LUND UNIVERSITY

Character and String Handling in INTRAC
File Handling in Program Package
Essebo, Tommy

1980
Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Essebo, T. (1980). Character and String Handling in INTRAC: File Handling in Program Package. (Technical

Reports TFRT-7186). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/b16695a0-c362-4c19-bb7b-ff91e6e594e8

CODEN: LUTFD2/(TFRT-7186)/1-009/(1980)

CHARACTER AND STRING HANDLING IN INTRAC.
FILE HANDLING IN PROGRAM PACKAGE.,

TOMMY ESSEBO

DEPARTMENT OF AuTOMATIC CONTROL
LuND INSTITUTE oF TECHNOLOGY
FEBRUARY 1980

Dokumentutgivare Dokumentnamn Dokumentbeteckning

04nd Institute of Technology REPORT LUTFD2/ (TFRT-7186)/1-9/(1980)
Handlaggere Dept of Automatic Control Utgivningsdatum Arendebeteckning
BED: 1980

Fbrfattare

Pémmy Essebo

1074

| Dokumenttitel och undertitel

18T0
Character and String Handling in INTRAC

File Handling in Program Packages

Referat (sammandrag)

This document describes the programming conventions and requirements
that are necessary to comply with in order to implement the interactive
programs developed at the Department of Automatic Control, Lund
Institute of Technology. The plotting library and the interaction
module are described elsewhere.

Raferat skrivet av
Author

Forslag till ytterligare nyckelord

éaﬁputer aided design, Interactive programs

Kiassitikationssystem och -klass{er)

Indextermer (ange killa)
Gémputer software (Theaurus of Engineering and Scientific Terms,
Engineers Joint Council, N.Y., USA).

Omféng : Ovriga bibliogra‘fli-s-ka uppgifter
96pages |56T2

Sprak '

Baiglish |

Sekretessuppgifter) o : ' ISSN . ISBN

60T0 [60T4 | 60T6

Dokumentet kan erhBllas frdn Mottagarens uppgifter

|62T4

;Debhrtment of Automatic Control
' Lund Institute of Technology i
Box 725, S$-220 07 LUND 7, Sweden -

Pris

SiS-
DB 1

DOKUMENTDATABLAD enligt SIS 62 10 12

Blankett LU 11:25 1976—-07

Character and string handling in INTRAC . 1-1

1 General

FORTRAN IV has no specific data type for character strings and no
operations to handle this type of data. It is thus necessary for a
user to define his own character string handling. This document
describes the standard used by all programs using INTRAC .

1. All character strings are stored in real arrays with a "packing
density" of four characters/real variable

2. BStrings are padded with spaces to the nearest real variable
boundary

3. It is recommended that if the specific FORTRAN implementation
allows more than four characters/real word the rest of the
characters are space-filled

4. "String litterals" in the form 4HABCD are used to assign values
to variables only in DATA statements

5. A defined set of routines is used to manipulate the strings
6. There are three common types of strings used in INTRAC:
BUFF (20) - Line buffer, max 8# char.

VAR(2) - Variable identifier, max 8 char.

CHAR(1l) - Single character

String handling routines:

GAC - Get a single character from a string
PAC - Insert a single character in a string
HSTORV - Assign values to a string

LCOMPV - Compare strings

FAC - Decode a character in a string

IFAC - Initializes FAC with a new buffer

18 maj 1979

Character and string handling in INTRAC . 2-1

2 Description of the string handling routines

SUBROUTINE GAC(IP,BUFF,CHAR)

Returns single character CHAR from position IP in string BUFF. If
IPK1 or IP>86# a space is returned. IP and BUFF are not changed by
GAC. The integer code of CHAR (rank) must be returned in
commonblock /CRANK/IRANK .

SUBROUTINE PAC(IP,BUFF,CHAR)

Inserts single character CHAR in string BUFF at position IP. Ip,
CHAR and the rest of BUFF are not changed by PAC. If IP<1l or IP>840
BUFF will not be changed (immediate return from PAC).

SUBROUTINE HSTORV (SOURCE,DESTIN,NR)

Moves NR real words from string SOURCE to string DESTIN. The
transfer must be made without any conversion (bit pattern
transfer) and this is the reason why HSTORV may be system
dependent .

LOGICAL FUNCTION LCOMPV(STR1,STRZ2,NR)

Compares the strings STR1 and STR2 of length NR real words and
returns value .TRUE. if they are equal (bit pattern comparison).

SUBROUTINE IFAC(BUFF,NCHAR)

Initializes subroutine FAC with a new line buffer .

BUFF and NCHAR are stored in a commonblock called IFACOM that is
subsequently accessed by FAC. IFAC is not system dependent .

BUFF - Line buffer to be decoded

NCHAR - Current length of BUFF (max 84)

SUBROUTINE FAC(IP,CHAR,ITYPE)

Returns character CHAR from position IP in BUFF. ITYPE is returned
as the type of CHAR. IP and BUFF are not changed by FAC.
ITYPE values:

Alphabetic character

Numeric character

Space

Delimiter

Line terminator (end of line)
Unrecognized character

UVl W N

If IP>NCHAR ITYPE=5 is returned.

18 maj 1979

Character and string handling in INTRAC . 3-1

3 System dependent interface for display handler (DISHDL).

ERDIS - Erase display (Also used by plot package)
PLCURS - Position display cursor (line only)

TPOS - Position display cursor (line & column)
TWRITE - Display string

TREAD - Display string & read input line

SUBROUTINE ERDIS (LFLAG)

Erase display if LFLAG true else no action.
SUBROUTINE PLCURS (NL)

Position display cursor to beginning of line NL
SUBROUTINE TPOS (NL,NC)

Position display cursor to line NL and column NC.

There are further differences between PLCURS and TPOS. PLCURS is
used before writing information on the display outside the control
of DISHDL (usually by formatted WRITE) and the <cursor must be
physically positioned at line NL before returning from PLCURS. A
call to TPOS is always followed by a call to TWRITE or TREAD and
the actual cursor positioning can be made in these routines.
Special problem: Some systems will always include a LF (line feed)
in FORTRAN formatted output 1lines to a terminal and this will
cause bad positioning of output from TWRITE/TREAD compared with
formatted WRITE output. This can be solved by letting NL in TPOS
(and then in TWRITE/TREAD) start one line lower than in PLCURS.
This implies that 1line # (first line on display) will never be
used by text output.

SUBROUTINE TWRITE (BUFF,NCHAR)

Writes line buffer BUFF of length NCHAR on logical unit LTO, If
LTO=LDIS and LPLOT non=-zero the output must start at line NL and
column NC defined by last TPOS call.

SUBSROUTINE TREAD (OUTBUF,NCHAR, INBUFF,LEOF)

Writes line buffer OUTBUF of length NCHAR on logical unit LTO and
reads input line from LKB to line buffer INBUFF. NCHAR returned as
length of INBUFF. LEOF returned .TRUE. if EOF dectected in input.
Note that INBUFF must be space-filled from pos. NCHAR+1l to the
nearest real word boundary. If LTO=LDIS and LPLOT non-zero the
output must start at line NL and column NC defined by last TPOS
call. Furthermore TREAD must ensure that the input 1line will
follow directly after the 1last character in OUTBUF on the
terminal. Example: OUTBUF='HOW DO YOU DO ? >' , INBUFF=' FINE'
On the terminal: HOW DO YOU DO ? > FINE

18 maj 1979

FILE HANDLING IN PROGRAM PACKAGES 1-1

1 General

All files are used as record oriented sequential mass storage
files . There are two different types of files:

A) Data files (unformatted files) .

The first record in a data file is called the filehead and it
consists of 10 integers describing the file. The filehead can
be extended to the following records. In this case the last
integer in the filehead indicates the number of records in the
"extended" filehead. The rest of the file consists of constant
length records . All I/O concerning data files is made through
the subroutines FILES , FILDAT and FILRED . The maximum
recordlength currently used in any program package is 51 real
words .

B) Text or source files .
Contains variable length records of source text (e.g. ASCII) .
Output to a text file is made through formatted WRITE or sub-
routine WBUFF . Input from a text file is always made through
the subroutine RBUFF . The maximum recordlength for text files
used in any program package is 20 real words (88 characters).

18 maj 1979

FILE HANDLING IN PROGRAM PACKAGES 2-1

2 File handling interface

The following system-independent FORTRAN routines constitutes the
interface between the program packages and the system dependent
file I/0:

FILES Open and close a data file
FILDAT - Read and write a data file
FILRED - Read a data file

FCHECK - Check if a file exists
FCLOSE - Close a file

FDELET - Delete a file

FENTER - Create a new file for output
FRENAM - Rename a file

FSEEK - Open an existing file for input
RBUFF - Read a text file
WBUFF - Write a text file

There are also a few routines to support the file routines:

FILCHK - Checks if a file is open
FILNAM - Creates system filename (System dep. routine)

LUFIND - Checks if a logical unit number is occupied
TFIENC - Creates temporary filename (System dep. routine)
TFIDEC - Restores original filename (System dep. routine)

Note:

The program packages use a special feature that allows creation of
a new file with the same name as an existing file and as long as
the new file is open all input from the file is taken from the old
file and the output is written in the new file. When the new file
is closed the old file (that must already have been closed) will
be deleted . If the old file is not closed when the new file is
going to be closed the new file will be deleted instead. This
feature is implemented within subroutines FENTER and FCLOSE by
creation of a file with a temporary filename from the original
filename and the new temporary file is renamed when the file is
closed. In the code this is done by calling the system dependent
subroutine TFIENC. FCLOSE then calls subroutine TFIDEC to recreate
the original filename from the temporary name.

18 maj 1979

FILE HANDLING IN PROGRAM PACKAGES 3-1

3 File names and extension .

In the program packages a filename consists of a 2-word, 4
char/word Hollerith name FNAME and an integer extension IEXT . The
max allowed length of FNAME can be changed to suit the system by
changing the command decoding routine LTLONG . (It must however
be less than 9 characters). The purpose of IEXT is to identify to
the program packages what type of file FNAME should be. IEXT can
be any integer from @ to 9. The following numbers are currently
used:

IEXT=1 - Data file

IEXT=2 - Text file with all output to it through WBUFF

IEXT=3 - Text file that may be written into by formatted WRITE
IEXT=4 - Temporary data file

IEXT=6 - Temporary text file

IEXT=8 - Aggregate file (special type of data file)

All conversion of FNAME+IEXT to form a system acceptable filename
is made in FILNAM .

Example: Filenames in EXEC 8 on UNIVAC 1109

Max FNAME 1length is 8 char. In FILNAM FNAME is appended with -D
for IEXT=1, nothing for IEXT=2 and 3, -A for IEXT=8 and =<IEXT>
for all other wvalues.,

18 maj 1979

FILE HANDLING IN PROGRAM PACKAGES

4 Logical Unit Numbers and system I/0 .

In FORTRAN LUN's are used as a simple and convenient way to re
to a specific I/0 device (e.g. a file on disc or a cardreader)

fer
in

READ/WRITE statements . Program package file handling assumes

that the system supplies functions available to a user program
connect/disconnect a LUN to any named file any number of times.
this is not feasible the interface routines can be modified

to
If
so

that I/0 operations can refer to files by using their names

instead of LUN's . This is done in the following way:

1) Data files
FILDAT/FILRED can use filename retrieved from /FCTAB/ when
is known . Subroutine FILES will also have to be modified
the same way (writing/reading of filehead) .

2) Text files
Since all input 1is made using RBUFF this routine should
modified by including /FCTAB/ and using filenames instead
The problem 1is somewhat 1larger for text file output si
formatted WRITE might be used (IEXT=3). In program pack

LUN
in

be
nce
age

SIMNON all text file output is made through subroutine WBUFF

,that can be modified in the same way as RBUFF . Other prog

ram

packages (e.g. IDPAC) uses formatted WRITE for creation of
system description files . Most FORTRAN systems have an ENCODE
statement (makes core-to-core data transfers under FORMAT
control). All WRITE statements directed to a file then could be
changed to an ENCODE to an internal buffer and then a call to

WBUFF with the internal buffer .

18 maj 1979

FILE HANDLING IN PROGRAM PACKAGES 5-1

5 System dependent file operations .

The following basic file functions must be supplied to support
FORTRAN-written interface routines:

SEEK (LUN,

FILE)

ENTER (LUN,FILE)

RCLOSE (LUN)

WCLOSE (LUN)

FSTAT(FILE,LFIL)

DELETE(FILE)

RENAME(FILEl,FILE2)

RDINT (LUN, IVNAME , NNR, TIEND, IND)
RDREAL (LUN, VNAME , NNR, IEND, IND)
WRINT (LUN, IVNAME, NNR)
WRREAL (LUN, VNAME , NNR)

LUN -

=
[ag]
()
=
I

w
=
e
=
i

ENTER

RCLOSE -

WCLOSE -

FSTAT -

DELETE -

RENAME -

RDINT =~

Logical unit number (file reference number) used to
reference the file in I/0 operations

System dependent file name created from program
compatible file name and file extension type , IEXT

Connect LUN to FILE and open file for input . 1Input is
always made from RBUFF (text files) or FILDAT/FILRED
(data files) using RDREAL or RDINT .

Create FILE (that does not exist earlier) , connect LUN
to FILE and open file for output . Output is made from
formatted WRITE or WBUFF (text file) or from FILDAT (data
files) .

Close input file connected with LUN and release LUN .
Closing should include a rewind operation so that a new
SEEK will start at the beginning of the file .

Close output file connected with LUN and release LUN .
Closing should include writing some kind of EOF and a
rewind operation .

Check if FILE exists . LFIL returned .TRUE, if FILE
exists .

Deletes FILE (or makes it unavailable) .

Renames FILEl to FILE2 . On some systems this may have to
be implemented by creation of FILE2 and copying FILEl to
FILE2 and then deletion of FILEl .

Read a record of integers from an open file on logical
unit LUN and store it in IVNAME. IEND is returned .TRUE.
if EOF dectected. IND controls the type of reading
performed:

IND=# - NNR specifies the desired recordlength and if the
actual recordlength differs from NNR a terminating error

18 maj 1979

RDREAL =~

WRINT

FILE HANDLING IN PROGRAM PACKAGES 5-2

should occur.

IND=1 - At input NNR is the max allowed recordlength and
if the actual record is longer it is truncated after NNR
words. At return NNR is the actual recordlength (or NNR
if truncation occurred).

Same as RDINT but for a record of real variables .

Write a record of integers in an open file on logical
unit LUN from the array IVNAME of length NNR .

WRREAL - Same as WRINT but for a real array .

18 maj 1979

