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1. INTRODUCTION

One of the advantages of the wellknown PID-controller
(sometimes also called the three mode controller) is that
it is a sufficiently flexible controller for many applica-
tions. The controller usually has three parameters to be
determined. The parameters are in general manually tuned
with the process in closed loop. In the literature there
exist many schemes for tuning of continuous and discrete
time PID-controllers, see for instance Ziegler and Nichols
(1942), von Kessler (1958), Lopez, Miller, Smith and Murrill
(1967), Smith (1972), and Auslander, Takahashi and Tomizaka
(1978) .

The tuning procedure is, however, in many cases nontrivial
and it can be difficult to find values of the parameters
which give a desired closed loop behaviour. Automatic tun-
ing of the controllers is therefore of great interest.
Automatic tuning of PID-controllers is discussed e.g. in
Davies (1966), Rumold and Speth (1968), Pendelbury, Sted-
mon and West (1971), and Schilling (1976). The suggested
methods are mainly based on optimization theory. The para-
meters of the controller are chosen in order to minimize a
loss function. The drawback of this approach is that the
optimization routine only gets one function evaluation at
each transient, usually a step in the reference value. The

tuning procedure will thus be time consuming.

In this paper the self-tuning approach is used. This means
that a discrete time model of the process is estimated
recursively. A design method is then applied using the
estimated model as if it is the true one i.e. the certainty
equivalence hypothesis is used. Self-tuning algorithms have
been designed for regulator and servo problems, see Astrdm,
Borisson, Ljung and Wittenmark (1977) and Astrdm, Wester-

berg and Wittenmark (1978). The algorithms for the regulator



problem are mainly based on minimum variance control. The
algorithms for the servo problem use pole placement. These
self-tuning algorithms are, however, not exactly of the
same structure as conventional PID-controllers. Usually

they contain more parameters than the PID-controllers.

The aim of this paper is to start with the conventional
PID-structure and use a pole placement algorithm. It will
thus be possible to make a direct interpretation in terms
of the proportional, reset and derivative parts of the
controller. Also two less common structures of PID-control-
lers are discussed. The paper can be seen as a bridge bet-
ween conventional PID-structures and more general control-
lers. The PID-controllers are a subset of the general

controllers based on observers and state feedback.

Discrete time versions of PID-controllers are discussed in
Section 2. The self-tuning PID-algorithm is described in
Section 3. The self-tuning PID-controller also contains
parameters which have to be selected. Section 4 contains a
discussion of these parameters. In Section 5 the algorithm
is compared with a more complex pole placement algorithm
described in Astrdm, Westerberg and Wittenmark (1978).
Simulated examples in Section 6 show the advantages and
disadvantages of the proposed controller. The applicability
of the different self-tuning algorithms is discussed in

Section 7. References are found in Section 8.



2. SAMPLED DATA PID-CONTROLLERS

There are many different ways to implement PID-controllers.
Different structures have different properties with respect
to the behaviour of the closed loop system. Also the possi-
bility to tune the controller is influenced by the chosen
structure. We will start with the most common "textbook"
structure of a PID-controller. The corresponding sampled
data controller will be derived and the relations between
the continuous time and the discrete time parameters will
be discussed. Different versions of sampled data PID-con-
trollers are then discussed and three structures are chosen

for further analysis.

The most common PID-controller in textbooks is defined by

the following equations:

U(s) = G(s) (¥, (s) - ¥(s))
with
B 1 Tps
G(s) =K (l + T.S + l4—aTDs> (2.1)

where U(s), Yr(s) and Y(s) are the Laplacetransforms of
the controller output, the reference signal, and the pro-

cess output respectively.

The three terms in (2.1) correspond to the proportional
(P), the rest or the integral (1), and the derivative (D)
parts respectively. The controller contains four parameters
(K, TI' TD’

predetermined by the manufacturer and can not be changed

and o). The parameter o is, however, usually

by the user. Common values of a are in the interval 0.1 -
0.3.

A discrete time PID-controller can be obtained by making
a difference approximation of (2.1). The way chosen here

is, however, to derive the sampled data form of (2.1).
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sampled data form of (2.1)
PI and D parts will be treated separately. The PI-part

the transfer function

Gl(S)

= K(1+1/Tgs).

can easily be derived.

pulse transfer operator when Gl is sampled with the

sampling time Ty is given by
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where q_l is the backward shift operator. Notice that the
sampling will introduce a dealy in the integrator part, i.e.
the factor q_l. This delay is sometimes removed when the
regulator is implemented. This will, however, only change

the interpretation of the A-polynomial.

To get a good approximation of the derivative it is assumed

that the signal is linear, i.e

the derivative is constant,

between the sampling points. The D-part has the transfer

function
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The sampled data pulse transfer operator is
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The sampled data parameters can be expressed in the con-

tinuous time parameters and vice versa:
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=K (1+y)/(B1ln(-y))



Notice that the sampled data controller has a continuous
time counterpart only if -1 < y < 0. When tuning in
sampled data PID-controller it can be useful to allow that
|v[ < 1.

The sampled data PID-controller corresponding to (2.1) has
the form

u(t) =

-1 ,_l
A B
@ )y Bl )y (e) - y(e)), (2.2)
I(g ™) Clg )
where y(t) is the process output, y,.(t) the reference value
and u(t) is the controller output. Assume that the system
to be controlled is given by
_k_l -
y(t) =3 ]fl(q
A(gq )

1y

u(t), (2.3)

where A and B are polynomials in the backward shift opera-
tor of order n and n-1 respectively. The closed loop system

can be represented by the block diagram in Fig. 2.1, where

1

T(g ~) = AC+ BI
s(q"t) = AC+ BI
R(g L) = 1cC.
vit)
lr—CONTROLLER I PROCESS
ke it
(t) B 1 (t) Blq™) t)
I T = o -
| Rig ) | Alg™ )
-1 |
| -Slg '} -t|
- _

Fig. 2.1 - A general structure for a sampled data
controller. The variables y,, u, Vv, and y
are reference value, control signal, disturb-
ance, and output respectively.



The closed loop system is given by

~k=1 g AR

—— y..(t) +
k lBS r

y(t) = —
AR+ q

s V(t)r (2.4)
AR+ q X1 Bg

where v(t) is a disturbance.

The controller given by (2.2) is only one way to get a
controller with three mode actions. Fig. 2.2 shows some
other structures which also correspond to PID-controllers.
All controllers in Fig. 2.2 can be written in the form

R(@ 1) ult) = T(q™h) y () - s(g™h) y(t). (2.5)

The expressions of the polynomials is different for the
different controller. The polynomials T and S are shown in
Table 2.1 while R = IC for all structures. All controllers
have four parameters to determine. The S-polynomial is of

second order

-1 -1 -2

S(g 7)) = Sy * sS4 + S,q .

The S- and C-polynomials can be chosen arbitrarily. The

parameterization can either be as in Fig. 2.2 or the

Version S(q_l) T(q_l)

PID 0 AC + BI AC + BI = s

PID 1 AC + BI AC

PID 2 Ca, + I(agC+B) 0, C = CS(1)/C(1)
PID 3 a; + I(QOC4'B) ay = S (1)

PID 4 AL+ 8g 1) A(l+68qt) =5
PID 5 AC + (1L+8q™1) 1 | AcC

Table 2.1 - The S and T polynomials of (2.4) for the
different PID-controller structures in
Fig. 2.1.
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Fig. 2,2 - 8ix different structures for PID-controllers.



parameters 8o sl, Sy and y are chosen as the free para-
meters. The T-polynomial introduces zeros in the closed
loop system, see (2.4). This polynomial can not be chosen

arbitrarily but is a function of the four chosen parameters.

PID O corresponds to (2.2). In PID 1 there is no differen-
tiation of the reference signal. This is one of the most
common ways to implement a digital PID-controller. PID 2
and PID 3 are two less wellknown ways to make controllers
with three mode action, see Auslander, Takahashi and Tomi-
zuka (1978). The term 1/I in PID 2 and PID 3 can be inter-
preted as an integrator without any delay. The integrator
part will thus use the error as input while the proportion-
al and the derivative parts both use -y as input. PID 4 can
be interpreted as a PI-controller in cascade with a lead
filter. PID 5 is the corresponding controller with no dif-
ferentiation of the reference signal. It is sometimes
claimed that the continuous time versions of PID 4 or PID 5
are easier to tune than the continuous time versions of

PID 0 or PID 1.

It is possible to get exactly the same characteristic poly-
nomial of the closed loop system in all cases by choosing
the four parameters in the different controllers. The
characteristic polynomial is of order n+ k+ 2. The zeros
of the closed loop system introduced by the T-polynomial
may, however, be different for the different controllers.
All controllers, except PID 3, will introduce one or two
extra zeros compared with the open loop system. The four
parameters of the controller will then influence both the
poles and the zeros of the closed loop system. It may thus
be difficult to find values of the parameters which give
the system desired closed loop behaviour. Rules of thumb
corresponding to the method of Ziegler and Nichols for
tuning PID 0 and PID 1 can be found for instance in Taka-
hashi, Chan and Auslander (1971), and Chin, Corripio and
Smith (1973).



A more general controller with integral action can be ob-
tained by using the structure in Fig. 2.1 with general T,
S, and R polynomials. The integral action will be obtained
if R contains the factor I(q_l)= 1-g~1 and if T(1) =s(1).
By choosing R and S of sufficiently high order the closed
loop system may be given desired poles. The polynomial T
can now be more freely chosen. This type of pole placement
algorithms are discussed in Astrdm, Westerberg and Witten-
mark (1978). Continuous time controllers of the same struc-

ture are discussed in Astrom (1976).

In the following we will give an algorithm for automatic
tuning of the parameters of PID 1, PID 2, and PID 3. The
reason to look at PID 1 is that it is a common way to imple-
ment digital PID-controllers. PID 2 and PID 3 are less known
but are in some situations better to use than PID 1. The
reason is that one and no zero respectively are introduced
while PID 1 introduces two zeros in the closed loop transfer

function.
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3, SELF-TUNING PID-CONTROLLERS

Self-tuning PID-controllers based on the structures PID 1,
PID 2, and PID 3 in Fig. 2.2 are discussed in this section.
The self-tuning controllers are based on pole placement.

It is assumed that the tuning is done in order to solve
the servo problem. I.e. the transfer function from yy to

y will be studied. It is possible to write one algorithm

that covers all the three cases.

Assume that the process (2.3) is of second order and that
there is no time delay in the system, i.e. n=2 and k= 0.

The process is then defined by the polynomials

1 -1 -2

1 + a9 + a,q

A(g )

and

1 -1 -2

B(q 7) = blq + b2q

The closed loop system (2.4) is then of fourth order. The
PID-controllers PID 1- 3 have four parameters each. It
would then be possible to choose the parameters such that
the closed loop system get prescribed poles. The following

equation should be satisfied

AR + q_lBS = AIC + q'lBs = p', (3.1)

where the expressions for S are given in Table 2.1 and
P'(q_l) is a prespecified desired characteristic polynomial.
The unknown parameters of the polynomials C and S can be
uniquely determined from (3.1) if ATl and B has no common
factors and if B# 0, see Astrtm (1976). The parameters in

A and B can then be determined from the identities:

PID 1: S = AC+ BI
PID 2: S = Coaj+ I(agC+ B) (3.2)
PID 3: S = aj+ I(agC+B).
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It is easy to show that the parameters Ogr Oq and B can

be determined if y# -1. The condition y=-1 implies that
B/C is a constant, i.e. there is no D-part in the control-
ler. For a second order system it is thus in most cases
possible to place the poles of the closed loop system

arbitrarily.

Two zeros (-y and —al/ao) will be introduced by the PID 1
controller and one zero by PID 2 (-y), see (2.4) and Table
2.1. In order to eliminate the effect of the two introduced
zeros we may place poles close to the zeros, provided that
the poles are placed within the unit circle. The remaining
poles of P' can be chosen in order to give the closed loop
system a desired response. These poles will be called the
control poles. The desired characteristic polynomial could

then be written as

1

p'(ql) = p(a™h) (L+kyjya ) (L+kyuy/and ) (3.3)

where kl and k2 are chosen in order to eliminate the effect
of the introduced zeros. Equation (3.1) is, however, non-
linear in the parameters of the controller if P' is chosen

as in (3.3).

One way to obtain the parameters is to use an interative
algorithm. This can be done in the following way: Introduce
the polynomial P = (l—pq—l) where p is assumed to be given.

Let the desired characteristic polynomial be

DP(l+klyq_l) = (1-k;) DP + k;DPC. (3.4)
Equation (3.1) can then be written as

(AI- k,DP) C + g ‘Bs = (1-k;) DP. (3.5)

As P is assumed to be known, Eg. (3.5) can be used to find

¢ and S. The expressions in (3.2) is then used to determine
A and B. The value of p can now be compared to the computed
value of —kzul/ao. The value of p can now be updated for

instance by using

p(t+l) = Ay p(£) = (1-Ay) ky og(t) /ag(t). (3.6)
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If the scheme converges it will converge to a solution
such that (3.3) is fulfilled, i.e. p==—k2al/a0. If PID 2
is used p can be arbitrarily fixed. This is done by using
Al= 1l in (3.6). When PID 3 is used there is no need to
eliminate any zero and there are four poles that can be

arbitrarily placed.

The design scheme described above assumes that the second
order model (2.3) is known. In practice the process is
unknown and has to be estimated. The estimation can be

done from input-output data using for instance the recur-
sive least squares method or a recursive maximum likelihood
method. The parameter estimates are then updated at each

sampling time.
An algorithm for a self-tuning PID-controller can be

described by the following steps. Steps 1- 3 are repeated

at each sampling time.

A self-tuning PID-controller algorithm

Data: The D-polynomial, kl, k and Al are assumed to be

2!
given,

Step 0: (Initialization) Give initial values to the para-

meter estimator and to p in (3.6).

Step 1: (Estimation) Update the parameters in a second
order model of the process using for instance the

method of least squares.

Step 2: (Parameter determination) Solve (3.5) for C and S and

solve (3.2) for A and B. Update p using (3.6).
Step 3: (Control) Determine the control signal using (2.5)

with the parameters obtained in Step 2.

The control law may be implemented as a state space repre-

sentation of (2.5). A minimal representation of (2.5) can
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be written as the second order system, compare Andersson
and AstrSm (1978):

x(t+1) = [TV ey + [B7 800Dy ) - [S17800 D
r
y O t24-toy syt sqY
ule) = x, (£) +t, y_(£) - s, y(©) (3.7)
1 0 ¥r 0¥

Notice that (3.2) does not need to be solved if PID 2 or

PID 3 and the controller implementation (3.7) are used. The
T polynomial can be obtained directly from S and C, as indi-
cated in Table 2.1.

It is possible to obtain a self-tuning PI-controller in an
analogous way. The estimated model now has to be of first
order. The closed loop system will be of second order and
the poles can be placed by choosing the two parameters in
the controller. As before different structures of the con-
troller may be used. Structures corresponding to PID 1, PID2
(or PID 3) will be obtained by letting B=0 and C=1 in Fig.
2.2. In the first case one zero will be introduced. The
effect of the zero may be eliminated using a dipole para-
meter. In the second case no zero will be introduced and
the two degrees of freedom can be used to place two poles

arbitrarily.

The self-tuning algorithm contains the following parameters

that have to be determined in advance:
o The "dipole parameters", kj; and k2

-1

0 The control poles of the closed loop system D(gq ~) =

- -2
= 1+d;q L+ dyq
o The convergence rate parameter, Al
o The initial values of the estimator

o The sampling time, TO

It is found that these parameters are easier and less

crucial to determine than to directly determine the



14

controller parameters. The choice of the parameters is

discussed in Section 4.

The process to be controlled, (2.3), may not be of second
order. By using a recursive parameter estimator the process
will be approximated by a second order model. If the pro-
cess is not too complex the second order model will catch
the main features of the process. There may be problems if
the process (2.3) contains time delays, i.e. k#0. The
algorithm can, however, be used as long as the estimated
B-polynomial is not identically zero. If the process has
long timedelays it may still be possible to find a second
order model. The model will, however, become a worse and
worse approximation of the true system as the timedelay is

increased.
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L, CHOICE OF THE PARAMETERS IN THE ALGORITHM

As mentioned in Section 3 there are several parameters to
choose in the self-tuning PID-algorithm. These parameters
are, however, easier to choose than to directly determine
the parameters of the controller. The parameters are dl,

d,, kl’ k2, Al,
When using the method of least squares the parameters are

and the initial values in the estimator.

the initial values of the parameters and of the covariance
matrix. Usually it is also convenient to include an expo-
nential discounting factor in the estimator. The discount-
ing factor makes it possible to follow time-varying para-
meters. Finally the sampling time, Ty, also will influence

the behaviour of the closed loop system.

The choice of the parameters in the least squares esti-
mator used in an adaptive controller is discussed in Witten-
mark (1973). The conclusions are that the least sdquares
estimator is quite insensitive to the choice of the initial
values. The rest of the section will bec devoted to discuss

the parameters in the controller part.

The dipole parameters

The dipole parameters, kl and k2, are introduced in order
to eliminate the effect of the zeros introduced by the

polynomials A and C. The zeros will not influence the out-
put if kl
which usually not change the closed loop behaviour very

=]<2= 1. Values close to one will give dipoles
much.
By analysing a first order system it is easy to understand

how the dipole will change the step response. Consider the

first order system
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_ | _ R |
y(t) ] i_g . ! bq u(t) = 1 a {1+M,__ u(t),
-1 I1-b \ -1
1-aqgq l-ag (4.1)

The steady state gain is equal to one. Depending on the
values of a and b the step response will look quite differ-
ent. Step responses for four different pole-zero patterns
are shown in Fig. 4.1. Cases a) and Db) correspond to lag
networks and cases c) and d) to lead networks. In order to
avoid too large overshoots it is desirable to choose pole-
-zero patterns corresponding to lag networks. Simulations
of the self-tuning PID-controllers have shown that the para-
meter y often will be positive. Also depending on the
system to be controlled and on the specifications it may
happen that |y| > 1. In order to keep down the oscillations
it is thus desirable to have a quite small value in kq- The
second introduced zero, —al/ao, is often positive and less
than one. The parameter k, can then be chosen close to one.
In order to eliminate a disturbance the value of kjp should

be small, see Example 6.1 in Section 6.

The control poles

The control poles are specified through the polynomial
D(q_l) = li-dlq'l+-d2q_2. The specifications for a control
loop are often given as rise and solution times and over-
shoot. These specifications can often be transformed into
specifications of damping and resonance frequency of a
second order continuous time system. Assume that the second

order system

G(s) = (4.2)
sz+-2£w0s+-w02

is given. The rise time for this system is:

T, ® wdq-exp(ﬂ/’tanﬂ)

where cos @ =£. The 5 % solution time is
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Fig. 4.1 - Step responses of the system (4.1) for different
pole-zero patterns. The step is applied at t= 2.



18

Tg ~ 3/ (wy€) 0 ¢ £ <0.9.

The overshoot is

M= exp (-n5//1-£%) (4.3)

From these expressions it is possible to determine £ and
wg which make it possible to fulfill the specifications.
Sampling of (4.2) gives a discrete time characteristic
polynomial which is a function of &, wg, and the sampling
time, Ty. The discrete time system corresponding to (4.2)

has the characteristic polynomial

-1 -2
1+ dlq + d2q
with
—Ew TO
dj = -2 e 079 cos (wyTy v 1 - £2)
—2£w TO
d2 = e 0 .

By choosing wy and & it is possible to determine D(q_l).
It is, however, not only D that determines the closed loop
behaviour, but also the B-polynomial and the dipoles,
compare (2.4). It may then be necessary to modify wg and &
in order to be able to satisfy the specifications of the
closed loop system. In many cases it is necessary to in-
crease the damping compared with the value obtained from
(4.3).

The convergence rate parameter

The convergence rate parameter, Al, (only used in PID1)
determines how fast the pole p will approach -kzul/uo.
Equation (3.6) is a first order system with the pole xl.
The influence of the initial value will be decreased by a
factor 10 after n steps where

ln 0.1 _ 2

n = ~ .
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Suitable values of kl can be in the interval 0.4-0.7. It
has not yet been possible to analyse when the iterative
scheme converges. In some simulated example the scheme has

diverged.

Sampling time

The sampling time will of course influence the behaviour
of the closed loop system. In general the sampling time is
quite short in conventional discrete time PID-controllers.
One reason is that the parameters of the continuous time
controller then can be used directly. Also the sampling
time must be qguite short in order to get a good approxima-

tion of the derivative of the output.

When using the pole placement controller described in this
paper there is quite a large freedom to choose the sampling
time. One should try to use as long sampling time as
possible. As a rule of thumb one should allow about 3-10

samples at each transient of the closed loop system.
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5. COMPARISON WITH A GENERAL POLE PLACEMENT ALGORITHM

General self-tuning pole placement algorithms are described
in Astrém, Westerberg and Wittenmark (1978). The control-
lers have the same structure as in (2.5) and in Fig. 2.1.
This controller structure can be interpreted as a polynom-
ial representation of an observer and a feedback from the
observed states, see Astrdm (1976). The polynomials are
then allowed to be of higher degree than if the self-tuning
PID-controller is used. Further the T polynomial is not
dependent of the R and S polynomials as in Table 2.1. The

T polynomial is instead chosen as T==AOB$, where A, is a
stable polynomial corresponding to the desired observer
poles. BE is used to introduce new zeros in the closed loop
system. The R and S polynomials are obtained from the

identity
AR + g k-1 Bs = PB,Aq (5.1)

where B, are the open loop zeros that are going to be
cancelled. P is the desired closed loop characteristic
polynomial. Notice that Ap is cancelled in the transfer
function from the reference value to the output. The closed
loop system is

q—k_l TB q_k—l BE B2

y(t) = ve(t) = v, (t),
AR+ q X lpg °F P t

where B2==B/Bl are the open loop zeros that also are closed
loop zeros. Correct steady state gain can be obtained by
normalizing the polynomials. The steady state gain may,
however, not be correct until the estimation has converged.
An integrator can be introduced by replacing R by RI in
(5.1) . Correct steady state value will then be obtained if
T(l) = S(1).

The general pole placement algorithms have the advantage
that all the poles of the system can be arbitrarily placed

and no extra zeros need to be introduced. It is thus easier
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to predict the behaviour of the closed loop system than if
the self-tuning PID-controller, especially PID 1, is used.
Further the process can be allowed to have long time de-
lays. The general algorithm is more complex, more para-
meters have to be estimated and a higher order system of
equations has to be solved. In many cases it is, however,
possible to use a low order model in the estimation and the
determination of the control law. Some examples and

analysis are found in Astr&m (1978).

The self-tuning PID-controller presented here can be re-
garded as a link to the more general controllers. PID 3 is
the same as the general controller with an estimated second
order model and with the observer poles in the origin.
Further an integrator but no extra zeros are introduced.
The PID-structure is in many cases sufficient to use and
the self-tuning PID-controller can be used to tune already
installed digital PID-controllers. If starting from scratch
it could, however, be better to use the general algorithm
based on identification of a low order model. This is
especially true if the process contains time delays. The

properties of the two algorithms are compared in Section 6.
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6. SIMULATED EXAMPLES

The properties of the self-tuning PID-controller have been
investigated through simulations. A program for simulation
of different types of adaptive controllers has been used,
Gustavsson (1978). This program is based on the simulation
package SIMNON, Elmgvist (1975). Continuous time processes
have been controlled by the sampled data PID-controller.
Three examples of different complexity are given. If not
specified it is assumed that the initial estimates of ay
and a, are zero and those of bl and b2 are 0.1, the initial
covariance matrix P(0) = 100xI (I is the unit matrix) and

the exponential forgetting factor A= 1.

Example 6.1

The process 1is

~ 1
G(s) = T¥sy(1+0.58)° (6.1)

This process fits the assumptions given in Section 3 for
the self-tuning PID-controller and all closed loop poles
can be arbitrarily placed. Assume that the specifications
are that the solution time is about 4 seconds and that the
damping is about 0.7. A sampling time of Ty= 0.5 was used
in the simulations. Figure 6.1 shows the output, the refer-
ence signal, the control signal and the pole p, see (3.6),
when the controller structure PID 1 was used. The initial
value of the pole p was 0, further kl= 0 and k2==l. The
control signal was limited to 3. Already after the second
step change the closed loop system behaved satisfactory.
Fig. 6.2 shows the result when PID 3 was used with kl= 0.
PID 2 gave an almost identical result and is not shown. All
three structures gave similar results but it is easier to
use PID 2 and PID 3 since the parameter Xk, does not need

to be chosen.
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The effect of the dipole parameters k; and kj were investi-

gated for PID 1 using the true parameter values of the

process,
al(t) = -0.9744 a2(t) = 0.2231
bl(t) = 0.,1548 b2(t) = 0.0939.

These values are the values of the parameters in the pro-

cess when (6.1) 1s sampled with T0= 0.5.

Table 6.1 shows kl’ Pr Qg Oy B, and y when k2= 1. The
corresponding step responses are very similar as long as

kl is smaller than about 1. The controller is more sensi-
tive to changes in the parameter k,. Fig. 6.3 shows the
step responses for different values of k2. The parameter kl

was 0.

The explicit self-tuning algorithm, STURP2, from Astrom,
Westerberg and Wittenmark (1978) gave almost identical
results as PID 3.

The effect of a disturbance at the input of the system was
also investigated. Fig. 6.4 shows the output when the re-
ference value is a square wave with amplitude *1 and the
disturbance is a square wave of amplitude £0.2. The regu-
lator PID 3 was used and it gave better results than PID 1
and PID 2. There is, however, a problem with the disturb-
ance since it will also influence the estimation part of
the regulator. If the disturbance is large compared with
the reference value then the closed loop system may behave
badly. This can be avoided by also identifying the disturb-

ance.

The regulator is quite sensitive to time delays in the
process. It was possible to control the system fairly well
as long as the time delay was one or two samples. One way
to overcome the effect of the time delay was to increase

the sampling time.
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Fig. 6.1 - Output y, reference signal y,, input u, and
pole p when the process (6.1) is controlled with
the self-tuning PID-controller PID 1.



25

2
|,
2 |
al
5
(@] 0-— y
g | |
()
8 VvV
Q
@
@
x -2
|
Il
2_ llk
- — | P
5 0-
(0]
2 2 |
i<
(@]
2 [

0 50 100 s
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the process (6.1) is controfled with the self-
-tuning PID-controller PID 3.
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L5 P % Oy By Y
0.98 | 0.73 1.98  -1.45 1.11 0.57
0.9 0.73 1.93  -1.41 0.96 0.46
0.5 0.72 1.80  -1.30 0.67 0.24
0 0.71 1.73  -1.23 0.56 0.16
-1 0.71 1.67  -1.19 0.49 0.09
) 0.91 1.64  -1.16 0.46 0.06

Table 6.1 - The effect of the dipole parameter kj on the
regulator parameters when k2==l and when PID1
is used.

ANOO
U1u1CDLn

Output

0 5 10s

Fig. 6.3 - The effect of Fhe dipole paramgter ko when the
process (6.1) is controlled using true parameter
estimates when k=0 and with the controller
structure PID 1.
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Example 6.2

A third time constant of 5 seconds was introduced in (6.1).

The transfer function now is:

il

(1+s)(L+0.5s) (L+5s) ° (6.2)

G(s)

The specifications are changed to a solution time of 10

seconds and it is assumed that the closed loop system should

—
|

Reference and output
o
|

y
Yr—A
=
|

2
5 O
C
O
7))
—8' —2
-.E =
o
© | 1

0 50 100 s

Fig. 6.5 - The output y, the reference signal y,, and the
control signal u when the process (6.2) is con-
trolled with PID 1.
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have an exponential response with none or very small over-
shoot. The sampling time is still assumed to be Tg=0.5

seconds.

PID 1, PID 2, and PID 3 gave similar results. Figure 6.5
shows the output, the reference value, and the control
signal when PID 1 is used. The system does not fulfill the
assumption that the controlled system is of second order.
Despite of this it is possible to get good control based on
a second order model. The sampling time Tj= 0.5 is suffi-
ciently small to reveal all the time constants of the

system.

The control signal will become oscillatory if the sampling
time is descreased for instance to T0= 0.25 while a good
response can be obtained even with a sampling time of

Tp= 2.

Similar results as in Fig. 6.5 were obtained when STURP2
was used with a third or second order model in the estima-
tion. The STURP2 algorithm is, however, less sensitive to

time delays, known or unknown, in the process.

Example 6.3

Figure 6.6 shows a block diagram of control system for
speed control of a dc motor. The model is a fairly real-
istic linear model for a mid-size motor. All blocks in the
diagram have unit gain. This implies that all signals can
be regarded as deviations in procent from a nominal working
point. The specifications are a solution time of 300 ms
after a step response in the reference value of the speed,
Ny.. The damping should be about 0.7. Due to the long solu-
tion time compared with the time constants the sampling

time was chosen to T0 = 50 ms.
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Current r Motor -

regulator I |
Speed Ir 1 lq 1 1 Speed n
®) o » —
controller 1+Ts I’ 1+sT s |
o |
Tachometer
1
1+Tss

Fig. 6.6 - Block diagram for speed control of a dc motor.
The time constants in the model are T= 10 ms,
Tp,=5 ms, and Te= 20 ms.

In this example PID 3 gave a much better response than
PID 1. This was due to the fact that it was not possible
to eliminate the introduced zeros since one was outside
the unit circle., This resulted in a large overshoot when

PID 1 was used.

Figure 6.7 shows the behaviour of the closed loop system
when the controller PID 3 was used. As in the other exam-
ples the closed loop system had a good behaviour after a

couple of transients.
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/. DISCUSSION

The paper has described a way to make automatic tuning of
PID-controllers. The structure PID 1 is the structure that
is used in many applications while PID 2 and PID 3 are two
other structures with PID-features. A standard PID-control-
ler has three parameters that usually are manually tuned
with the system in closed loop. In this paper a fourth
parameter, the filter constant in the D-part, has also
been used as a free parameter used in the tuning. Using
four parameters it is possible to arbitrarily place the
poles of the closed loop system provided the process is of
second order and does not include any time-delay. This has
been used in the self-tuning algorithms to give the closed
loop system a desired behaviour. The structure PID 1 has
the disadvantage that two zeros are introduced which may
give undesired overshoots in the step responses. PID 2 and
PID 3 do not have this drawback and are thus easier to

use.

The self-tuning PID-controllers do also contain parameters
which have to be chosen. These parameters are, however,
believed to be easier to choose. The self-tuning algorithms
often have a very good performance after only a couple of
transients. Also it is possible to control systems which

do not fulfill the assumptions concerning order and time

delay.

However, the self-tuning PID-controllers will not make any
miracles. It can only behave as a well tuned PID-controller.
It is thus only possible to use the self-tuning PID-con-
troller on the same type of processes as the conventional
PID-controllers can be used on. The advantage is that the
manual tuning is eliminated. The self-tuning PID-controller
can be seen as a bridge between conventional PID-control-

lers and more general pole placement adaptive controllers.
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