

LUND UNIVERSITY

Three Lectures on Modeling, Identification and Adaptive Control

Åström, Karl Johan

1980

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Çitation for published version (APA):

Åström, K. J. (1980). Three Lectures on Modeling, Identification and Adaptive Control. (Technical Reports TFRT-7198). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors

and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

CODEN:LUTFD2/(TFRT-7198)/0-076/(1980)

MODELING, IDENTIFICATION AND ADAPTIVE CONTROL THREE LECTURES ON

KARL JOHAN ÅSTRÖM

department of automatic control lund institute of technology september 1980

LUND INSTITUTE CFTECHNOLOGY REPORT Report Report Report Report Report Report Report Report Report Report Report Report Report<					Security classification
INSTITUTE OF TECHNOLOGY Period and 7 Sweden unument September 1980 Content funder September 1980 September 1980 Content funder Supervisor a subtite Sweden Supervisor Johan Aström Supervisor Supervisor Johan Aström Identification and Adaptive Control Lectures on Modeling, Identification and Adaptive Control Supervisor Itervisor Two particular problem including molecular problem including molecular problems are d Itervisor Itervisor Itervisor Johan Supervisor The lecture on identification starts with the p Itervisor Itervisor Itervisor Supervisor Signervisor Signervisor Itervisor Signervisor Signervisor Itervisor Itervisor Signervisor Signervisor Signervisor Signervisor		5	, vi	7 9	Language English
INSTITUTE OF TECHNOLOGY Decement number (Diverse of Partice CONTROL Prepert consists of the slides for three lectures given at a worksho ol theory at Mathematisches Forschungsinstitut, Oberwolfach in Marc ing of large systems. It is also emphasized that modeling is largel and not a science. The lecture on identification of parameters of model ing of large systems is discussed. Identification of parameters of model ing adaptive control estimation of estimation of parameters of model ation theory is given and the role of interactive computing is and e e adaptive controller based on minimum variance control and recursive squares estimation is analysed. Results in more general cases are d.		ISBN			key
INSTITUTE OF TECHNOLOGY Description from the proper of Lund 7 Sweden Superviser 0 Superviser Superviser Superviser 1 aubrite Superviser Superviser 1 Superviser Superviser Superviser 1 aubrite CODEL:LUTFD/2/(TFRT-7198)/0-076 1 Superviser Superviser Superviser 1 Construct Superviser Superviser 1 Construct Superviser Superviser 1 Lectures on Modeling, Identification and Adaptive Control Marce at a worksho 1 Interactive of the sites for the modeling problem including modeling or supervises Superviser 1 namely the sensitivity of a control design to modeling is largel and not a science. The lecture on identification starts with the p 1 Interactive control some design principles are first give adoptive control and rec		-		information	ementary
INSTITUTE OF TECHNOLOGY PLUND 7 Sweden Descrives Technology Provide the state of take September 1980 Supervisor Descrives Supervisor Johan Aström Supervisor Supervisor Johan Aström Identification and Adaptive Control Lectures on Modeling, Identification and Adaptive Control Supervisor report consists of the slides for three lectures given at a worksho Interactive Control rist lecture gives an overview of the modeling problem including mobility problems. It is also emphasized that modeling moleting is largel Johan Steeden Identification of experimental conditions, criteria and model cl hen discussed. Identification of parameters of models Interactive computing is discussed. The properties of the closed e lecture on adaptive control set analysed. Results in more general cases are Idenoties ar	si Sect			1	
INSTITUTE OF TECHNOLOGY MENT OF AUTOMATIC CONTROL 2010 Descuent number September 1980 Descuent number Supervisor 0 of subtrite Lectures on Modeling, Identification and Adaptive Control Lectures of the slides for three lectures given at a worksho ol theory at Mathematisches Forschungsinstitut, Oberwolfach in Marc ing of large systems. It is also emphasized that modeling problem including mo physics and from process experimental conditions, criteria and model in aution. Selection of experimental conditions, criteria and model cl hen discussed. Identification of estimation of parameters of models ical systems is discussed in detail. The main elements of the relev ation theory is given and the role of interactive computing is discussed. Squares estimation is then discussed. The properties of the closed ned in a simple case is analysed. Results in more general cases are d.				terms (if	
INSTITUTE OF AUTOMATIC CONTROL 25 Description Control fisce September CODEN:LUTFD2/(TFRT-7198)/0-076 01 Sweden Supervisor CODEN:LUTFD2/(TFRT-7198)/0-076 01 swetrisor CODEN:LUTFD2/(TFRT-7198)/0-076 01 swetrisor CODEN:LUTFD2/(TFRT-7198)/0-076 01 swetrisor CODEN:LUTFD2/(TFRT-7198)/0-076 01 systems 02 systems 03 systems 04 system 05 systems 06 systems 1 consists of the slides for three lectures given at a worksho 01 theory at Mathematisches Forschungsinstitut, Oberwolfach in Marc 1 namely the sensitivity of a control design to modeling moblems are d 1 tail, namely the sensitivity of a control design to modeling is largel 1 and not a science. The lecture on identification scient shith the p 1 and not a science. The lecture on identification starts with the p 1 and not a science of the role of interactive computing is largel 1 and model ing the role of inderactive control and model cl 1 the role of interactive control and model cl 1	. 2	ia I			
INSTITUTE OF TECHNOLOGY REPORT Report September name September 1980 September 1980 September 1980 September 1980 Supervisor Johan Aström Dester of issue September 1980 Supervisor CODEN:LUTFDZ/(TFRT-7198)/0-076 ar Swervisor CODEN:LUTFDZ/(TFRT-7198)/0-076 Supervisor CODEN:LUTFDZ/(TFRT-7198)/0-076 ar Supervisor CODEN:LUTFDZ/(TFRT-7198)/0-076 Supervisor CODEN:LUTFDZ/(TFRT-7198)/0-076 ar Supervisor CODEN:LUTFDZ/(TFRT-7198)/0-076 Supervisor CODEN:LUTFDZ/(TFRT-7198)/0-076 ar Supervisor Supervisor Supervisor Supervisor ar ord supervisor Supervisor Supervisor lectures on Modeling, Identification and Adaptive Control worksho Identification report consists of the slides for three lectures given at a worksho Identification for on particular problem including mo physics and from process experiments. Two particular problems are d including mo ing of large systems. It is also emphasized that modeling is largel and mota science. The lecture on identification starts with the p and not a science. The lecture on identification of parameters of model ill and model cl in model in model ing is largel and the role of interactive computing is discussed in detail. The main elements of the relevential soft the relevential some design principles are first give		1		2	Key words
INSTITUTE OF AUTOMATIC CONTROL 25 Description September 1980 September 1980 CODEN:LUTFD2/(TFRT-7198)/0-076 Supervisor ODEN:LUTFD2/(TFRT-7198)/0-076 Supervisor ODEN:LUTFD2/(TFRT-7198)/0-076 Supervisor ODEN:LUTFD2/(TFRT-7198)/0-076 Supervisor ODEN:LUTFD2/(TFRT-7198)/0-076 a Supervisor CODEN:LUTFD2/(TFRT-7198)/0-076 Supervisor CODEN:LUTFD2/(TFRT-7198)/0-076 a Supervisor Supervisor Supervisor Codenation Supervisor Codenation a Supervisor Supervisor Supervisor a supervisor <td></td> <td></td> <td></td> <td></td> <td></td>					
INSTITUTE OF AUTOMATIC CONTROL 25 Description Control 25 Description 25 Descript	are	general		is analysed.	in a
INSTITUTE OF TECHNOLOGY Determent name September 1980 Determent name September 1980 01 AutoMATIC CONTROL September 1980 Determent numer 01 Sweden CDEN.ELT TECHNOLOGY September 1980 01 Aström Supervisor CDEN.ELT TECHNOLOGY 01 Aström Supervisor Supervisor 0 Supervisor Supervisor Supervisor 0 Aström Supervisor Supervisor 1 Aström Supervisor Supervisor 1 Aström Supervisor Supervisor 1 Aström Supervisor Supervisor 1 Identification and Adaptive Control Identification Identification 1 Lectures on Modeling, Identification and Adaptive Control Identification Identification 1 Identification for three lectures given at a worksho Identification for the modeling problem including modeling molection of experiments. Two particular problems are d 1 Interactive control design to modeling errors Indentification of experiments is also emphasized that modeling is largel		of the	The	is then discus	uares
INSTITUTE OF AUTOMATIC CONTROL REPORT September 1980 Report September 1980 07 Lund 7 Sweden Supervisor 0) Aström Supervisor Supervisor 0) supervisor Supervisor Supervisor 0) supervisor Supervisor Supervisor 0) supervisor Supervisor Supervisor 1 d subfitte supervisor Supervisor 1 d supervisor Supervisor Supervisor 1 dectures on Modeling, Identification and Adaptive Control Mark sho 1 theory at Mathematisches Forschungsinstitut, Oberwolfach in Marc 1 namely the sensitivity of a control design to modeling molecular problems are d 1 nad not a science. The lecture on identification starts with the p 1 <t< td=""><td>cursive</td><td>control and re</td><td></td><td>based</td><td>adaptive</td></t<>	cursive	control and re		based	adaptive
INSTITUTE OF TECHNOLOGY Decument name September 1980 25 Sweden September 1980 07 Lund 7 Sweden Supervisor 30 Supervisor CODEN:LUTFD2/(TFRT-7198)/0-076 30 Supervisor Supervisor 30 Supervisor CODEN:LUTFD2/(TFRT-7198)/0-076 31 Supervisor Supervisor 30 Supervisor Supervisor 31 Supervisor Supervisor 32 Supervisor Supervisor 33 Supervisor Supervisor 34 subfile Supervisor 35 Supervisor Supervisor 36 Supervisor Supervisor 37 Lund 7 Sweden 36 Supervisor Supervisor 37 Lund 7 Supervisor 36 Supervisor Supervisor 37 Lectures on Modeling, Identification and Adaptive Control 4 Supervisor Supervisor 37 Lecture gives an overview of the modeling problem including modeling modeling errors 38 Supe	give	les are first	design princip	control some	ad
INSTITUTE OF TECHNOLOGY REPORT September 1980 25 September 1980 07 Lund 7 Sweden 07 Sweden Subervisor 08 CODEN:LUTFD2/(TFRT-7198)/0-076 09 Subrite Supervisor 10 Subrite Supervisor 11 Subrite Supervisor 12 Id subrite Supervisor 13 Supervisor Supervisor 14 Supervisor Supervisor 15 Supervisor Supervisor 16 Supervisor Supervisor 17 Heat Supervisor Supervisor 16 Supervisor	disc	computing is	f interac	and the role	" n theory is
INSTITUTE OF TECHNOLOGY MERT OF AUTOMATIC CONTROL Report September 1980 CODEN:.LUTFD2/(TFRT-7198)/0-076 CODEN:.LUTFD2/(TFRT-7198)/0-076 Supervisor 01 01 01 01 01 01 01 01 01 01 01 01 01 0		of the	The main (amical systems is
INSTITUTE OF TECHNOLOGY Document number (are of issue September 1980 25 Document number (CODEN:LUTFD2/(TFRT-7198)/0-076) 01 Supervisor 03 Supervisor 04 Aström 05 Supervisor 06 Supervisor 07 Lund 7 08 Supervisor 09 Lund 7 09 Sweden 09 Lund 7 09 Sweden 10 Sweden 11 Sweden 12 Supervisor 13 Sweden 14 Supervisor 14 Supervisor 15 Supervisor 16 Supervisor 17 Sweden 18 Supervisor 19 Supervisor 10 Supervisor 10 Supervisor 10 Supervisor 11 Supervisor 12 Supervisor 13 Supervisor 14 Supervisor 15 Supervisor 16 Supervisor 17 Supervisor 18 Supervisor 19 Supervisor	2 1	and		of experimenta	mulation. Selecti
INSTITUTE OF TECHNOLOGY MENT OF AUTOMATIC CONTROL 25 07 Lund 7 Sweden Johan Aström d subtitle Lectures on Modeling, Identification and Adaptive Control inst lecture gives an overview of the modeling problem including mo physics and from process experiments. Two particular problems are d tail, namely the sensitivity of a control design to modeling is largel	e	with	identification	The lecture	t a
INSTITUTE OF TECHNOLOGY Description 25 Date of issue 26 September 1980 27 Lund 7 30 Sweden 31 Sweden 32 Spensoring organization 33 Sponsoring organization 34 Supervisor 35 Sponsoring organization 36 Supervisor 37 Supervisor 38 Sponsoring organization 39 Sponsoring organization 30 Sponsoring organization 30 Sponsoring organization 30 Sponsoring organization 31 Ström 32 Sponsoring organization 33 Sponsoring organization 34 Sponsoring organization 35 Sponsoring organization 36 Sponsoring organization 37 Lectures on Modeling, Identification and Adaptive Control 36 The slides for three lectures given at a worksho 37 Index of the slides for the modeling problem including mo 38 Sponsories 39 Sponsories 39 Sponsories	argely a	is	ohasized that	It is also	of large
INSTITUTE OF TECHNOLOGY MENT OF AUTOMATIC CONTROL 25 07 Lund 7 Sweden Johan Aström d subfifie Lectures on Modeling, Identification and Adaptive Control report consists of the slides for three lectures given at a worksho ol theory at Mathematisches Forschungsinstitut, Oberwolfach in Marc irrst lecture gives an overview of the modeling problem including mo physics and from process experiments. Two particular problems are d		nodeling	trol design	sensitivity of a	detail, namely
INSTITUTE OF AUTOMATIC CONTROL TECHNOLOGY REPORT of sisue September 1980 25 Date of issue Commember 1980 September 1980 07 Lund 7 Sweden Supervisor Johan Aström Supervisor Supervisor Johan Aström Identification and Adaptive Control Supervisor Instruction Identification and Adaptive Control Instruction Instruction Identification and Identification Instruction Instruction Identification Instruction	are discussed	lar problems		process	and
INSTITUTE OF TECHNOLOGY MENT OF AUTOMATIC CONTROL Document name September 1980 25 Date of issue September 1980 07 Lund 7 Sweden Document number CODEN:LUTFD2/(TFRT-7198)/0-076 0 Supervisor Johan Aström Sponsoring organization Id subtitle Identification and Adaptive Control Lectures on Modeling, Identification and Adaptive Control Identification and Adaptive Control I theory at Mathematisches Forschungsinstitut, Oberwolfach in Marce	ng modeling	oblem includi		an overview of	first lecture
INSTITUTE OF TECHNOLOGY MENT OF AUTOMATIC CONTROL Document name September 1980 25 07 Lund 7 Sweden Document number CODEN:LUTFD2/(TFRT-7198)/0-076 30 Johan Aström Supervisor Supervisor 4 subtitle Lectures on Modeling, Identification and Adaptive Control 4 subtitle Lectures of the slides for three lectures given at a worksho	Ч				theory at
INSTITUTE OF TECHNOLOGY REPORT Date of issue September 1980 25 07 Lund 7 Sweden Date of issue September 1980 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	р	at a	lectures	the slides for	consis
INSTITUTE OF TECHNOLOGY MENT OF AUTOMATIC CONTROL Document number September 1980 25 07 Lund 7 Sweden Sweden 07 Lund 7 Sweden Document number CODEN:LUTFD2/(TFRT-7198)/0-076 Johan Åström Supervisor Johan Åström Sponsoring organization Lectures on Modeling, Identification and Adaptive Control					Abstract
INSTITUTE OF TECHNOLOGY MENT OF AUTOMATIC CONTROL Date of issue Date of issue 25 07 Lund 7 Sweden 07 Lund 7 Sweden 0 Document number CODEN:LUTFD2/(TFRT-7198)/0-076 0 Supervisor 0 Sponsoring organization	Ŧ		and		d subtitle Lectures on
INSTITUTE OF TECHNOLOGY Document name MENT OF AUTOMATIC CONTROL Date of issue 25 07 Lund 7 Sweden 07 Lund 7 Sweden Document number 0) Johan Åström Sponsoring organization			10		
INSTITUTE OF TECHNOLOGY Document name MENT OF AUTOMATIC CONTROL Date of issue 25 September 1980 07 Lund 7 Sweden 07 Lund 7 Sweden	-	nization	-		lohan
INSTITUTE OF TECHNOLOGY REPORT MENT OF AUTOMATIC CONTROL Date of issue 25	0-076/(1980)	(TFRT-	CODEN:LUTFD2	veden	20 07 Lund 7
INSTITUTE OF TECHNOLOGY REPORT		80	ן סו		MENT OF
					INSTITUTE

DOKUMENTDATABLAD RT 3/81

the University Library 2, Box 1010, S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

MODELING

INTRODUCTION

- PHYSICS & PROCESS EXPERIMENTS
- Ś LARGE SYSTEMS
- MODELING IS A CRAFT

MATH MODEL THEORY CONTROL LAW CRITERIA PRICESS ENVIRONMENT THOUGHTS MOTIVATION & BACK GROUND ¢ 0 0 0 0 PURPOSE WHY DID WE DO THIS SIMPLICITY SCIENTIFIC APPROACH TO WORK PRIMARILY YOU MUST BE ABLE TO WHAT YOU ARE DOING JUENTIEI-CATINN IMPLEMENT READN 2 NOT TO WRITE A PARED APPLIED ฮ REAL WORLD peocess REGULATOR GET SOMETHING HORX. ウ×やとし

MODELING

でまと USE A MODEL ?

0 COMPACT LEDGE (NEWTON & KEPPLES SUMMARY OF KNOW 5

- COMMUNICATION

- EDUCATION

LTDS 2 EASIER TO WORK PRAC こうあ EITH MODELS

- DESIGN

- OPTIMIZATION

0 SOMETIMES 20 ALTERNATIVE AVAILABLE Þ NECESSITY

CAUTION P

"WHEN SWEDISH VATURE ARMY MAP DISAGREES TRUST MANUAL NATURE FITH

EMPIRICS

MO DELL NG TIMECONSUMING IS OFTEN THAN MORE

INITIALLY

ANTICIPATED

CHARLES IN COMPANY

MODELING IN ANTOMATIC CONTROL

GOAL CLEAR .

EXAMPLES

, PRUCESS DESIGN

REGULATOR STRUCTURE SEUSOPS & ACTUATOPS

REGULATOR DESIGN

TROUBLE SHOOTING

PERFORMANCE EVALUATION

6 CONTROL PERFORMANCE ASSESSMENT OF POSSIBLE CAN FLUCTUATIONS BE DOES THIS LOOP HOW COMPLEX HOW MUCH? REDUCED? is needed? A REGULATION PERVICE

TUNIUG?

Al.

KTOWLEDGE POSSIBILITY TO RESOLVE ITAMICS MAY QUE (EX AIRPLANE FBW) Þ DIFFICULT DESIGN COMPANIS ABOUT PROCESS Þ

ANOW LEDGE POSSIBILITY TO AVOID PEORLEMS R CHOSER TO PROCESS PESIGN BY GOOD PROCESS DESIGN MOVE CONTROL DESLON DYNAMICS ABOUT CONTROL HAY GIVE Þ

ASSESSMENT OF NEED FOR RETUNING OF MINIMUM VARIANCE CONTROL

LOG CONTROLLED OUTPUT DURING NORMAL OPERATION

USE KNOWLEDGE OF PROCESS DEAD TIME AND SAMPLING PERIOD TO TEST IF COVARIANCE FUNCTION SATISFIES VARIANCE CONDITIONS

H H H ROLES **P**F MODELS IN CONTROL SYSTEM DESIGN

C LAS S ICAL EXTERTAL MODELS

F INVESTIGATE **PROCEDURE:** NOT, INCREASE REGULATOR COMPLEXITY. T FIX REGULATOR COMPLEXITY (PI, LEAD LAG, ETC) A VARIETY OF SPECIFICATIONS CAN BE SATISFIED.

PENALTY ON MODEL COMPLEXITY. MODEL: DESIGN PARAMETERS: RESULTS ARE BETTER IF MODEL MORE ACCURATE. LITTLE REGULATOR COMPLEXITY AND PARAMETERS

MODERN (INTERNAL DESCRIPTIONS)

ALTER MODEL CHECK SPECIFICATIONS WHICH ARE NOT DIRECTLY GIVEN BY **PROCEDURE:** AND CHOOSE MODEL AND CRITERIA. APPLY DESIGN PROCEDURE. CRITERIA. CRITERIA.

DESIGN PARAMETERS: CRITERIA AND MODEL.

COMPLEXITY. MODEL: THE REGULATOR COMPLEXITY IS UNIQUELY GIVEN HENCE LARGE PENALTY ON COMPLEX MODEL. BY MODEL

COMMENT

JET ENGINE MULTIVARIABLE DESIGN COMPETITION.

2 OFTEN QUOTED CRITICISM AGAINST LOG: "A KALMAN FILTER ATTRACTIVE FOR MOST INDUSTRIAL APPLICATIONS. EQUAL HOWEVER, FOLLOWED N BY A STATE THE ORDER PENALTY OF MAKING TO THE FEEDBACK U PROCESS MODEL, WHICH WILL NOT BE ו לא לא THE COMPENSATOR CARRIES WITH IT, A LEAST

FOR AHA CONTROL DO SIMPLE S YSTEM MODELS DE **VORK** S IGN ~ 0 S WELL

AN UNEXPLOITED BUT INTERESTING PROBLEM AREA

- REQUIRES SYSTEMATIC APPROACH TO DESIGN
- RELATED TO SINGULAR PERTURBATIONS
- 1 STATE SPACE NOT NECESSARILY THE RIGHT FRAMEWORK

AN EXAMPLE

THEOREM:

THEN STABLE IF TRANSFER FUNCTION $G_0 = B_0/A_0$. The closed loop system is THAT THE CLOSED LOOP TRANSFER FUNCTION SHOULD BE $G_D = Q/P$. DESIGN TO THE STABLE MODEL G = B/A with the specification CONSIDER A REGULATOR OBTAINED BY APPLYING POLE-PLACEMENT LET THE REGULATOR CONTROL A STABLE SYSTEM WITH THE PULSE (17. p) (17.) N

 $|G-G_0| < |\frac{BPT}{AQS}| = |\frac{G}{G_D}| \cdot |\frac{GFF}{GFB}|$

() []]] () []] () []]

ON THE UNIT CIRCLE AND AT $z = \infty$.

MODELING BASED ON PHYSICAL PRINCIPLES

SPECIFY PURPose DEFILE 3 QUALITATIVE INPUTS, OUTPUTS, SKSIEW MODEL DISTURBANCES BOUNDADIES OF MODEL

W R ITE MASS BALANCE EQUATIONS

MOM ENTUM

vaei ables ンちて DESCRIBE CALLED STORAGE REQUIRED TO BE STATE VAPIARLES OF THESE

WRITE HOOKES CONSTITUTIVE EQUATIONS

THERMODYNAMICAL STATE 17 -0

Ŀ QUANTI TATIVE MODEL

VALIDATE ?

651

00

DIFFICULTY APPROX, TIME, COST

proc

Ŷ

MODE ------N G 0 Т A R G m S ~ S m NS

DESIRABLE FEATURES

- MODEL SHOULD BE EASY TO WRITE, CHECK, AND MODIFY.
- MODEL MANIPULATIONS SHOULD BE AUTOMATED.
- PROPERTIES OF MODEL SHOULD (SIMULATION, ANALYSIS, LINEARIZATION, ...) BE EASY TO FIND

PROCEDURE

- CUT SYSTEM INTO SUBSYSTEMS.
- WRITE BALANCE EQUATIONS (MASS, MOMENTUM, CONSTITUTIVE EQUATIONS. ENERGY) AND
- DESCRIBE INTERCONNECTIONS HIERARCHICALLY.
- GENERATE CODE FOR SIMULATION, LINEARIZATION ETC). LET THE COMPUTER DO THE REST (COMPUTE STEADY STATE,

EXAMPLE DYMOLA

Ŧ LARGE CONTINUOUS SYSTEMS. ELMOVIST: A STRUCTURED MODEL LANGUAGE FOR

PHD DISSERTATION, LUND, MAY 1978.

ELC SOLVE FOR STEADY STATE OR DX/DT, FORMULA MANIPULATION LANGUAGE TRANSLATOR FOR OPERATING ON THE MODEL.

EXAMPLE: MODEL OF A DRUMBOILER TURBINE

DYMOLA DESCRIPTION REQUIRES 9 PAGES OF CODE + STEAM TABLES . ORIGINAL DOCUMENTATION IS A 60 PAGE REPORT + STEAM TABLES.

CONNECT (STEAM) DRUMSYST::DRUM SUBMODEL SUBMODEL SUBMODEL SUBMODEL MODEL POWERSTATION CONNECT (HEAT) COMBCHAMBER 6 CONTROLVALVE TO HPTURB TO SUPERH2 TO ATTEMP2 TO SUPERH3 TO SUPERH1, SUPERH2, SUPERH3, LPTURB TO CONDENSOR LPTURB DRUMSYST (SUPERHEATER) SUPERH1, SUPERH2, SUPERH3 CONTROLVALVE TO REHEATER TO IPTURB 12 (ECONOMIZER, TO SUPERH1 REHEATER) Ļ TO ATTEMP1 DRUMSYST::RISERS, Ļ Ļ

END

+		a (1997) (19977) (19977) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997			
Lind The second se	t (con to preh4 to p	eh6 to 	combchamber economizer (heat) combchamber <u>to</u> (economizer, st::risers, superhl, superh2, superh3, reheater st::risers, superh1, superh2, superh3, reheater (steam) drumsyst::drum <u>to</u> superh1 <u>to</u> attemp1 erh2 <u>to</u> attemp2 <u>to</u> superh3 <u>to</u> -> lvalve <u>to</u> HPturb <u>to</u> reheater <u>to</u> IPturb -> urb to condensor	<pre>submodel freheater) preh1, preh2, preh3, preh4, preh5, preh6, preh7 splitsteam dearator feedwaterpump feedwaterpump</pre>	model powerstation
					ξ

Ψ.

B R T2H 12 ~ 문 = = (M°CM°TMH + Vs°R2) · DER(H2) = P1 •• 2 - P2 •• 2 = F • W •• 2 LOCAL TH, THH, T2, T2H, PARAMETER CM. M. K. VS. CUT HEAT (Q) PATH STEAM CUT OUTSTEAM (W. H2, P2) CUT INSTEAM (W, H1, P1) MODEL TYPE SUPERHEATER DER (M°CM°TM + Vs°R2°H2) = ENERGY BALANCE } RHP(H2, P2) THP(H2, P2) T2 + K•W•(H2 THPH(H2, P2) T2H + K•W INSTEAM - OUTSTEAM . HI ଟ୍ଟ П D W•(H2 - H1)

Ś

NO MODEL IS EVER FIT 10 REALITY A PERFECT

DON'T ORDER A FIRST ORDER MODEL BELEVE THE CONSEQUENCES 33-RD 07

DON'T EXTRAPOLATE JH M (DON'T GO OFF THE DEEP END) Pmgio C 01 オート BEYOND

(USE ONLY AS DON'T CAU TEST THEIR APPLICABILIT ON WHICH IT IS BASED AND SIMPLIFYING ASSUMPTIONS YOU UNDERSTAND THE APPLY A MODEL UNTIL とう語ー見と

NOT PEDANTPY いうてくの USEFUL MODEL PRACTICAL r C J S TOST

2 16 1010GY DON'T APPLY THE SUBJECT B シートロン 07 pro ble ms "SURSECT A 5 TEPMI-0 7 -

THE 220 TION - NOT TO IMPRESS DON'T EXPECT THAT OP GN PUSE THE YOU HAVE DESTROYED HIM HALICG VANED A 202 se to estrace GORFIENS GOOM FACILITATE TERMINOLOGY PURPOSE OF ここのエフ UNIN (TIATE DENON COMPUTA NOTATION STOLO , , , ,

D z DATA BECOME CHAUGE OP AS TO EVOLVE AS ß MODEL MUST BE PERMITTED GNFLICT WITH THE DON'T REJECT DATA IN DON'T RETAIN WITH YOUR MODEL DON'T PALL IN LOVE DISCREDITED MODEL (REARL HARBOUR) TO REFUTE, MODIFY OR MODEL. USE SUCH DATA IMPROVE THE MODEL. CONDITIONS ACALLANCE ADDITIONAL D

The set of the set of

-

IDENTIFICATION

- I. INTRODUCTION
- 2. CRITERIA
- ŝ ESTIMATING PARAMETERS IN DYNAMICAL SYSTEMS
- A MODEL STRUCTURES
- ESTIMATION THEORY
- CONCLUSIONS IN TERACTIVE COMPUTING

MOELING ¢ VALIDATIO Z CHOOSE EXPERIMENTAL PARAMETER 504 PROCESS PROCESS MODEL STRUCTURE ESTIMATION EXPERIMENTS PLACTICS

A INPUT-OUTPUT DATA S Suth, yie, o SEET; FROM AN EXPERIMENT AN EXPERIMENT AN EXPERIMENT AN EXPERIMN & A CRITERION & FIND A MODEL IN THE CLASS WHICH FITS THE DATA BEST ACCORDING TO B. PROBLEMS A HOW TO CHOOSE THE EXPERIMENT, W AND B HOW TO FIND THE BEST FIT (OPTIMIZATION)	GIVEN
---	-------

÷

The probability of the errors $O = h^{\mu} \pi^{-\frac{1}{2}\mu} e^{-hh(vv+v'v'+v''v''+...)}$ must become a minimum. "Therefore, that will be the most probable system of values of the unknown quantities p, q, r, s, etc., in which the sum of the squares of the differences between the observed and computed values of the functions V, V', V'', etc. is a minimum."

PRINCIPLE OF LEAST *ACABES*

the following manner, be considered quantities must be a between the observed and computed sum of the squares of the differences independently of the calculus of n conclusion, the principle that the minimum may,

probabilities."

"Denoting the differences between observation and calculation by Δ , Δ' , Δ'' , etc., the first condition will be satisfied not only if $\Delta\Delta + \Delta' \Delta' + \Delta'' \Delta'' +$ etc., is a minimum (which is our principle), but also if $\Delta^4 + \Delta^{14} + \Delta^{114} + \text{etc.}$, or $\Delta^6 + \Delta^{16} + \Delta^{116} + \text{etc.}$, or in general, if the sum of any of the powers with an even exponent becomes a minimum. But of all these principles ours is the most simple; by the others we should be led into the most complicated calculations."

THE LIKELIHOOD FUNCTION

 $\varepsilon(t_k) = y(t_k) - \hat{y}(t_k)$ $y_{t_k}^{I} = \left[y^{T}(t_0) y^{T}(t_1) \dots y^{T}(t_k) \right]$ THE LIKELIHOOD FUNCTION CAN THEN BE WRITTEN AS $p(y(t_k)|y_{k-1}) = N(\hat{y}(t_k|t_{k-1}), R(t_k))$ FOR LINEAR GAUSSIAN PROBLEMS BECOMES USING BAYES RULE THE LIKELIHOOD FUNCTION = $(1/2)(2\pi)^{-m/2} (\det R(t_k))^{-1/2} \exp - (1/2) \varepsilon^{T}(t_k) R^{-1}(t_k) \varepsilon(t_k)$ INTRODUCE $p(y_{t_k}) = p(y(t_k) | y_{t_{k-1}}) p(y_{t_{k-1}})$ $p(y(t_k|y_{k-1}) p(y(t_{k-1})|y_{k-2}) \cdots p(y(t_1)|y(t_0)) p(y(t_0))$

INTERPRETATION FOR NON GAUSSIAN PROCESSES

NOTICE RELATIONS TO FILTERING THEORY !

 $-\log L = (1/2) \left| \sum \log \det R(t_k) + \sum \varepsilon^{-1}(t_k) R^{-1}(t_k) \varepsilon(t_k) \right| + \operatorname{const.}$

PREDICTION ERROR INTERPRETATION

Notice that the ML-criterion gives a loss function N of the form

$$V(\theta) = \sum_{k=1}^{N} q(\varepsilon(t_k))$$

where

$$\varepsilon(t_k) = y(t_k) - \hat{y}(t_k | t_{k-1})$$

is the prediction error.

Alternative: Postulate prediction model and error criterion

SORIED

THE MAXIMUM LIKELIHOOD PRINCIPLE Fisher 1912

RULE

Let Y be a random variable with probability density $p(y, \theta)$. To estimate θ from an observation y choose θ such that

 $L(y, \hat{\Theta}) \ge L(y, \Theta) \quad \forall \Theta$

where L is the likelihood function defined by $L(y, \theta) = p(y, \theta)$.

INDEPENDENT SAMPLES

 $L(y_1, y_2, \dots, y_n, \Theta) = p(y_1, \Theta) p(y_2, \Theta) \dots p(y_n, \Theta)$

PROPERTIES

Consistency Asymptotic normality Efficiency

OTHER PREDICTION ERROR CRITERIA

4

ML:

$$V(\theta) = -\log l = \frac{1}{2} \sum_{k=1}^{N} A_{k} \operatorname{det} R(t_{k}) + \frac{1}{2} \operatorname{m}_{3} \otimes \log 2\pi$$

$$V(\theta) = -\log l = \frac{1}{2} \sum_{k=1}^{N} \operatorname{etr} \operatorname{det} R(t_{k}) + \frac{1}{2} \operatorname{m}_{3} \otimes \log 2\pi$$

$$E(t_{k}) = g(t_{k}) - \frac{1}{2} \operatorname{He} | t_{k-1})$$

$$V(\theta) = g(G(\theta))$$

$$G(\theta) = \sum_{k=1}^{N} F(E(t_{k}), \theta, t_{k})$$

$$Longer Prediction + Horizon
$$V(\theta) = g(G_{1}(E), G_{2}(E), \dots, G_{5}(e))$$

$$G_{1}(\theta) = \sum_{k=1}^{N} F_{1} (E(t_{k}|t_{k-1}), \theta, t_{k})$$

$$E(t_{k}|t_{k-1}) = g(t_{k}) - \frac{1}{2} (t_{k}|t_{k-1})$$$$

tk-i

th

Fing 1

國法語

ESTIMATING PARAMETERS OF DYNAMICAL SYSTEMS

Example $\dot{x} = Ax + Bu + v$ $y(t_{k}) = Cx(t_{k}) + e(t_{k})$ How to obtain the likelihood function Computational aspects The minimization problem Properties /of the ML-estimate

THE LIKELIHOOD FUNCTION

 $y_{t_{k}}^{I} = \left[y^{T}(t_{0}) y^{T}(t_{1}) \dots y^{T}(t_{k}) \right]$ BECOMES USING BAYES RULE THE LIKELIHOOD FUNCTION INTRODUCE $p(y(t_k)|y_{t_{k-1}}) = N(\hat{y}(t_k|t_{k-1}), R(t_k))$ $\mathcal{E}(t_k) = y(t_k) - \hat{y}(t_k)$ FOR LINEAR GAUSSIAN PROBLEMS = (1/2)(277)^{-m/2} (det R(t_k))^{-1/2} exp - (1/2) $\varepsilon^{T}(t_{k}) R^{-1}(t_{k}) \varepsilon(t_{k})$ $-\log L = (1/2) \left| \sum \log \det R(t_k) + \sum \varepsilon^T(t_k) R^{-1}(t_k) \varepsilon(t_k) \right| + \operatorname{const.}$ THE LIKELIHOOD FUNCTION CAN THEN BE WRITTEN AS NOTICE RELATIONS TO FILTERING THEORY ! INTERPRETATION FOR NON GAUSSIAN PROCESSES $p(y_{t_k}) = p(y(t_k) | y_{t_{k-1}}) p(y_{t_{k-1}})$ $p(y(t_k)|y_{t_{k-1}}) p(y(t_{k-1})|y_{t_{k-2}}) \dots p(y(t_1)|y(t_0)) p(y(t_0))$

EXAMPLE $y(t_k) = Cx(t_k) + e(t_k)$ ×-Ax ·Bu+v $\hat{y}(t_k|t_{k-1}) = C\hat{x}(t_k|t_{k-1})$ $\varepsilon(t_k) = y(t_k) - \hat{y}(t_k | t_{k-1})$ THE KALMAN BUCY THEORY GIVES: $R(t_k) = R_2 + C P(t_k|t_{k-1})C^T$ $(t_k|t_k) = \hat{x}(t_k|t_{k-1}) + K(t_k) \cdot \epsilon(t_k)$ $K(t_k) = P(t_k|t_{k-1})C^T R^{-1}(t_k)$ $P(t_k|t_k) = P(t_k|t_{k-1}) - K(t_k)CP(t_k|t_{k-1})$ $\frac{d\hat{x}(t|t_k)}{d\hat{x}(t|t_k)} = A\hat{x}(t|t_k) + Bu(t)$ dP(tltk) = AP(tltn)+P(tltk)AT+R1 tkststk+ THE LIKELIHOOD FUNCTION đ tk < t 5tk+1

 $(2\log L)_{k} = (2\log L)_{k} + \varepsilon^{T}(t_{k})R^{-1}(t_{k})e(t_{k}) + \log \det R(t_{k})$

THE NOTICE LIKEL HOOP THE STRUCTURE FUNCTION 0 ק

CONTINUOUS TIME DATA

\$12 $\mathbf{\omega}$ = ()) (۱! H F(z, u(t), y(t), t)H (2, 2) 1 (K (E, t, f) At ٢I 6 (2, 2)

COMPUTATIONAL ASPECTS

What must be done? Minimization algorithms Simplifications constant sampling rate

special model structures

FUNCTION EVALUATION GRADIENT -11-HESSIAN -11-

USING ADJOINT VARIABLES PROOF: $\frac{dx_{e}}{dt} = f_{x} \chi_{\theta} + f_{\theta}$ $dt = f(x, \theta, t)$ P(T) = $V(\theta) = \begin{cases} c_{1}(x, s) d s \\ T \end{cases}$ $V_{\theta} = \int [g_{X} x_{\theta} + \rho^{T} x_{\theta} - \rho^{T} f_{x} x_{\theta} - \rho^{T} f_{\theta}] ds$ $\frac{dp}{dt} = -\left(\frac{2t}{2x}\right)^{T} p + q^{T}$ $V_{\theta}(\theta) = \int q_{x} x_{\theta} ds$ CALCULATE И $= p^{T} x_{\theta} J_{\varepsilon}^{T} + \int \left[\partial_{x} x_{\theta} - p^{T} x_{\theta} - p^{T} f_{x} x_{\theta} - p^{T} f_{\theta} \right] ds$ prx, J - Slax-prfx-prJxe - Spfeds 0 GRA DIENTS 11 $\int p^{T}(s) f_{\theta}$ d S

EXAMPLE $t_{k+1} - t_k = 1$ $x(t+1) = A x(t) + B u(t) + K \varepsilon(t)$ $y(t) = C x(t) + \varepsilon(t)$ $-2 \log L = \sum_{1}^{N} \varepsilon^{T}(t) R^{-1} \varepsilon(t) + N \log \det R + c$ MINIMIZE W.R.T. R!

-2 log L = N log det $\frac{1}{N} \sum_{r=1}^{N} \varepsilon^{T}(t) \overline{\varepsilon}(t) + r N + const.$

10×150

B (q⁻¹) $C(q^{-1}) = 1 + c_1 q^{-1} + \dots + c_n q^{-n}$ $A(q^{-1}) = 1 + a_1q^{-1}$ A $(q^{-1})y(t) = B(q^{-1})u(t) + C(q^{-1})e(t)$ u (t) e(t) + λ (e(t)+c₁e(t-1):...+c_ne(t-n)) y (t) 11 EXAMPLE (ARMAX MODEL) + $a_1 y (t-1) + ... + a_n y (t-n)$ C(q⁻¹)/A(q⁻¹) B(q⁻¹)/A(q⁻¹) b₁u(t-1) +... + b_nu(t-n) b1q⁻¹ +... + bnq⁻n +...+ anq-n 60 + y(t)

THE CA2 FUNCTION + SPECTRAL DISTURBAUCES sy sters CANONICAL STATION ARY WITH RATIONAL LIDEAR a o s IM Ay = B, u, + B, u, + ... + B, u, + (e RATIONAL TRANSFER ARMAX MODEL Ъ П TIMERVARIANT EXTENDED NO HOSE DENSITY FORM TIME ARE OY ZAKIS TOR DELAY

 $V_{\theta} = \sum_{t=1}^{N} \varepsilon(t) \varepsilon_{\theta}(t)$ $C(q^{-1})\frac{\partial \mathcal{E}(t)}{\partial c_i} = -\mathcal{E}(t-i)$ $C(q^{-1})\frac{\partial \varepsilon(t)}{\partial a_i} = y(t-i)$ $-\log L = \frac{1}{\lambda^2} V(\theta) + \frac{N}{2} \log \lambda + \text{const}$ $V(\theta) = \frac{1}{2} \sum_{t=1}^{N} \varepsilon^2(t)$ $V_{\Theta\Theta} = \sum_{t=1}^{N} \varepsilon_{\Theta}(t) \varepsilon_{\Theta}(t) + \sum_{t=1}^{N} \varepsilon(t) \varepsilon_{\Theta\Theta}(t)$ C(q⁻¹) E(t) = A(q⁻¹)y(t) - B(q⁻¹)u(t) $\Theta^{k+1} = \Theta^{k} - \left[V_{\Theta\Theta}(\Theta^{k}) \right]^{-1} V_{\Theta}(\Theta^{k})$ MINIMIZATION

÷

MODEL STRUCTURES

$$dx = Ax dt + Bu dt + dw = \begin{bmatrix} R_1 \\ dy = Cx dt + de \\ R_2 \end{bmatrix}$$

$$y(t) + A_1 y(t-1) + ... + A_n y(t-n) = \begin{bmatrix} B_1 u(t) + ... + B_n u(t-n) + e(t) + C_1 e(t-1) + ... + C_n e(t-n) \end{bmatrix}$$

$$y(t) = H(s) u(t) + G(s) e(t)$$

NONLINEAR MODELS

 $\frac{\partial \xi}{\partial x \left[\frac{1}{2} \right] \left[\frac{1}{2} \right]} = \frac{1}{2} \left(\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}$ $y(t_{k}|t_{k-1}) = g(\hat{x}(t_{k}|t_{k-1})) +$ \hat{X} $(t_{\mu}|t_{\mu}) = h(\hat{X}(t_{\mu}|t_{\mu}-i))$

ESTIMATION THEORY

HOW ARE THE RESULTS INFLUENCED UNDER IDEAL CIRCUMSTANCES HOW WILL THE METHODS WORK PROBLEM ELEMENTS 2, 14, 8 BY DIFFERENT CHOICES OF THE

CLASSICAL STATISTICS

CON SISTEN CY

A SYMPTOTIC DISTRIBUTIONS

EFFICIENCY

GEVERAC ARGE COMMENT ON RESULTS SANDLE PROPERTIES 8 5 5

CHARACTER OF RESULTS

NOTIONS

Z Q 90 DATA MODEL CRI TERIA GENE PATED SET TAPM Mo

INTRODUCE

 $W(\theta) = \lim_{N \to \infty} \frac{1}{N} V_{N}(\theta) = \left[\lim_{N \to \infty} \frac{1}{N} \log L(\theta, y_{N}) \right]$

SHOW UNIFORM CONVERGENCE (ERGODIC THEOREMS OR MARTINGALE THEOREMS ANALYSE MINIMIZES W(0) W(A) FIND O, WHICH

UNDER GENERAL $\Theta_{\mathcal{V}} \rightarrow \Theta_{o}$ BUT MESSY CONDITIONS

ASTROM--8

COMPUTER AIDED ANALYSIS AND DESIGN

BACKGROUND

BUT THEIR DETAILS MAY BE MESSY MANY METHODS ARE CONCEPTUALLY SIMPLE

SOLUTION

COMBINE MAN'S INTUITION WITH THE COMPUTERS CALCULATING CAPACITY

EXAMPLES SIMNON IDPAC MODPAC SYNPAC

 \mathcal{C}^{*}

R

PRACTICAL EXPERIENCES

Paper Machines Drum Boilers Distillation Columns Nuclear Reactors Activated Sludge Processes Ship Steering Dynamics Thermal Heat Conduction Macroeconomics Pharmacokinetics INSULIN KINETICS

e.

177 WHERE DOES ML & PE BORK INTO • 2 THE NODELING

EXPLORATORY PHASE Assure DATA MISO NUDEL. AND TEST ? ⊅ CANONICAL FIT TO

FINAL PHASE. INFORMATION, FIT PARAMETERS AND VALIDATE ? MODEL PARAMETER ESTIMATION WITH ALL ASSUME 7 PJISA HA AVAILABLE

OF SPECIAL FEATURES ML & PRED. ERR.

モアフ GREAT MODEL STRUCTURE FLEXIBILITY

WILL OFTEN PEQUIRE

SUBSTRUTIAL CALCULATIONS

WELL UNDERSTOOD

THEOREMONIC REASONAND

	0	S	A	س	2	-	AD
2	Conclusions	ANALYSIS	ANALY SIS	THE MINIMU SELF-TUNER	DESIGN	INTRODUCTION	ADAPTIVE CONTROL
s S	SIONS	S (RESULTS)	S (EXAMPLE)	MINIMUM VARIANCE	DESIGN PRINCIPLES	CTION	CONTROL

10

(T)

Figure 1 Simplified diagram of a kraft paper machine.

MODEL OF PROCESS DYNAMICS AND DISTURBANCES

CONTROL LAW

CONTROL PERFORMANCE (UNDER THE CONDITIONS OF THE EXPERIMENT)

Ş		Ş		Þ		Ş	Þ	¢.	Z
ROLE OF SIMULATION	SELF-TUNING NOT ADAPTIVE	KEY ASSUMPTIONS	NONLINEAR	NATURE OF MATHEMATICAL PROBL	STABILITY STABILITY PERFORMANCE	KEY PROBLEMS	HOW CAN THEY BE CHANGED TO WORK BETTER	HOW DO THE REGULATORS WORK?	INTRODUCTION

REGULATOR STRUCTURE

NOTICE

- (AN BE REGULATOR UITENED AS A NOULINEAR
- 2 てそう AND SIGNAL PATHS "STATES" "PAPAMETERS"

÷

DESIGN METHODS

æ MICINON LIC MAR Poler FREQUENCY RESPONSE LACH INCT QUADRATIC GAUSSIAN VARIAUCE

たいのと よまのとまん

- L8K PROBLER 3 THE ANTELAR
- ę TOP
- 40 DISTURBANCES
- RIX
- 0 WHAT PRICESS WOULD YOU DO IF THE る。市民ところ、アクマー べてのそこ
- リキア How would you MISSING DATA? ESTIMATE
- THE DECIDE ?

WARNING ? SPARSAMKEIT DO SIMPLE THINGS FIRST DID STATE FEEDBACK W. OBSERVER OUTPUT FEEDBACK NONLINEAR GAIN SCHEDULE FIXED GAIN ADAPTIVE

÷

· SAMPLING PERIOD MAJOR DESIGN	PEMARKS	Ay = By = By = Ey = Ay = By = By = Ey = HINIMAL HINIMAL C = AF + y = Ey = $y = -\frac{G}{BF}y = y = F = $ y = F = F =	MINIMUM VARIANCE
UARIABLE	κ	The st of St Sain a	GNTROL

1000 M

w °a	5	Ş		Eg	181	MIN
2' CONTROL LAW UL= - SF JE USE CONTROL LAW UL= - SF JE	1° ESTIMATION FIND G& BF IN Ythe Gyt = BF4F BY LEAST SQUARES	MPLICITE ALGORITHM $y_{4+k} = (AF+q^{-k}G) y_{4+k} = Gy_4 + BF4_4 + F\xi_{4+k}$	2. DESIGN SOLVE I=AF+4 & FOR FRG 3. CONTROL LAW 4=	I ESTIMATION I ESTIMATION FIND ASB IN AY = BY - & BY LS	Ayreburret Cit Cit and a stand of the second	MINIMUM VARIANCE SELF-TUNERS

6.0 -

DAR POLICE STREET

EXAMPLE Min ylt+) + aylt) = bult) + e(t+1) + ce(t) ALCOPITHM: E finition : Determine a E y2(2) = (111) = 2.5 y(2) ~t $y|(+1) + \alpha y|(+) = 1 \cdot u(+)$ by least squares Control : u(+) = & (+) y H) Al each * [(31 6- (31 6] 2 time t 5 choose control " .. . min.

IN THE ADAPTIVE CASE THE FEEDBACK IS TIMEVARYING & THE SYSTEM DOES IN DEED BECOME ID ENTLEIARLE CONVERGENCE IS HOWEVER SLOWER?	THE PARAMETERS Q & D IN JO ARE NOT IDENTIFIABLE WITH THE FEEDBACK JO IF & IS CONSTANT?	$y(t+i) + (q_0 + k g) y(t) = (b_0 + k g) u(t) + v(t)$ $q(t+i) + (q_0 + k g) y(t) = (b_0 + k g) u(t) + v(t)$	BUT & + k. & GIVES	J: ule) = l g (f)	$\mathcal{S}: \ y(t+i) + a_{o}y(t) = b_{o}u(t) + n(t)$	WHY NOT ESTIMATE 0 ?
LE DEACK	ARE	re) + or (E)		(2)	(1)	y, V

ALSO TRUE FOR OR 6 K & K STABILITY ESTIMATION MODEL: PROCESS : + In'(k) bad => + I'y (k) bad. LS ESTIMATE : 2(4) - 9 | 5 0 14) = y(++1) + ay(+) = bu(+) + m(+) (F) = (+1 & + (++) = u(+) 66 2 -E [y(k+1) - w(k)]y(k) 2 y (4) 7 2 2 3 111 *1-11 M 3 (4) N n (6) y (6) **ک مارد)** 6 11 () The second

= $\alpha(k) \approx \frac{1}{2} y^{2}(k_{j}) y(\frac{1}{2}+j) \cdot y(\frac{1}{2})$ KEY PROBLEM IS TO ANALYSE S: $y(\frac{1}{2}+j) + ay(\frac{1}{2}) = by(\frac{1}{2}) = by(\frac{1}{$	CONVERGENCE ANALYSIS $ \begin{aligned} \mathcal{U}: & y_{1\xi+1} + \alpha y_{1\xi} = \beta_{0} & u_{1\xi} + e_{\xi} \\ \hat{\alpha}_{1\xi+1} = - \frac{\xi}{\Sigma} y_{1k+1} - \beta_{0} & u_{1\xi} + e_{\xi} \\ \hat{\alpha}_{1\xi+1} = - \frac{\xi}{\Sigma} y_{2} & u_{1\xi} \\ \frac{\xi}{\Sigma} y_{1k} & \frac{1}{\Sigma} y_{1\xi+1} + \hat{\alpha}_{1\xi} & y_{1\xi} \\ \frac{\xi}{\Sigma} y_{2} & u_{1\xi} \\ \frac{\xi}{\Sigma} y_{2} & u_{1\xi} \\ \frac{\xi}{\Sigma} y_{2} & u_{1\xi} \\ \frac{\xi}{\Sigma} y_{1k} & \frac{1}{\Sigma} y_{1\xi+1} + \hat{\alpha}_{1\xi} & y_{1\xi} \\ \frac{\xi}{\Sigma} y_{1k} & \frac{1}{\Sigma} y_{1k} \\ \frac{\xi}{\Sigma} y_{1k} & \frac{1}{\Sigma} y_{1\xi} \\ \frac{\xi}{\Sigma} y_{1k} & \frac{1}{\Sigma} y_{1\xi} \\ \frac{\xi}{\Sigma} y_{1k} & \frac{1}{\Sigma} y_{1\xi} \\ \frac{\xi}{\Sigma} y_{1k} & \frac{\xi}{\Sigma} y_{1k} \\ \frac{\xi}{\xi} y_{1k} & \frac{\xi}{\Sigma} y_{1k} \\ \frac{\xi}{\Sigma} $
---	--

.

ž.

.

÷.

HEURISTIC DISCUSSION $\hat{\alpha}(H_{k+1}) = \hat{\alpha}(H_{k}) = P_{0} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j$ $\alpha(k+1) = \alpha(k) - \frac{\beta(k+1)\beta(k)}{\Sigma \eta^2(k)}$ h $\hat{\alpha}(++1) \approx \hat{\alpha}(+) = P_0 \neq \vartheta(+1) \vartheta(+)$ 22 $\frac{1}{\xi} \sum y^2(k) \rightarrow 1/P_0$ $\Re [E + d T] = \Re (T) + P_0 \Delta T f(R)$ 02 = Po + (R) (x) =-E 2 (++1) y (+) = Et zlag 6 $\widehat{\alpha} | \mathcal{L}_{k} \rangle = \widehat{P}_{0} \left(\sum_{\substack{k \in I \\ k \in I}} \frac{\mathcal{L}_{k}}{\mathcal{L}_{k}} \right) \xrightarrow{i}_{k \in I} \sum_{\substack{k \in I \\ k \in I}} \frac{\mathcal{L}_{k}}{\mathcal{L}_{k}} \frac{\mathcal{L}_{k}}{\mathcal{L}} \frac{$ L. LJUNG 6 14+1 Eり(モナ1) り(モ)

100 4(++1) + [a-ab]y (+) = e (++1) + ce(+) ELO SED 97 212 ト(の) +' (ペ,) (+) 6 + (1++) 6 1) ん(そ) IJ 11 0 1 や+(の) = (チリピ(トナ)) = 1 L e yiti • LOOP - (q - a, b)² 6 R = balt)() 8 - 0 SYSTEM 11 (C-9+86) (1-90+860 + elt+1) 0 5 2 - a 6/2 11 + c e l { Q 6

25.5/19 THE POLE 6/B° <0 < 6/3. < 2 0 STABLE BUT THERE EP1 PROBABILITY FOR REGULATOR IF CLOSED LOOP IS ESTI MATE UNSTABLE SYSTEM ESTIMATES IS A NOUZERO 50 CON VERGES GIUES 20000000

DUERGENCE

APE STABILITY RELATION ی بر بر PARK-S EGARJT MORSE GOODWIN MU NOPOLI NAPENDRA PAMAGE MRAS PRO BLEM BOUNDED CALLES 、 し (DEC 78) (APPLIL 79) (MAECH 79) (NOU 78)