0
to x; at tg, which shows the inequality. Notice also that

the assumptions on uniform reachability and observability
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together with a finite-gain condition imply the

inequalities

Vo € KV, € KV,

Finally, it is clear that Vo » 0 as t » o, The following

result has thus been shown.

Theorem 2.1. Consider a uniformly observable realisation

of a finite-gain I-O-stable system, and assume that the
state space is uniformly reachable. Then the system is

globally asymptotically stable, and Ve and V., are radially

0
unbounded, decrescent Lyapunov functions for it. o

Example 2.1. Consider the linear system

(2.3)

X = AX + Bu
y = Cx ,

where A is strictly Hurwitz, and (A,B) and (C,A) are
controllable and observable pairs respectively. To get an
expression for Vpr @ fixed-point problem must be solved:
Find

¢ T
inf | u (s) u(s) ds
=T
subject to x(-T) = 0, x(0) = x. The controllability condi-

tion implies that the Gramian- W(-T,0) is nonsingular, and
the solution is consequently

T
xT e AT W l(—T,O) e il X

(see Brockett [4], p. 137). Let

T
Kp = AT wi-T,0) 2T,

Using the differential equation satisfied by W(-T,0) (cf.
[4], p. 78), one obtains
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T
K, = | ePS BT &® S gs.
T
0
Let
K = lim K.
T—>co T
Then
T -1

VR(x,t) = x K X,

where K is the positive definite solution of the Lyapunov

equation

AK + KAT = - BBT.

It is easy to show that

Vo(x,t) =XTLx,

where L solves

ATL + LA = - c'c.

Of course, xTK_lx and x'Lx are only two out of infinitely
many possibly Lyapunov functions for Equation (2.3). =

The functions VR and V. may be modified somewhat. Let the

o)
system operator be G, and pick any positive constant

k > ||G]|]. Then the following two functions exist:
. 2 1 2
VR, (x,8) = inf ([lpeull® - ;5 [P Gull”),

where the infimum is taken over all u with

x(t; 0, to,u) = x,
and

, 2 _ 1 2
Vo, (¥it) = - 1af (llogull = - = Il o Gull” ).

Example 2.2. Consider again the system given by Equation
(2.3), and let G(s) = C(sI—A)'lB. The variational problem
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pertaining to VO'|< is
- inf | (uT(s)u(s) - 33 yT(s)y(s)) ds,
u t K

and the corresponding Riccati equation is

ATp + pa - —l?? cfc - pBBTP = 0. (2.4)
K

It can be inferred that Eg. (2.4) has a negative definite

solution if A is strictly Hurwitz and

sup GT(-iw) G(iw) < K2,

and

o JT
VO'|< = X Px.

(The reader may consult [4], § 25, on Eq. (2.4).)

The expression for V is slightly more complicated. =

R, K

This section will be closed with a study of passive systems.

Recall that an operator G is passive if

< Ptu, PtGu > > 0,

where <+, *> denotes the inner product, and the system is
assumed to be in equilibrium at t = -. It is strictly

passive if G- €I is passive for some e > 0.

Definition 2.2. The required energy Er(x,t) is defined by

Er(x,t) = inf< Ptu, PtGu> ,

where the inf is taken over all t > t0 and u with

x(t; 0, t u) = x. The available energy E_ is given by

0’

Ea(x,t) =

u
t >t
1

= sup - < Ptthu, Ptthy (‘r x(-; X, tlu)l u)> .
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The cycle energy Ec(x,t) is defined as

Ec(x,t) = Er(x,t) - Ea(x,t).

The required energy is the energy needed to take a system
from the equilibrium to a set of initial conditions, and
the available energy is the maximum amount of energy that
can be extracted from the system. The cycle energy is the
amount of energy necessary to take the state from the
equilibrium to x and back again, i.e. the loss. An alter-
native formula for E,(x,t) is

Ec(x,t) = inf < P

Eq

where the infimum is taken over all t0 and tl, t0 < t < tl’

u, Pthu> ’

subject to x(t; 0, to,u) = X.

It is clear that Er’ Ea’

passive systems. Further, Ea-l-Ec = E

and Ec all exist for reachable,

and Ea < E_.

r' r

Theorem 2.2. Consider a uniformly observable realisation

of a passive dynamical system, and assume that the state
space is uniformly reachable. Then E, and E, are radially
unbounded, decrescent Lyapunov functions for the equilibrium

solution. =

The proof follows the same lines as those of Thm 2.1. See
[2] for details.

Example 2.3. Consider the linear system S(A,B,C,D), and
let G(s) = C(sI—A)_l B +D. Assume for simplicity that G(s)

has all its poles in the open left half-plane. Now, by

Parseval’s formula,
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Il ul(s) y(s) ds Il AT (-iw) v (iw) do =

N
ﬁIH

[ A% (-iw) G(iw) G(iw) dw

V)
1 Ly

= i% J GT(-iw)(GT(—iw)-+G(iw)) 4 (iw) dw,

so that passivity of S is equivalent to G(s) being positive
real, i.e.

el (-iw) + G(iw) > O, V w € R.

It will also be assumed that D+DT > 0, so that the system

is in fact strictly passive.

The available energy E, is obtained from

[= 2]

E_(x,t) = - inf J ul(s) Y(s) ds
ue€ L2(t0,w) &
0
subject to
X = AX + Bu
y = Cx + Du
x(to) = X.
Now

j ul(s) y(s) ds =

£y

|_l

5 J [ul (s) (Cx(s) +Du(s)) + (Cx(s)-+Du(s))Tu(s)] ds =
0

1 1

cx(s)) (D+DT) « (u(s) + (D+DY) “tcx(s)) -

Il

% J [(u(s)+—(D+DT)_

£ T T 1

- x(s)T ¢t (p+DT)~ Cx(s)] ds.

Introduce u(s) = u(s) + (D+DT)'l Cx(s). Then the system

equation becomes
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T

x = (A -B(D+D )'lc) x + BU,

and the performance index is of the type considered in
Example 2.2, The infimum is xTPx, where P is the (unique)

negative definite solution of

(A-—B(D+DT)_1 )T p + P(A-—B(D+DT)_1 c) -

- cTopT) e - pe+DT) L BTP = 0
or

aTp + pa - (pB+cT) (0+0T) t(pB+cT) = 0. (2.4)
One obtains

Ea(x,t) = - xTPx.

To proceed, let (D+DT) be factored as WTW, and set
PB+CL = LW. With S = -P > 0 we have thus established

(the Yakubovich-Kalman lemma) :

1

If G(s) = C(sI-A) "B+D is positive real, there exist

matrices 8§ > 0, L, and W such that

aTs + sa = - .t
SB = ¢t + 1w
wWt = D + DT.

(The assumption (D+DT) > 0 is normally no restriction in

applications.)

The computation of Er(x,t) is somewhat more laborious and

yields

1

E_(x,t) = xT(-p + K 1) x,

where P is the solution of Eg. (2.4), and K solves
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(a -B(+T) "L(c+8TP)1T k + K[A-B(D+DY) "L(c+BTR)] =

- B(p+p%) "t BT,

Notice that
E (x,t) = E_(x,t) - E_(x,t) = xT K_l x >0
c 7 r r a r r7

so that energy is dispersed in the system. o
For a survey of the relations between variational problems,

Riccati equations, frequency domain inequalities etc., see
Willems [5].

2.2 Composite systems

So-called large-scale systems have been the subject of much
effort in the latest years. By "large-scale" is implied

that ordinary methods of analysis are not applicable due to
the size of the system; rather, analysis must be based on
decomposition into subsystems. A typical problem is then to
deduce some property (for instance stability) of the overall
system from a study of the subsystems and their interconnec-
tions. Since this is a question of structure rather than of
size, the term "composite systems" is more appropriate than

"large-scale systems".

In stability problems, the normal course of action is

i) to investigate the stability of the subsystems, and to
express this stability in the form of Lyapunov func-
tions (state-space formulation) or gains (I-0 formula-

tion) ;

ii) to use the results from i) in order to produce bounds
on the strength of the interconnections that guarantee

stability of the composite system.
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A problem is that the interconnection may very well improve
the stability properties, whereas the above approach
requires that the interconnections be small in some sense.
On the other hand, if there are strong interconnections

that support stability, the decomposition should be redone.

A concept that has turned out to be very useful is unifying

the state-space and I-0-descriptions is that of dissipative

systems (for a survey, see Willems [6]). The presentation
here follows Moylan and Hill [7], since their results seem
to incorporate most of what has been achieved in the area

of composite-system stability.

Definition 2.3. Given a system with input u € R" and output

y EIRP. Let Q = QT, R = RT, and S be (pxp), (mxm), and

(p¥m) matrices respectively. Then the system is said to be

(Q,S,R)-dissipative if

< Pty, QPty> + 2 <Pty, SPtu> + <Ptu, RPtu> 2 0

for all £t € [R. m

The dissipativeness concept specialises to various other
known concepts for a proper choice of the matrices Q, S,
and R. Q =-I, S =0, and R =+ I yields finite—-gain
stability with gain k. Q = R =0 and 8§ = I (m=p) yields

passivity.

Suppose now that we have given N subsystems, linearly

interconnected as described by

N

ui= (ui)e_ .-Z Hij Yj l=l,2,.--,N
j=1

or, in more compact notation,

u = (u)e - Hy. (2.5)

Here, (u)e denotes exterior inputs.
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Theorem 2.3. Consider an interconnection of N systems
described by Eqg. (2.5). Let subsystem i be (Qi, S Ri)—

il
-dissipative, and set Q = diag(Qi), S = diag(Si) and R =
= diag(Ri). With 6 = HTST+SH-HTRH-Q, the composite system

is stable if @ is positive definite.

Proof. It follows from the assumptions that the composite
system with u as input is (Q,S,R)-dissipative. This implies

(set <Ptf, P.g> = <f,g>t)

<y’6y>t - 2<vy, 61/2 :“Sue>t < <u,, Rue>t
with 8§ = 0" %/2(s-5TR). Pick an o> 0 such that R+ 8T8 < o2I.
1/2 A
I o2y - Bu_ I, < o llull,
whence
A—l 2 A
Iyl s 10720 @+ 181D Nugll,,

so that the composite system with u, as the input and y as

the output is indeed finite-gain I-0 stable. =

Theorem 2.3 can be formulated in Lyapunov function termin-
ology. Using the same arguments as in the definition of Ea
and E. in the preceding section, it can be shown that
(Q,S,R)-dissipativeness implies the existence of a scalar
function V(x) > 0 which satisfies the dissipation inequality
t1
V(x(to)) + I w(s) ds > V(x(tl))
t

0
with respect to the supply rate

w(t) = y(£)Qy(t) + 2y(t)Su(t) + u(t)Ru(t).

The triple (Qi,si,Ri) defines Lyapunov functions V. for
each subsystem, and the condition of Theorem 2.3 then

guarantees that
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is a Lyapunov function for the composite system.

Corollary 2.1l. (passivity) Suppose that all subsystems

are passive and have only one output. Then a sufficient
condition for stability is that there exists a positive
definite matrix P = diag(pi) such that HTP-FPH is positive

definite. =

Corollary 2.2. (small-gain) Suppose that subsystem i has

finite gain Ky and let K = diag(Ki). Then a sufficient
condition for stability is that there exists a positive
definite matrix P = diag(p;) such that P - (KH) TP (KH) is

positive definite. =

The conditions of Cors. 2.1 and 2.2 are closely related to
the M-matrix condition of Araki [8]. In fact, let H = {hi.}

”N N j
and define H = {hij} via

. By 1=13

h,. =
1]

—|hij| i 3.

Then a sufficient condition for the existence of the P in
Cor. 2.1 is that H be an M-matrix. Likewise, let H be
defined as

X = |[KHJij[ i=3

+J - |(KH}ij| i# 3.

Then a P for Cor. 2.2 exists if H is an M-matrix. These

conditions are not necessary, however.
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CHAPTER 3. INFINITE-DIMENSIONAL SYSTEMS

Infinite-dimensional systems arise in control problems for
instance due to time-delays or in processes guided by
partial differential equations. The linear theory has
acquired a fairly closed form. Well-known concepts from
the infinite-dimensional theory such as stability, observ-
ability, and controllability have got their infinite-
-dimensional counterparts. Also many of the methods and
criteria from finite-dimensional stability theory can be
transferred with minor modifications. A major problem,
however, is that the state, taking its values in an
infinite-dimensional space, can never be measured. A
typical problem, such as control of the temperature in a
rod or a slab from the boundary, will have to be based on
point measurements and point sources. This calls for un-

bounded operators in the modelling and creates problems.

The chapter starts with a short account of the semigroups-
-based theory for infinite-dimensional systems developed
for instance in Curtain and Pritchard [l1]. The following
subsections exemplify the use of Lyapunov functions and
frequency domain methods. Section 2 is devoted to control

problems.

3.1 Free systems

3.1.1 Semigroup theory

Consider the linear equation

z = Az
(3.1)
z(0) = z
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where A is an operator on a Banach space Z. Eg. (3.1) is

autonomous, and we can write
z(t+h) = T(h) z(t) h > 0,
where T (h) is some linear mapping. Clearly,
{ T(0) = id (3.2)

T(hl+h2) = T(hl) T(h2). (3.3)

Definition 3.1. A strongly continuous semigroup is a family

of mappings {T(h); h30} that satisfies (3.2), (3.3) and
lim || T(h)z-z ||, = 0, z € Z.
hy0

™

In this case, T{(*) was defined from A. It is also possible
to reconstruct the operator that generates the semigroup

from the semigroup itself.

Definition 3.2. The infinitesimal generator A of a strongly

continuous semigroup T(h) is defined by
Az = lim % (T(h)z-2z),
hv0
the domain of A being those z € Z for which the limit exists.

The operators on Z that generate strongly continuous semi-

groups (SCS) are characterised in the following theorem.

Theorem 3.1. (Hille-Yosida) A necessary and sufficient

condition for a closed densely defined operator A to
generate a SCS is that there are real numbers w and M such
that, for every X > w, (AI-A) is invertible and

L« —

(AI-A) { ——
| Ty

' i=1,2,...

Proof. See [1], Ch. 2. =
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It can be shown that T(t) always satisfies an estimate

) || ¢ ™

ewt for some sufficiently large w.

In Hilbert spaces the condition of Thm. 3.1 takes the form

Re< Az, z> < uu||z||2

(3.4)
Re < A¥z,z> ¢ w||z||2.

Consider now the inhomogeneous equation

Then,

z = Az + f(t)
(3.5)

z(0) = Zg -

in analogy with what is done for ordinary differential

equations, we may propose

as a
fact
tive
work
This

t

z(t) = T(t) z,5 + [ T(t-s) f(s) ds (3.6)
0

solution of (3.4). For £ € ¢! and z, € D(A), this is in

a solution (everywhere). This condition is too restric-
for applications, however. It is therefore customary to
with (3.6) as a solution for an arbitrary f € P, p > 1.

is referred to as the mild solution of Eg. (3.5). It is

in fact equivalent to the concept of weak solutions known

from distribution theory.

Example 3.1. Let z be an R'-vector and consider

é = Az,

The semigroup generated from this equation is

T(t) = eAt.

The @ of Hille-Yosida's. theorem may be taken as max Rexiun.

1

Condition (3.4) is satisfied with

_ T
< Zy,2,> = zle2

for a suitably chosen P. =
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Example 3.2. Consider the heat equation on the unit

interval [0,1]:

su _ 3%u

Y > t > 0, 0 < x <1,

90X
with boundary conditions
u(0,t) = u(l,t) =0
and initial condition
u(x,0) = uo(x).
This can be written as

du

EE=Au t > 0

where

AV:——- 0<X<l
9X

v(0) = v(l) = 0.

The scalar product is defined by

1
<u,v> = [ u(x) v(x) dx.

0

Using partial integration we get

1 2 1 1 2
<u,Au>=fua—%dx=|u%§—f<g—i) dx =
0 Ix 0 0

2 1
=—I<g£> dx ¢ - 2]’ u? ax
0 \°F 0

by Rayleigh's inequality. Consequently,
<u, Au> - Tr2||u||2,

so the condition of Hille-Yosida's theorem is satisfied
with w = -'nz(notice that A is self-adjoint). In this case,
an explicit formula for the semigroup can be derived. Let
/2 sin(n*mx), n=1,2, ..., be the (complete) system of

orthogonal eigenfunctions of A, and expand uo(x) in a
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Fourier series

uy(x) = ] ¢, * V2 sin(imx),
i=1
where
1
c. = [ V2 sin(imx) u,(x) dx.
i 0 0

The complete solution of the equation is then

o] _fa 2 _
u(x,t) = ) c, e (im)“t VY2 sin(imx).

Otherwise expressed,
1
(T(t)uy) (x) = [ G(x,y,t) u,y(y) dy,
0
where

G(x,y,t) =

=] s 2
) e (im)“t . 2+ sin(imx) sin(imy)
i=1

is the Green's function of the problem. =

Example 3.3. Consider the functional differential

equation
. N 0 —
x(t) = Agx(t) + ] Ay x(t+0;) + [ RA(0) x(t+0) do,
i=1 -b
where x(t) = h(t), -b ¢ t € 0, is given and, -b < @l € was

< @N < 0. The scalar product chosen is

0
<X,y> =<udm,ym)ﬁi+f <xwLth>Hdm
-b

where <, >, is the scalar product of the Hilbert space H

H
in which x takes its values. The abstract formulation of

the above equation is

z = Az
z(0) = h,
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where A is defined by

N 0

BgE(0) + ] A;£(0;) + [ K(0)f(6)d0, ©=0
(Af) () = i=1 -b

df

%‘f e* 0-

For stability considerations, the number w of the estimate
HT(t) ]| < Me®t is of course crucial. Let o(A) be the

spectrum of A, and set

w(A) = sup {Re A; A € o(A)}

w(A) = inf {w; ||T()]| < Me®t, some M and all t > 0}.
Then

w(A) < w(a), (3.7)

so exponential stability implies w(A) < 0. The inequality
in (3.7) may be strict; the spectrum of A may even be empty.
Equality holds for instance for compact operators or self-

adjoint operators that are bounded from above.

3.1.2 Lyapunov functions

Lyapunov's theorem has the following infinite-dimensional

counterpart.

Theorem 3.2. Let Z be Hilbert space. Then the system

is exponentially stable if and only if there exists a non-

negative definite operator P satisfying
<Az, Pz> + <Pz,Rhz> = - <2, 2>. (3.8)

If T(t) is the corresponding semigroup, an equivalent
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condition is

[e2]

J HT(t)zll2 dt < o for all z € Z.
0

Proof: See Datko [2]. o

Example 3.4. ([3]) Consider the second-order system

X+ ox - Ax = 0
(3.9)

x(0) € H, =x(0) € D((-A)l/z),

where A is a self-adjoint, non-positive, not necessarily
bounded operator, and a is > 0. Obviously, the system (3.9)
will not be exponentially stable if w(A) = 0, so assume
w(A) < 0 and equip D((¥A)l/2) with the norm || (—A)l/2

Let Z = D((—a)l/2)><H and set (z . §

z [l =

2 2 2
=112 = 1l Y 2x)1% + |yll%

An equivalent form of Eg. (3.9) is

dz

d_t=AZ

0 I
A -ol

It is possible to solve the formal Lyapunov equation (3.8)

with

g
Il

as in [3], but instead a physical argument will be used.

Assume for instance that

u(0,t) = u(l,t) = 0,

in which case (3.9) is a damped wave equation describing
the vibrations of string fixed at x=0 and x=1. The energy

E(t) stored in the string at time t is given by
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3 {3u 2 /au 2]
0
Hence
1 2 2
dE(t) _ [ (, 3w 37w 5 3u 3%u), _
dt J 7 9x " axdt t at/
0
1
2 2
0 o9x ox
1
2
_ du)
B 2064[(81:} dx
0
Thus
. ou
lim —— =0
>0 ot

Using again Equation (3.9) we get

32u
lim -5 = 0.
t+o 99X

The limit u(x,«) is thus linear and identically zero due

to the boundary conditions.

The general Lyapunov function corresponding to (3.10) is

1/2 2 2
a2 12 + 1yll2,

2
lz117-

So far our only concern has been with linear equations.
Nonlinear problems have been treated by Pritchard and
Zabczyk in [3]. The theory becomes very technical, since
not even existence problems are trivial in nonlinear PDE's.
Below an example is given to illustrate the use of

Lyapunov functions.
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Example 3.5. Consider the nonlinear diffusion equation

2
%:-a—%+u3 0 <x<1l1l, t«<o0
9x
u(0,t) = u(l,t) =0
| u(x,0) = uo(x).

vV = Q1u2<ix is a Lyapunov function for the linear equation,

so there is reason to believe that it will work at least

locally for the full nonlinear equation. We have

1 1 5 \
av _ du _ d°u 3 —
- ri J 2u T dx = J 2u (ggii-u } dx
0 0
1 > 1
= - 2 J (EE\ adx + 2 [ u4 dx
x) J
0 0
Now
N ou
u(x,t) = {) % (x,t) dx
implies
1
2
sup [u(x,t)l2 < J (%ﬁ(x,t)) dx
x€[0,1] 0

by Schwarz' inequality. Further,

1 1

J a(x,t)fax < sup |u(x,t)|2 J (u(x,t))? dx

x€[0,1]

0 0

so, provided that

1
%'uo(x)zdx < 1,

one obtains

1 1

J (u(xltz))zdx < J (u(x,tl))zdx, for t,>ty.

0 0

(3

.11)
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With somewhat more labour, it may be shown that
1
2
J uo(x) dx € 4
0

is sufficient to ensure (3.11]) and thus stability. =

The generation of Lyapunov functions for functional differ-

ential equations may be cumbersome. The dependence of %%(t)

upon all x(t-Q), O€ [0,@0], implies that the Lyapunov func-
tion should contain all these values.

Example 3.6. Consider

{ x(t) = ax3(t)4-bx3(t—r), r >0

x(t) = h(t), te[-r,0].
Let
4 t o6
V(x(t)) =cx (t) + /] x (s) ds.
t-r

Then

%% = 4cx3(t)(ax3(t)+—bx3(t—r)) + x6(t) - x6(t—r).
With ¢ = - 1/2a, one gets

g% = - (x6(t) + %? x3(t) x3(t—r) + x6(t—r)).

From this we conclude:

i) Ifa<0, |bl] <a, V>0, and V ¢ 0 with equality
iff x(t) = x(t-r) = 0. This implies stability.

ii) Ifa<0,b=a, V=0 iff x(t) -x(t-xr) i.e. x = 0,

-x(t-r), C = 0. Again we conclude

X = C., Since x(t)
stability.

iii) If a < 0, b = -a, each solution will approach a

constant (not necessarily 0).
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iv) If a > 0, |b|] < a, V < 0, and V takes negative values
in any neighbourhood of the origin. This implies

instability of the null solution. =

The above argument was based on a functional. In some

instances, it may in fact be possible to use a function,
provided that certain resctrictions are imposed on the
initial data. The idea, which is due to Razumikhin, is best

illustrated by an example.

Example 3.7. Consider the equation

x(t) = —a(t)x(t) - b(t) x(t-r(t)),
whexe a(-), b(*), and r(+) are bounded continuous functions
and 0 € r(t) < ryr Let V(x) = x2/2. Then
V x(t) = -a(t)x?(t) - b(t) x(t) (x(t-r(t))) <
< -(a(t) - |b(t)]) x2(t),

provided that x(t-r(t)) < x(t). So if |b(t)| < a(t),
V(x(t)) < 0 provided that V(x(t)) 3 V(x(t-r(t))). This

implies stability. If further a(t) > a, and there is a k < 1

0
such that |b(t)]| < kay, uniform asymptotic stability

obtains. =
For a proof of Razumikhin's result, the reader is referred

to Hale [4], which gives a comprehensive treatment of

stability theory for functional differential equations.

3.1.3 Frequency domain criteria

Several of the frequency-domain criteria treated in Ch. 1
may be extended to Hilbert or Banach spaces. In principle,
these criteria are intended as a tool of analysis for
feedback systems, but since any practical control system
necessarily works with a finite number of inputs, they are

of limited interest in this respect. The example below
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illustrates the use of Cook's criterion (Thm. 1.7) in a

free system.

Example 3.8. ([5]) Consider the guasilinear damped wave
equation
2 2
6.2, 5 58 _ u az o (1+ 28 cos(nx)) £(z) = 0,
2 t 2
ot 9X

0 <x<1l, t=>0
z(0,t) = z(1,t) = 0.
Here f(*) is a possibly timevarying nonlinear function
satisfying the usual conicity condition

2

a22 < zf(z) < bz for all =z.

An alternative formulation is

322 9Z 322

- Aﬁ—u—-—2=—(l+zdcos (TTX))LI
ot 9xX

u = f(z),

s0 that the equation formally describes a feedback system
composed of a linear link in the forward path and a nonlinear
2

subject to the given

feedback. The eigenfunctions of B
X
boundary conditions are v2 sin (kmx), k=1, 2,... . Expanding
z and u in Fourier series and taking Laplace transforms

yields

(s2+ As+ 1y » k2) 2, (s) = 0, (s) +8(8y_; (s) + Ty (s)).

The transfer matrix G(s) = {gjk(s)} is thus given by
—— k=13
s”+ As+ uj
8 .
g.,(s) = 4 k=31
1k SZ+}\S+pj2
0 otherwise,
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Stability can now be deduced from a plot of the mean
Ger¥gorin bands and the standard circle of radius %\%-—%)

1,1, 1
centered at [5-(5%-5), O]. .

3.2 Controlled systems

It is possible to develop a theory for control of infinite-
-dimensional systems based on the semigroup approach
sketched in the previous section. The theory resembles

the standard finite-dimensional theory in many respects.
For instance, the linear-quadratic optimal-control problem
leads to an operator Riccati equation. Provided that the
system is stabilisable, this equation has a steady-state
solution, which furnishes the solution of the infinite-

-horizon problem,

The stabilisation problem requires some care, since there

are several counterparts to finite-dimensional controllability.
The major general result in this direction that does not lay
restrictions on the semigroup and its infinitesimal generator
is that exact null controllability with Lz—controls implies
exponential stabilisability (in Hilbert spaces). Other condi-
tions that guarantee stabilisability can be found in [1],

Ch. 3.

3.2.1 Partial differential equations

An established way to produce a stable feedback regulator
for linear systems is to solve an infinite-time quadratic
regulator problem. This will be done now for the special

case of controlling the temperature of a rod.

Example 3.9. ([1]) Consider the controlled heat equation
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([ 3z 322
- = —= 4+ u{x,t) 0<x<1l, t>0
ot
9x
A (3.12)
z(0,t) = z(1,t) =0
. z(x,0) = ZO(X)’
Suppose we want to minimize
: 2 f11 2 2
J(u) = [ z(x,epTax+ [ [ (qz(x,t) "+ ulx,t) ) dx dt. (3.13)
0 00
(3.12), (3.13) is a special case of the following general

LQOC problem:

min J(u) =< z(tl)’le(tl)> +

u
t

1
+ [ (<z(t),Qz(t) > + <u(t), Ru(t) >) dt,
0
where z and u are related via

t
z(t) = z, + [ T(t-s) Bu(s) ds, 0 ¢ tg tg.
0 0 1

z and u take their values in Hilbert spaces H and U respec-
tively. Let A be the infinitesimal generator of the semi-

group T(t). Then the optimal input can be obtained as

u(t) = - R_l B* P(t) z(t),

where P(t) is the (unique) solution of the operator Riccati

equation
- %<P(t)h,h> = <P(t)h,Ah>+<Ah,P(t)h>+<Qh,h> -
4 - < 1ok .
<P(t)BR "B¥P(t)h,h>; (3.14)
P(tl) = Ql'

A

Here h is a typical element of D(A).

Let {wi}% be the orthonormal set of eigenfunctions of A.

i
Assume that P(t) can be expanded as
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<o (e o)

P(t) = }§ ] P..(t) <<, 0,> o..
i=0 j=o0 *J o3
Then (3.14) takes the form

o0

- v 1ok *
XO ,Q,-ZO pik ij<R B(pkrB (D£>l

k=
Ai being the eigenvalues of A. In our case ;= sin(imx),
i=1,2,..., and A, = (im?. This yields
. 2.2, .2 v
Pi; = m(1°+3%) p.. -g-6..+ J p.. p.
13 1] ij k=0 ik *jk
(Gij =0, 1% 3j, =1, i = j). The solution is
pij =0 i¥% 3
—o; (t-t,)
a; (1-by) - b (l-a,) e *+ 1
p..(t) = & i i
ii —ui(t—tl)
(l—bl) - (l-ai) e
where
.
o; = 2V ﬂ4i4+-q
1 84 = - ﬂ212 - /ﬂ4i4-+q
bi = - ﬂ2124-/ ﬂ4i44-q.

It turns out that the expansion of P(t) is in fact well-
—-defined., With

le~18

u(t) = u; (t) o4, z(t) = z; (t) @

Il e~18
o

i i=0

the optimal input is obtained as
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uy (£) = py; (£) z;(8).
As tl—*w, pii—>bi. Notice that

b, = ! y

i
Wziz + /n4i4—+q

so that bi converges rapidly to zero. =

As in finite-dimensional problems, a realisation of the
optimal feedback regulator requires knowledge of the state.
Even if z(x,t) is known for all t, a computation of the
infinite member of coefficients zi(t) is required. In
practice, however, only a few coefficients need to be
computed. The problem is rather that Equation (3.12) does
not model a realistic situation, since the control is
distributed over the entire interval ]0,1[. In a typical
application, the temperature or the heat flow at the
boundary is controlled. In such cases, the model will

contain unbounded operators.

Example 3.9, cont'd. Consider again the problem of con-

trolling the temperature of a rod, but this time from the

boundary:

F 822

9x

< g (3.15)
-A % (0,t) = u(t); =z(1,t) =0

QL
N

Q
t
[\

z(x,0) = zo(x).

A%%(O,t) denotes the jump of the derivative at x=0, and

the physical meaning is that the heat flow is controlled.
By a standard trick, (3.15) can be brought into

2
%E = é—% + ud (x)
oxX
z{(0,t) = z(1,t) =0

z(x,0) = z45(x),
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§ (x) being the Dirac distribution. If a solution is sought
in terms of an eigenfunction expansion as in the previous
calculation, this leads to an infinite system of coupled

ODE's. Alternatively, P(t)z may be expressed using a kernel:
1
(P(t)z) (x) = [ K(x,y,t) z(y) dy.
0

This leads to a PDE in the kernel (see [3], p. 243). The
optimal input is again a function of the whole state.

If the temperature at the endpoint is controlled, the

boundary conditions are
z(0,t) = u(t); z(1,t) =0,

and the equivalent equation is

”

2
z2 _0ou _ us ' (x)
9xX

|w

QQ
ot

+

z(0,t) z(1,t) =0

z(x,0) = zo(x).
Also in this case a Riccati equation results, and a solution

exists if the cost functional is a pure integral. =

This section will be closed by a brief study of what is
perhaps the most common set-up, namely the case when the
temperature is measured at one point in the interior, and,
for instance, the temperature at one end-point is the input.
The system is thus SISO. What makes it a non-standard problem

is that the transfer function is transcendental.

Example 3.9, cont'd. Consider

2z _ 3%z
ot 3X2
1 z(0,t) u(t); z(1,t) =0
z(x,0) zq (%)

Y(t) = Z(Xolt)- 0 < XO <1

9
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Let z(x,s) be the Laplace transform with respect to time.

Then (forgetting about initial conditions)

2

d%z(x,8) _ ¢%(x,s) = 0
2
dx
2(0,s) = u(s); z(l,s) =0,
so that

sin h(1l-x4) /s
u(s)

y(s) = z(xgy,s)
sin h Vs

with a suitable definition of the root function. The open-
-loop system has poles at s = -n2-w2, n=0,1, 2, ..., of
which at least the one at the origin is also a zero. The
Nyquist locus of G(s) is shown in Fig. 3.1 for the case

Xy = 0.5.

T 2 cosh

Y

_sinh0.5 Vs

Fig. 3.1 - Nyquist locus of G(s)
sinh Vs
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The Hurwitz range is [0, 2 coshm] ~ [0, 23.2]. For non-
linear feedback, information can be obtained from the Popov

criterion or the circle criterion. 0o

3.2.2 Delay equations

Synthesis in control systems governed by delay equations
may be treated within the same framework as the PDE case.

Ref. [1], Ch. 1, contains an example and further references.

As in the PDE case, practical control problems often lend
themselves to descriptions based on standard transfer
matrices with transcendental elements. In such cases, the
Nyquist criterion and its ramifications remain an efficient

tool for stability analysis.
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CHAPTER 4. STOCHASTIC STABILITY

The present chapter deals with stability in random-parameter
systems. Section 1 contains the basic stability definitions
and a brief account of stochastic Lyapunov functions. The
following section gives criteria for moment stability and
almost-sure stability in free systems. The chapter is closed
with a discussion of the linear-quadratic optimal control
problem in white-noise parameter systems and its implica-

tion for the stabilisability problem.

4.1 Preliminaries

4.1.1 Basic definitions

There are several convergence modes to choose between when
adapting the Lyapunov stability concepts to a stochastic
framework. Almost-sure convergence and mean-square converg-
ence seem to be the most relevant ones. The definitions
given suppose that the null solution is being studied. The

time variable may be continuous or discrete.

Definition 4.1. The null solution is said to be almost

surely stable (or stable with probability one) if for all

€1 > 0, €, > 0 there exists a § > 0 such that
P( su sup || x(t; xp,t5) [ > &) < e,.
[EN F<6 txt,
m
Alternatively,
P( lim sup || x(t; x5,ty) [l = 0) = 1,

lxoll»0 t>t
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which means that the deterministic stability definition

holds w.p. 1 (i.e. for all sample paths).

Definition 4.2. The null solution is almost surely attrac-

tive if there exists a & > 0 such that [|x,|| ¢ 6 dimplies

P(lim || x(t; xg.tg) |l = 0) = 1.

£t

Definition 4.3. The equilibrium is almost surely asymptot-

ically stable if it is stable and attractive w.p. 1. =

Definition 4.4. The null solution is p-th mean asymptotic-
ally stable if the function

E {Hx(t; Xolto) pr}

is asymptotically stable. It is p-th mean exponentially

stable if there is a C and an a > 0 such that

B {[|x(ts xq,tg) [P} € C llxgll2+ exp (a(e=tg)).

In general, there are no implications between these modes
of convergence (see Chung [1], Ch. 4). However, if the LP-
-moments converge sufficiently fast, p-th mean stability
implies almost-sure stability (see the following paragraph) .
For linear It8—equation, there is an even more precise
result: almost-sure stability is equivalent to p-th mean

stability as p tends to zero (see Kozin and Sugimoto [2]).

4.1.2 Stochastic Lyapunov functions

The idea of using Lyapunov functions in the study of random-
-parameter systems dates back to the fifties (Bertram and
Sarachik [3], Kats and Krasovskii [4]). Recall that a
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Lyapunov function for a deterministic system is a function
which is decreasing along the trajectories of the system.
In stochastic systems, one calculates the expected rate of
change of the Lyapunov function, conditioned with respect
to the present state. If this is negative, stability can

be inferred from a supermartingale theorem. No proof will
be given here; the reader is referred to Kushner [5] for an

extensive discussion.

Theorem 4.1. Let x(t), t 2 tO’ be a discrete-time Markov

process, V(x) a non-negative function and set {y =

= {x; V(x) ¢ M}. Assume that in QM'

E{V(x(t+l))|x(t) =x} - V(x) = - W(x) < 0. (4.1)
Then
i)  P{ sup V(x(t)) > Ml x(ty) =x} € Vx)/M,
t>t
0
and

ii) 1lim W(x(t)) = 0 with probability =2 (1-Vv(x)/M).

oo

In continuous-parameter processes, the condition becomes

somewhat more technical.

Definition 4.5. The function ¢ is said to be in the domain

of the weak infinitesimal operator L if

T E {o(x(t+8)) [ x(t) =x} =@ (X) _ 1y exists = ¥(x)

§-+0 §

and

ii) lim E {p(x(t+8)) | x(t) =x} = ¥ (x).
§-+0

The continuous-time version of Thm. 4.1 simply replaces

condition (4.1) by
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(LV) (x) = - W(x) < 0. (4.2)

As in deterministic systems, the results obtained depend
critically on the Lyapunov function candidate chosen. The
following theorem establishes a link between moment stabil-

ity and the existence of Lyapunov functions.

Theorem 4.2.

i) If the equilibrium is p-th mean exponentially stable
for some p > 0, there exists a time-invariant function

V solving
E {V(x(t+l)) | x(t) =x} - V(x) = - W(x) (4.1)

with V and W subject to

A

al[h<H§ Vi(x) < a2H>d|g

(4.3)

A

agllxl1B € wex) < oyllxllg

all oy > 0. In particular, p-th mean exponential

stability for some p > 0 implies stability w.p. 1.

ii) If Eq. (4.1) has a solution V with V and W subject to
(4.3), the equilibrium is p-th mean exponentially
stable.

Proof: The proof uses standard arguments and can be found

for instance in Molander [6]. =

4.2 Free systems

4.2.1 Mean-square stability

The moment stability problem will be studied only for p=2.
One condition for mean-square stability in linear systems

with white-noise parameter disturbances was found by
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Willems and Blankenship [7]. The proof will be sketched

here using a Lyapunov function argument.

Consider thus the system
x(t+1) = Ax(t) - £(t) bo x(t), (4.4)

where x(*), b, and c areIRn vectors, A is nxn, and £(*) is
a white-noise sequence with zero mean and variance ¢. TO
determine the stability limit, choose the quadratic

Lyapunov function candidate V(x) = xTPx, where P solves

ATPA - A= - CCT.

This solution exists and is positive definite if A is

stable and (cT,A) is an observable pair. One gets

1l

E {V(x(t+l)) | x(t) =x} - V(x)

= xT(ATPA - P + oszPb ccT) X = = xchTx(l-oszPb).
This implies mean-square stability (cf. Thm. 4.2) if
i) The noise-free system is asymptotically stable, and
ii) o2 < (bTepb) L.

Condition ii) can be made more explicit. In fact,

[~ o]
p= 7 @ahH¥ ccT ak
k=0
so that
T, _ v T Tk 13 1 -1, dz
b Pb k£0 b (A7)" cc” AT b = zmv % G(z) G(z 7) =
|z|=1 (4.5)

The condition ii) is consequently a small-gain condition,
where the gain of the forward loop is obtained from the
energy integral (4.5), and the gain of the feedback noise
is determined by the variance. An analogous formula holds
in continuous-time. The condition can be shown to be

necessary and sufficient.
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In case the system equation is

x(t+1) = Ax(t) - £, () by cf x(t),

|l ~1 5

i=0

where the fi's are mutually uncorrelated with variance 02,
the energy integral (4.5) will yield a matrix. The necessary
and sufficient condition for mean square stability is then

that this matrix have no eigenvalues greater than 0—2.

4.,2.2 Almost-sure stability

The almost—-sure stability problem is considerably more
difficult. Only in exceptional cases explicit conditions

can be given.

Consider the Markov chain x(t) given by
x(t+1l) = A(t) x(t), (4.6)

where A(*) are independent identically distributed matrices.
The problem is to determine under what conditions x(t) - 0
w.p. L as t - o, Let z(t) = x(t)/ |x(t)|. Then z(t) will
be a Markov chain on the unit sphere. Assume that it is
ergodic and let the invariant measure be denoted by dP(°).

Clearly one has

log |x(t)| = log |[x(t-1)| + log |A(t-1) z(t-1)| =

t-1
log |x4| + 'z |A(i) z(1)
l=

If the conditions of the strong law of large numbers are
satisfied, the sum on the right-hand side will behave like

its mean value, or, more precisely,
log |x(t)]| » + or - w

according as
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E {log |[Az|} > or < 0. (4.7)

Here, the expectation is with respect to the ergodic
measure dP(*) on the unit sphere and the original distri-
bution of A.

Example 4.1. For the scalar equation

x(t+l) = a(t) x(t),
one obtains simply
E {log |al} < 0

as a necessary and sufficient condition for stability. =

In general, it is not possible to obtain an explicit

formula for the invariant measure involved in (4.7). Two-
-dimensional It0 equations form an exception. The reason is
that the z-process is also an Ito process in this case.
Since it is one-dimensional, the invariant measure can be
obtained from the steady-state Fokker-Planck equation, which
is an ODE in this case. The reader is referred to articles
by Khasminskii [8] and Kozin and Prodromou [9] for further

details. An example is given below (Ex. 4.2).

Normally, one is referred to conditions that are only

necessary. The following theorem is due to Infante [10].

Theorem 4.3. Consider the equation

x(t) = A(t) x(t), (4.8)

where the entries of A are assumed to be ergodic. If there

exists a matrix P > 0 and an € > 0 such that
T -1
E {Amax(A +PAP )} < -g,

then the null solution of Eg. (4.8) is almost surely asymp-
totically stable in the large.
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Proof: Choose V(x) = xTPx as a Lyapunov function candidate.

Alone the trajectories of (4.8), one has

Ly

V(x) _ x AP+PRIX _ , T, pap-
V(x) T ~ “"max
X Px
(see Gantmacher [11], Ch. 10). Consequently,

t

V(x(6)) € V(x(to)) exp ( Aoy (AT +PARTT) dt) =
0
t
= V(x(ty)) exp ((t-tg) * Egtg 3‘ Mooy GE) -

0
If E{Amax} < -¢, then

1 t
t-t f Amax dt < -
0 t0

for t > some T. This shows that V(x(t)) - 0 as t = «, and

™

stability follows. =

Example 4.2. Consider the equation

X, = X
{ .l 2 (4.9)
Xy = - 20X, - (L+ £(t)) X
where f(t) is assumed to be ergodic. Suppose that the sta-
bility boundary is sought in terms of E{£2}. A lengthy

computation then yields
B{£2} < 4r?

as a sufficient condition for stability. This result may be
sharpened if further assumptions on the noise are intro-

duced, for instance that f is Gaussian or periodic.

For the corresponding Ita equation,
dxl

dx2 = - 2C X, dt - Xq dt - cxl dw,

x, dt
2 (4.91)
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where dw is the unit Wiener process, the exact stability
boundary can be computed from Khasminskii's results. The

results are displayed in Fig. 4.1.

80
W}llle, Vtofs

60

S0

periodic noise

40

\

Gaussian noise
30+

: |
O 0.4 0.8 .2 1.6 2.0 2.4

>3

Fig. 4.1 - Stability boundaries for Egs. (4.9),
(4.9') with various assumptions on the
noise.
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To illustrate the use of stochastic Lyapunov functions,
this section will be concluded with a nonlinear ItoO equa-

tion.

Example 4.3. [5] Consider the Ito equation

{ dxl = X, dt

dx2

(4.10)

- g(xl) dt - ax, dt - Xy O dw,
where

i . . ]
dw is the unit Wiener process

X
J f g(y) dy - o as X - to
0

xg(x) >0, x *+ 0

L 9(0) = 0.

In order to use Thm. 4.1, we must compute (LV) (x). For Ito
equations, the infinitesimal operator L is given by the
Kolmogorov backward operator L (see Astrém [12]1, pp. 72, 74).

More precisely, if

dx = £(x) dt + o(x) dw, x € R%,

_ _ T o .y 3V
(LV) (x) = (LV)(x) = ] £,(x) =— +
i=1 i
n 2
1 v
+ 5 ) 0, (X) 0u(X) —a—.
2 1,5=1 i | Bxiaxj
For Equation (4.10), try
X1

2
V(xl,xz) = x, + 2£ g(y) dy

as a candidate (this is the Lure function used in the

analysis of the noise-free system). One obtains

(LV) (x)

. l - 2 . —_—
X5%29(xy) + (—g(xl)-axz) 2%, + 5+ 0%x5 02 =

(—2a-+02) xg.



62

From Thm. 4.1, X, 2 0 wep. 1 as t » « if 2a > 02. With some

more labour it can be shown that also > S 0 w.p. 1. =

4.3 The stabilisation problem

The linear-quadratic optimal control problem for linear
systems with white-noise disturbances in the parameters was
first treated in full generality by Wonham [13]. Wonham
considered the continuous-time problem, but the discrete-
-time version, being conceptually and computationally

simpler, will be treated here.

Consider thus the system described by the difference equa-

tion

k
x(t+l) = (A + ) kg (t) Ai) x(t) +

+ (B + ) X,(t) B;) u(t). (4.11)
. i i
i=1
Here k; and Ai are independent, unit white-noise sequences.
The object is to minimise, with respect to u, the perform-

ance index

T
Jp = E { ) (x(s)TQx(s))/+'u(s)q?Ru(s) }.

s=t0
As usual, the state is assumed accessible to measurement.
Using dynamic programming, it can be shown that the optimal

input is

g -1
u*(t) = - [R+ BTP (t+1) B+ ) B, P(t+1) Bi] BTP (t+1)A°x (t),
i=1

where P solves the Riccati-type equation
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( k
P(t) = ATP(t+1)A + Q + ) AiTP(t+1)Ai -
i=1

% 5
- ATP(t+1) B [R+ BTp (t+1)B+ ] B, P(t+l)Bi] .
i=1

. BTR(t+l) A
(4.12)

The optimal loss is x(tO)TP(tO)x(tO).

The consequences for the stabilisation problem are immediate
from Thm. 4.2. A solution of the infinite-horizon problem
(T =w) will exist only if the system is mean-square stabil-
isable. If stabilisability holds, a solution will exist for
some Q and R. In this case, a steady state solution of Eqg.
(4.12) will exist, and

P = lim P(t)

t>-—o0

will yield a stochastic Lyapunov function V(x) = xTPx for

the closed-loop system. This requires stabilisability of the
noise-free system, and normally involves a condition on the
noise intensities. Conditions for stabilisability for
arbitrary noise intensities can be found in Willems & Willems
[14] and Molander [6].
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CHAPTER 5. STRUCTURAL STABILITY

5.1 Introduction

All stability problems discussed so far refer to perturba-
tions of the state. It is tacitly assumed that the right-
-hand sides of the equations governing the process remain
constant or at least constrained to lie in certain regions
in parameter space which are bounded away from "dangerous
sets". In practice, however, parameters will normally drift
as a result of exogenous forces. At certain critical wvalues,

together forming the bifurcation set, the topological pic-

ture of the flow may change brusquely. Equilibrium points
split or coalesce, limit cycles are born or collapse,
turbulent phenomena appear etc.

Consider the following

Tentative definition: An object (a quality etc.) is struc-

turally stable if nearby objects are alike. =

To get a working definition, one must specify the meaning of
"nearby" and "alike". The former notion refers to distances

and calls for a topology. For the latter, an eguivalence

relation is needed. The choice is far from trivial in prac-
tical situations, and a major difficulty is to decide how
many of the results depend on technically motivated choices,

and how many tell something about "reality".

The two main problems of structure stability theory can be

succinetly formulated in the following way:
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i) Give conditions on a flow that guarantee structural

stability, i.e., loosely speaking, that the qualita-
tive behaviour of the flow does not change if the
parameters of the system are modified slightly.
Determine whether structural stability is a typical

quality in the family of flows studied.

ii) If bifurcation occurs, i.e. small parameter changes

do provoke a gualitatively different behaviour,
determine what changes are possible, or typical.
Preferably, instabilities should appear in a stable

way.

Stability and bifurcation analysis was inaugurated by
Poincaré in the 1880's, even if similar ideas appeared
earlier for instance in Euler‘s analysis of the buckling
beam. After Poincaré's work, nothing happened until Andronov
and co-workers introduced and studied the concept of coarse
systems (grubye sistemy) in the 1930's. The term "structural
stability" is due to Lefschetz. Other key names in the
development are Peixoto, Smale, and Thom , the founder of
catastrophe theory. The bifurcation analysis was taken up
by Hopf, whose paper on branching to periodic solutions
appeared in 1942. Hopf considered systems of ordinary dif-
ferential equations with analytic right-hand sides, but the
results have later been extended to much more general

motions.

The chapter starts with Andronov's main theorem on struc-
tural stability of motions in the plane. Section 5.3 deals
with the Hopf bifurcation. Several examples are given, the
most important of which is the Lorenz system. The following
section contains applications to the problem of turbulence,
and the chapter closes with a brief account of the main

ideas in catastrophe theory.
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5.2 Structural stability in the plane

Consider two dynamical systems given by

{ X = Pl(xl’XZ) 05,93
X, = Ql(xl,xz)
and

{ X) = Py(xy,%5) 5.2

defined in some bounded domain § in Rz (typically the unit

circle xi+—x§ < 1). The vectors are assumed to be nowhere
tangent to the boundary 32 and to point to the interior of

Q.

Definition 5.1. The equation (5.1) is said to be structur-
ally stable if there is a § > 0 such that whenever

¢

sup [P, -P,| < &
) l 1 2

sup [0, -Q < 8
ap [0 - 0, |

{ sup ;El ) ;EZ < (5.3)
Xy Xy
i=1,2
9Q 9Q
=1 2
sup |[x— — == < ¢,
Q0 09X, Bxi

3

there is a continuous bijection © + @, which maps the
trajectories of (5.1) onto those of (5.2) and preserves

Oorientation. =

Definition 5.2. A singularity x* of Eg. (5.1) is said to

be hyperbolic if the eigenvalues of the Jacobian matrix
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aPl aPl
axl sz
J =
3Qq an
LBxl 8x2 |
have nonzero real parts at x¥. o

A singular point is hyperbolic iff it is a node, a focus,

or a saddle point.

The third definition refers to closed orbits. Consider a
point p on a closed orbit y of the differential equation.
Through p is drawn a line segment ¢, transversal to y. For
an arbitrary point x on o close to p, the mapping w: 0 > O
is defined as the point where the trajectory from x cuts o
the following time (see Fig. 5.1). m is called the Poincaré

map.

Fig. 5.1 - Defining the Poincaré map.

Definition 5.3. The closed orbit y is said to be hyper-
bolic if dn/dx * 1 at p. =

Theorem 5.1. (Andronov et al. [1]) Equation (5.1) is struc-

turally stable if and only if

i) all singularities are hyperbolic,
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ii) all closed orbits are hyperbolic, and

iii) no trajectory connects saddle points. =m

Example 5.1. (Lotka-Volterra) Consider the system of equa-

tions
% = v(a- bp)
(5.4)
dp _ _
It pl(cv-4d),

where a, b, ¢, and d are positive constants, and v and p are
prey and predator populations, respectively. But for the
origin, the only equilibrium point is v = d/c, p = a/b. The
eigenvalues of the Jacobian matrix are = i vad. Since the

real parts are zero, the system is not structurally stable.

In fact, the singularity is a centre, and there is an
infinite family of closed orbits around it. Notice, however,
that any set-up like (5.4) with different values of a, b, c,
and d will behave the same way. The structural stability con-

cept refers to more general perturbations than these. =

The conditions of Thm. 5.1 seem to imply that structurally

unstable systems are exceptional. This is in fact true.

Definition 5.4. A quality is said to be generic in a

family F if the set of its carriers contains an open, dense

subset of F. =m

Theorem 5.2. (Peixoto [2]) In two dimensions, structural

stability is generic in analytical dynamical systems. =

Theorem 5.2 does not generalise to higher dimensions. A
class of structurally stable systems iank for general k

are the so-called Morse-Smale systems. There are others,

but together they are not dense in the space of dynamical

systems.
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5.3 The Hopf bifurcation

The monograph [1] by Andronov et al. contains not only a
theory for structural stability but also a list of the
bifurcations that may occur in two-dimensional systems.

This is possible only because there are natural limits to
the complexity that two-dimensional flows may exhibit. For
instance, Poincaré&-Bendixson's theorem (see e.g. Coddington-
-Levinson [3], Ch. 16) states that if the trajectories are
bounded, they will ultimately approach either a singular
point or a limit cycle. This is no longer true in three

dimensions, and strange things may occur (see Ex. 5.4).

One of the few phenomena that do generalise to arbitrary
dimensions is the Hopf bifurcation. Assume that a flow in
R™ depends on some parameter u, and that x*(u) is an
equilibrium point. A classical theorem of Poincaré states
that if the local linearisation at x* asymptotically stable,
this is true also for the nonlinear system. If there are
eigenvalues in the open right halfplane, x* is unstable
also for the nonlinear system. In case there are eigenvalues
on the imaginary axis with nonzero imaginary part, the
linearisation will have a periodic solution. Hopf's theorem
gives conditions for this to hold also for the nonlinear

system.

Theorem 5.3. (Hopf [4]) Let f(x,u) be a sufficiently

differentiable vector field on IR™ depending on the scalar

parameter p. Let x*(u) be an equilibrium point. Assume that

i) the Jacobian matrix (Jf) (x*) has all eigenvalues in
the open LHP for u < 0;

ii) There are two distinct complex conjugate eigenvalues
A(u), A(up) such that



71

Re A (0) = 0
Re A(u) >0, u>0

d Re A(u)

du >0I U=03

iii) the rest of the spectrum remains in the LHP for

sufficiently small u .
Then, for small p, there is a periodic orbit close to the
eigenspace of X (0), X(O) with
i) period approximately equal to 2m/ |A(0)]| and

ii) radius growing like Vi, u > 0. o

Marsden and McCracken have developed a computable test for
the stability of the emerging closed orbit ([5]1, Section 4).
It assumes that the linearised system equalisation is

written in the standard form

r

| ¥

it IA(O)[X2 +ag, xg

N

Il

- ]A(O)lxl +a,y X, (5.5)

d

o
o
r4uﬁ
[+}]
w
w
b
w

Here aj3s ay3s and 33 are matrices of appropriate dimen-

sions, and a33 is stable by assumption.

Introduce the displacement mapping

V(xl) = w(xl) - Xy

Notice that a zero of the displacement mapping is equivalent

to the existence of a periodic orbit through x The first

1°
and second derivatives are always zero at Xy = 0.
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Theorem 5.4. The closed orbit appearing in Thm. 5.3 is
stable if V" (0) < 0 and unstable if V" (0) > 0. =

For v™ (0), we have the following formula. Let the vector
field be written as (fl, f2, f3) with the notation corre-
sponding to (5.5). Then

3n 2%, 97, 2°f,  8°f,
V(o) = Ed 2 F T3 ot —5 | ¢
42 (0) | 9%, 0x,0x;  9x)dx, dx,
& 22f 9% 3% 92¢
1 1 2 2
+ 5 |- = o ¥ 5 . +
4|1 (0) | 9%, % 9x 8x,  9x,” 9x,dx,
52¢ 52 52¢ 52 52F.  92f
2 2 1 1 2
+ 2- - 2. + 2. 2 -
Bxl 8x18x2 8x2 Bxlaxz Bxl 8X2
32f 32
1 2
1,20, (5.6)
8x2 sz

where all derivatives are evaluated at the equilibrium.

The bifurcation is called supercritical if the closed orbits

are stable, otherwise subcritical.

Example 5.2. Consider the Liénard equation

2 3
dt

In gstate space form,

dx _
dat Y
dy _ -3

The Jacobian matrix at x=y=0 is
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0 1
J(0, 0, u) =
-1 U

with eigenvalues XA, 5 (u) = %(ui i/ 4-p%?). Re Aj(w) = 0 for
d d
-d—u Re >\i = 1/2. The

conditions of Hopf's theorem are thus satisfied, and the

p = 0, and for this value, Im Ai = %1,

system will sustain a periodic motion at least for small
positive u. To test for stability, notice that the only

non-vanishing term in (5.6) is

83f2
= -6.
9x 3
2
Thus
vi(0) = 3L (-6) < 0,

so the orbit is stable. =

The following example of a Hopf bifurcation is the cele-

brated Belusov—ﬁabotinskii reaction.

Example 5.3. The components of the reaction are cerium

sulphate, sodium bromate, malonic acid, and sulphuric acid.
Ferroine is used as a redox indicator. The reaction scheme

is:

BrO; + Br™ + 2H* — HBrO, + HOBr
HBrO, + Br~ + H" — 2HOBr
BrOF + HBrO, + H* - 2BRO, + H,0
Ce** + BrO, + H* —» Ce*™ + HBrO;,
2HBrO, — BrO3 + HOBr + H*
" nCe** + BrCH(COOH), — nCe®* + Br™ + oxidized products.

- +
The critical reactants are HBr02, Br , and Ce4 . Let x, v,
and z be their concentrations, respectively. The differen-

tial equation governing the reaction is then
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x.
It

x(x—xy+y—qx2)

%l
Il

-i'j(-y— xy + £z)

N »
Il

wix-2),

where s, g, f, and w are parameters that are controlled
exogenously. Let f be the bifurcation parameter. Then a
Hopf bifurcation occurs at the critical value fc solving

the equation

2q(2+3£,) = (2f_ +q~-1) -

2

1/2
+4q(l+£)] }

- { 1-f -q+[(1-£f,-q
Depending on the parameters s, g, and w, the bifurcation may
be supercritical or subcritical. A recipe giving oscilla-
tions at room temperature can be found in Glansdorff and
Prigogine [6]. The malonic acid is consumed in the reaction
and has to be replaced in order to sustain the oscillation.
For a thorough analysis of the reaction, see Hastings and

Murray [7]. =

The final example is the Lorenz system, one of the first

examples of a strange attractor to be discovered. Lorenz'

paper [8] appeared in 1963, but it took some time before it
became known to mathematicians. More recent investigations

of the Lorenz system can be found in Ruelle [9] and in [5].

Example 5.4. The physical background of the Lorenz system

is the so-called Bénard problem. A fluid or gas layer is

heated from below, and the resulting convection is studied.
This leads to a complicated partial differential equation.
If the solution is expanded in a Fourier series where only

the first three terms are kept, the following system results:
X = - 0X + oy

-Xz + rx -y (5.7)

K o
Il

N e
li

Xy — bz.
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X is proportional to the intensity of the convective
motion, y is proportional to the temperature difference
of the ascending and descending currents, and z measures
the deviation from a linear vertical temperature profile.
¢ is the Prandtl number, and r, the Rayleigh number, is

the bifurcation parameter.

For r < 1, the origin is the only equilibrium point of
(5.7). For r > 1, two new points occur at x=y==% vb(r-1),
z = r—-1. The Jacobian matrix at x=y=+vb(r-1), z = r-1, is

- o] 0
J = 1 =1 -vb(xr=-1) |,
Vb (r-1) Vb (r-1) -b

which has purely imaginary eigenvalues for

_ 0(oc+Db+ 3)
T (o-b-1) '

assuming ¢ > b+ 1. The condition of Hopf's theorem are
satisfied, and a periodic orbit occurs. The stability of
this orbit depends on the parameters b and o. A lengthy
calculation yields the result shown in Fig. 5.2 ([51, p.
147).

Lorenz' values were o = 10, b = 2.67, and r = 28, which
yields unstable periodic orbits. For these values of the
parameters, the system exhibits a strange behaviour,
jumping erratically between two butterfly wings (see Fig.
5.3) . The dependence on the initial conditions is extremely
sensitive. If the Lorenz system is a good model of atmos-
pheric motions (which remains to be shown), this puts an
end to all dreams about reliable long-term weather fore-

casts. o
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Lorenz' valye T=10,b=8/3

oy / 25 50 100
V4 ! f * : = b
] m
1__STABLE /—Vv"0)=0
{ PERIODIC ORBITS
i STABLE
100 1 LORENZ PERIODIC
A ATTRACTOR ORBZTS —
— (SUPERCRITICAL
J (SUB-CRITICAL
HOPF BIFURCATION) g " Bl URCATON)
il n — V (O)<O
vV (0)>0
200+
o

Fig. 5.2 - Stability of the periodic orbits of
the Lorenz system as a function of the
parameters b and o.
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5 : =
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/
w = -
' P
—

Fig. 5.4 - A requiem for weather forecasts? Two
z-trajectories of the Lorenz system
with close initial conditions.
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5.4 Turbulence

The problem of describing the turbulence phenomenon in
mathematical language is closely related to the bifurca-
tions described in the previous section. Applications to
such problems require some generalizations of theory,
however. Firstly, ordinary differential equations are
normally too blunt a tool for describing fluid motions:
the Hopf theorem must be proved for evolution equations
based on partial differential operators or functional
differential operators. This can be done if the semigroups
generated satisfy some smoothness conditions (see [5],
Section 8, and Hale [10] for the FDE case).

Secondly, the interesting things normally happen not when
the first pair of eigenvalues crosses the imaginary axis
but when they are followed successively by others, for
higher values of the bifurcation parameter. When the second
pair moves across to the RHP, the plane periodic orbit
normally bifurcates into a motion on a torus, and it is
easy to imagine how further bifurcations will generate
motions on higher-dimensional tori with a very complex flow

picture.

The generally accepted tool for describing the motion of a

homogeneous, incompressible fluid is the Navier-Stokes

equations:

?+ (V-V)V - VAV = = Vp + F

in @
div v = 0 (5.8)
v =20 on 3f.

Typically, © is an open set in|R3. p is the pressure, F is
an external force, and v is the viscosity. For non-viscous

flow, the appropriate equation is the Euler equation:
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AV

T + (v*V)v = - grad p + F

div v =20 (5.9)

v tangent to the boundary.

The transition from (5.8) to (5.9) is far from trivial,

mainly because the highest-order derivatives disappear.

Let U be a typical velocity of the flow, such as the main-
stream velocity, and L a typical length, such as the dimen-

sion of a pipe. The Reynolds number Re is defined by

Re = EE.
v

It is dimensionless, and collects some useful information
about the flow. If x/L is chosen as length unit, t/T as
time unit (T = L/U), and p'L2/U2 as pressure unit, the only
external parameter appearing in Eg. (5.9) is the Reynolds
number (this is sometimes referred to as the law of simi-
larity; see Hughes and Marsden [11], § 17). This makes it

natural to choose Re as the bifurcation parameter.

Consider the fluid motion around a sphere, Fig. 5.5. For low
Re, the motion is stationary. As Re increases, periodic
patterns, known as Karman vortices, form. For even higher
Reynolds numbers (=~ 2 000, says the thumb rule), turbulence

occurs.

Leray [12] advanced the hypothesis in the 1930's that the
onset of turbulence is related to loss of smoothness of the
solutions to Navier-Stokes' equations. This was to some
extent supported by Hopf, who proved global existence of
weak solutions, but not uniqueness nor regularity. The
global existence for all t and smoothness of the solutions

is still an unsolved problem.



81

V

_#j( BACKFLOW
= OR

TURBULENCE

Fig. 5.5 - Flow pattern as a function of the
Reynolds number.

A slightly different approach was taken by Landau (see
Landau and Lifschitz [13]). He suggested that turbulence
should be modelled as successive bifurcations along the
lines sketched at the beginning of thisg section. The
velocity field will then be described by an almost-periodic
function, composed from an increasing number of harmonic

oscillations with non-rationally related frequencies.

This was the prevailing theory for turbulence till the
early 70's, It can be criticised on two different levels.
Experimentally, the spectrum of 3 fluid motion does not
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pbut rather an initial increase and then an abrupt change

into a continuous spectrum (see Fig.
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Ruelle and Takens attacked the Landau picture from a
theoretical point of view in their seminal paper [14] from
1971. The essence of their critique is that turbulent
phenomena should be described by functions that are generic
in a suitable sense. However, already for a 2~torus,
Peixoto's theorem shows that almost-periodic functions are
in the complement of an open, dense subset of sufficiently
differentiable vector fields. By contrast, for higher-
—~dimensional tori, in the neighbourhood of every vector
field there is an open set of vector fields with a strange
attractor. Ruelle and Takens therefore proposed strange
attractors as the appropriate model for turbulent

phenomena.

In this sense, the strange behaviour of the Lorenz system
is typical and not exceptional. An appealing feature about
this model is its relative simplicity and the fact that no

loss of regularity or uniqueness is assumed apriori.

5.5 Catastrophe theory

It is difficult to concentrate in a few pages the many
diverse ideas that are collected under the name of catas-
trophe theory. The basic problems are those given in the
introduction, namely to give conditions for the structural
stability of dynamical systems, and to identify the various

forms of instability that may occur.

To fix the ideas, let X and Y be two smooth manifolds, and
assume that a vector field F is given on X. (X,F) thus
constitutes a dynamical System. Together with this system

is given an infinitely differentiable read-out map f: X- Y.

Y is consequently the output space. The stability definition

requires an equivalence concept and a topology.
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Definition 5.5. Two functions fl,f2 € C”(X,Y) are said to

be equivalent if there are c®-diffeomorphisms g,h such
that

The topology is somewhat more delicate to choose. The

standard choice is the so-called Whitney c’-topology. The

precise definition will not be given; suffice it to say
that if X is compact, convergence in the Whitney topology
is equivalent to uniform convergence of a function together
with all its derivatives, and if X is not compact, the

Whitney topology is stronger.

A general stability theory for dynamical systems is still
lacking. The motions that have been studied most extensively
are those for which F is the gradient of a potential. Since
the state will ultimately approach a minimum of the poten=-
tial function, the stability problem is reduced to a static

stability problem, namely that of studying singularities of

smooth mappings X- R.

As a preliminary, let F = 0, and consider simply the -
-mappings from X to Y. When is structural stability generic?
The answer was given by Mather and turns out to be dependent
on the dimensions of X and Y in a rather intricate fashion.
Fig. 5.7 illustrates the result.

Turning now to the problem of unstable mappings, consider

first the following simple example.

Example 5.5. Let X(p,n) be the space of all pxn matrices.

Two matrices Xy and X, will be said to be equivalent if

there are invertible matrices G and H such that
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Fig. 5.7 - Mather's result on c®-mappings. n = dim X
and p = dim Y. Stable mappings are dense
in the non-hatched region.

This is a natural definition and corresponds to a change of
basis in RP and R™. A standard result says that Xy and X, are
equivalent in this sense iff they have the same rank. This
implies that X(p,n) is split into a number of equivalence

classes X(p,n)K with a varying degree of degeneracy:
X(p,n)K = {X € X(p,n); rank X=K};

X(p,n) = U X(p,n)K
K

0 < K £ min (p,n).

It is also clear that X(p,n)K, 0 £ K ¢ min(p,n) -1, will be
manifolds in the parameter space.

(pxn) .

Closeness may be defined using any metric on R It is

then obvious that
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i) the stable matrices are precisely those that have full
rank,

and

ii) stable matrices are dense. =

Turning now to the problem of unstable Cw-mappings X- R,
one would like to have the same division into subclasses
corresponding to an increasing degree of degeneracy. It
turns out that this is to some extent possible. What Thom
has done is to imbed the unstable mappings in families
depending on a varying number K of parameters, or control
variables. This imbedding procedure is called an unfolding
of the singularity (if the mapping is unstable, there will
always be a singularity). What is remarkable about Thom's
solution is that if K ¢ 5, there is a finite list of normal
forms for the local behaviour of the potential function at

the singularity. These are the celebrated elementary catas-

trophes. (A description is given for instance in Poston and
Stewart [15].) Rephrasing, one might say that if a motion
can be derived from a potential function which depends on

a few external parameters or control variables, there are
not so many "qualitatively different" possible ways of
behaving near a critical point of the potential function.
"Qualitatively different" is a very coarse notion, however,

since C7-diffeomorphisms are supple objects.

We will not linger on the more or less bizarre "applica-
tions" of catastrophe theory that have appeared since

Thom 's [16] and Zeeman's [17] early publications. The
survey article by Golubitsky [18] contains a few (moderate)
examples and further references. One point deserves to be
stressed, though. The results have been derived under a

few rather special assumptions:

i) the motion is obtainable from a potential function;
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ii) the manifolds and mappings involved are smooth;
iii) equivalence is defined modulo C -diffeomorphisms;

iv) closeness is defined with the aid of the Whitney

topology.

A minimum requirement is thus that these assumptions be

justified in a given application.

The implications (if any) for management and control
problems remain to be sorted out. The monograph by Casti
[19] contains a few examples where structural stability

concepts provide some guidance.
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