LUND UNIVERSITY

Concurrent Pascal User's Guide

Mattsson, Sven Erik

1979

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Mattsson, S. E. (1979). Concurrent Pascal User's Guide. (Technical Reports TFRT-7167). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/4f57e625-8734-4dba-b533-67ab4e109aca

CODEN: LUTFD2/(TFRT-7167)/1-009/(1979)

CONCURRENT PASCAL USER’S GUIDE

SVEN ERIK MATTSSON

DEPARTMENT OF AuToMATIC CONTROL
LunD INSTITUTE OF TECHNOLOGY
AucusT 1979

Dokumentutgivare Dokumentnamn Dokumantbeteckning

D4m0 Institute of Technology REPORT LUTFD2/ (TFRT<7167) /1-009/(1979)
Handlaggare Dept of Automatic Control Utgivningsdatum Arendebeteckning

§638 Erik Mattsson Nigast 1979

F&rfattare

882 Erik Mattsson

Dokumenttitel och undertitel

t8RLurrent Pascal User’s Guide.

2010 document together with the Concurrent Pascal Report define

| Concurrent Pascal for the LSI-11 computer.

|
[
I Referat (sammandrag)
|
|
|
|
|
|

Referat skrivet av
Aptpor
Forslag till ytterligare nyckelord

|
| 4470
|
|

i Klassitikationssystem och -klass(er)
5070
indextermar {ange killa)

| 5270

Omféng | Ovriga bibliografiska uppgifter

[96Pages j

| Sprdk !

. English

i Sekretessuppgifter i'SSN ISBN
| 6070 [6076
I Dokumentet kan erh8llas frdn Mottagarens uppgifter

‘ Départment of Automatic Control '

| Lund Institute of Technology |

| Box 725, §-220 07 Lund 7, Sweden i

|

SIS-
DB1

DOKUMENTDATABLAD enligt SIS 62 10 12

Blankett LU 11:25 1976—07

Concurrent Pascal User's Guide

INTRODUCTION

This document is intended to be read in conjunction with the
Concurrent Pascal Report (Brinch Hansen, P., 'The
Architecture of Concurrent Programs', Prentice-Hall Inc.,
Englewood Cliffs, New Jersey 07632, 1978). It describes the
restrictions and extensions for the implementation on the
LSI-11 computer. The specifications stated in this document
are preliminary and may be subject to changes.

LANGUAGE RESTRICTIONS AND EXTENSIONS.

Character Set

The special characters are extended with

[1 {1}

The set letters is extended with lower case letters, but
they will be interpreted as their upper case counterparts.

Basic Symbols

The special symbols are extended with
! [] { yoo/x %/ (* %)
The word symbols are extended with AND.
Four forms of comment brackets are allowed: "...", {...},
(*«eu*) and /*...*/. The opening and closing comment bracket

must have the same form.

The boolean operator & can be written AND. The boolean
operator OR can be written as !.

The array brackets (. and .) can be written [and].

A string constant must be contained in one source line. If

the string contains a quote mark (') then this quote mark
must be doubled ('').
nges

A nonstandard enumeration type cannot consist of more than
128 constant identifiers.

Integer case labels must be in the range 0..127.

The range of integers is =32768..32767. Real numbers have
the range 1PE-38..10E+38, with a precision of 7 digits.

Concurrent Pascal User's Guide

A one-dimensional array of type boolean or char must contain
an even number of elements.

A set may contain at most 64 elements.

A process component can only be declared within the initial
process.

The standard procedure continue can only be called within a
routine entry of a monitor.

SEQUENTIAL PROGRAMS

A process can execute a program written in Pascal and
compiled with the Pascal compiler. In the sequel such a
program will be referred to as a sequential program or a
Pascal program.

Declarations in the concurrent program

The process type must include a declaration of the
sequential program:

-PROGRAM~—=identifier-=parameterS—e; —=ENTRY——identifiers —

A program declaration consists of program identifier, a
parameter list and a list of access rights.

There must be exactly one variable parameter and no constant
parameter, and the variable parameter must be of the
following type:

type segprogspectype=record
filename: arrayll..l1l4]) of char;
stacktop,
heaptop,
startaddress,
loadaddress: integer
end;

Note that the wuser must declare this type and that the
compiler can only check that the parameter has the correct
length.

The access rights of a program are specified by a 1list of
identifiers of routine entries defined within the process in
which the program is declared. The sequential program may
call these routines during its execution. There must be at
least two identifiers in the list.

The first one should be a procedure which inputs a single
character from the terminal. It will be used implicitly by
read and readln in the sequential program. The procedure

Concurrent Pascal User's Guide

should have one variable parameter of type char.

The second one should be a procedure which outputs a single
character to the terminal. It will be used implicitly by
write and writeln, and also to print error messages from the
sequential program. The procedure should have one variable
parameter of type char. These two procedures must be defined
by the user.

A sequential program must be loaded into the store before it
can be called by the process. The loading of a sequential
program is handled by the following standard procedure:

loadseq (segprogspec,varspace)

Segprogspec should be a variable of the type segprogspectype
(defined above) and varspace an integer. The filename
component of segprogspec should contain the filename of a
relocatable version of the sequential program. Loadseq will
give the rest of the components of segprogspec appropriate
values. The data space needed to execute the sequential
program (in words) should be specified by the wuser in
varspace.

Loadseqg uses the RT-11 disk handler. 1In order to load
sequential programs safely, all sequential programs should
be loaded before any process 1is initialized. A sequential
program is not reentrant, but it can be restarted without
reloading. If two processes want to execute the same
sequential program, two copies must be loaded.

The parameter used at a call of a sequential program should
contain the values received at loading.

Declarations in the sequential program

The sequential program should follow the rules of (OMSI-)
Pascal. Read and write can only be done from and to the
terminal.

A sequential program may use the routines specified in the
ENTRY list. All routines in this list except the first two
must be declared in the sequential program. The first two
are used implicitly (see above) and must not be declared in
the sequential program. The rest of the routines in the list
are called explicit entry routines.

Suppose that there are n explicit entry routines in the
ENTRY list, then declare an enumeration type and an external
procedure:

type entryroutines=(entryl, entry2,...,entryn);
procedure entprocedure (entryroutine:entryroutines) ;external;

Suppose that the i:th explicit entry routine is a procedure

Concurrent Pascal User's Guide

then it should be declared in the following way:

procedure routinei({the same parameterlist as in the
declaration of the procedure in
the process});
begin
entprocedure (entryi)
end;

Note that all parameters of entry routines must be variable
parameters. Records with two simple successive elements of
type boolean or char or records with a simple element of
these types at the end are not allowed as parameters of an
entry procedure.

It is natural but not necessary to give the Pascal procedure
the same name as 1in the Concurrent Pascal process. The
important issue is that entprocedure(entryi) will call the
i:th explicit entry routine if entryi is the i:th element of
the type entryroutines. Moreover the parameter lists must be
compatible. Neither the Pascal nor the Concurrent Pascal
compiler can check these two things.

Explicit entry routines which are functions turned out to be
impossible to implement efficiently. Therefore they are not
allowed.

Preparation of the sequential program

Create a relocatable version of the sequential vprogram under
RT-11 in the ordinary way. Compile the source code with the
OMSI-Pascal compiler and assemble it with MACRO. Link the
object file with LINK.In order to create a relocatable
version the R-switch should be used. Two support libraries
are needed. They are called PASLIB.OBJ and CPASUP.OBJ. In a
normal case the command line to LINK should have the form

FILNAM=FILNAM,PASLIB,CPASUP/R

It is important that PASLIB is specified before CPASUP.

PROCESS ATTRIBUTES

The standard function

attribute (x)
returns an attribute of the calling process. The index and
value of the attribute are universal enumerations. The

attribute index x is of the following type:

type attrindex = (caller, prinumber)

Concurrent Pascal User's Guide

The attribute function can be used as follows:

attribute (caller) The result is an integer that
identifies the <calling process. The system
associates consecutive integers 1, 2, ... with
processes during their initialization, starting
with the initial process.

attribute (prinumber) The result is the current priority of

the <calling process as defined in the next
section.

PROCESS SCHEDULING AND REAL-TIME CONTROL

A priority is associated with every process. It is described
by a nonnegative integer. A smaller priority number
corresponds to a higher priority. All scheduling is done
according to the priority. If two processes have the same
priority, the tirst-come-first-served rule applies. The
initial process will start with priority =zero. The other
processes will start with priority one.

A process can change 1ts priority during execution by means
of the standard procedure:

setpri(x)

The priority of the calling process is set to x. If x<0 a
runtime error occurs. Changes ot priorities are significant
events and a process may be suspended if it lowers its
priority.

The standard routines for real-time control are:
realtime

The standard function realtime returns an 1nteger defining
the real time in ticks mod 32768 after system
lnitialization. The time between two ticks 1s 20 ms and
32768 ticks are 1@ minutes and 55.36 seconds.

sleep(x)

The calling process is delayed until the time defined by the
standard function is x. Only one process at a time can
sleep. If a process calls sleep when another process 1is
sleeping, or if x<W, a runtime error occurs. If the sleeping
1s done 1n a monitor this will delay other calls ot the
monitor.

Concurrent Pascal User's Guide

awake

A process can wake up a sleeping process by calling awake.
If no process is sleeping the call is ignored.

INPUT/OQUTPUT

At present the only I/O device is the console terminal.
Input/output is handled by the following standard procedure:

io(x,y,2)

Peripheral device z performs operation y on the variable x.
The calling process 1is delayed until the operation is
completed. X should be a variable parameter of type char. Y
should be a variable parameter of type ioparam and z should
be a constant parameter of type iodevice. Ioparam and
iodevice should be declared as

type iodevice = (typedevice);
ioparam = (input, output)

The character CR is input as LF and echoed as CR,LF. The
character LF is output as CR,LF.

A concurrent program must ensure that the device is not used
by more than one process at a time.

OTHER STANDARD FUNCTIONS

The standard function
gateopen (x)

applies to monitors. The result is a boolean value, true if
the monitor is free, false otherwise. Note that the use of
this function does not violate any of the strict access
rules of Concurrent Pascal. The intention is that a high
priority process may check the availability of a monitor
before trying to enter it. If the monitor is not free, the
process may choose some alternative action.

COMPILER

The compiler is named CPAS and runs under RT-11l. The command
line to the compiler follows the rules of RT-11 and has the
following structure:

objectfile,listfile=sourcefile/switchl.../switchn

Concurrent Pascal User's Guide

The objectfile, which contains the executable program, will
have the default extension EMU, the 1listfile LST and the
sourcefile will have CPA.

The following switches may be used:

/N The generated code will only identify line numbers of
the program text at the beginning of routines. This
reduces the code by about 25 percent, but makes error
location more difficult.

/C The code will not make range checks of constant
enumeration arguments.

/O If a 1listfile is specified, the emulator code will be
output between the source lines in the 1listfile. If no
listfile is specified, the emulator code will be output
on the device TT.

/T Has the same effect as switch O with the addition that
the intermediate code of all passes will be output.
(This facility 1is used as a diagnostic aid to locate
compiler errors.)

If an error is detected, no objectfile will be created.

EXECUTION

The execution of a program written in Concurrent Pascal is
controlled by a program called KERNEL. KERNEL should be
started as a normal RT-11 program. After the asterisk
printed by KERNEL, the name of the file containing the
compiled Concurrent Pascal program should be entered. The
filespecification should follow the rules of RT-11 and the
default extension is EMU.

