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SELF-TUNING REGULATORS -
DESIGN PRINCIPLES AND APPLICATIONS1

K. J. Astram

Department of Automatic Control
Lund Institute of Technology

Lund, Sweden

The basic principles of self-tuning regulators are discussed.
The regulators are motivated from the viewpoint of nonlinear
stochastic control theory. Self-tuning regulators based on pole-
zero placement, minimum variance control and linear quadratic
gaussian control are described in a common framework. Relations
between self-tuning regulators and model reference adaptive control
are discussed. Applications to different industrial process con-
trol problems are described. Practical and theoretical issues of

relevance to design of self-tuning regulators are also treated.

1This research was supported by the Swedish Board of Technical
Development (STU).



1. INTRODUCTION

The tuning problem is one reason for using adaptive control.

It 1s a well-known fact that many processes can be regulated
satisfactorily with PI or PID regulators. It is fairly easy to
tune a PI regulator which only has two parameters to adjust.
However, for an installation which has several hundred regulators
it is a substantial task to keep all the regulators well tuned.

A PID regulator which has three or four parameters is not always
easy to tune, particularly if the process dynamics is slow. The
derivative action 1s, therefore, frequently switched off in indus-
trial controllers.

Since many control loops are not critical three term control-
lers will undoubtedly be used extensively in the future too. With
an increasing demand for efficiency in the use of energy and raw
material there are, however, an increasing number of control prob-
lems where it is reasonable to use regulators which are more
complicated than PID regulators. Such regulators, which may in-
clude feedforward, state feedback, and observers, can often have
more than 10 adjustable parameters. It is not possible to adjust
50 many parameters without a systematic procedure. The lack of a
suitable tuning procedure is one reason why modern control theory
has not been used more extensively.

One possibility to tune a regulator is to develop a mathe-
matical model for the process, and its disturbances, and to derive
the regulator parameters from some control design procedure. The
appropriate mathematical models can be obtained from physical
modeling or from system identification. The drawback with such a
procedure is that it may be fairly time consuming, and that it
requires personnel with skills in modeling, system identification,
and control design. The self-tuning regulator can be regarded as
a convenlent way to combine system identification and control de-

sign. Its name does, in fact, derive from such applications.



One reason for using adaptive control is thus to avoid the
tuning problem. Another motivation for using adaptive control 1is
that the characteristics of the process and its disturbances may
change with time. If the changes are not too rapid a properly
designed self~tuning regulator may be used for continuous tuning
to obtain close to optimal performance.

Adaptive control has been a challenge to control engineers for
a long time [1]. Many different schemes have been proposed [2-4].
In spite of this, progress in the field has been comparatively
slow. One reason for this is that adaptive systems are difficult
to understand because they are inherently nonlinear. The field
is also fairly immature as a scientific discipline. Many ideas
that are basically the same are derived and presented using very
different approaches. There is a wide divergence in notations.

A fundamental conceptual framework is also lacking. Recently
there has been an increased interest in adaptive control. One
reason for this is the availability of microprocessors which make
it possible to implement adaptive controllers conveniently and
cheaply [5-7]. Another reason is the success of adaptive control
in pilot installations in industry [8-16]. A third reason is that
some progress has recently been made in the theory of adaptive
control [17-23].

The purpose of this paper is to give an overview of self-tuning
regulators, which is one approach to adaptive control. The focus
will be on concepts, theory, and applications. The paper is
organized as follows.

A brief review of nonlinear stochastic control theory is given
in Section 2. This theory gives a conceptual framework and a
general structure of an adaptive regulator with many interesting
features. The regulator obtained from nonlinear stochastic
control theory is, however, so complicated that it can only be
computed numerically in almost trivial cases. To obtain something

useful it 1s thus necessary to make approximations. Self-tuning



regulators are one approximation. The principles for design of
self-tuning regulators are also discussed in Section 2. The basic
idea can be described as follows. Start with a design method that
will give adequate results if the parameters of models for the
dynamics of the process and its environment are known. When the
parameters are unknown, they are replaced by estimates obtained
from a recursive parameter estimator. Since there are many avail-
able methods for designing control systems there are at least as
many ways to design self-tuning regulators.

The general principles are illustrated in Section 3 by giving
some details for self-tuning regulators based on assignment of
poles and zeros. In this way, it is also possible to bring up the
notion of algorithms with implicit and explicit identification.

Self-tuning regulators based on minimum variance control and on
linear quadratic control theory are briefly discussed in Section

4. 1In Section 5 self-tuning regulators are compared with model
reference adaptive systems, which is another approach to adaptive
control. It is shown that the two approaches are closely related.
Applications of self-tuning regulators to real processes are dis-
cussed in Section 6. This includes control of papermachines,

heat exchangers, ore crushers, and autopilots for ship steering.
Some aspects on the available theory and practice of self-tuning
regulators are given in Section 7. The paper ends with conclusions

and references.

2. DESIGN PRINCIPLES

The principles for designing self-tuning regulators (STR) are
presented in this section. A brief review of nonlinear stochastic
control theory is first given. This provides a convenient conceptu-

al framework. Self-tuning regulators are then introduced as



approximations to the general nonlinear stochastic problem. It
is also shown that the self-tuning regulators can be formulated

for many problems which are not stochastic control problems.

Nonlinear Stochastic Control

In discrete time nonlinear stochastic control theory, the
model of the system and its environment are specified by giving
the conditional probability distribution of the state x(t+l) at
time t + 1 given the state x(t) and the control u(t) at time t.
The observation process is similarly specified by giving the con-
ditional probability distribution of the observation y(t) at time
t given the state x(t) and the control u(t) at time t. The cri-
terion is formulated as to minimize the expected value of a loss
function which is a scalar function of states and controls.

The problem of finding a control which minimizes the expected
loss function is difficult. Useful explicit conditions for exist-
ence are not known, in general. Under the assumption that a solu-
tion exists a functional equation can, however, be derived using
standard dynamic programming [24]. This functional equation,

which is called the Bellman equation, can be solved numerically

only in very simple cases. The approach is, nevertheless, of
interest because it gives insight into the structure of the

optimal controller. This structure is shown in Fig. 1. The
controller can be thought of as composed of two parts, an estimator
and a feedback regulator. The estimator generates the conditional
probability distribution of the state of the process given all

past data. This distribution is sometimes called the hyperstate

of the problem. The feedback regulator is simply a nonlinear
static function which maps the hyperstate into the space of

controls.
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FIGURE 1. Structure of the regulator obtained from nonlinear
stochastic control theory. The hyperstate w is generated from a
dynamical system using u and y as inputs. The regulator is a
static nonlinearity which gives the control variable u(t) as a

function of the hyperstate w(t).

To solve a nonlinear stochastic control problem it is necessary
to determine the estimator, which updates the hyperstate, and to
solve the functional equation which gives the feedback regulator.
The structural simplicity of the solution is obtained at the price
of introducing the hyperstate which is a quantity of very high
dimension. For example, a problem whose state space is R has a
hyperstate which is a distribution over RA-

Nonlinear stochastic control is of substantial interest for
adaptive control, because many of the aspects of adaptive control
are captured by the nonlinear stochastic control formulation. In
a problem with unknown but constant parameters the parameters are
simply introduced as auxiliary state variables. Let a be a

constant parameter, the assoclated state equation is then



a(t+l) = a(t). (2.1)

If it can be assumed that the parameter 1s drifting like a random
walk the following is an alternative to (2.1):

a(t+l) = a(t) + v(t), (2.2)

where {v(t)} is a sequence of uncorrelated random variables. For

a system with constant but unknown parameters or drifting param-
eters it is natural to separate the state variables into two
groups, the original state variables and the state variables
associated with the parameters of the process. It is often assumed
that the 'parameters' are changing at much slower rates than the
other state variables. It is, however, not necessary to make such
a distinction. Nonlinear stochastic control theory thus makes it

possible conceptually to deal with rapid parameter variatioms.

Approximations

Since it is difficult to solve the Bellman equation, approx-

imate solutions are of considerable interest. A simple example

will be used to 1llustrate some common approximations. Consider

a process described by
y(t+l) = y(t) + bu(t) + e(t) (2.3)
where u is the control, y the output, e white noise and b a con-

stant parameter. Equation (2.3) is a sampled data model of an

integrator with unknown gain. Let the criterion be to minimize

1N
ln E3Zy(D). (2.4)
N 1



If the parameter b is known, the control law which minimizes

(2.4) is given by
1
u(t) = - 3 y(t). (2.5)

If the parameter b has a gaussian prior distribution, it follows
that the conditional distribution of b, given inputs u, and outputs
y up to time t is normal with mean ﬂ(t) and covariance P(t). The
hyperstate of the problem can then be characterized by the triple
[y(t),ﬂ(t),P(t)]. In this simple case the Bellman equation can

be solved numerically [25-28]. The control law obtained can not

be characterized in a simple way. It has, however, a very inter-
esting property. The control signal will not only attempt to bring
the output close to zero. When the parameters are uncertain the
regulator will also inject signals into the system to reduce the
uncertainty of the parameter estimates. This is referred to as
probing [29]. The optimal control law will give the right balance
between the tasks of keeping the control errors and the estimation

errors small. This is called dual control [30].

The following control law

u(t) = - Al y(t) (2.6)

b(t)

is an approximation which 1s called the certainty equivalence

control. It is obtained simply by solving the control problem in
the case of known parameters and substituting the known parameters
with their estimates.

In the control law (2.6) the control variable u(t) is obtained
by dividing the measured variable y(t) by the estimate g(t). This
implies that there will be difficulties if the estimate g(t) is
zero or very small. When using a certainty equivalence control
like (2.6) it is therefore necessary to limit the controller gain.
One simple way to do this, which works well in practice, is simply
to put a hard bound on u(t) or its increment u(t) - u(t-1).



The difficulty associated with division by b in (2.6) is

avoided in the control law

b(e) ! )
.-.2 Y(t) = = A A2
b (t) + P(t) b(t) b7(t) + P(t)

u(t) = - y(t) (2.7)

which is called cautious control because it hedges and uses lower

gain when the estimates are uncertain. Notice that the cautious

control law minimizes the criterion

Ely2(t) |y(t-1),y(t-2),...] (2.8)

where E[-

D] denotes the conditional expectation with respect to

D. The control law (2.7) does, however, not minimize (2.5). The
minimization of (2.8) can be taken as the definition of cautious

control in the general case.

There is empirical evidence that the cautious controller hedges
too much. It has been observed in many simulations that the con-
trol signal will occasionally be zero over certain periods when
the cautious controller is used. The mechanism can intuitively
be explained as follows. If the estimate ﬂ is uncertain, i.e.

ﬂ << P, then it follows from (2.7) that the control signal will

be small. The uncertainty P may then increase and the control
signal will decrease further until it finally becomes zero. When
applied to stable systems the control signal will be zero for a
period and normal operation will then be resumed. This phenomenon
is called turn off. When the cautious controller is applied to

an unstable system the output may become so large that the system
can no longer be brought back into normal operation. The phenomenon
is then called escape. The possibilities of turn off and escape

makes the cautious control law less useful.
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FIGURE 2. Schematic diagram of a self-tuning regulator.

Self-Tuning Regulators

A block diagram of a self-tuning regulator is shown in Fig. 2.
.The regulator can be thought of as composed of three parts, a
recursive parameter estimator, a design calculator, and a regula-
tor with adjustable parameters. The design method is chosen so
that it gives the desired results when the parameters characteriz-
ing the process and its environment are known. When the parameters
are unknown they are simply replaced by estimates. From the view-
point of nonlinear stochastic control a self-tuning regulator is
clearly a certainty equivalence control. Notice that the state
1s separated into two parts corresponding to the original process
states and the parameters and that there are different signal paths
for the two parts. Also notice that although the STR can be
viewed as a certainty equivalence control the‘principle of STR can
be applied to many problems which can not be formulated as stochas-

tic control problems.
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Since there are many different ways to do control design and
to estimate parameters, there are many varieties of self-tuning
regulators. Because the self-tuning regulators are certainty
equlvalence controls, it is also clear that they could be modified
by introducing approximations of the effects of caution and probing
if needed.

Disregarding the special structure of the regulator in Fig. 2
it can clearly be regarded as a nonlinear regulator which accepts
an input y and generates a control u. The special structure is,
however, very useful because it helps to understand how the regu-

lator works and how it should be designed.
3. SELF-TUNERS BASED ON POLE-ZERO ASSIGNMENT

Design of self-tuning regulators based on pole-zero assigmment
will now be worked out in detail. A pole-zero assignment method
for systems with known parameters 1s first described. It is then
shown how this method is used to design self-tuners. Only discrete
time systems are discussed.

Formulation
Consider a process characterized by

Ay = Bu (3.1)

where A and B are polynomials in the forward shift operator. It

is assumed that A and B are coprime and that

deg B < deg A,
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where deg A denotes the degree of the polynomial A. It is desired
to find a controller such that the closed loop is stable and that
the transfer function from the command input u, to the output is

given by

-9
Gy = 3 (3.2)

where P and Q are coprime and
deg P - deg Q > = deg A - deg B. (3.3)

Condition (3.3) 1is necessary for the problem to be solved using a

causal regulator.

Design Procedure

A general linear two-degree-of-freedom [31] regulator can be
described by

Ru = Tuc - Sy. (3.4)

The closed loop transfer function relating y to u, is given by

_IB____0Q
AR +BS P’ (8.9)

where the right hand side 1s the desired closed loop transfer
function GM given by (3.2). The design problem is thus equivalent
to the algebraic problem of finding polynomials R,S, and T such
that (3.5) holds. It follows from (3.5) that factors of B, which
are not also factors of Q, must divide R. Since factors of B
correspond to open loop zeros it means that open loop zeros, which

are not desired closed loop zeros, must be canceled. Factor B as
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B=BB (3.6)

where all the zeros of B+ are in a region Z of the complex plane
and all zeros of B outside Z. The region Z corresponds to modes
.that are sufficiently well damped. This means that all zeros of
B+ correspond to well damped modes and all zeros of B~ correspond
' to unstable or poorly damped modes.

A necessary condition for solvability of the servo problem is

that the specifications are such that
=Q,B . 5
Q=0 (3.7)

Since deg P is normally less than deg (AR + BS) it is clear that

there are factors in (3.5) which cancel. In state space theory

it can be shown that the regulator (3.4) corresponds to a combina-

tion of an observer and a state feedback. See [32]. It is natural

to assume that the observer is designed in such a way that changes

in command signals do not generate errors in the observer. This

means that the factor which cancels in the right hand side of

~(3.5) can be interpreted as the observer polynomial Tl'

The design procedure can be formulated as follows.

Data: Given the desired response specified by the polynomials

.P and Q, subject to the conditions (3.3) and (3.7), and

the desired observer polynomials T It is assumed that

1°
P and T1 have all their zeros in Z.
Step 1: Solve the equation
AR+ B'S = PT (3.8)

1 1

with respect to R1 and S.

Step 2: The regulator which gives the desired closed loop
response is given by (3.4) with
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R = R;B (3.9)
and
T = TlQl' (3.10)

a

The equation (3.8) can always be solved because it was assumed

that A and B were coprime. This implies that A and B are also
0

coprime. Equation (3.8) has infinitely many solutions. If R1

rand § is one solution then another solution is given by

0 -
R, = F
R1 + B

where F is an arbitrary polynomial. All solutions give closed
loop systems with the same transfer function (3.2) from command
signal u, to the output y. The response of the closed loop system
to disturbances will, however, depend on the particular solution
which is chosen.

The lack of uniqueness can, for example, be used to ensure
that the regulator has integral action, that it is causal and that
it is insensitive to measurement noise. Since the following dis-
cussion will not depend on the particular solution which is chosen,
1t is unnecessary to go into further details here. Let it suffice
to mention [33] that there will always be a causal regulator if

+
deg T. = deg A ~ deg B - 1.

1

It is often reasonable to choose a solution such that

deg R = deg S = deg T,
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which means that there will be direct terms both In the feedback

and feedforward paths.

Least Squares Parameter Estimation

A recursive parameter estimator is an important part of a self-
tuning regulator. See Fig., 2. There are many different methods
which could be used for parameter estimation, for example stochastic
‘approximation, least squares, extended least squares, generalized
"least squares, multistage least squares, instrumental variables,
and maximum likelihood. A review of recursive estimation methods
is given in [34] where also many references are given. There is
unfortunately no recursive parameter estimator which 1s uniformly
.best. Consequently there are many different possibilities. For
simplicity only recursive least squares estimation is used in this
paper. Least squares is one of the simplest recursive estimation
procedures. The method unfortunately gives biased estimates if
the disturbances are correlated.

In recursive least squares estimation the criterion

t
v = £ Atke2(q (3.11)
k=1
where
e(t + deg A) = Ay(t) - Bu(t) (3.12)

is minimized. The parameter A 1is a weighting factor which gives
lower weight to old measurements. To describe the algorithm the
model (3.1) 1is written explicitly as

y(t) + aly(t-l) + ...+ any(t-n) =

= bou(t—k) + ... + b u(t-m-k). (3.13)
m
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Introduce a vector of parameter estimates

N Bo...Bm]T (3.14)
;and a vector of regressors

$(t) = [~y(t=1)...-y(t-n) u(t-k)...u(t-m-K)] . (3.15)
The recursive least squares estimate is then given by

8(t+l) = 6(t) + P(t+1)d(t+l)E(t+l), (3.16)
where

e(t+l) = y(t+l) - 6 (£)o(t+l), (3.17)
and

P(t+1) = [P(t) - P(O)$(DR(E)S (DP(B)1/A, (3.18)
i where

R(E) = [A + 6T(£)P(B) ()] L.

There are other ways to perform the least square calculations.

Square root algorithms, [35-38], are useful if the problem is
poorly conditioned. Fast algorithms, [39-41], can be used if many

parameters have to be estimated and if computing time 1s crucial.
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Interpretations

Equation (3.16) can be interpreted as a quasi-Newton iteration

for minimizing ez. It follows from (3.17) that
¢ = - grade €. (3.19)

The term ¢e in (3.16) can thus be interpreted as the gradient of

52/2. The matrix P in (3.16) modifies the gradient direction and
determines the step length. The matrix P can thus be interpreted
as a gain factor which determines the rate of change of the esti-

mate. The matrix P satisfies the equation
-1 -1 oy T
P (t+l) = AP “(t) + ¢(t+1l)¢ (t+l). (3.20)

When A is equal to one, the matrix P will thus decrease monotonic-
ally, This means that the gain of the estimator will decrease to
zero. Recall (3.11) which shows that A can be interpreted as a
factor which discounts past measurements. When A < 1 the matrix
‘P will not go to zero as time increases. The magnitude of the
'gain factor will depend on A. The gain P will be larger if A is
smaller. The gain of the estimator will thus depend on the rate
in which past data is discounted. There are also other possibili-
ties to obtain an estimator with nondecreasing gain. If it is
assumed that the parameters are drifting as in (2.2) and X =1
Equation (3.18) is replaced by

P(t+1) = P(t) + P(t)(£)R(L)O (E)B(E) + R (3.21)

1’

where

Rl = coviv(t),v(t)].
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Under stationary conditions when Rl is different from zero the

gain factor P will settle on a level which is determined by Rl.
The larger Rl is, i.e. the larger the assumed drift rate is, the
larger will the gain factor be. The model (3.21) is more flexible
than (3.18) because the rate of change of the parameters can be
~set iIndividually. Different drift rates for different parameters
can, however, also be incorporated in (3.18) by replacing A in
(3.18) by a diagonal matrix.

There are proposals to adjust the forgetting factor automatic-

ally [42]. The principle is to choose X as

A=1- aez/e2 (3.22)
where €2 is the mean value of 52 over a certain period. It has
been found empirically [43] that a forgetting factor A between 0.95
and 0.99 works well if there are continuous disturbances, provided
~that the problem is not overparametrized. If there are too many

parameters the matrix
T
Zo(t) o (1)

‘will be poorly conditioned. With a forgetting factor the matrix
P can then be very large in certain directions.

In a servo problem with few disturbances the major excitation
comes from the changes in the command signal. Such changes may
be irregular and it has been found that there may be bursts in
the process output if Eq. (3.18) 1s used with A less than one.
The presence of bursts can be understood intuitively as follows.
The negative term in (3.18) represents the reduction in parameter
uncertainty due to the last measurement. When there are no
changes in the set point the vector P(t)¢(t) will be zero. There
will not be any changes in the parameter estimate and the negative
term in the right hand side of (3.18) will be zero. The equation
(3.18) then reduces to
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P(t+1) = T P(t)

and the matrix P will thus grow exponentially if X < 1. If there
are no changes for a long time the matrix P may thus become very
large. A change in the command signal may then lead to large
changes in the parameter estimates and in the process output. The
large values of the matrix P may also lead to numerical problems.
Examples which illustrate this behaviour are found e.g. in [42]
and [44]. These results are partly due to bad numerics.

There are many ways to eliminate bursts. Perturbation signals
may be added to ensure that the process is properly excited. The
. estimation algorithm may be modified. One possibility is to stop
the updating of the matrix P(t) when the signal P(t)¢(t) is smaller

than a given value. Another possibility 1is to replace P(t) by
t
t-k -1
[l + 2 2 ¢(k)p(k)]
k=1

where o is a small number. This ensures that the matrix P stays

bounded.

An Explicit Self-Tuning Regulator

A self-tuning controller based on pole-placement design and
least squares estimation can be obtained by implementing the scheme
of Fig. 2 directly. The following algorithm is obtained.

ALGORITHM E1. (Basic explicit algorithm)
Data: The polynomials P,Tl, and Q1 are given.
Step 1: Estimate the parameters of the model

Ay(t) = Bu(t) (3.1

by least squares.
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~ l\+ A am
Btep 2: Factor the estimated polynomial B into B and B where
§+ has all its zeros in the region Z and ﬁ— has all its
zeros outside Z.

Step 3: Solve the linear equation

ZRI +3S = PT... (3.8)

Step 4: Calculate the control variable u from

Ru = Tuc - Sy (3.4)

where

(Notice that there are many solutions and that a choice

has to be made [50].)
The steps 1,2,3, and 4 are repeated at each sampling period. [
This algorithm is called an algorithm based on estimation of

process parameters or an algorithm with explicit identification,

because the parameters of the process model (3.1) in the standard
form are estimated. Using the terminology of model reference
adaptive systems, the algorithm is also called indirect [45], be-
cause the parameters of the regulator are updated indirectly via
estimation of the process parameters (Step 1) and the design cal-
culations (Steps 2,3, and 4).

If the parameter estimates converge the closed loop system

obtained will have the transfer function



21

B-
G=i
P

from the command signal to the output. The polynomial ﬁ_ is the
polynomial that corresponds to the unstable or poorly damped pro-
cess zeros. Notice that the closed loop response will change(if
ﬁ_ changes.

There are two difficulties with Algorithm E1, The factoriza-
tion may be difficult and time consumlng Equation (3.8) is poorly
conditioned if the polynomials A and B have factors which are
close. It is, therefore, of interest to consider cases where the
factorization problem can be avoided. Such schemes are discussed
in [46],]47] and [50]. When the polynomial ; has zeros which are
close to the zeros of the polynomial ﬁ it is reasonable to cancel
such factors before Step 3. An example of this is discussed in
[48].

A third difficulty with the algorithm E1 is that the least
squares parameter estimation method will give bilased estimates if
there are correlated disturbances. One possibility to avoid this
is to use another estimation method. The first step in the algo-
rithm can also be replaced by:

Step 1*: Estimate the parameters of the model

Ay(t) = Bu(t),

where
;_1_}, G_Lu
= i =
T1 T1

by least squares.
This requires, of course, that the polynomial Tl 1s known.

If the polynomial T, is not known the following algorithm can be

1
used.
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ALGORITHM ESR. (Explicit algorithm for combined servo and
regulation problem)
Data: The polynomials P and Qi are given.
Step 1: Estimate the parameters of the model

Ay(t) = Bu(t) + ce(t)

by recursive maximum likelihood.

Step 2: Factor the estimated polynomial ﬁ into ﬁ+ and ﬁ_ where
ﬁ+ has all its zeros in the region Z and ﬁ- has all its
zeros outside Z.

Step 3: Solve the linear equation

where Tl = é.

Step 4: Calculate the control variable u from

Ru = Tuc - Sy,

T = TlQl.

The steps 1,2,3, and 4 are repeated at each sampling period. [
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An Implicit Self-Tuning Regulator

The design calculations required for the explicit algorithms
may be time consuming. It is possible to obtain different algo-
rithms where the design calculations are simplified considerably.
The basic self-tuning regulator [59] is a prototype for algorithms
of this type. The basic idea is to rewrite the process model in
such a way that the design step is trivial. By a proper choice
of model structure the regulator parameters are updated directly

+and the design calculations are thus eliminated. Algorithms of
' this type are called algorithms based on implicit identification

-of a process model. In the terminology of model reference adaptive

systems the corresponding algorithms are also called direct methods

[45] because the parameters of the regulator are updated directly.
An example of an explicit algorithm will now be given.

Consider a process described by (3.1) with B = 1, which means
that all zeros are well damped. Assume that it is desired to find
a feedback such that the transfer function from the reference value
to the output is

zdeg B

P
.Equation (3.5) gives

d
8 %8 B

AR +BS P

.

The polynomial B thus divides R. Introduce

R = R_B.
lB

Then

zdeg B

PT = (AR, +8). (3.23)
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Hence

deg B

d
PTy = z (ARly + Sy) = 2 eg B

(RlBu + Sy) =

zdeg B zdeg B

(RlBu + Sy) (Ru + Sy), (3.24)

where the second equality is obtained from (3.1). The process can
thus be represented either by (3.1) or by (3.23). The representa-
tion (3.23) has the advantage that the polynomials R and S required
by the polynomial design occur explicitly in the model. If the
model (3.23) is available the pole-placement design is thus trivial
because the regulator (3.4) is obtained from the model (3.23) by
-inspection. The following self-tuning control algorithm can now
be obtained.

ALGORITHM I2. (Implicit algorithm with all process zeros
cancelled)
Data: Given the polynomials P and T, where P is normalized
such that P(1) = 1.
Step 1l: Estimate the parameters of the polynomials R and S in
the model

zdeg B

PTy = (Ru + Sy) (3.25)

by least squares.

Step 2: Calculate the control signal using

Y

Ru = Tu_ - Sy, (3.26)

where R and S are the polynomials estimated in Step 1.
The steps 1 and 2 are repeated at each sampling period. O
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This algorithm was originally proposed in [49]. Since the
specifications require that all process zeros are cancelled, they
must be sufficiently well damped for the algorithm to function.
The algorithm will thus not work for nonﬁinimum—phase systems.

To write the equation (3.25) it is necessary to know the pole

excess
k = deg A - deg B

of the sampled system. The number k can often be estimated based
on physical knowledge. There are, however, cases where it can be
difficult to determine k apriori. It has been found empirically
that it is not dangerous to overestimate k. If the pole excess
of the sampled model is underestimated the leading coefficient r0
of the polynomial R will be zero. The control law (3.26) is then
not causal. If the estimate of ro is small the gain of the con-
troller will be very large. Compare with the discussion of
Equation (2.6).

Since the least squares method gives biased estimates if the
disturbances are correlated, the following variation of the algo-

rithm I2 is useful.

ALGORITHM I3.
Data: Given the polynomials P and T where P is normalized such
that P(1) = 1.
Step 1: Estimate the parameters of the polynomials

Py = 29°8 Bxg + s,
where

- |
U‘%Yﬁ y='.fy

by least squares.
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Step 2: Calculate the control variable using

where ﬁ and § are the polynomials estimated in Step 1.
The steps 1 and 2 are repeated at each sampling period. 0
Further discussions on self-tuners based on pole-zero assignment
are given in [46], [50-55], where many additional references are

given.

4. SELF-TUNERS BASED ON STOCHASTIC CONTROL THEORY

Self-tuners based on minimum variance control and on linear
quadratic gaussian control theory (LQG) will be discussed in this
section. The discussion is limited to single input single output

systems. It is assumed that the process to be controlled is govern-

ed by the model
Ay(t) = Bu(t) + Ce(t) (4.1)
where u is the input, e white noise and y the output. It is assumed

that the reader is familiar with the design problem for systems
with known parameters [56],[57].

Minimum Variance Control

In this case the criterion is to minimize

Ely%(e)] (4.2)

in steady state. A typical application is minimization of fluctu-

ations in quality variables in process control. If the parameters
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of the model (4.1) are known the control strategy which minimizes
(4.2) 1is obtained by solving (3.23) with

- zdeg A

T =C.

The equation (3.23) then becomes

zdeg A - deg BC - ARl + 5.

The particular solution such that

deg R, < deg A - deg B = k

1

deg S < deg A

is chosen. The minimum variance control law is then given by
(3.4) with R = RlB,S and T = C. Notice that B divides R, which
means that all process zeros are cancelled. This means that the
controller can not be expected to work well unless all process
zeros are well damped. A minimum variance controller for non-
minimum phase systems is given in [57]. The minimum variance
controller attempts to bring the predicted output equal to the

desired output after a time interval of length
h (deg A - deg B) = hk

where h is the sampling period. This means that the sampling peri-

od 1s the major design variable which determines the closed loop
bandwidth.
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For the case C = zdeg A

it is easy to obtain a minimum vari-
ance self-tuner. The algorithm is a special case of the implicit
pole placement Algorithm I2, It is easy to derive it directly.

Equation (4.3) gives

y(t + 2 deg A - deg B) = ARly(t) + Sy(t)

RlBu(t) + Sy(t) + Rle(t + deg A)

Ru(t) + Sy(t) + Rje(t + deg A), (4.4)

where Equation (4.1) was used to obtain the second equality. The
transformed model (4.4) is a convenient starting point for an

implicit self-tuner because it contains the controller parameters
explicitly. A self~tuning minimum variance regulator is now ob-

tained as follows.

ALGORITHM IMV. (Implicit minimum variance controller)
Step 1l: Estimate the parameters in the model

y(t + k + deg R) = Ru(t) + Sy(t) (4.5)
k = deg A - deg B

by least squares.

Step 2: Calculate the control variable from
Ru(t) = y _(t + deg R) - Sy(t) (4.6)
where the coefficients of the polynomials R and S are

the estimates obtained in Step 1.
The steps 1 and 2 are repeated in each sampling period. O
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This is the basic self-tuner discussed in [58-60]. It is
natural that the algorithm will work well when applied to a pro-

cess (4.1) such that C = zdeg A.

In this case, the parameter esti-
mates will converge to the corresponding minimum variance regulator.
It is more surprising that the regulator will work well also when
applied to a model (4.1) with C # zdeg A. In this case, the least
squares parameter estimates will be biased. In spite of this, the’
regulator will, however, converge to the minimum variance controller
if it converges at all [58],[59]. Notice, however, that the param-
eter estimates may not necessarily converge [17], [85].

When using minimum variance control the variable y is often
introduced as the control error. With this choice of variables
the reference value y,. 1s zero. The control law (4.6) then has
one redundant parameter. The redundant parameter can be eliminated

by reparametrizing the estimation model (4.5) as

y(t+k) = ro[u(t) + riu(t—l) toobr u(t—nR)] +

R
+ soy(t) + sly(t—l) +...+ snsy(t—ns). (4.7)
The control law (4.6) then becomes
- l -~ ~
u(t) = - — [soy(t) +...+ s y(t—ns)] -

? ng
0

- %iu(t-l)-...- E;Ru(t-nR). (4.8)

It is shown in [59] that the estimate EO can be fixed apriori

provided that

0.5 £ r. /r < =, (4.9)
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If the algorithm converges with fo = r0
(4.9) holds. The convergence rate of the parameters is, however,

it will still converge if

influenced by fo. The fastest convergence is obtained for Iy = %O'

Linear Quadratic Control

The self-~tuning regulators based on minimum variance control
suffer the same drawback as minimum variance control for systems
with known parameters, namely that all process zeros are cancelled
in the design. This is of little importance if the zeros are well
inside the unit disc. The cancellation is, however, disastrous if
the system is not minimum-phase. Another drawback with minimum
variance control is that the control signals may be excessively
large. This can be overcome by a suitable choice of the sampling
period. Another possibility is, however, to base the design on
linear quadratic gaussian control theory [56]. For single input
single output systems the model (4.1) is thus used and the criterion
is

[ e B~

1
lim E'ﬁ
t

N-roo

l[yz(t) + (o). (4.10)

For the explicit algorithm it is necessary to find the steady
state solution of a Riccati-equation [32] or to solve a spectral
factorization problem [33]}. It is thus necessary to perform a
reasonable amount of calculations at each step. With the increasing
computing power of micro-processors such calculations are, however,
feasible in many situations. Further discussions of explicit self-
tuners based on stochastic control theory are given in [60-62],
where many additional references are given. It is an interesting

problem to find the corresponding implicit algorithms.
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5. RELATIONS TO MODEL REFERENCE ADAPTIVE SYSTEMS

Model reference adaptive systems (MRAS) is another approach to
adaptive control. The original MRAS concept was developed by
Prof. H. P. Whitaker at MIT [63] in connection with work on adap-
tive flight control systems. The main design goal was to obtain
an adaptive servo for a continuous time problem. Superficially
MRAS appears to be very different from the STR which was originally
developed for stochastic regulation of a discrete time system.
Disregarding the types of problems to which STR and MRAS were first
developed, it turns out that the algorithms are very similar. The
. purpose of this section is to explore the connections between STR
and MRAS in some detail. The basic principles of MRAS are first
presented. A servo design problem is then considered. For systems
with known parameters it is shown that the system obtained by
applying the pole-placement design can be interpreted as model .
following. It is then shown that a self-tuning regulator based
on implicit identification is equivalent to a model reference

system.

Model Reference Adaptive Systems

In MRAS the specifications are given in terms of a reference
model which tells how the process output should respond to the
command signal. A schematic diagram of an MRAS is shown in Fig.
3. Notice that the reference model is part of the control system.
The regulator can be thought of as having two loops. The inner
loop is an ordinary control loop composed of the process and a
regulator. The parameters of the regulator are adjusted in an

outer loop in such a way that the error e between the process
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FIGURE 3. Block diagram of model reference adaptive system
(MRAS) .

output y and the model output yM’ becomes small. The key problem
is to determine the adjustment mechanism so that a stable system,
where the error goes to zero, is obtained.

The following parameter adjustment mechanism, called the 'MIT-
rule', was used in the original MRAS [63].
dv1=_k?£ e, 1=1,...,n. (5.1)

v
dt 1

The variables v ...,vn are the adjustable regulator parameters.

1’ ,
The quantity e denotes the model error

e=y - yM (5.2)
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and Be/BVi, i=1,...,n, are the sensitivity derivatives. The

constant k is a parameter which determines the adjustment rate.

The MIT rule can be interpreted as an algorithm for minimizing

ez. It was found that the adjustment rule could easily give un-

stable closed loop systems. A major step forward in the design of
MRAS was when Parks [64] showed that Lyapunov stability theory
could be used to obtain a modified adjustment rule which guaranteed
stability. The modification consisted in replacing the model error
and the sensitivity derivative in (5.1) by filtered signals. When
the pole excess of the system is greater than one, the filtering
proposed by Parks did, however, amount to taking derivatives of

the error. The number of derivatives increased with the pole excess.
Much work was devoted to the search for modified adjustment rules.
The major tools were Lyapunov stability theory [65], [66] and
Popov's hyperstability theory [67], [68]. A major imnovation was
made by Monopoli [69]. He showed that the derivatives that appeared
when filtering the error could be eliminated by augmenting the
model error e by terms which were different from zero only when

the parameter estimates changed. In the adjustment rule proposed
by Monopoli the error e in (5.1) was thus replaced by an augmented
error. Both the error and the associated sensitivity derivatives
were also filtered. The adjustment rules based on the augmented
error have been generalized to the discrete time case [70],[71].

It is, however, only recently that correct stability results have
been obtained [19],[20],[22],[23]. These stability results are
dealt with in detail in [72].

Interpretation of Pole Placement as Model Following

‘ The case of systems with known parameters will first be con-
sidered. It was shown in [33] that the regulator obtained by the
pole-placement design method discussed in Section 3 can be inter-

preted as model following control. This 1is natural because the
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regulator aims at making the transfer function from the command
signal u, to the output equal to the model (3.2). To see this
explicitly the feedback law (3.4) will be rewritten. It follows
from (3.8), (3.9), and (3.10) that

(DY R B9 A SBQ aq sg
+ 4+ + + "BP RP°
P
B Rl B Rl BP B RlP

The feedback law (3.4) can thus be rewritten as

bl

_ A s _
u _EyM+ R (YM v), (5.3)
where
=Q
M TP Yt (5.4)

Notice that the signal yy can be interpreted as the model output.
It follows from (4.2) that the control law can be thought of as

composed of two parts. There is one feedforward term

A = AQ
B M =B Y% (5.5)

and one feedback term

'% (YM -y. (5.6)

The feedforward term is generated by feeding the command signal
through a cascade combination of the desired model GM = Q/P and
an inverse A/B of the process model. Notice that the transfer
function of the inverse process model A/B is not causal. The
combination AQ/(BP) is, however, causal because of (3.3). The
feedback term (5.6) 1is obtained by feeding the error e through a
‘system with the transfer function S/R.
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Implicit STR and MRAS

It will now be shown that the implicit self-tuning pole place-
ment algorithm I1 is equivalent to an MRAS. For this purpose it
is necessary to go into some details of the algorithm.

Introduce

o(t+l) = [y(t+ns)...y(t)u(t+nR)...u(t)]T, (5.7)

where

=}
Il

deg S

deg R.

R

>
Since the regulator is causal it follows that np, = nS. In the

implicit algorithm the estimated parameters are equal to the

regulator parameters. Hence
g =y = [so...s T ...t ], (5.8)

The residual € can then be written as

e(t+]) = PT.y(t) - Ru(t) - Sy(t) = PT, - 6T (t+1) v (5.9)
where
1 = deg PTl.

If recursive least squares parameter estimation is used the

formula for updating the parameter estimates is given by (3.16).
Since V = 6 it follows that
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v(t+l) = v(t) + P(t+1)d(t+1)e(t+1) (5.10)

where ¢ is given by (5.7), € by (5.0), and P by (3.18). Since
the estimated parameters 6 equals the regulator parameters v the
equation (5.10) can clearly be interpreted as an adjustment rule
for the regulator parameters. Notice that it follows from (5.9)
that

o(t) = - gradv e(t). (5.11)

The vector ¢ can thus be interpreted as a sensitivity derivative.

A comparison with (5.1) now shows that (5.12) is a discrete time
version of the MIT rule. The main difference is that the model
error e =y -y, in the MIT rule is replaced by the residual € in
the recursive least squares given by (5.9). Another difference is
that the parameter k in (5.1) is replaced by the matrix P which

is given by (3.18). The matrix P serves two purposes: it modifies
the gradient direction and it gives an appropriate step length.
While (5.1) can be viewed as a gradient algorithm to minimize e
(5.10) can be considered as a quasi-Newton method for minimizing
ez. To explore the relations between MRAS and STR further it is
of interest to find the relations between the model error e and

the residual €.
An Interpretation of the Residual €
Equation (5.9) gives

E = Ple - Ru - Sy.

It follows from (5.9) that the prediction of y(t+l) based on data
available at time t + np is given by
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PT 3 = Ru + Sy.

It thus follows that

m
]

PT) (3-9) = PT, [(y-y,) - (5-y,)]

or

€ = PTl[e - e] (5.12)
where

€=y -y

is the model error.

It thus follows that the residual € is obtained by forming
the difference e - &, where & is the prediction of e, and filtering
the difference with PTl'

The residual € is identical to the augmented error introduced

by Monopoli [69]. This equivalence was shown in [73-75]. Monopoli
was led to introducing the augmented error by very different argu-
ments. It is interesting to see that the augmented error falls

out automatically from the STR formulation. Notice that the error
estimate e can be zero in certain cases. If O(t+l) goes to 9(t)
then e will be zero. Some control laws are designed so that

y = M which also implies & = 0. In these cases the residual is
simply a filtered model error.

Another Interpretation of the Residual €

It is also possible to give still another interpretation of
the residual €. Equation (5.9) gives
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~ A

e(t+l) = PT,y(t) - R, ju(t) - 841171, : (5.13)

where the subscripts on R and S have been introduced to denote
that the coefficients of the polynomials are based on estimates
obtained at time t + 1 - 1. The control signal u is however gen-

erated from

Rt+nR

It follows from (3.10) that

u(t) = Tu (t) - ét

+nRy(t).

Tuc = quluc(t) = TleM(t).
Hence

R, u(t) = TPy(t) -5, y(o).

ey %

Subtracting this equation from Equation (5.13) gives

e(t41) = PT[y(t) = 3 (O] + R -R . Ju(e) +
R

+ [ ly(t) =

-5
t+nR o t+l1-1

= PTle(t) + [e(t+nR) - 6(t+1—1)]¢(t+nR). (5.14)

The residual e can thus be generated by filtering the model
error e = y ~ Y and adding a correction term which is proportional
to the differences between parameter estimates at times which differ
by deg P + deg T1 -~ deg R - 1. The correction term will vanish if
the parameter estimates converge. The error form (5.14) was used
by Landau [71], [86]. The correction term was introduced in order
to apply the hyperstability theorem. The notions of 'apriori' and

'aposteriori' reference models were introduced to give an inter-
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pretation of the correction term. Again it is interesting to

observe that the correction term is obtained directly from the
STR formulation.

6. APPLICATIONS

This section gives an overview of different applications of
self-tuning regulators.

Control of Basis Weight and Moisture Content

on Paper Machines

A schematic drawing of a paper machine is shown in Fig. 4.
Basis weight and moisture content are important variables which
characterize the quality of the finished product. Control of these
quality variables can be conveniently described by stochastic con-

trol theory. Disturbances arise from many different sources.

Siurage Rafimsr Machine Screrns and Headbx Wive Prouses Dryi
chesy chest elcanenn

Mt weier,
T
L Thick stock

valve

L~ Thik stock
dilution valve

FIGURE 4. Schematic drawing of a paper machine. From [56].
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FIGURE 5. Benefits of minimum variance control. By reducing
the variance of the output signal, the mean value can be moved

closer to the target. From [56].

Their net effect on the output can be modeled as stochastic pro-
cesses. The purpose of the control is to reduce the fluctuations
in the quality variables. This goal is well described mathematic-
ally as to minimize the variances of the process outputs. See
Fig. 5. There is no natural way to introduce any penalty on the
control variables. The thick stock flow valve is the control
variable for the basis weight loop and the steam pressure is the
control variable for the moisture loop. The process dynamics of
both loops are characterized by time delays and low order dynamics.
There are couplings in the sense that changes in the thick stock
flow valve will influence both basis weight and moisture content.
Changes in the steam flow to the drying section influences the

moisture content only. There are also interactions in the measuring
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devices because the beta ray gauge measures both basis welght and
moisture content. These couplings can, however, easily be elimin-
ated. Simple processing of the measured signals gives dry basis
weight and moisture content. The basis weight is then controlled
by a feedback from the dry basis weight signal to the thick stock
flow valve and the moisture content is controlled by a feedback
from the moisture content signal to the steam flow to the drying
section. A feedforward signal e.g. from the thick stock flow
measurement to the steam flow to the dryers, is introduced to
compensate for the interaction in the process. A more detailed
description of the control problem is given in [56], [76], and [77].

It has been verified by experiments on many plants that the
dynamics of the plant and the disturbances can be adequately de-
scribed by an ARMAX process of low order. See [56]. By identifi-
cation of process dynamics and disturbance characteristics based
on plant experiments it was demonstrated that substantial improve-
ments over PID control could be achieved by using a basis weight
regulator having the form

s0 + slz_l
u(t) = - 42 z_l . z_2 pol z_3 y(t). (6.1)
1 2 3

The parameters of a regulator like (5.1) can not be conveniently

tuned by hand. Instead the parameters were determined by system
identification based on plant experiments and control design as
described in [56]. Such a procedure is comparatively costly because
it requires appropriate identification software and skilled per-
sonnel. To obtain a reasonably good model it is necessary to
experiment on the plant for at least 2 hours. It was, therefore,
attempted to tune the parameters with a self-tuning regulator..
Since the criterion was well defined and since the sampling period
and the regulator structure could be chosen based on prior experi-

ence it was very straightforward to apply the self-tuning regulator.
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FIGURE 6. Simulation of minimum variance control (thin lines)
and self-tuning control (thick lines) of basis weight of a paper

machine. From [59].

Process control computers were available at the plant. The
code for the simple self-tuning regulator based on least squares
identification and minimum variance control (Algorithm IMV) was
simply introduced as a special control algorithm, and experiments
were started. A typical result is illustrated by the simulation
shown in Fig. 6. This simulation is based on measured plant dis-

turbances and models for the process dynamics estimated from plant
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experiments. In Fig. 6 the self-tuning regulator was initialized
with all estimates equal to zero. It is seen from Fig. 6 that the
fluctuations in basis weight obtained from the self-tuning regulator
are larger than those obtained from the minimum variance regulator
for the first 30 minutes. After 30 minutes there are, however,
very small differences between the outputs of the two regulators.
It 1s perhaps even more instructive to look at the control signals
generated by the different regulators. It is seen from Fig. 6
that the self-tuner is fairly sluggish in the initial period.
After 30 minutes there are, however, only minor differences in the
control signal. Results similar to those shown in Fig. 6 were
obtained when controlling the actual plants. On typical basis
weight and moisture control loops the self-tuner will give close
to optimal performance after a tuning period of 15 minutes to 2
hours.

In the example shown in Fig. 6 no apriori information about the
parameters was assumed. In many applications in the paper mill it
is possible to start the algorithm with reasonable estimates. The
convergence time will then be shorter. The tuning time should be
compared with the time required to make a good identification ex-
periment. This time is between 2 and 5 hours. In the paper
machine applications there have not been any problems with phenom-
ena like 'turn off' or 'covariance blow up'. One reason is that
the disturbances are persistent and fairly stationary.

In the paper mill the self-tuning regulator was used as a
tuner, since the chief instrument engineer did not like the param-
eters of important control loops to be changed in his absence.

The simple self-tuning regulator has been applied to many simple
flow and level loops, to basis weight and moisture loops [78] on
several different paper machines and also to recovery boilers in

the paper mill.
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It is much easier to implement a simple self-tuning regulator
than to go through the procedure of process experiments, system
identification and control design. It is thus clear that the
self-tuning regulator gives a considerable saving of engineering

work compared to previously used methods.

Control of a Heat Exchanger

This application 1s described in [79]. A schematic drawing
of the heat exchanger is shown in Fig. 7. This type of heat ex-

changer is a common component in heating and ventilation systems.

The warm air leaving a room gives away some of its enthalpy to the

fresh air supplied to the room. The warm and cold air streams

pass through the rotor which has axial channels. The rotor is

made of a material which can absorb heat and moisture. The enthalpy

; : LA -
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FIGURE 7. Schematic drawing of a heat exchanger.
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is exchanged because the rotor segments are alternating between
the warm and cold streams when the rotor rotates. The control
problem is to adjust the angular velocity of the rotor in such a
way that the room temperature is constant. The disturbances are
due to sunshine, heat generated from people and other heat sources.
In the particular case there are also sensor noise because the
sensors are thermistors in the air streams. It is desirable to
keep temperature fluctuations small but in contrast with the paper
machine example there is no natural loss function. For a fixed
operating condition it is easy to obtain good control simply by
using integrating feedback from room temperature to rotor speed.
The major difficulty is that the gain of the process changes dras-
tically with operating conditions. It was not possible to find
an auxiliary variable to schedule the controller gain since the
gain depends on moisture temperature and rotor speed. A particular
regulator structure was chosen. This structure was derived based
on knowledge of the physics of the process.

The primary controlled variable is chosen as the thermal

efficiency defined by

T
cout cin (6.2)

win wout

where the subscript c¢ stands for cold and w for warm air. The

thermal efficiency v is first computed based on measurements of
Tcin’ Twin’ Twout’ and knowledge of the desirgd Tcout' The advan-
tage of choosing this variable as the controlled variable rather
than the cold outlet temperature is that the effect on the control
loop of some of the process nonlinearities are eliminated at the
price of three extra thermistors. The thermal efficiency is then
controlled by a feedback from the computed thermal efficiency to

commanded rotor rotation speed.
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FIGURE 8. Thermal efficiency of a heat exchanger controlled
by an integrating controller having fixed gain.

The dynamics relating thermal efficiency to rotor speed is
characterized by a time delay and low order dynamics. The major
difficulty in controlling the heat exchanger is that the static
gain varies considerably. In steady state the relation between

rotor speed u and thermal efficiency v is approximately given by

v =f(u) = _j__%a—u . (6.3)
If the units are chosen in such a way that 0 = < u = < 1 then a

may be 20 in a typical case. The static gain thus varies between

1 and 20.

The heat exchanger can be controlled by an integrating control-
ler. Due to the gain variations there are, however, difficulties
when a regulator with constant gain is used. This is illustrated
by the simulation in Fig. 8. It is clearly seen from this figure
that the loop gain 1is too high at low levels and too low at high



47

levels of efficiency. If the relation (6.3) was accurate and did
not change with time then Equation (6.3) could be used to schedule
the gain of the controller as a function of the thermal efficiency.
This is unfortunately not possible because the parameter a in

(6.3) changes with time, temperature, and moisture content. A

simple self-tuning regulator was therefore used to eliminate the

gain variations. The self-tuning regulator is based on estimation

of the parameter b in the model

v(t+l) - v(t) = blu(t) - u(t-1)] = bVu(t) (6.4)

by least squares. In this case the estimate is particularly simple
since only one parameter is estimated. The estimate is given by

the following equations:

b(t+l) = b(t) + P(t+1)Vu(t)e (t+1)
e(t+l) = Ww(t) - b(t)Vu(t)
P(t+l) = P(t)

0+ P(0) [Vu(t) 12}

The variable v denotes the thermal efficiency and u denotes the
angular velocity of the rotor. Having obtained the estimate b of
b the following control law is then used:

u(t) = u(t-1) - (ko/ﬁ)v(t) (6.5)

where ko is an empirical constant. The 'cautious' control law

Ll

k b

u(t) = u(t-1) - 52— v(t) (6.6)
b +P

was also tried but there was little difference in performance

compared to the certainty equivalence control (6.5).
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FIGURE 10. Schematic drawing of an ore crushing plant. From
[80].

small ore lumps are separated from the large lumps. The larger
ore lumps are transported to the crusher where the lumps are
crushed. After the crusher there is another separation screen.
Lumps with a diameter larger than 2.5 cm are recirculated to the
crusher. The crusher is driven by an electric motor via a slip
clutch which releases the motor and stops the line if the torque
is too high. The control variable is the amount of ore fed into
the line and the controlled variable is the power of the crusher
motor. The goal of the control is to keep production as high as
possible while avoiding overloading. This can be formulated
approximately as to reduce the variance in the crusher power. By
the usual argument, illustrated by Fig. 5, the set point of the
crusher power can be moved closer to the target and the average
production is increased as a consequence. The trade-off between
high production and risk for overload is reflected in the choice
of set point. The disturbances are due to variatioms in lumpsize,
crushability, and variations of the crusher characteristics due

to wear. The plant dynamics is characterized by a time delay of
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FIGURE 9. Thermal efficiency of the heat exchanger with a
self-tuning integrating regulator.

The performance of the self-tuning regulator is illustrated
by the simulation results shown in Fig. 9. The models and the
disturbances were the same as when generating the results shown
in Fig. 8. The Figures 8 and 9 are thus directly comparable.

It is clear that the self-tuning regulator handles the gain

variations very well. The behaviour of the self-tuning regulator

on the actual plant is similar to that shown in the simulations.
See [79].

Control of an Ore Crushing Plant

This example is described in detail in [80}. A schematic
drawing of the process is shown in Fig. 10. The plant consists of
an ore bin, a feeder, two screens, an ore crusher, and conveyor

belts. The ore 1is transported from the bin to a screen, where the
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70-80 s in the recycle loop and time constants of 10-20 s in the
crusher itself.

When the experiments weré started there was very little apriori
knowledge of the characteristics of the process and its environment.
Some step responses were therefore determined initially. An inter-
-esting aspect of the experiments was that they were performed using
teleprocessing between a plant in Kiruna in northern Sweden and a
computer in Lund in southern Sweden. The distance between the two
places 1s about 1800 km.

It was decided to try the simple self-tuning regulator based
on minimum variance control (Algorithm IMV). Based on the time
delays of the process it was decided that a sampling period of 20 s
was reasonable. Since the time delay of the process was 40-50 s

‘the parameter k in the self-tuner should have the value 3 or 4.
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FIGURE 11. Results of an ore crusher experiment [79].
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FIGURE 12. Covariance functions. From [80].

It was found experimentally that k = 4 worked better than k = 3.

The complexity of the regulator was determined experimentally by
controlling the plant with regulators having different complexity.
The sample covariance function and the cross covariance between

the output and the control variable were determined. The complexity

of the regulator was increased until the conditions

ry(r) =0, T>k
(6.7)
ryu(T) = 0, T > k

which hold for the minimum variance controller, were fulfilled.

See [56]. It was found that a simple self-tuning regulator with
deg R = 3 and deg S = 4 was performing well. The forgetting factor
A was also determined empirically. The value A = 0.99 was chosen
after some experimentation. The value A = 0.95 was found to be
slightly better during start-up and during periods with a high
variability in the ore properties. The results of one experiment
are illustrated in Figs. 11, 12, and 13.
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FIGURE 13. Parameter estimates. The parameter L is fixed.
From [79].

An Autopilot for Ship Steering

This application is described in detail in [12] and [81] where
many additional references are given. An ordinary autopilot for
a ship 1s based on feedback from measurements of heading (and
possibly also the rate of change of the heading) to the rudder
angle. A PID algorithm is commonly used. An autopilot has differ-
ent functions. It should be able to maintain the ship at a con-
stant course and it should be able to handle maneuvers. The dynam-
ics of a ship will change with speed, trim, loading, and water
depth. The characteristics of the disturbances will also change
considerably with weather and wind. Although, it is in many cases



53

possible to find constant settings of an ordinary autopilot which
will guarantee stability over a wide range of operating conditions,
there is a considerable advantage in having an adaptive autopilot.
It is a common experience on tankers that ordinary autopilots do
not work well in bad weather. The reason is partly that the PID
algorithm is too simple to handle the requirements and partly that
proper tuning to different weather conditioms is required.

The design of an autopilot for straight course keeping can be
formulated as a stochastic control problem. The ship dynamics can
be described as a linear dynamical system and the disturbances can
be characterized as random processes. Fortunately there is also
a natural loss function which fits well into the stochastic control
formulation. It can be shown by hydrodynamic theory that the
average increase in drag due to yawing and rudder motion can be

approximately described by
AR -2 =2
R -y +128), (6.8)

where R is the drag, y the heading deviation, & the rudder angle,
-2
and ¥ denotes the quadratic mean value. The values u = 0.014

deg and ¢ = 0.1 are typical for a tanker. It is thus natural

to use the criterion
T

V= %-J {[v(t) - tbref(t)]2 + ;62(t)}dt (6.9)
0

as a basis for the design and evaluation of autopilots for steady
state course keeping. One unit of the loss function would then
correspond to an increase of 1.4%Z of the average drag or about the
same increase in fuel consumption.

Since the design of an autopilot can be formulated as a linear
quadratic stochastic control problem an adaptive autopilot can be
designed using the corresponding self-tuning regulator. Several

such designs have been made, simulated and field tested. The
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FIGURE 14. Results from an experiment with a 255,000 ton
tanker comparing a well-tuned PID regulator with a self-tuning
regulator. The values of the loss function (6.9) are 3.7 for

the adaptive and 5.6 for the PID control. From [81].

experiments have been carried out on several large tankers. Avail-
able on board computers were used in the experiments. Due to
memory constraints several simplifications were made. Since the
LQG self-tuners require the solution of Riccati equations, which

is space consuming, it was also attempted to use the simple self-
tuner based on minimum variance control. This was reasonably
successful provided that the prediction horizon was chosen appro-
priately. Extensive comparisons between different regulator struc-
tures including well-tuned PID-regulators were made. One compari-
son 1s illustrated in Fig. 14. It follows from (6.8) that the
adaptive autopilot reduces the drag by 2.7% in comparison with an
ordinary autopilot based on PID control. In these comparisons the

ordinary autopilot was at all times retuned for best performance.
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The magnitude of the improvements depends on the operating condi-
tions. The largest improvements are found in bad weather when

the ship is fully loaded. The self-tuning ship steering autopilot
has been tried on several different tankers. On one ship it has

been in continuous operation for several years.

7. CONCLUSIONS

A systematic way to design self-tuning regulators has been
presented. The basic idea is very straightforward. A design
procedure for a system with known parameters which fits the particu-
lar application is first chosen. When the parameters of the
process are not known they are estimated recursively and the
regulator parameters are recalculated at each step using the
updated estimates. In some cases the model can be reparametrized
so that the design calculations are avoided. Since there are many
different design methods and many different parameter estimation
methods, there are consequently a large variety of self-tuning
regulators. So far only a small number of the available combina-
tions have been explored. Some comments on the theory and practice

of self-tuning regulators will now be given.

Theory

There are many interesting and important theoretical problems
associated with self-tuning regulators. Stability, convergence,
and performance are some of the key problems, but there are also
many other questions like convergence rate and parametrization

which are of considerable interest.



56

The stability problem is, of course, of major interest both
theoretically and practically. There have recently been major
advances in stability theory for self-tuners. Most of the results
are, however, limited to the simple self-tuner based on least
squares estimation and minimum variance control [59] or its direct
multivariable generalization [82],[83]. The simple self-tuner
will work well only for minimum-phase systems. Conditions for
stability when there are no disturbances are given in [20]. The
corresponding results for the case of bounded disturbances are
found in [19]. Mean square stability for the stochastic case is
investigated in [21]. Similar results for the continuous time
problem are given in [22] and [23]. The theoretical results are
also limited because of the assumptions made. The unpléasant
assumption is that an upper bound of the order of the system must
be known. This bound also determines the complexity of the self-
tuner. In practice this is highly unrealistic because the process
to be controlled will be of very high order (probably infinite
dimensional) and the self-tuning regulator will be based on a
simplified model. It is shown in [84] that regulators based on
drastically simplified models can actually work very well.

The convergence problem has also been investigated for the
simple self-tuners [58] based on least squares and minimum variance
control. The surprising result that the correct regulator is the
only possible equilibrium point, even if there is structural mis-
match between the model and the process, is also given in [59].
Ordinary differential equations, which describe the mean paths of
the parameter estimates, are derived in [17]. Necessary conditions
for local stability around the equilibrium points are given in
[85].

In summary there have recently been very interesting results
in the theory of self-tuning regulators. It would be useful to
eliminate some of the assumptions made. It would also be highly
desirable to extend the analysis to other than the most simple
self-tuning algorithms.
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Practice

The basic algorithm for a PID regulator is very simple:
t

1 de
u K[e+TIJe(S) ds+TDd—t-].

An implementation of this algorithm in analog or digital hardware
does, however, not necessarily give a good controller. In practice
it is also necessary to consider operator interface, filtering of
the signals, automatic/manual transfer, bumpless parameter changes,
reset windup, nonlinear output, like gap, and saturation, etc.
Notice that many of these functions involve nonlinearities which
are not easily analyzed. Whether a PID regulator works well in

an industrial environment depends very much upon how well the
problems discussed above are handled. Similar things also apply

to self-tuning regulators. The list is, however, longer because
the basic algorithm is more complicated than the PID algorithm.

For example, windup occurs in a PID regulator because the integra-
tor in the algorithm could achieve large values if the control
value saturates or if it is driven manually. In a self-tuner with
a forgetting factor windup can also occur in the estimator. The
self-tuning regulator can operate in many different modes like
estimation only, tuning etc. The problem of operator interface

is particularly important. A key problem is how the specifications
are entered and how an operator should interact with the controller.
There are many different possibilities ranging from the case where
there are no buttons at all on the panel to fairly complicated
operator interfaces. Certainly there are many interesting possi-
bilities as i1s illustrated on self-tuning regulators which are

already on the market or which are in the process of coming out.



58

Uses of Self-Tuners

Self-tuning regulators can be used in many different ways.
Since the regulator becomes an ordinary constant gain feedback if
the parameter estimates are kept constant, the self-tuner can be
used as a tuner to adjust the parameters of a control loop. In
such an application the self-tuner is connected to the process
and run until satisfactory performance is obtained. The self-
tuner is then disconnected and the system is left with the constant
parameter regulator obtained. This mode of using the self-tuner
1s convenient to Implement in a package for direct digital control
(DDC-package) . The DDC-package is simply provided with a tuning
routine which can be connected to an arbitrary loop in the package.

The self-tuner can also be used to build up a gain schedule.

In such a case the system is run at different operating points and
the controller parameters obtained are stored. When the process
has been run at a sufficlent number of operating points a table

for scheduling the controller parameters can be generated by.inter-
polation and smoothing of the values obtained.

The self-tuner can, of course, also be used as a truly adaptive
controller for systems with varying parameters.' In cases where
rapid adaptation over widely varying operating conditions are re-
quired combinations between gain-scheduling and self-tuning can

also be considered.

Abuses of Self-Tuners

Compared with a three-term controller the self-tuner is a
sophisticated controller. Such a controller can, of course, be
misused. The self-tuner should certainly not be used if a simpler
controller will do the job. Before considering a self-tuning

regulator it is, therefore, useful to check if a constant parameter
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regulator or a regulator with gain scheduling will do the job.

When designing a self-tuning regulator it is also useful to con-
sider the particular application carefully and decide upon a design
method which is suitable for the particular problem if a model for
the process and its environment are known. A parameter estimation
scheme which works wehl for the particular situation should also

be chosen before the details of the design are considered.

Summary

The word self-tuning regulator may lead to the false conclusion
that such regulators can be switched on and used blindly without
any apriori considerations. This is definitely not true. The
self-tuning regulator is a fairly complex control law. A proper
design involves the choices of gross features like underlying
design and estimation methods and &ecisions on details like initial-
ization, selection of parameters, and safeguard methods. Proper
choices require insight and knowledge. There are known cases where
bad choices have been disastrous. All theory required is definitely
not available. Based on experiences from a few applications I
believe, however, that self-tuning regulators can and will be used
profitably, even if some of their properties are not fully under-
stood theoretically. It is thus my hope that this paper may inspire
some of you to acquire the appropriate knowledge and try some
schemes of your own. It is also my hope that some of you will

tackle the important theoretical problems that remain.
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