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1. INTRODUCTION

The problem of controlling the bilinear system

)

1l
5
+

(=
w

.Xxu. + B.u (1.1)
i“ri

evokes interest because of three reasons:

1. It is a "simple" class of non-linear systems, slightly
more complex than the fully understood linear systems.
Knowing how to control this class is a logical step in

the development of control theory.

2. Some non-linear systems may be approximated by bi-
linear models, see Sussman (1976) and Mohler (1979).
Especially a bilinear approximation might be an

acceptable one in a greater region of the state space
around the operating point, than a linear one.

3. Several real life control processes can be modelled
as bilinear systems. Several examples are found in
Mohler (1973), for instance the control of the neutron
level in a fission reactor. Espaila (1978) proposes a
bilinear model for a distillation process. Bilinear
models for biological systems can be found in for
instance Mohler (1978).

General necessary and sufficient conditions for control-
lability and stabilizability of bilinear systems are
lacking today. Consequently there is no complete theory
on the control of bilinear processes. Most of the results
in the literature cover special cases. Some of these are

surveyed here.



The main effort is spent on investigating feedback
controllers. Moylan (1973) and Jacobson (1977) present
a feedback law which is comprehensive when A is a sta-
bility matrix. Landau (1979) contains a development of
those papers. Here the results are extended to the case
when A is unstable, under suitable conditions. New re-

sults, covering special cases, are also presented.

The case when additive and multiplicative controls act

independently is treated briefly.

It is suggested that future work is undertaken along

the following lines:

1. The controllability problem should be solved.

2. Specific bilinear systems, modelling real life
processes, should be studied.

3. A slightly more general class of systems should be

considered:

L m
x = p(x) + % B,xu, + B.u, , (1.2)
i=1 *+ 7t

where the elements of p(x) are homogenous polyno-
mials of degree n, and u; = ui(x) is a polynomial of
degree < (n - 1). This class is closed under state

feedback which is not the case with bilinear systems.

This report is organized as follows: the stabilizing
properties of various controllers are investigated with

respect to different assumptions on the system.

Section 2 contains definitions, the problem statement

and a discussion of them.

Section 3 presents the "quadratic" feedback solution of
Moylan (1973) and Jacobson (1977), shows its use when A

is strictly stable and discusses when it might work when



A is not strictly stable.

Section 4 is devoted to other controllers and special
systems, among them systems for which constant controls
work, and for which the new Division Controller is app-

licable. Various other approaches are also discussed.

Section 5 treats briefly the case when additive and

multiplicative controls are independent.

Section 6 contains the above mentioned example on neutron

level control (Mohler (1973)), solved in two new ways.

Section 7, finally, contains a summary.



2. DEFINITIONS AND PROBLEM STATEMENT

2.1 Definition of a bilinear system

) m
X =Ax + L B.xu, + B.u (2.1)
o iT i 0
i=1
x € R® ,
u € R ,

A, Bi real constant matrices of appropriate dimensions.

Equ. (2.1) can be rewritten:

é = Ax + G(xX)u (2.2)
where
G(x) = [glx + blO B,x + b20|.....|Bmx + bmo]' (2.3)

where bi0 is the i:th column of BO' Note that the
control u acts additively and multiplicatively

simultaneously.

Another rewriting yields

m
Ax +i£1 (Bix + biO)ui (2.4)

X

Remark 2.1: Equ. (2.1) can also be rewritten into

. m
z =Fz + ) H,zu, (2.5)
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th F = |- H. = d =

L loa] , i b,y Byl #9792 7 [x]
(Brockett (1972)). Equ. (2.5) is not in a controllable

form. It is believed that the form (2.5) offers no
advantage when trying to find a feedback control, and

will not be used. When a system of the form

) m
X = Ax + I B.Xu,. (2.6)

is given in the sequel, it will denote equ. (2.1) with

By = 0 and not equ. (2.5).

2.2 Problem statement

Problem: Find a stabilizing state feedback control.

This problem is of interest because:

1, a bilinear model of a process may cover adequately
a larger region of the state space than a linear
one, and thus larger disturbances may be taken care
of.

2. in the same vein, a change of operating point might
require a bilinear model description (see for in-
stance Espana (1978)).

3. work on observers for bilinear systems is being
undertaken, and thus output feedback could be covered

by the above approach. An. observer of the type

x = Ax + G(x)u + H(y- Cx) (2.7)

has been studied by Derese (1979).

Stability is as usual only a necessary property of a



good controller. However, the results presented below
permit the designer some freedom in selecting other

properties of interest.

The relevant stabilizability concept is:

Definition: (Null) stabilizability: Given the system
(2.1) with the initial condition x(to) = Xg Q is
said to be a (nutl) stabilizable region if for every

X, € @ and for every neighbourhood w of the origin,

tgere exists a locally bounded function u(t), t > t0 ’
and a finite time interval T, such that the solution of
(2.1) with u(t) as input satisfies x(t) € w for all

t > tO + T. If @ = R then the system is said to be
stabilizable.

There are no general criteria for necessary and suf-
ficient conditions neither for stabilizability nor for
any definition of controllability. Sufficient condi-
tions (and necessary for the case of scalar u) are

found in Mohler (1973). Hirschorn (1974) determines

the reachable set for a large class of bilinear sys-
tems using Lie theory. Hermann (1977) has some results
for non-linear systems, applicable to the bilinear

case. Wei (June 1978) proves total controllability
under very restrictive conditions. In the sequel, stabi-

lizability will be assumed when not stated otherwise.

Stabilizability of the system (2.1) in general implies

that the linear system %X = Ax + BOu is stabilizable,
m

because near the origin, the terms I Bixui
i=1

(with u; = o(x)) are of smaller order than the term
B,u. One exception is the case when B, = 0 while the

0 0
system might still be stabilizable.



2.3 Change of operating point

The above stabilizability concept can be applied to
other stationary points in the state space. Let the
system be given by equ. (2.1) and assume u, and x
such that

e

m

0 = Ax + I
e .|

l=

B.x u , + Bu (2.8)
] Leel 0 e
where Ugg is the i:th component of u,-

Then by introducing Ax = x - X 1 Au = u - u

(2.1) can be rewritten

: m m m
A x = (A+Z B.u .)Ax + I B.AxAu. + ¥ (B,xX +b. )Au., (2.9)
.. i ei P & i S i e 10 i
i=1 i=1 i=1

We note that (2.9) describes a bilinear system of the
same structure as equ. (2.1l) around the new operating
point Xy (With more general non-linear systems, the
structure is not necessarily preserved when changing

the operating point.)

Of course not all points in the state space are
stationary points. In practice however, the purpose of
control is often to keep the system at a stationary

operating point, or to bring it to a new one.

2.4 A case of non~-stabilizability

Stabilizability around one operating point does not

imply stabilizability around another operating point:



Example 2.2 : Consider

X =xXx + xu + u (2.10)

xERl . uERl :

Equilibrium points:

0 = (1L + ue)xe + ue (2.11)
u
Xy = - —_— (2.12)
l +u
e

Note that x_ € {xlx # -1, x €R},
The system equation around the new operating point is,

using equ. (2.9):

A x= (1 + ue)Ax + AxAu + (xe + 1)Au (2.13)

For x_ = 0, u, = 0 (i.e. equ. (2.10)) the system is not

stabilizable. Rewrite equ. (2.8):
XxX=x+ (x+ 1)u (2.14)

and let the initial condition be x(0) < -1. Then no

bounded u(t) can take the state across the point -1,

because

lim x = -1 (2.15)
x>-1

as the control action ceases for x = -1.

However for X, = -2, u, = -2, equ. (2.13) gives:

-

A X = -Ax + Ax+Au - Au (2.16)



The control u = 0 stabilizes (2.16).

Example 2.2 can be generalized:

Theorem 2.3: Given the system

X = AX + (Bx + b)u , x € R , U € R (2.17)
T T

Assume that Bx + b = b(c™x + 1). Let d(x) = ¢ x + 1.

d(x) = 0 defines an (n-l)-dimensional hyperplane.

Divide the state space into the following sets:

s, = {x|d(x)>0}
5q = {x|d(x)=0}
S_ = {x]|d(x)<0}

If all the trajectories of the autonomous system x = AX

o are directed into Sy U S_ then (2.17) is not

stabilizable.

in S

Proof: The origin belongs to S,. Control action ceases

in SO’ Therefore, the only way to pass from S_ into S+
is by force of the autonomous system % = Ax. If no tra-

jectory of the autonomous system leads from S, into S+

0

4
stabilization is not possible.

The result of theorem 2.3 is extended in theorem 4.22.
Other results on non-stabilizability appear in section
4.2,
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3. A FEEDBACK CONTROL SOLUTION

3.1 The basic theorem

For conveniance equ. (2.2) is repeated:

X = AxXx + G(x)u

The following is adopted from Moylan (1973) and Jacob-
son (1977).

Theorem 3.1 (Jacobson): Suppose there exists a radially
unbounded function & (x)>0 , o:R"SR , which is once
continuously differentiable such that (Vx®)TAx < 0.
Suppose further that there is no non-zero x € R" for

which (Vxé)TAx and (VX®)TG(x) are both zero. Then

ux(t) = -

N1

GT(x)vch(x) (3.1)

globally asymptotically stabilizes equ. (2.2).

Rémark 3.2 (Jacobson): Under the conditions of theorem

3.1, the control (3.1) minimizes the performance cri-

terion

V(x(tg) ,ul+) kg, = [{m(x(£)) + u’ (t)u(t)}dt (3.2)

o

in the class of stabilizing control functions. Here

1
m(x) = -(V @)TAx + - (V chTGGTv O (3.3)
X 4 X X
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The assumptions ensure m(x) > 0 , x # 0 .

Proof (outline): Consider the closed loop system:

X = AxXx + G(x)u* = Ax -

% G(x)GT(x)vX@(x) (3.4)

®(x) is a Lyapunov function for this system because:

1. o(x) > 0 (3.5)

2. &(x) VXTQ(X){AX - % G(x)GT(x)VXQ(x)] -

VXT@(X)AX - 2-(%VXT®(X)G(x)GT(x)Vxé(x)) =

- {m(x) + 2u*Tu*} < 0, x#0 (3.6)
o
Moylan (1973) proves that the optimal feedback control
that minimizes (3.2) is given by (3.1), where @(x) is a
positive definite solution of the non-linear stationary
Riccatilike equation (3.3). The ® assumed in the theorem

is such a solution.

3.2 A strictly stable

When A is strictly stable there exists a P = PT>0 for

which ¢(x) = XTPX satisfies theorem 3.1:

1. &(x) > 0
2. v _oAx = 2% PAx = x'(PA + ATP)x (3.8)

When A is strictly stable there exists a P = PT>0 such
that



12

T

PA+ AP =-0Q, Q>0 (3.9)
(see e.g. Lancaster (1969)). Thus
V QAX = —x Qx < 0 for all x # 0 . (3.10)

3. VX®Ax and VXTQG(x) are not both zero for any non-
zero X , because VXQAx < 0 for all x# 0 .

So in this case

T .
uI = —(Bix + bi )’Px , 1=1,..... , m (3.11)

0

is a stabilizing control.

It is possible to pick a suitable Q in equ. (3.9) to get

a suitable performance criterion (3.2).

control u = 0 stabilizes the system.

3.3 A has eigenvalues on the imaginary axis

When A has eigenvalues on the imaginary axis it is some-

times possible to find a P = PT > 0 that causes the

control (3.11l) to stabilize the system.

For the sake of simplicity we first assume that all

eigenvalues of A lie on the imaginary axis. In this case

there does not exist a P = PT > 0 such that PA + ATP < 0,

There does, however, exist a P = PT > 0 such that
PA + ATP = 0. This case is treated in theorems 3.4, 3.7

and 3.8.
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For all other P = PY > 0, PA + A'P is indefinite. This

case does not differ from the case when A has strictly
unstable nodes and we must resort to the weaker results

of section 3.4 (see below).

Theorem 3.4: Given the system

i i0)ui (3.12)

where all eigenvalues of A are purely imaginary. If
there exists a P = PT > 0 such that PA + ATP = 0, and
there is no non-zero x for which

T

(BiX + bi Px , 1 =1,2, ... ,m (3.13)

o)
are all zero, then the control

uf = - (B,x + b, Tex  , 1i=1,2, ... ,m (3.14)

0}
asymptotically stabilizes (3.12).

Proof: When all eigenvalues of A are purely imaginary
there exists a P = PT > 0 such that PA + ATP = 0 (see
Lancaster (1969)). Now a simple application of theorem
3.1 is needed: Let @ = xTPx be a Lyapunov function

candidate:

o =.xT(PA + ATP)x - 2
- J

0

Theorem 3.4 gives only sufficient conditions which are
very restrictive. In the single input case, for instance,
we must demand that B is definite and b = 0 in order to

satisfy the conditions of theorem 3.4. See section 3.5
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in which the single input case is discussed.

When A has some strictly stable eigenvalues and some

purely imaginary eigenvalues P = PT > 0 can be chosen

such that PA + ATP < 0. This case will be treated in

theorem 3.5 and remark 3.10. For other P = PT > 0, we

must resort to the weaker results of section 3.4.

Theorem 3.5: Given the system

Ju, (3.15)

X =Ax + X (B.x + b,
i i0o” 7i

i=1

where all eigenvalues of A have non-positive real parts.

If there exists a P = PT > 0 such that PA + ATP <0 and

such that

T
[(le+b10) wa
T
(B2x+b20) Px
i T T
I # 0 for {x|x#0, x (PA+A"P)x = 0}
| (3.16)
T
|- (BmX+bm0) PX-
then the control
T .
uz = -(Bix + bio) Px , 1 =1, ... , I (3.17)

asymptotically stabilizes (3.15).

Proof: Let @ = x"Px be a Lyapunov function candidate.

. m
® = x"(PA + ATP)x - 2 ¥ [(B.x + b, )TPx]z < 0 (3.18)
L N} s gL 1 i0 |
-/ l—l V
=0 #0
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Remark 3.6: A similar procedure to that in remark 3.17

can be used to find a suitable P.

Even if P = PT > 0 is such that PA + ATP < 0 but con-
dition (3.16) fails, the control (3.17) might still sta-
bilize the system. This is so because the trajectories
of the autonomous system %X = Ax , when u = 0 , might
"assist" in the stabilization. Special cases when this
is true for A having purely imaginary eigenvalues are
presented in theorem 3.7 and theorem 3.8. Theorem 3.8 is
extended to the case when A has some strictly stable
eigenvalues and some purely imaginary eigenvalues in

remark 3.10.

Theorem 3.7: (Slemrod (1978)): Given the system

: 2n

x = AxX + Bxu , X € R , U € R (3.19)
where

e

and I is the n/n dimensional unit matrix, J is a
diagonalizable n/n matrix with positive eigenvalues,
H is an n/n-matrix.

Let P = PT > 0 be such that PA + ATP = 0, and

W= {x]xTBTPx = 0}. Let s = {x0€W|eAtxO€W, t€ (-o, =) }.
If S = {0} then uI - - x'B'Px yields global
asymptotic stability.

o

Slemrod (1978) also presents methods how to determine S.
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Theorem 3.8 (Brockett (1974)): Suppose A has purely

imaginary eigenvalues A; (), and that xi(A) + Aj(A) # Ak(A)

for all i, j, k. Assume [A,b] a controllable pair. Then

there is a matrix P = PT > 0 such that PA + ATP = 0 and
u* = = (Bx + b)TPx makes the null solution of

X = Ax + (Bx + b)u asymptotically stable in the large.

is not allowed to have an eigenvalue = 0 if the

conditions of theorem 3.8 are to be satisfied.

Remark 3.10: If

where Al has purely imaginary eigenvalues and A, is

strictly stable, then theorem 3.8 still holds.

2

We conclude with a few examples where theorem 3.4 is

applicable:
Example 3.11 (Jacobson (1977)): Given
c_ (01 -10
X = [l 0]xul + [ 0 l]xu2 (3.20)
( =
3 S B
® = sx'x = (3.21)
2
u¥ = x 2 X 2
2 1l 2

satisfies theorem 3.4, because u{ and ug are never zero

simultaneously. ui . uE stabilize (3.20).

Example 3.12: Here is shown a case when both theorem 3.5

and remark 3.10 are applicable:
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*Jo o0 [ 1 1
X = [0 _le + -1 0]xu (3.22)
_ . . T T 2
Choose P = I which gives x (PA + AP)x = —2x2 .
T[1 -1] [1 O 2
¥ = —x = =-
u X [l 0] [0 l]x Xq (3.23)
satisfies theorem 3.5 because
T T
u# 0 when x (PA + A°P)x = 0, x # 0 . (3.24)

Thus, the control (3.23) asymptotically stabilizes (3.22) .

3.4 A strictly unstable

The previous sections showed that when A is strictly
stable it is always possible to find a stabilizing feed-
back by the approach (3.11); and when A has imaginary

eigenvalues, it is sometimes possible to do so.

When A has some strictly unstable eigenvalues, a

o(x) = xTPx is never a Lyapunov function that yields
asymptotic stability by theorem 3.1. The reason is that
there are some x in every neighbourhood of the origin

for which XT(PA + ATP)x > 0 , and even if

m 2
G [T
kT gk =
u*"u Eltx P(Bix + biO)] # 0
in the set

° T
{xlx#O, xT(PA + ATP)x > 0}, © = xT(PA + AP)x - 2u*Tu* > 0

for some x in a sufficiently small neighbourhood of
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the origin.

However, as we are satisfied with stabilizability as

defined in section 2.2, the above trail of thought leads
to the following theorem which gives sufficient condi-

tions for stabilizability:

Theorem 3.13: Given the system

L] m
Xx =Ax + X (B.x + bi )ui (3.25)

where the real parts of the eigenvalues of A might be

negative, zero or positive. If there exists a P = PT > 0

such that

(le+b )TPx1

10

TPx

;(B2x+b
|
|

' | (3.26)

|

|

[ T
[(BmX+bm0) PXJ

20)

|
|
|
!

# 0 in the set {x]|x#0, XT(PA+ATP)X > 0}

then Ve >0 there exists an o > 0 such that the control

T .
ui* = _a(BiX + bio) Px , i=1, 2, «.. , m (3.27)

causes the state of (3.25) to enter an g-neighbourhood

of the origin.

Proof: Let @ = x'Px be a Lyapunov function candidate.

- m
o = xT(PA + ATP)x - 2 X {XTP(Bix+Bi0)]2a < 0 for Hx|y>s
i=1 (3.28)
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if o is chosen > constant - lz . (3.29)
£

o
Remark 3.14: Notice that theorem 3.13 shows stabilizabi-
lity but not that the resulting system is asymptotical-
ly stable or stable! It is normally impossible to gua-
rantee asymptotic stability by increasing a in (3.27).

This fact is illustrated here.

Given the system (3.25) and a P that satisfies the_con-

. ! | {
ditions of theorem 3.13. Let B0 = [bloibzol"':bmo]'
Even if
o g
A(a) a (A - B,B, Pa) (3.30)

070

is a stability matrix for all a 3> N > 0, asymptotic
stability of (3.25) with the control (3.27) with some

constant a > N cannot be proved in general.

It is known from linear system theory (e.g. Egardt(1978))
that the eigenvalues of A(a) tend to -« and to the zeros

of BgP(sI - A)_lBO when o - o. (3.31)

Assume in the sequel that x = A(a) is asymptotically
stable for all ao > N. (3.32)

Apply the control (3.27) with a constant a > N on the

process (3.25). The closed loop system becomes

X = A(o)x + g(x)*a (3.33)
with

o T T T T_ T
g(x) a - X (Bixx Bi + BiXbiO + biox Bi ) Px (3.34)

i=1
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It is clear that |[|g(x) ]| < c, Hx]l2 , some constant
c, > 0 for x sufficiently small.
Because of the assumption (3.32), for every W = wl > 0
we can find a 0 = Q° > 0 such that

- A
QA(a) + AT{(a)Qg = -W < O (3.35)

Choose a W, which generates a Q according to (3.35).

Let V = xTQx be a Lyapunov function candidate for (3.33).
Then

V = -xTWx + 2xTQg(x)-a (3.36)
It is clear that there exists an el > 0 such that V < 0,
when

x € 8= {x| |[|x]|| < &} (3.37)

1

because W > 0 and |]xTQg(x)H <c3]]xH : for lIx!| suf-

ficiently small.

However there is no guarantee that the stability re-
gions defined by (3.28) and (3.37) cover all of the
state space. That is, ¢, of (3.37) might very well be

less than ¢ of (3.28).

1

It is possible to decrease ¢ of (3.28) by increasing a,
see (3.29). This will, however, also decrease € of
(3.37) because of (3.29) and because of the way

o figures in (3.36).

One might also attempt to increase € of (3.37) by

choosing a W, > W. However the Ql resulting form (3.35)

~

1
will be such that Ql > Q, because A(a) has finite
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eigenvalues for all ¢, see (3.31). Therefore an increase
of €1 of (3.37) cannot be guaranteed because of the way
W and Q figure in (3.36).

u]
Lemma 3.15: (Yasuda (1977)): Given the system (3.25). Let
B, = |b, ib, | b | 3.38)
o~ [P10,°20; " | Pmo] (3.

If [A’BO] is a stabilizable pair then there exists a li-

near feedback control

u=-Kx (3.39)

and an ¢ > 0 such that (3.25) is asymptotically stable
using the control (3.39) for all initial conditions in
the set

x| [ x]||] <e¢1} . (3.40)

Proof: The proof follows easily from the Lyapunov-

Poincaré theorem, see e.g. Hahn (1967).

Design 3.16: Given the system (3.25). Assume that there
exists a P = PT > 0 satisfying theorem 3.13. Assume that
[A’Bb} is a stabilizable pair. Then the following con-

trol scheme will make (3.25) asymptotically stable:

l. Choose a matrix K that makes (A - %)KT) an asympto-
tic stability matrix. Compute an ¢, that defines the set
{x| |I'x]|] < e} in which u = - K'x asymptotically sta-

bilizes (3.25) according to Lemma 3.15.
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2. Choose an o so that the control (3.27) forces the
state of (3.25) into the set {x| ||x|| < €} . This is

possible according to theorem 3.13.

3. Start controlling (3.25) with the control (3.27). As
soon as the state is in the set {x| |]x” < ¢} , switch

to the linear control u = - K x.

Remark 3.17: A sufficient criterion for the condition

of theorem 3.13 is the following procedure which might

be performed numerically:

Compute
T T_ ]2
W = max min b2 L(Bix + bio) Px] ; (3.41)
p=pT>0 xepnH. 171

p

wheré D is the region of interest, and

HP e {x]x#O, xT(PA + ATP)x > 0} , with the stopping

criterion w > § , for some § > 0.

The constraint x € HP has a lot of structure. HP is a

double cone, i.e. if x € HP then ax € HP for all o € R.
An algorithm to solve (3.41) numerically can be found in

e.g. Polak (1979).

Example 3.18: Here is a case when theorem 3.13 is appli-

cable because u* # 0 for nonzero x:

é = LO l]X + [2 é]xul + [-% 2]xu2 (3.42)



© = kerx'x > 0 =
N 2 2

o = k(xl + X, )[l - k
wheén kr2 > 1 ) r2 =
Set k > 1 .

2
€

Note that design 3.16

Example 3.19: This is
applicable. Given the

1
w= (5 1) e [(52)s
0 1 \2 1
6
Select P = I. Then

5 2
21

I
1

But

)x
JE

xT(PA

4 5
5 4

—+

Therefore the controls

(52 e

5 2
21

3

1 2
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u,* = - 2x.x.k
1 172 (3.43)
2 2
* — -1 — H .
u, (Xl X, ) ek
2 2
(xl + X, )] < 0 (3.44)
2 2
Xl + X2
(3.45)

=0.

is not applicable, because B0

another case when theorem 3.13 is

system:

3
2

- (3)]

[-
]

0 only for x=0 and x =~ i }

'6
'0

(3.48)

o (3.49)
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u, = [(g 2>x + (_§>]Tx-a (3.50)

will force the state of (3.46) arbitrarily close to the

origin if o is chosen sufficiently large.

-3 2
Note that [( ( )} is a stabilizable

o ol
(oY | ol
S
N
1
N

pair. Design 3.16 is thus applicable.

3.5 The single input case

Special attention will be given to the single input case:

Xx = Ax + (Bx + b)u (3.51)

A strictly unstable, i.e. Re Ai(A) > 0 for all i, and

diagonalizable.

In this case there is no P = PT > 0 such that there exist
non-zero x for which xT(PA + ATP)x is negative. To apply

theorem 3.13 we must therefore demand that there exists

ap-= PT > 0 such that u* = (Bx + b)TPx # 0 for all non-
zero x. Consequently we investigate the solution of the
equation:

x'BTpx = - blpPx (3.52)
For which P does equ. (3.52) lack a non-zero solution Xx?

The discussion that follows will also enhance the under-
standing of the condition of theorem 3.13 in the multi-

input case.
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Lemma 3.20: There exists a P = PT > 0 such that xTBTPx>0

when x # 0, iff all eigenvalues of B have positive real
parts.

Proof: x"BTpx = % xT(BTP + PB)x > 0 for x # 0 iff
BTP + PB = W > 0.
Given W > 0 , there exists a positive definite solution

P = PT to the equation BTP + PB = W iff all eigenvalues

of B have positive real parts (see Lancaster (1969)).

o
The consequence of Lemma 3.20 is that the mapping
X - XTBTPX ’ R 5 R is a
1. paraboloid in (n + 1l)-space iff sign Re xi(B) =
= sign Re Ak(B) # 0 ,-all. i,k, (3.53a)
and P suitably chosen. (3.53b)

2. saddle in (n + l)-space (which might be degenerate),

otherwise. (3.53c)

The mapping

x » b'Px , RY » R (3.54)

is a plane in (n + 1)-space through the origin.

When x € R2 figures 3.1 a and 3.1 b illustrate the

situation.
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&

Fig. 3.1 a: x - x'B'Px, R® - R is a paraboloid.

Fig. 3.1 b: x > xTBTPx, R® 5 R is a saddle.
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The solution of (3.52) is given by the projection into
the n-dimensional state space of the curve in (n + 1)-
space formed by the intersection of the paraboloid or
saddle (3.53) and the plane (3.54). From theorem 3.13,
equ. (3.27) applied to the single input case, we note
that u* = 0 for some x # 0 iff equ. (3.52) is satis-
fied.

We realize that u* = 0 for some x # 0 except when
x'BTPx is a paraboloid and b = 0 (3.55)

which is shown in fig. 3.2. This corresponds to the

system

X = AxX + Bxu (3.56)

with B satisfying equ. (3.53a).

Fig. 3.2: x » xTBTPx is a paraboloid, and x - bTPx = 0,

because b = 0,
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Theorem 3.13 is applicable in this and only this single
input case: there exists a P = PT > 0 such that

u* = xTBTPng stabilizes the system (3.56). However in
this case there is also a constant control uc that makes
the system (3.56) asymptotically stable. The latter fact

is true because of condition (3.53), see section 4.2.

Example 3.21:

x = [é S]X 7 [% g]xu (3.57)

is stabilized by

Tl 01 O
* = - .
u X [0 2][0 Z]X k k>0 (3.58)

there exists an a > 0 such that u* = -a(Bx + b)TPx will
cause the state of the system (3.51) to reach

arbitrarily near or inside the ellipsoid

{nyTBTPy = —bTPy} (3.59)
This is so because for the Lyapunov function @ = xTPx

of the system (3.51) with the control u* = —a(Bx+b)TPx,
® = xT(PA + ATP)X - Z[XTP(BX + b)]2a <0 (3.60)

at least outside an arbitrarily small neighbourhood of
the ellipsoid (3.59) provided a is chosen sufficiently

large.
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The controller u* = -qa(Bx +'b)TPx is thus quite good in
case the ellipsoid (3.59) is close to zero.

Note that the point

x = - 1p , (3.61)

the point where any control action vanishes, lies on the
ellipsoid (3.59).

The effect of constant controls on the system is commen-

ted upon in example 4.19b.

Consider the following special case of system (3.51):

% = Ax + (Bx + b)u (3.62a)

B diagonalizable with all eigenvalues purely imaginary
(3.62b)

Lemma 3.23: Condition (3.62b) is equivalent with the

— e—m —— cmm mma -

condition

There exists a P = PY > 0 such that PB + B'P = 0 (3.63)

Proof: = ) Assume (3.62b) .
Then there exists an invertible matrix T, with real ent-

ries, such that

TBT = "%'0“@23 (3.64)
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It is easily realized that P = TTT satisfies (3.63).

< ) Assume that P = PT > 0 is such that PB + BTP = 0.

Consider

(3.65)

N
Il

w

N

Let V = zTBz be a Lyapunov function candidate:

V = 2z (PB + BYP)z = 0 (3.66)

Thus the linear system (3.65) is stable but not asymp-
totically stable. (3.62b) follows.

An attempt to stabilize the system (3.62) with the con-

troller
T
u* = - a(Bx + b) Px T
® u* = - ob Px (3.67)
PB+BTP = 0
will not necessarily wotrk. The reason is that u* = 0 in

the hyperplane perpendicular to bTP (cf. equ. (3.52)).

Thus theorem 3.13 is not necessarily applicable.

However, Yasuda (1977) has shown how to stabilize (3.62)

under certain assumptions:

d stabilizable pair and there exists a P = PT > 0

together with a vector % that satisfy

P(A + bLY) + (A + be)TP < 0 and PB + B'P = 0
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then the feedback control u = lTx exponentially stabilizes

the system.

Proof: Apply the feedback u = 2Tx to (3.62) and get the

closed loop system

X = Ax + (Bx + b)2°x . (3.68)

Let ¢ = xTPx > 0 be a Lyapunov function.

© = 2x°P (A% + (Bx+b)2'x) = 2x°P(A + beT)x < 0

using the conditions of the theorem.
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4., ALTERNATIVE CONTROLLERS

4.1 The non-quadratic Lyapunov function approach

The essence of the sections 3.4 and 3.5 is, quite
obviously, that control action must be retained in

order to control. The controllers presented above fail
when there exist x such that G(x)u* = 0. Note that we
hitherto have used quadratic Lyapunov functions

d(x) = xTPx to generate the control u*. The following ways
to overcome the problem were attempted, particularly

in the single input case.

4.1.1. The best way would be to solve analytically the
non-linear Riccatti equation (3.3) for ®(x) given m(x) > 0.
This does not seem to be possible.

4.1.2. The system equation (2.1) was expanded a la
Brockett (1973), page 49. A new state vector is intro-

duced;
z = . , 4 h(x) (4.1)

[pl

where the elements of x are

N R = Py P p
|<p )(p pl) cee <p Pp7 eee pp—l) X lx 2"'x S
'\p1/\ P, 1 *2 n

Py (4.2)
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n
I p;=p o+ p; 20
i=1
Example 4.1:
[%4
X = X, r P =3 (4.3)

(pl _ 3 2 2 2
X e [xl ,VI Xy x2,V3'xl x3,V3 XX, ,VE X XyXqy

2 3 .2 2 3
V3‘x1x3 Xy ,v3 X, x3,V3 XyXq" Xy ] (4.4)
Note that the mapping z = h(x) is injective. It is

easily shown that

B.zu. + Bau & Az + G(z)u (4.5)

= Az +
Z Az 1294 0

n™Mm3

i=1
i.e. the bilinear structure is preserved. Now, design

according to theorem 4.1 was attempted, i.e.
T—
®(z) = 2Pz , P=P >0 ; (4.6)

u* = -(B,z + By;) Pz . (4.7)
This is quite a general way to construct a Lyapunov
function as a sum of products of powers of xl,xz,... ; X
(the lowest degree of a term is 2). This author~s
attempt to find a T > 0 that retained control action in
all of the state space was unsuccessful, even in the

case of simple examples.
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Sandor (Feb 1977) and (Oct 1977) used the same method

to construct a non-linear regulator for the linear system

é = AxX + Bou. If, in-this case, A is unstable, the
linear system can first be stabilized by a conventional
linear controller, so that the final control is a sum
of a linear and a non-linear term:

u(x) = ulin(x) + U (x) .

The analogue approach, i.e. first to stabilize A by a
linear controller and then apply the control (4.7) (or
(3.27)) was not successful in the bilinear case. The
reason is that the introduction of a linear term in u
increases the degree in x of the right hand side, which

generally destabilizes the system.

Given the system (4.5). Assume that the system is such
that (A + §0K) is strictly stable. Let

kT = (k" 1... 1k "7 and set u, = k,'z + v,. The
) (T m i i i
closed loop system becomes
i _ _ m _ T m _
z = (A+ BXK)z+ X B,zk,. z+ % (B,z + b_.)v. (4.8)
o) . i77i . i oi’ "1
i=1 i=1

The second term on the right hand side will often desta-
bilize the autonomous system, except near z = 0, as in
lemma 3.15.

4.1.3. Attempts were made to tailor-make a Lyapunov-
function by constructing different Lyapunov functions
for different parts of the state space. One partial

success was achieved in the single input case:
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X = Ax + (Bx + b)u (4.9)
T . T
Assume xBx > 0 , i.e. (B + B ) > 0. Then
~a(Bx + b)T (Bx + b) bx > 0
u = (4.10)
T T
-0 (Bx + b) " (Bx - b) b'x < 0

for sufficiently large a >0 will force the state

arbitrarily near or inside the ellipsoidical "disk"

whose boundary is defined by

x'B'Bx - b'b = 0 . (4.11)

Proof: Let the Lyapunov function candidate be

® = a(x'Bx + 2Ibixl) > 0 (4.12)

® is continuous. Divide the state space into 3 regions:

s, = {x | blx > 0} (4.13a)
T

S, = {x | b'x = 0} (4.13b)
T

S =1{x | b'x < 0} (4.13c)

Let ¢, (x) = 2u(Bx + b)Tax - 20°[ (Bx+b) T (Bx+b) 1% (4.14a)

20(Bx - b)Tax - 20%[x B Bx-b b]? (4.14Db)

and _(x)

Thén, when
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X €85 : o(x) = @+(x) (4.15a)
X € S_ : é(x) = @_(x) (4.16b)
X € 5y : lim sup o(t+h) = () < max {w+(x),w_(x)}
h-0 h

(4.16c)
We see that
lim sup Sl = oty < 0 (4.17)
h-0 h

outside a neighbourhood of the ellipsoid (4.l1l). @ is
therefore a Lyapunov function outside this neighbour-
hood, see Hahn (1967). This neighbourhood can be made

arbitrarily small by choosing a sufficiently large a.

Remark 4.3: Note that the ellipsoid (4.1l) is not equal

disk (4.11).

Remark 4.5:

X, = - B b (4.18)

(where the control vanishes) is on the ellipsoid (4.11).

X, gives a rough measure of how far from the origin

0
(4.11) lies.
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(4.9) is commented upon in example 4.19b.

Remark 4.7: x, € {x | bl x < 0} . See figure 4.1.

—————— 0

,--"""‘\x" bTx <0
7 |
/
// 7 - X
[ s
O L T
-Xo ' b x>0 b x=10

Fig. 4.1: The ellipsoid (4.1l) in the two dimensional
case.

obviously on how near the ellipsoid (4.11) is to the

origin, and how large a bias that is acceptable. A

second order example is depicted in example 4.9.
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Example 4.9: The system

: -1 0 21 -2
X = X + xu + u (4.19)
01 13 -2

satisfies the conditions of proposition 4.2. Apply the
control given by equ. (4.10) with o = 100:

2 2
—100([2x1+x2—2] + [xl+3x2-2] ), -2(xl+x2) > 0
u = (4.20)
2 2
—lOO([2xl+x2] + [xl+3x2] - 8), —2(xl+x2) < 0

A simulation result, generated by the SIMNON-program
INDEV (see Appendix A) is found in figure 4.2.

We compute

T = -
b™'x = 2(xl + x2) (4.21)

and (see remark 4.5)

X, = (0.8,0.4) (4.22)

Remark 4.10: Sometimes a locally stabilizing linear
feedback (see Lemma 3.15) might be found whose stabili-
ty region includes the equilibrium points achieved by
the control (4.10). Such a linear feedback was not found

for example 4.9.
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-2(X1+X2)=0

Fig. 4.2: Phase plane trajectories of a simulation of

example 4.9.

Initial conditions: (10,0), (10,10), (0,10), (-10,10),
(-10,0), (-10,-10), (0,-10), (10,-10). B

Final equilibrium points: 21 = (0.6,0.544), z2, =

= (-0.464,0.464), z, = (0.434,-0.434).

3
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4,2 Constant controls

It is apparent that system (2.6) is asymptotically sta-
bilized by constant controls iff there exist constants

m
., , i=1, ... ,m such that (A + X B.u, ) is stable.
j=q Lic

However, (2.6) is not always stabilizable with constant

controls, see for instance example 4.16 below.

Constant controls have evoked some interest: Wei (Dec.
1978) and Krener (1978) consider (2.6) where each pair

in the set {A, B cee Bm} commutes. Then constant

ll
controls stabilize the system, while optimizing a minimum
energy criterion. Note that the assumption on commuta-

tivity is very restrictive.

The effect of applying a constant control u,. on the

system (2.4) is that, even if (A + Biuic) is stable,

b places a bias on the closed loop system so that

iOuic
it wili not converge to X = 0. Therefore the other con-
trols must be used to compensate for this bias. Neces-
sary and sufficient conditions for a constant control

to stabilize (2.4) are given in the following theorem:

Theorem 4.11: Considér the system (2.4) which is

(Bix + bio)ui . (4.23)
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T
u_ ) asymp-

The constant control u_ = N
2c me

c (ulc

totically stabilizes (4.23) iff

u

U, € Ker B0 , and (4.24)

(A +
i

Biuic
1

nm™ms

) is a strictly stable matrix. (4.25)

Proof: Apply the constant control u, on (4.23) . The

closed loop system becomes

m

x = (A + iElBiuic)x + BouC (4.26)

Sufficiency: Assume that u, satisfies (4.24) and (4.25).
Then (4.26) becomes an asymptotically stable linear sys-

tem:

. m
x = (A + iElBiuic)x + Bouc (4.27)
strictly stable =0

Necessity: A necessary condition for stability is that
the origin is a stationary point of the closed loop
system, i.e.

x =0 = x=0 for (4.26): (4.28)

0 =0+ Bouc (4.29)

which gives (4.24).

Given (4.24), (4.26) becomes the linear system

x = (A + E Biuic)x (4.30)
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A necessary condition for stability of (4.30) is the
condition (4.25).

o
Remark 4.12: Naturally there exists a control
u=u_ +u (4.31)
C q
which stabilizes the system (2.4), where
uc satisfies conditions (4.24) and (4.25), (4.32)
and uq is of the structure
u = (u, , u )T (4.33)
q 1g’ "2q" "7 " "mg )
u, = —(B,xX + b, .)Tpx (4.34)
iq i io0 ' *

investigated in chapter 3.

Remark 4.13: The conditions of theorem 4.1l are restric-

In the following theorem a special case is treated. A
class of single input systems is displayed for which
stabilizability is equivalent to stabilizability with

a constant control.

Theorxem 4.l4: Given the system

(4.35)

B is a real n/n matrix, x € rR® , u€ R .
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Let Ai be the i:th eigenvalue of B.

For the system (4.35) stabilizability is equivalent to

stabilizability with a constant control iff

sign Re Ai = sign Re Ak #0 all i,k. (4.36)

Proof: Jordanize B, thereby transforming (4.35):

z = Jzu

’ (4.37)
m xi\ 1\‘0
J = fg} Ji oo Ji = \\\1 is a ni/ni matrix.
0 AL
i
zq 251
Let =z = é;- and z, = E i=1, sex , M.
ik |
: z,'
:"I-n-_ I. llni_

a. Assume (4.36). Then the constant control

u = -sign Re Ai stabilizes (4.35).

b. Assume that Re Ai = 0 for some i. Then stabilization

is not possible.

c. Assume that sign Re Ai = - sign Re Ak # 0 for some

pair i,k. Then the differential equations for the states
corresponding to the last rows in the Jordan blocks Ji

and J, are

k

Zj,nj(t) = kju(t)zj,nj(t) ' (4.38)
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j = i and k respectively. This gives
t
Aj J u(s)ds
_ 0 .o
Zj,nj(t) = e zj,nj(O) j =1,k . (4.39)

It is then apparent that

| Re), | |ReA . |

Z . (t)| vl z = constant (4.40)
i,n.

1

(t)
k,nk |
independent of u(t). Stabilization is not possible.

From a, b and ¢ the statement of the theorem follows.

O
We conclude this section by showing a few examples where

constant controls can be used, and some examples where

they cannot.

Example 4.15: Given the system

© 10 1 -1 -2 -1.5 -0.5 1
X = [o 2]X * [1 —1]xu1 * [—2]“1 * [ 1 —2.5]Xu2 * [1]“2

(4.41)
We find that Ker B, is spanned by (1 2)T, and that
u; = i
(4.42)
u, = 2

stabilize the system.
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Example 4.16: Given the system of example 3.11
respectively 3.18. Even though Ker B0=R2 it is impossible
to find a constant control u, that satisfies theorem

4.11. No constant control will stabilize these systems.

Example 4.17: The system of example 3.12 is stabilized

by any constant u, < 0.

Example 4.18: For the system given in example 3.19,

Ker B0 = 0. Thus no constant control will stabilize

(4.23).

Example 4.19a: Example 3.21 displays a case when a con-

stant control, e.g. uc = -3, is superior to the control

u*x = —xTBTPx-a.

Example 4.19b: Consider the single input system of
remark 3.22 and remark 4.6. A constant control uc will

force the system to the equilibrium point

1 B~1a

x_ = (A + Bu) “bu_ = -( 1571
C C C u

+ I) "B b (4.43a)

c
if (A + Buc) is a stability matrix. Note that

x, - —B_lb , when Iucl - o , (4.43Db)

-B_lb is the point where all control action vanishes.
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A case of constant control is also commented upon in

remark 3.3.

4.3 Phase plane methods. Dyadic bilinear systems.

It is obvious that a linear control u = ka exists that
locally asymptotically stabilizes the system (2.1) in a
sufficiently small neighbourhood around the origin, pro-
vided (A,BO) is a stabilizable pair, see lemma 3.15.

In such a case a possible way to stabilize the system
would be to have this locally stabilizable neighbourhood
of the origin as a target set for other controls. When
the state enters the target set, the linear control

might be applied.

Some ways to generate suitable controls via phase plane
analysis are found in the literature. As all phase plane
methods they tend to become cumbersome when the dimen-

sion of the state increases beyond 2.

Mohler (1973) studies the trajectories of constant con-
trols, and generates a bang-bang control. The switching
times are precomputed, and thus it is an open loop
method.

Utkin (1977) refers to results that might be applicable
to certain bilinear systems. The state space is divided
into regions, and on each region a separate feedback
control uk(x) is applied, so that a sliding (chattering)
mode is generated on the boundary between the regions.
Gutman (1979) also has applicable results, taking dis-

turbances into account.
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Mehra (1979) analyzes the stability regions of a non-
linear system by investigating the location and charac-
ter of equilibrium points as a function of the constant
control u. Bifurcation and catastrophy theory provides
some conclusions and suggestions how to steer u(t) in

order to reach a desired region of the state space.

It is believed that the above three methods might pro-
vide valuable insight and ideas when facing the problem
of controlling a specific bilinear system. However they
do not seem suited for generating a general theory of

feedback control.

There is a special class of bilinear systems of practi-
cal interest that is sometimes suited for "phase plane

carpentrying”. This class is defined here:

Definition 4.20: A bilinear system (defined by equ.

(2.4) and repeated here for convenience)

" m
X =24aAx + X (B.x + b, )u,
j=1 * ig” i
is called dyadic of order d, if for i = il' o W ,id ’
de {1, ... ,m}
B.x +b,. =b, (c.'x + 1). (4.44)
i i0 i0o7i

The following example illustrates that dyadic bilinear

systems is a guite common class of systems:

Example 4.21: Consider the following flow system which
models, for instance, the effect of drugs on the

transfer of some dissolved living matter in the human body:
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u
Pool 1 i~ Pool 2
A :
Vi A Y ¢, 2
Yu2

Fig.4.3: Model of flow system in the human body.

The equations governing the flow system are:

lel = ul(xl = xz) + X 4, (4.45a)
sz2 = -ul(xl - x2) + C,yX%, (4.45b)
with the constraints xl,xzzo;‘c2>0; ul,u250 (4.46)
where Vl = the volume of pool 1 (m3)
X, = the concentration in pool 1 (kg/m3)
V2 = the volume of pool 2 (m3)
X, = the concentration in pool 2 (kg/m3)
C, = the growth rate in pool 2 (s_l)
u, = the transfer rate between pool 1 and pool 2
-1
(s 7)
u, = the transfer rate out of pool 1 (s-l)

Rewritten in standard fashion the systems equations become:
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x = AX + B,xu, + B.xu

1¥94 ,XU, (4.47a)
where
0 0]
A = Czi
0 | (4.47Db)
2]
1 [1 -11 L -1
T ¥ Vi V1 3 47
V2 Vo Vol
1 1
- T _|{= (1 01 _ |35 0
B, = b2d2 = |Vy = |Vy (4.47d)
0 0 0 .
We note that Bl and B2 are dyads.
] . : . _ T
A desired equilibrium point X, = (xle,xZe) may be
chosen, such that x2e > xle > 0. Setting the left hand
sides in (4.45) equal to zero gives the corresponding
‘ q . . _ T
equilibrium input u, = (ule'u2e)
C,X
Yie ~ EE_%E__ (4.48)
le "2e
-c,X
_ 27 2e
Ue = (4.49)
le

The method of section 2.3 gives the following bilinear

system with x, as the origin in the state space:
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= T -
A X = AAx + [bld AxX + bl(xle

1

T
o9y 8x + box, ]Au,

+ [b
where

Ax = X - X ;, Au =u - u ; a
e e

x2e)]Aul +

nd

, _
{szze -02X -
L V(R emay ) X V) (X1 7%0,)
A =
iTe S
Vo () g 7%5 ) Vo (%) e7%0)
Define
by = (%, = x,.)by
&) =
1 (xle_x2e)
b2 = xleb2
-4,
d2 T oox
le

Then (4.50) can be rewritten as:

-

_ s ET > e B
A x = AAx + bl(dl Ax + l)Aul + b2(d2 Ax + 1)Au

Consequently (4.50) is dyadic of order 2.

(4.50a)

(4.50Db)

(4.50c)

(4.51a)

(4.51b)

(4.51c)

(4.51d)

2

(4.52)
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Conditions for stabilizability are given in theorem
4.22 and remark 4.25. For the sake of simplicity we
will mainly treat bilinear systems that are dyadic of
order 1. A new controller algorithm, the Division Con-
troller, that can sometimes stabilize dyadic systems is
presented in Design 4.26. As with all phase plane
methods this design is hard to apply on systems of
higher order than 2.

Consider the single input dyadic system

; =Ax + (Bx + b)u , X €R , ue€R
(4.53)

(Bx + b) = b(ch + 1)
As in theorem 2.3,
let d(x) = c'x + 1 (4.54)
d(x) = 0 defines an (n-1l)-dimensional hyperplane.
Divide the state space into the following sets:
5, = {x | a(x) > 0} (4.55)
8y = Ix | a(x) = 0} (4.56)
S_ = {x | d(x) < 0} (4.57)

Let w(xo, u(+), t) be the solution of (4.53) at time t

when x{(0) = X and u(s) , s € [0,t] , is the control
input.

Define:

V = {xo € s, | 3 u, such that w(xo,uv,t) €S,V t, and

(p(xoluvlt) - 0, t - o} (4.58)
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€ s, | eAtx

0 0 € V for some t > 0} (4.59)

{x

o
1l

0

W= {x, | 3 u, such that w(xo,uy,t) € Y for some t > 0}

(4.60)

0 Y

Theorem 4.22:

A necessary and sufficient condition for stabilizing
(4.53) is that
l. Y is nonempty, and (4.61)

2. VUYUW = R (4.62)

Proof: Note that the origin is interior to S+ and belongs
to V. (Note also that V is non-empty because the origin
belongs to V.)

Sufficiency:

If X € V the origin may be reached. If X € Y the tra-

jectory may end in V, from where it may continue to the

origin., If X0 € W the trajectory may end in Y, etc. The

sufficiency is proved because V U ¥ U W = rR™.

Necessity:
l. Control action ceases in SO. The only way to pass
from SO USs_ to S+ is by power of the autonomous system

X = Ax. In order to reach the origin at least one of the
trajectories of the autonomous system emanating from

Sy U S_ must end in V. Therefore Y must be non-empty.

2. By definition a trajectory emanating from the set

C(VU Y U W) (4.63)

will remain in this set. Therefore it must be empty.
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Remark 4.23: Theorem 4.22 is an extension of theorem 2.3.

Remark 4.24: The case

Xx =Ax + Bxu , B = bc (4.64)

can be treated along lines similar to but more compli-
cated than those of theorem 4.22. This will not be done

here.

applicable to the multi-input case (4.43) if the system

is dyadic of order 1 or more.

Theorem 4.22 is weak. Its use stems from the fact that
the system (4.53) might be analyzed as a set of linear
systems when suitable controls are applied. Then the
control problem is transformed to one of finding con-
trols that satisfy theorem 4.22. This leads to the fol-

lowing:

Design 4.26: (The Division Controller):

Consider the system (4.53), (4.54). Define the sets:
S0 = {x | —ey < d(x) < €2} (4.65)
where €y > 0, €, 2 0 are control parameters in the

sense that the control designer may let them vary

depending on time, the actual state, etc.

= - (4.66)
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S_ = S5S_~ S0
Apply
T
k+ x + u ef(x,t) N
u, = ;7 X € S+
d(x)
u0 =0 ;r X € S0
T
kT x + u (x,t) -
u_ = ref ’ X € S_
d(x)
n
where k+ + k_ € R,

The closed loop system now becomes

o T

x = (A + bk+)x + buref ;, X E S+

X = AX ; X € S0

x = (A + bkl)x + bu x €8S
- ref ! -

Select, if possible, k+ v kK uref

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

and ¢e. such

14 8l 14 2

that the conditions of theorem 4.22 are satisfied.

We see that the problem of controlling (4.53) is reduced

to combining suitable state space trajectory portraits
(4.71), (4.72), (4.73) into a stable whole. U is used

ef

to (temporarily) change the equilibrium point in order

to change for instance the set Y.

El,

€, are used as

controls (for instance as hystereses) in order to avoid

stationary points or limit cycles on or around the



55

-

boundaries of SO.

Remark 4.27: Variations of design 4.26 can also be con-

structed. See for instance example 4.30.

An attempt was made to find necessary and sufficient

conditions for k+, k_, U _gr €77 and ¢, when applying

2
design 4.26 to construct a stabilizing control law for
a general single input dyadic bilinear system (4.53).
This attempt was not successful. However, special cases
can be analyzed, see examples 4.28 and 4.29. It is felt
that the analysis and control design is most profitably

done in each specific numerical case.

Example 4.28: Consider the following single input second

order dyadic bilinear system:

w=Aw + b(gow + 1)u (4.74)

Assume that [A,b] is a controllable pair. Standard

linear theory allows us to transform (4.73) into
-a, -a, {l
X + |

1 0| [0

d(x)u (4.75)

where d(x) = gTTx + 1 , w="Tx , and T is a suitable

invertible 2x2 matrix.

The question we ask is: Under what conditions is V = S+?

Therefore we restrict our attention to S+, which can be

made to approximate S+ arbitrarily well by choosing €,
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sufficiently small. Moreover, assume that €, is a con-

stant.

Let u = u, be given by (4.68). The. closed loop system

(4.71) will be in controllable canonical form:

X = x + Uiof 7 X € S+ (4.76)
1 0 0
The characteristic polynomial is
32 + (a;, + k,,)s + (a, + k,,) (4.77)
1 1+ 2 2+ '
Assume stable real eigenvalues Al < Az < 0 ; (4.78)
_ 2
(s-kl)(s-xz) = s 4+ (al+kl+)s + (a2+k2+) (4.79)
which gives
al + kl+ = —(Al + xz) (4.80)
a, + k2+ = Alxz . (4.81)
M
The fast eigenvector ey associated with Al' = (4.82a)
l-
Ao ]
The slow eigenvector ey associated with Az, = (4.82b)
1

e and e, can be selected freely in the second quadrant

according to assumption (4.78).

We now state that if SO is such that el = e2 can be
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then V = S . (4.83)

selected parallell with SO’ o

This is proved as follows: If k+ is selected such that

1= 8 and U ~ 0 then a stable one-tangent node

with the origin as equilibrium is achieved. See AstrOm

e

(1969). If the eigenvector e, = e, is parallell to SO'
)

-

all trajectories at the boundary of S, and 5 (S

-

point into S, (s

0

). This follows easily from elementary

4

+
properties of the stable one-tangent node. See figure
4,4, The statement follows.

Another analysis has to be done for the case e and e,

cannot be selected parallell with S To establish sta-

0.
bility, the sets Y and Z must also be determined. This
depends on the properties of the autonomous system. As
noted above, the analysis and design is probably most

profitably done in each specific numerical case.

Fig. 4.4: Illustration to example 4.28.
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Example 4.29: The analysis of example 4.28 can be done
in a more general way. Consider the following single-

-input dyadic bilinear system:

x = Gx + r(qTx + 1l)u , x € R (4.84)

As in example 4.28 we ask: Under what conditions is

V = S+ ? We assume that x € S+ for all t, i.e.:

Ox + 1> (4.85)

By applying the control

v -

u = mp——— , X €8, , (4.86)
qTx + 1 +

and assuming that bl A qTr #0 (4.87)

we can transform (4.84) into

1
z = Az + ? v (4.88)
0
blzl + 1> ¢ (4.89)
Rewrite
v = -(all a12 cee aln)z + s (4.90)

which gives
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zy = s (4.91)
z, fzz
J %3 f3
| = F|, + le ’ (4.92)
I
. :
| \
| “n | | %n|
z. > &-1 (4.93)
12 b
\ 1
?22“““?2n
I []
where F = | : (4.94)
|
] ]
an2 - 'ann
.
f = [a a a ]T (4.95)
21 3177777 "nl :

To control the system (4.91), (4.92) with s is equiva-
lent to controlling the system (4.92) with Zq . Thus the

problem is reduced to controlling a linear system with
the control constrained to a semicompact interval. Lee
(1967) page 92 treats this problem:

The system (4.92) is nullcontrollable iff [F,f] is a

controllable pair and every eigenvalue Ai of F satis-

fies Re A, (F) < 0. (4.96)

Consequently these are precisely the necessary and suf-

ficient conditions to ensure that V = 5. (Note, how-

ever, that the case bl = 0 (see equ. (4.87)) is not

treated here.)
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Let us now apply these results to the second order sys-
tem (4.75) when

d(x) a (o« B)x + 1 , (4.97)
a #0, B#O (4.98)

Let the transformation be given by

1 B
z = % lx (4.99)
0 1

The system corresponding to (4.91), (4.92), (4.93) be-

comes
2y = S (4.100)
lz. = - B, 42 (4.101)
2 a 2 1
—l+g
z, > == (4.102)

The conditions (4.96) result in:
[- g ’ l] is a controllable pair; and (4.103a)

-B 0 . (4.103b)
o

(4.103a) is always true, while (4.103b) is true iff
sign o« = sign B (4.104)

Comparing (4.99), the definition of S0 (equ. (4.56)),

and (4.78), (4.82), (4.83) we realize that (4.104) re-

presents the same condition on S0 to ensure that V = S+
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as the condition (4.83) in example 4.28. In fact, the
result of this example is stronger because here the
condition has been shown to be necessary and sufficient,

while in example 4.28 only sufficiency was proved.

This exposure on the Division Controller is concluded
by two numerical examples. It should be noted that it

is not trivial to find a design that works.

Example 4.30: Consider the following system

1 0 xl-x2—2

X = X + u (4.105)

0o 2 xl-x2—2

It is apparent that

X=X =2 1 -2
1 2 / / Xl X2 \
X, =X -2) == - + + 1 (4.1006)
xl-x2—2 1 \"1 72 )

A comparison with equ. (4.52) and (4.53) gives

[ -2
b = (4.107)
| -2
[-0.5
5 = (4.108)
0.5

It is easily shown that [A,b] is a controllable pair.

The following control strategy is selected:
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1
21:2525 (4x,-9%,) |xl—x2-2| > 0.001 (4.109)
u = +4
: (4. -9%.,) |x,-x,-2] < 0.001
10.001 sign(xl—x2-2) 1 27 7 1 2 -
(4.110)
1, x>0
where sign (x) = .
-1, x< 0

This control is a slight modification of the control
(4.68), (4.69), (4.70). The simulation result can be

seen in figures 4.5a and 4.5b. The simulation was

governed by the SIMNON-program PARAB, see Appendix B.

The figures indicate that S, = {x | %, - %, - 2= 0}

is easily traversed with the control (4.109), (4.110).

-

A close look at the trajectories in and around S0 shows

that k_ and k_ are chosen so that the trajectories in

- -

SO,

stationary points outside the origin are found. The

S and S_ "cooperate". No limit cycles or

+I

controlled system is globally asymptotically stable

(the proof is not complicated and is not given here) .

o
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oy

7
A -

o

Fig. 4.5a: Phase plane trajectories of a simulation of

example 4.30.

-"Xo]
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-hX1

—_— e e ——

example 4,30.
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Example 4.31: Consider the following system:

. -1 0 X.=-X,.-2
X = X + 172 u (4.111)

o0 1 xl-x2—2

It is apparent that equ. (4.106), (4.107), (4.108) re-
main valid. A straightforward control of the type (4.109),
(4.110) does not seem to work, because a limit cycle

occurs around roughly the point (1,-1).

To overcome this problem, hysteresis was introduced, see
Design 4.26. The state space was divided according to

figure 4.6.

Introduce

MU a Xy - X, = 2 (4.112)

EPS is defined by the hysteresis function, see figure 4.8.

Now, the control is constructed as follows:

-2x

W= ——2- when MU < -0.1 (4.113)
X.=X.=2
1 72
u=20 when -0.1 < MU < 0.05 (4.114)
u=20 when 0.05 < MU < 0.1 and EPS<0 (4.115)
—2x2
u = when 0.05 < MU < 0.1 and EPS>0 (4.116)
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Eig'_4_6i
Set MU a
The lines
A MU =
SO: MU =
B : MU =
C : MU =
D MU =

The division of the state space in example 4.31,

The sets are:

S, = {x | MU < -0.1)
S_ = {x | MU > 0.5}
- _ n - -
Sg = R"~ {8, U s_}
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EPS

&= MU

—_— N e eme e

u=20 when 0.1<MU<0.5 and EPS<O0 (4.117)
'_-2X2 :
u = — when 0.1<MU<0.5 and EPS>0 (4.118)
X=X =2 -2
1 72
—2x2
u = }'?l_—x'z—:_—z“ when 0.5<MU - (4.119)_

The simulations were done with the SIMNON-program BEST

in appendix C.

Some of the simulation results are displayed in figures
4.8a and 4.8b. In addition to these results extensive
simulations were done. For all initial conditions tried
the trajectories tended asymptotically to the origin.
However no analytical proof of stability will be given.



/

of example 4.31.

10

-
*

/

Fig. 4.8b: Phase plane trajectories of a simulation of

example 4.31. (Note that the scales are different in
figures 4.8a and 4.8b.)]
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4.4 The Lie theory approach.

Several authors, for instance Brockett (1972) and (1973},
and Hirschorn (1974) have treated bilinear systems from
a Lie theory point of view. This approach does not seem
to have yielded feedback control laws. Baillieul (1977)

presents an open loop optimal control with a criterion
of minimum energy type.
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5. INDEPENDENT ADDITIVE AND MULTIPLICATIVE CONTROLS

In this section we will briefly treat the case when some
additive and multiplicative controls are independent. Con-

sider the system:

- m p q

X = Ax + I (B.x+b,.)u., + I C.xv, + I 4d,w (5.1)
i=1 ¥ 40 j=1 33 k=1 KK

where

x € R

ui r 1 =1, ... , m are the dependent controls,

vj + J =1, ... , p are the independent multiplicative

controls,
Wk r k=1, ... , q are the independent additive controls,

and A4, Bi’ Cj’ dk are matrices of appropriate dimensions.

This type of system has been treated in Mohler (1973),
Ionescu (1975), and Graselli (1979). Graselli takes into
consideration additive unknown disturbances, and his solu-

tion is based on periodic linear systems techniques.

A system described by (5.1) should in general be easier to
control than one described by (2.l1). Here follow some simple

sufficient conditions for stabilizability:

Theorem 5.1: Consider equ. (5.1). Define
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u
- ' _ 1
B0 = [blo:bZO:"':me] ; and u = E v (5.2)
u_
il
If there exist a vector r € Ker B0 ; and vectors fk € Rn,
k € I S {1, ... , g} and constants gj € R,
j € Jj < {1, ... , p} such that the matrix
~ m T
Aas (A+ XZTB,r, + ¥ C.g. + I d f ™) (5.3)
i=1 t ¢ jea, J-J k€J, i s

is strictly stable, then the control

u=r+s

wk = fkT-x ; k € Jk ;

4

v:J = g:J ; J € Jj ; and

Wy k € Jk ) vj r ] € Jj r and s are all zero, or computed
laccording to the method in section 3.2

asymptotically stabilizes the system.

Proof: Applying the controls (5.4) gives the closed loop

system

x = Ax + (B.x+b,

(5.4)
1 i io0

[ =

)Si + ¥ e.xv. + ¥ d,.w

jed 31773 geg, KK

1 k

According to the conditions of the theorem the matrix A is
strictly stable, and consequently controls according to sec-

tion 3.2 will asymptotically stabilize the system.
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6. AN EXAMPLE: NEUTRON CONTROL IN A FISSION REACTOR

6.1 Preliminaries

As a realistic example of bilinear control, we choose the
neutron level control problem in a fission reactor,described
in Mohler (1973), pp. 112-119.

The neutron population is described by a second order model:

-

) — u - B -
n n n + Ac

4 (6.1)
= =8 «n -

kc T n AC

with the state constraints n > 0, ¢ > 0 (6.2a)

where

n = neutron population (6.2b)

C = precursor population (6.2c)

u = reactivity, which is the control input. (6.2d)

Typical values of the constants are:

g = 107° (6.3a)
= 0.0065 (6.3b)
= 0.4 (6.3c)

A control constraint might be assumed:

lul < 1073 (6.4)

The control objective is to stabilize (6.1) to a chosen
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neutron population equilibrium level, ng. With ng chosen,

the precursor population level,.ce, follows from (6.1):

= B
Ce = H ne (6.5)

Now, (ne,ce) is taken as the origin in the transformed state

space. The new state space variables are chosen dimension-

less:
¢ n - ng
Xl - n
e
d (6.6)
c - e
X, = c
L e
with the state constraint (6.2) transformed into
Xy > -1, X, > -1 . (6.7)
In the new state space, (6.1) becomes:
X = AX + bd(x)w (6.8)
where
-8 B
aal| * * (6.9)
A -A
1 1
d(x) a (le + E) . (6.10)
and

1
b a 0 (6.11)
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Note that u is defined by (6.24d).

The eigenvalues of A are 0 and -(A + %). (6.12)

A has thus an eigenvalue on the imaginary axis, and
according to section 3.3, there might or might not exist a

P = PT > 0 such that the control

-[d(x) O0lpx (6.13)

I

u

stabilizes (6.8). The possibility of such a control will be
investigated in section 6.2, where it will be called

Quadratic Control.

We also note that equ. (6.8) and the state space constraint
(6.7) reveal that the system is dyadic and satisfies the
conditions of theorem 4.22. The dyadicity stems from the
change of equilibrium point, compare example 4.21. The situ-
ation is extremely favourable because the allowable state
space (defined by (6.7)) is a subset of S,- Thus S0

( = {x | d(x) = 0} ) does not belong to the allowable state
space. Moreover [A,b] is a controllable pair. Using example

4.29 we have thus proved that the control

u = XX (6.14)

will asymptotically stabilize the system for a suitable
choice of k. The Division Control will be displayed in sec-
tion 6.3. Section 6.4 contains a brief description of the
bang-bang controller by which Mohler (1973) solved the con-
trol problem.
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6.2 Quadratic Control

P Py
Set P = > 0,p, €R, i=1,2,3. (6.15)
P, Py

The quadratic control (6.13) is computed:

u=- [d(x) 0] Px
p p X
X 1 2 1
a = - <_l + i) 0 (6.16)
') 2 p2 p3 x2
(xl+l)
u=- —— (plxl + p2X2) (6.17)
L

Theorem 3.5 is used to find conditions on P. Equ. (3.16)

gives that
xl+l
u = - ) (plxl + p2X2) must be non-zero on
M={x| x"(PA+ATP)x =0 , x # 0} (6.18)

Let ¢ = xTPx be a Lyapunov function. Compute ¢ as a func-
tion of P and select Py and P, that stabilize the system.

One suitable choice of P is

p, = 40-10"10
P, = 20.10710 (6.19)
o2
2
p3>—_

Py
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The SIMNON-program NUKE was written to simulate system
(6.7), (6.8) together with the controller (6.18), (6.19).

See appendix D.

Simulations were performed without and with the control
constraint (6.4), see figures 6.la and 6.2. The uncon-
strained u(t) with the initial condition (2.1) is plotted
in figure 6.la. We note that u(t) does not hit the bound

(6.4) in this case.

We conclude from figures 6.1 and 6.2 that the chosen quad-
ratic control stabilizes the system, although the

gonvergence is rather slow.

I,

===}
l-d(, sl
Fig. 6.la - Phase plane trajectories for simulations with

the unconstrained Quadratic Controller (6.18),
(6.19).
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4 ult) 10 _ time.

0

-0.0005

-0.001

Fig. 6.1b - The control input u(t) for a simulation with
the unconstrained Quadratic Controller, with
the initial condition (2,1).

4
N

N

V

L%
N
v

X

M

f;?jf

i

Fig. 6.2 - Phase plane trajectories for simulations with
the Quadratic Controller (6.18), (6.19)
subject to the constraint (6.4).
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6.3 Division Control

In the Aivision algorithm (6.16)

Ry (6.20)

the vector kT is chosen as if the linear system

Xx = Ax + bu (6.21)

is to be controlled by the linear controller

N = Tk ) (6.22)

The choice can be done for instance through the use of
linear optimal control with state constraints, see
Martensson (1972). Here the choice was done to get a stable
one-tangent node:

T

k™ = (648.4,-650.9) (6.23)
Moreover, in the simulation program (the SIMNON-program
NUKE, appendix D) a lower bound on the denominator in (6.20)
was set to avoid numerical overflow. The control input in

the simulation was thus:

648.4 x, - 650.9 x

_ 1 2 . -5
%% Tmax (x,+1,0.00) 10 (6.24)

Simulations were performed without and with the control

constraint (6.4), see figures 6.3a and 6.4a. The control
input u(t), with the initial condition (2,1), is plotted
without and with the control constraint (6.4) in figures

6.3b and 6.4b respectively.
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Fig. 6.3a - Phase plane trajectories for simulations with
the unconstrained Division Controller (6.24).

u(t)

1 10 time

Fig. 6.3b - The control input u(t) for a simulation with
the unconstrained Division Controller (6.24)
with the initial condition (2,1).
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N

7

\
\
N

W
e
N

—.X-]

W
N

Fig. 6.4a -~ Phase plane trajectories for simulations with
the Division Controller (6.24) subject to the
constraint (6.4).

Ault)

1 10 time
J. i =

-0.001

Fig. 6.4b - The control input u(t) for a simulation with
the Division Controller (6.24) subject to the
constraint (6.4). Initial condition: (2,1).
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The Division Controllers seem very attractive. They are

easy to design, and they provide good local and global
control with the same algorithm.

6.4 Bang-bang control

Mohler (1973) solves the problem of stabilizing equ. (6.8)
by a time optimal bang-bang controller. See figure 6.5.
This control mode is not suitable when the state is near

the origin, therefore Mohler (1973) suggests a PI-control=-
ler for local control.

o

o
|
|

SCALED PRECURSOR LEVEL

§\NO\

no Flf
NEUTRON LEVEL

Fig. 6.5 - Adopted from Mohler (1973), Ffig. 4.1.
Phase plane trajectories for the Mohler (1973)
bang-bang control. The trajectory from the
initial condition (no,coJ to the desired
equilibrium point (ng,c¢) is heavily drawn.
(ng,cg) corresponds to the origin in the
X1—X9 sSpace.
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6.5 Conclusions

When comparing the Quadratic Controller with control
constraint, the Division Controller with control con-
straint, and the bang-bang controller, it seems as if
the Division Controller offers most advantages. It is
very easy to design, the other two are more complicated.
Different control objectives can be taken into
consideration, including time optimality. The bang-bang
control might give an endpoint error, which must be
compensated for by another controller, for instance a
PI-controller. The Division Controller provides good

local as well as global control with the same algorithm.
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7. SUMMARY, DISCUSSION AND CONCLUSION

The problem of finding a feedback regulator for the bi-

linear system

. m

X = Ax + L (B.x + b,
. i i
i=1

0)ui (7.1)

in the case when the A-matrix is stable, was solved satis-

factorily by Jacobson (1977). He used a quadratic Lyapunov
function ¢ = xTPx to generate the control

u; = —(Bix + biO)TPx, which makes the system faster than

the trivial control u = 0.

The case when A is unstable is still unsolved in general.
Neither do all encompassing stabilizability results exist.
This report surveys the literature for the solved special
cases. It contains some new contributions of solved special

cases:

1. an extension of Jacobsons result, subject to the condi-

tion that there exists a P = PT > 0 such that

{xl(Bix+bi0)TPx = 0 all iln{x|x#0, xT (PA+ATP) x > 0}
is empty (theorem 3.13).

2. sufficient conditions for constant controls to work
(theorem 4.11).

3. a special class of bilinear systems is defined; the
dyadic bilinear systems which are characterized by

(Byx + b, ) = bio(ch + 1) for some i (Definition 4.20).

0
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For these systems a design method is proposed that re-
duces the bilinear problem to a problem of concatenating
linear control systems in three regions in the state
Space. Conditions for stabilizability are found in theo-
rem 4.22 and the method, the Division Controller, is
presented in Design 4.26.

The report contains numerous examples. Note especially
example 2.2 (a case of non-stabilizability), examples 3.18
and 3.19 (applications of theorem 3.13), theorem 4.14 (sta-
bilizability equivalent to stabilizability with a constant
control), example 4.21 (a real-life dyadic system), examples
4.28 and 4.29 (applications of theorem 4.22), example 4.31
(application of Design 4.26), and the whole of chapter 6,
where the neutron level control problem in a fission reactor
is solved in three ways. The report discusses various ideas
how to attack the problem when A is unstable.

A short note is included on the case when additive and mul-
tiplicative controls are independent of each other. Some

results are mentioned including

4. sufficient conditions for linear and constant stabilizing

controls (theorem 5.1).

As stated above very little is known how to control (7.1)
when A is unstable. A general theory would be desirable.
In my opinion the route towards this goal should be:

1. the stabilizability problem should be solved before an
attempt to find a general feedback control law. It is
like staggering in a dark room trying to find control
laws not knowing if the system is possible to stabilize
at all. During work on stabilizability properties, con-

trol ideas might well be born.
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2. Real life processes, modelled bilinearly, should be

tackled. There is still a lack of such models. The
relevancy of bilinear systems theory can only be tested
against reality. If there are few bilinear processes in
real life that can be subjected to control inputs
determined externally, then it might not be worth while
spending the effort. The physiological bilinear systems
reported in e.g. Mohler (1979) can often not be
controlled externally. Moreover, specific bilinear
systems might display special features that make them
easier to control. One such case, examplified by the
neutron level control problem in chapter 6, is the

dyadic system.

A more general class of non-linear systems which is closed
under state feedback should be investigated. It would be
nice to imbed the bilinear system into a slightly more
general class that has desirable properties. One possible

class would be:

) xu

X = p(x) + o i

(B.x + b,
14 i

I~ 3

i

where the elements of p(x) are homogenous polynomials of

degree n, and ui(x) is a polynomial of degree (n-1).

Other classes might certainly be of interest. Maybe a
class could be found where the non-linear Riccati-equa-
tion, corresponding to equ. (3.3) could be solved exact-
ly. The Moylan (1973) paper is a possible point of de-

parture.
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APPENDIX A : The SIMNON-program INDEV

CONTINUOUS SYSTEM INDEV
STATE X1 X2
DER DX1 DX2

Bl = 2xX1 + X2
B2 = X1 + 3*X2
UH1 = - ((B1l-2)*(B1-2) + (B2-2)*(B2-2))*K
UH2 = - ((B1l-2)*(B1l+2) + (B2-2)*(B2+2))*K

"FIS = K*((B1l+2)*X1l - (B2+2)*X2) + 2xUH2*UH2 "TEST QUANTITY NOT USED

UH = IF -2*(X1+X2)>0 THEN UH1 ELSE UH2
UL = K1*X1 + K2*X2

U = IF LIN>0.5 THEN UL ELSE UH

DX1 = =-X1 + (B1l-2)*U

DX2 = X2 + (B2-2)%U

K:100

K1:50

K2:100

LIN:O

END

Refer to example 4.9,



92

APPENDIX B : The SIMNON-program PARAB

CONTINUOUS SYSTEM PARAB

STATE X1 X2

DER DX1 DX2

D=X1l-X2 -2

S = IF SIGN(D)<0 THEN -1 ELSE 1
DEN = IF ABS (D)>EPS THEN D ELSE ETA*S
U = (L1*X1 + L2%*X2)/DEN

DX1 = X1 + D*U

DX2 = 2*%X2 + D*U

EPS:0.001

ETA:0.001

Ll:4

L2:-9

END

Refer to example 4.30.
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APPENDIX C : The SIMNON-program BEST

CONTINUOUS SYSTEM BEST

STATE X1 X2

DER DX1 DX2

INPUT EPS

OUTPUT MU

MU=B11*X1+B12*X2+Bl

DIV = IF ABS (MU)>G THEN MU ELSE G
UH = (K1*X1 + K2*X2)/DIV
Uuo =0

U = IF MU<-G OR EPS>0 THEN UH ELSE U0

DXl = All*X1+Al12*X2 +(Bl1l*X1 +B12*X2 +Bl)*U
DX2 = A21*X1+A22*%X2 +(B21*X1 +B22*X2 +B2)*U
All:-1

CONTINUOUS SYSTEM HYS

STATE OUT

DER DOUT

INPUT E

OUTPUT R

INITIAL

DU:1

L0:0.05

H1:0.5

C:1

OUTPUT

R=SIGN (OUT) *DU

DYNAMICS

Cl=IF OUT<l1 THEN C*(1.5-0UT) ELSE 0
C2=IF OUT>-1 THEN ~-C* (1.5+0UT) ELSE 0
DOUT= IF E>H1 OR OUT>0 AND E>L0 THEN Cl ELSE C2
END

CONNECTING SYSTEM CONI
E[HYS ]=MU[BEST]
EPS[BEST]=R[HYS]

END

Refer to example 4.31.
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APPENDIX D : The SIMNON-program NUKE

CONTINUOUS SYSTEM NUKE
STATE X1 X2

DER DX1 DX2

"

D = MAX((X1l+1l) ,EPS)

Ul = (K1/(K2*D))* (L1*X1 +L2*X2) "DIVISION CONTROLLER
U2 = = (X1+1)*(P1*X1 + P2*X2)*L "QUADRATIC CONTROLLER
E = MIN((X1+1), (X2+1))

UH = IF DIV>0.5 THEN Ul ELSE U2 "CONTROIL SELECTOR

U = IF UH<-G THEN -G ELSE IF UH<G THEN UH ELSE G "LIMITER
H1 = (-BETA/L)* (X1 - X2) + (X1+1)*(U/L)

DXl = IF X1>-1 THEN H1 ELSE MAX(0,H1)
H2 = LA* (X1l - X2)
DX2 = IF X2>-1 THEN H2 ELSE MAX(0,H2)

EPS:0.01

Kl:1

K2:100000

LL1:648.4

L.2:-650.9

L:1.0E-5

BETA:0.0065

LA:0.4

P1:40

P2:20

G:0.001 "WILL BE SET
DIV:1 "WILL BE SET
END

1.E5 WHEN NO LIMITER IS DESIRED
0 WHEN QUADRATIC CONTROL IS DESIRED

Remark: See chapter 6.

The variable E is not used. Precautions are taken in the
program so that the state will not get outside the allowed
region (6.7).



