LUND UNIVERSITY

Adaptive Control of Extremum Systems

Sternby, Jan

1980

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Sternby, J. (1980). Adaptive Control of Extremum Systems. (Technical Reports TFRT-7190). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/a64cf55a-b463-4434-a61c-82865efc2a14

CODEN: LUTFD2/(TFRT-7190)/1-25/(1980)

ADAPTIVE CONTROL OF EXTREMUM SYSTEMS

JAN STERNBY

DEPARTMENT OF AuToMATIC CONTROL
LUND INSTITUTE OF TECHNOLOGY
MarcH 1980



DOKUMENTDATABLAD enl SIS 61 41 21

Organization Document name

LUND INSTITUTE OF TECHNOLOGY Internal report
. * Date of issue
D rt
epartment of Automatic Control " March 1980

CODEN:: LUTFD2/ (TFRT-7190) /1-25/(1980)

Author(s) Sponsoring:organization

Jan Sternby STU 78-3763-

Title and subtitle

Adaptive Control of Extremum Systems

A4

AS

Abstract

Two model-based methods for extremum control are treated.

The models consist of a dynamic linear part and a static
nonlinearity which can be placed either at the input or at

the output. It is shown that models with an input nonlinearity
are easier to handle, but may give poor adaptive control laws.
With a nonlinearity at the output, the optimal control law is
dual, even if the system parameters are known. A way of
rewriting this latter model is suggested to facilitate the

use of parameter identification.

Key words i A4

Extremum control, adaptive control, model-based.

AS

Classification system and/or index terms (if any)

Supplementary bibliographical information Language
English

TSSN and key ttle = - ISBN

Recipient’s notes Nuimber of pages Price

Security classification

- Distribution by (name and address)




ADAPTIVE CONTROL OF EXTREMUM SYSTEMS

Jan Sternby
Dept of Automatic Control
Lund Institute of Technology
Lunds Sweden

Abstract

Two model-based methods for extremum control are treated. The wmodels
consist of a dynamic linear part and a static nonlinearity which can
be placed either at the input or at the output. It is shownh that
models with an input nonlinearity are easier to handles but may give
poor adaptive control laws. With a nonlinearity at the outputs the
optimal control law is duals even if the system parameters are known.
A way of rewriting this latter model is suggested to facilitate the
use of parameter identification.

1. INTRODUCTION

Extremum control was a popular topic in automatic control some decades
ago. A commonly considered problem was to find controller settings to
minimize some nonlinear functional of the control errors such as the
integral of the error squared. Nowadays that problem is rather solved
using an adaptive schemes and extremum control has not been discussed
so much any longer.

There ares however» another class of problemss where the output should
not be kept constants but should rather be minimized or maximized. In
these problems the nonlinearity is inherent in the problem and is not
introduced by the designer. One example is the adjustment of the blade
angles in a water turbine to achieve a maximum of produced power. This
paper deals with the application of adaptive control laws to this type
nf extremum control problems.

In the past decades: computer technology has developed enormously.
This is one reason why it wmight be rewarding to reconsider extremum
control problems. It is now possible to implement rather complex
control algorithms in low ecost microcomputerss as has already been
shown with adaptive controcl. It should then be possible to benefit
from inserting more ideas from adaptive control and identification
into the extremum control area. Moreovers with today's competition for
market shares and increasing system complexitys even small gains may
be very valuable.

A well-written survey of the older methods for extremum control is
given in Blackman(i19462). In recent years the idea of adaptive extremum
control has been exploited by e.g. Kevieczky and Haber(1974) and
Bamberger and lsermann(l1978).

In the present paper will be considered only methods based on the use
of a system model. It will be shown that different models may differ
drastically in their behaviour. For a simple example a comparison is
also made between using a certainty equivalent control law and one
which is dual in the sense of Feldbaum. It is noticable that this is a
fairly realistic example where the dual control law is significantly
better.
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Z. MODELS

As already wmentioneds extrewum control systems have one major
characteristic in common. In the absense of disturbancesy the
steady—~state relation between input and output should be a function
with an extremum. The object of control is to stay as close to this
extremum as possible despite the influence from dynamicss noise or
drifts. In order to use optimal control theory» this desire must be
translated into & formal loss function. There are several ways of
doing this. One possibility is to use a system model to estimate the
slope. The control law can then be designed to keep the slope as close
to zero as possibles e.g. with its variance as a measure.

Howevers it is not at all clear what is the best and wmost natural way
af modeling such a nonlinear dynamic system. To be able to use system
identification it is of course desirable to have a model which is
linear in its unknown parameters. Any a priori knowledge about the
process should then be utilised in the choice of regressors. 1In this
way it may be possible to handle quite complicateds but partially
known nonlinear systems.

In general cases it is however difficult to find model structures that
are general enoughs and still allow calculations to be done. One
attenpt is to separate the linear and nonlinear parts into two blocks
in series. There are then two possibilities: the nonlinear part can be
placed either before or after the linear part. This choice will have a
large influence on the behaviour of the wmodel as can be seen from the
following example.

Example
Consider a first order linear system with white equation noises and a

nonlinearity in the form of & squaring device. Then with the
nonlinearity at the input of the linear part the overall system is

y(t+1) = ayit) + bu(t)i + ety

where e(t) is a white noise process. Suppose a stationary solution
exists (Jal|€ 1). Expected values then are

If the goal is to minimize Ey (and b>*0) the best performance is thus
achieved by putting u(ti=0! Furthermovres if |a]*1 no stationary
sclution exists.

Now turn to the other case with an output nhonlinearity described by

x(t+1) = ax(t) + bu(t) + e(t)
y(t) = x(e)

Fer a=b=1 this is the problem considered by Jacobs and Langdon(1970).
They show that because of the nonlinear measurement this is a dual
control problem in the sense of Feldbaum. The conditional distribution
of the state % is discretes the possible values being »x = Xlx|. The



conditional mean of x can then be calculated. It is shown that it is
not optimal in the long run to have u(t) = ~Rt). These results would
probably not change much if a = 1-e{ 1. Even if a is slightly greater
than ones a stationary solution still seems possible. o

There are thus significant differences between the two cases in spite
of their identical static response curves. In the first case with the
nonlinearity at the inputs the optimal control is constant» and thus
contains no feedback. The solution to the second problem includes
feedback and therefore seems more attractive. 1t is however more
difficult to computes because it has a dual nature even with khown
parameters.

May be an output nonlinearity is in general more important than an
input nonlinearity for a good description of a nonlinear system. The
only possible effect of a known nonlinearity at the input is to
restrict the possible input values for the linear part. The nonlinear
control problem can then be transformed to linear control with
positive inputs. If the range of the nonlinearity is the whole of the
real axiss then a change of control variable will reduce the problem
into a linear one.

3. NONLINEARITY AT THE INPUT

With the nonlinearity at the input it is easy to set up a3 model which
is linear in the parameterss and thus directly lends itself to
parameter estimation and adaptive control. It was shown in the
previous section that the optimal control in the case of khown
parameters is constant if the criterion is the mean output value. It
will now be shown thats as expecteds adaptive control may give a poor
result in the corresponding case with unknown parameters.

In order to simplify notations and analysis ohly a special low order
case will be treated. The same type of problems that appear heve will
however show up also with dynamical models of any order. The system
considered is of the Hammerstein type.

y(t) = k + beutt-1) + c-u(t-i)d + e(t) 1)

The noise A{e(t)) is supposed to be a sequence of independent random
variables with rero mean. Qnly the parameters k and b are supposed to
he unknown and have to be estimateds but an unkhown c-—parameter can
also be handled without any change of the results. This system should
be controlled so that its output is kept as small as possible. To
accomplish thiss the criterion used is the steady state wmean value of
the output. Admissible control laws may use all information available:s
i.e. w(t) may depend on y(t)s ult-1) and all previous inputs and
outputs. If the parameters of the model (1) are all known the optimal
control law is

ut) = ~-b/2Zc €20

The optimal control law is thus no feedback controller. For the model
(1) this controller minimizes the expected value of the output. But it
also minimizes the output of the next step. With a more general system
model where the output depends on the value of the input at several
sampling pointss the best steady state and the best one-step
controllers will not coincide. For a further discussion on this point
see Keviczky and Haber(1974).



Adaptive Control and Estimation

When the parameters of the model (1) are unknowns the control law (20
has to be modified. One approach is to replace the parameters by their
estimates to form an adaptive control laws: i.e.

A A
u(tl) = —-b(t)/2ecdt) €32

This control law is also one step ahead optimal for the chosen
eriterion. Since the process noise e in (1) is assumed to be white the
process parameters can be estimated with an ordinary least squares
estimator. It is also possible to use a stochastic approximation type
algorithm. This variant is easier to analyzes and will be discussed in
detail in the sequel. Let {(t) be the column vector of parameter
estimates obtained at time t and

6ct)y = [ 1 ult-1> 1 (4)
Then

L A C T 2 A

®w(t) = x(t—~-1) + ;-e(t) Cy(t) — cudt-1) — o6CtiIx(t~111 €52
Analysis

For the case of least squares estimations the general PBayesian
convergence results of Sternby(1977) show that the estimates will
converge with probability one. But the limits will in general differ
from the true values if the conditional variance does not tend to
zero. This is what happens here.

The behaviour of the algorithm can also be analyzed using the
technique derived by Ljung(19772. In order to apply his results a
number of technircal conditions must be fulfilled. Some of these
conditions arve difficult to check mathematically» but are relatively
easy to accept intuitively. 1In this paper no strict proofs of
non-consistency will be given. Instead the differential equations of
Ljung will be used to show the expected paths of the parameter
estimates. The results are confirmed by simulations of the original
algorithms. Many identification procedures may be described in termns
aof the general recursive algorithm of Ljung(1977)s which is in the
time—invariant case with y(ti=1/t

A A 1 A
®(t) = n(t—-12 + E-@(x(t-i)sy(t)) (F-]

where the measurements y are generated as one component of the vector
p in

L A
pit) = AlxC(E-12)«pCt-1) + B(x(t-1))e(t) 7

The noise vectors e(-) are supposed +to be independent. Accovrding to
Ljung{1977) (&) will asymptotically behave like the solution to

X = Fix) = EQ(xsy) (82

In calculating the expectation of (8) x is a fixed vector and the



measurement y is generated from (7)) with this fixed x-value. 1In our
case we have from (5

fix) = E e(t)T[(k - k) + (b = bilult-1) + ect)l] €

where x is a8 column vector containing k and b. The expectation shall
be calculated for every fixed value of the vector x. With u =-b/2c let

g = (k — k) + (b - b)+ru=(k - k) = (b - B)-b/2c €102

Then (8) is

é = &-U €11

1= =

= &

The parameters may converge to any point on the curve £=0 for which
(112 is stable. Convergence to the correct point may happen since it
satisfies e£=0. There avres howevers infinitely many other possible
convergence points which form a parabola in the b-k-plane. The
trajectories of (11) ave easily found by dividing the two equations.
They satisfy

b(t) = b(D) ~expl{lk(O) - k(t)I/Zc} (12)

Figs. 1 and 2 show parameter phase planes for the algorithm and its
associated differential equations respectively with the true parameter
values k=b=0.4s c=0.2 and the standard deviation of the noise o=0.03.
Note the parabola of stationary points (dashed in both figs.).

For small c-values part of the stationary points are wunstable. This
can be studied through a linearization around the stationary pointss
i.e. by looking at the derivative matrix of the right member of (11).
The unstable points must satisfy

2

3 2 Tz
b - \Vb" -3z~ <b< b+ \b - 3z (13>

This will only happen if the square root exists. A phase plane for
(113 in this case is shown in fig. 3.

The parameters are thus likely to converge to some point which gives a
nonoptimal input value. The same thing will happen alsao in wmore
general cases as shown in Sternby(1978a). Such cases may include least
sguares identifications dynamics in the model or the input
modification of stochastic approximation type discussed by Keviczky
and Haber(1974).

.o_>
oy

o&. #SE i 05- : ,/'\\\\Hh

| o_ii\kitii\?iizggfig _j;

_a5__///ij;;j;:9)“‘“~~~u -05«’////;/f{fi/;hxvjf//
0

T T T T T T T X 1 T T T -‘r —0.5 T T / T T T T
-05 0 0.5 1 K -05 0 .5 1 k -0.5 0 05 1 k
Figure 1-Phase plane Figure Z-Phase plane Figure 3-Unstable

for algortithm for diff. equation stationary points.



Improved Control

The control law must be changed to get convergence to the correct
values. It is then important to find the reason for nonconsistency.
Here the problem is that the same factor £ appears in both equations
af (11). This happens because the input depends only on the estimatess
and is therefore constant in the calculation of Ff(x) of (9). Both
components of the vector 9(t) are then constant. All attempts of
improvement wmust therefore aim at increasing the variation of the
input.

A straightforward way is to add a perturbation signal to the input.
This workss but convergence was very slow in a few test simulations
performed. Also. one more parameters the perturbation signal
amplitudes has to be chosen in advance.

Another possibility could be to introduce a forgetting factor in the
identification procedure to prevent the estimates from converging too
fast. If the forgetting factor 1is allowed to tend to ones then the
estimates will finally converge. Simulations have indicated that this
method may give a honsatisfactory behaviour. The estimates tend to
stay constant for a while and then suddenly jump to another constant
value.

The control law (3) is one-step ahead optimal Ffor the chosen
criterion. But the dynamic programming could be pursued one more step
to give 8 two-step ahead optimal control. This would introduce a
tendeney in the control law to actively reduce the parameter
uncertainty. In our cases howevers this optimal control would still
depend only on the estimatess and the problem remains unsolved. But if
dynamics are included in the model (1) this might be a possible
methods since the input will then also be a function of the measured
outputs and @(t) is ho longer a constant in the calculation of f(x) of
€92y,

4. NONLINEARITY AT THE OQUTPUT

The example in the wmodels section shows that a nonlinearity at the
output of a linear system is wuch more difficult to handle than one at
the input. Even if the system parameters are khnowns the optimal
control is e.g. of a dual nature. It tries actively to improve the
estimate of the input «x to the nonlinearity at the price of worse
short term control.

In one of the oldest and wmost used wmethods of extremum control the
slope of the nonlinearity is estimated by applying a perturbation
signal at the input and observe its effect at the output. This method
was e.g. discussed already by Leblanc(l922). Taking the so estimated
slope as an outputs a self-tuning regulator of suitable order could be
used to determine the input. This possibility will not be pursued any
further here.

Things are much simplified if it is possible to measure the
intermediate signal between the linear part and the nonlinearity. It
is thens in principles possible to do system identification separately
for the two parts with the nonlinearity modelled as e.g. a second
order polynomial. A self-tuning regulator could again be used to keep
the output of the linear part with wminimal variance around the
estimated position of the extremum of the nonlinearity. The results of



the previous section will then apply to the nonlinear parts the only
difference being that its input is mnot determined directly» but
through linear dynamics. Noise on this intermediate signal will then
act as a perturbation signal and improve identifiabilitys but as
stated in the previous section convergence may be slow.

When the intermediate signal is not measurable the problem is more
difficult. Even with known parameters the optimal control law is dual.
A simple example of this type will now be discussed to show the
difficulties and suggest a solution wethod that can possibly be
extended to the case with unknown parameters.

Consider the system

o

y(t) = [ x(t) - c 37 + v(ed (14
X(E+1) = x(t) + ult) + wlt+1) (15

where c© is an unkneown constant and v(-) and w(-) are zero mean
disturbances. Only y(t) is measurables and the object of control is to
minimize the mean value of the output. First let c=0. This is no
restriction heres since c can be subtracted from both members of (15).
A reason for choosing this example is that the optimal control has
been calculated by Jacobs and Langdon(1270) and is available for
coOmparison.

One possibility is to apply certainty equivalence and let u(t) =-R (LI,
The problem is then to calculate a good estimate R¢t). In the special
case v(t)=0 the conditional distribution for x(t) can be tracked
exactly as shown by Jacobs and Langdon(1970). Florentin(1%9464) treated
the case v(t)*D by approximating the conditional distribution by the
sum of two Gaussian distributions. Another possibility is to rewrite
the system as follows to be able to use some identification method
directly. If R is the knowh variance of wi(t) and c=0, then inserting
15y into (143 gives

yit) = y(t-1) + u(t-—“l)2 + R + 2uft—-1ix(t-1) +

+ e(t) + (Wlt?* = R) + 2ZwltdIxCt—-1) + ult-1)1 (162

where e(t) = vi(t)-v(t-12.

Estimation

Assuming that {e(t)} and {witd)} are independent zZero mean sequences:
the least squares method can be used to estimate x(t—-1) from (1&6). The
last row is then regarded as Zzero meatn hoise with Zero
autocorrelation. The first three terms are known at time t-1. The
measurement equation (146) will thus give Q(t—i]t) from Rit-1|t-1).
Then ¢(15) is used to get R(t|t) from R(t-1|t) as

x(t|t) = xCt-1]t) + u(t-1)

This is an approximation since w(t) is actually partly known at time t



through the measurement y(t). Now denote Q(tlt) by K(tr. The
approximate least squares estimation equations then are

;(t) = ;(t”i) + ult-1) + K(tre(td €173
gd(t) = y(t) - ylt-1) - u(t—'l)2 - R - Eu(t—ibg(tni) €185
K{t) = 2P(t—1)u(t—1)/[d(t-i)2 + 4P(t—1)u(t—1)23 €193
P(t) = d(t-i)zPCt—ihltdCt—i)z + 4P(t—1)u(t~1)2] + R 200

From (16) with u(t) =-R(t) a suitable value for the standard deviation
g(t-1) of the measurement noise is

&

get-10% = g° + ZRZ + 4RP(t~1) (213

where d2 is the variance of e(t).

Control
As  shown by simulationss the certainty equivalence controller
u(t) =-R(t) does not work very well for this example. For the case R=0

this can be explained by the consistency results of Sternby(1977),
which applied here say that for consistency:s the sum of the inputs
squared must diverge. With the certainty equivalence controllers (17)
shows that u(ti=-Kd(tis(t). But Corollary 3 of Sternby(1977) tells that
K(t)» is square summables and the same thing is then true for ult)
since &(t) is wmean square bounded. It is alsoc obvious that the
controller may be trapped at the value u(t)=0 as K(t+1) will then also
be zero.

Some feature is needed in the controller to improve the estimation of
¥. This can be achieved by adding a perturbation signal to the input.
The simulations show two disadvantages with that method. The
perturbation amplitude must be chosen accurately by the users and it
is nevertheless not possible to get a performance close to the
optimal.

Dual Control

Another method is to minimize the criterion two steps ahead as was
suggested in Sternby(1978b) for linear systems with unkrnown
parameters. Thus ult? should be chosen to minimize
ELy(t+1) + y(t+2)|t1. In +the following derivation will be used the
approximations

A
®(t) = E[xcCty|t] and P(t) = Varlx(t)|t1]
Then with u(t+1) = —;(t+1)
A 2
Min ECy(t+2) |t+1] = y(t+1) + R - x(t+1) 22

The best two-step u(t) should therefore minimize

2

VIu(td] = EL2y(t+1) + R — x(t+1) |1 (23D



With the use aof (146)-(21)» V can be written in the form
2 -
Viu) = (u — K)  + f(u) + constant C24)

with K = —-x(t) and

FCUCE)) = oI PR /Lot S+ 4PCEIUCED™] (259

Utilising the structure of f(u): V(u) can be approximately minimized.
In the neighbourhood of u=0 a linear approximation of V"(u) is made
from u=0 to the point where f"(u)=0. Outside this area V'"(u) is
approximated by a constant. In both areas the minimizing u is then
found by equating the corresponding approximation of V' (u) to zero.

Simulation

The certainty equivalence control (CE)s with and without an added
perturbation signal., and the two-step control were tested by
simulation. The system used was described by (14)-(15) with c=0y R=1
and v(ti=0 in order to allow a comparison with the optimal control
derived by Jacobs and Langdon(i970). The amplitude of the perturbation
signal was adjusted to best possible performance.

It was found that with no perturbation signals the certainty
equivalent control behaved much better with a constant o(t) than that
given by (21). The reason is probably that with that control the
uncertainty P is often larges so that o(t) of (21) would also be large
and decrease the influence of the measurements on the estimation by
keeping K(t)» small. This control law was therefore tuned manually with
respect to the constant odt). The results are shown in fig. 43 where
the wmean values of the output together with estimated standard
deviations over 20 runs of 500 steps are displayed.

The accuracy {(standard deviation) in the mean value estimation is
better than 0.1 and there is thus a sighificant difference in the
behaviour of the three algorithms. It can be concluded that dual
control is needed in this case. Fig. 5 shows the state x controlled by
the twostep controller in a run of 400 steps with R=0.16 and o=0.2. At
t=200 ¢ changes from c=0 to c=3. Because of the integrators x will
track the change in c.

X
Optimal X 22 1
L._
Two step ,_2,§i| i !
2_
Perturbed CE ,_392_1 J
' 0
Plain CE S99 i
} + } + = -2 T T T -
2 3 Mean loss 0 100 200 300 Time

Figure 4-Control laws compared Figure S-Tracking a moving optimum
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5. CONCLUSION

Two possible models for extremum systems have been discusseds both
consisting of a dynamic linear part and a static nonlinear part. It
was shown that with the nonlinearity at the input: performance may be
unsatisfactory when using a straightforward adaptive control law based
on certainty equivalence.

With an output nonlinearity the calculations are more difficult even
with known system parameters. For a special example the system
equations were rewritten to allow the application of the least squares
method for identifications and a dual control law could be computed.
To make the method interestings it should be extended to cases with
unknown parameters and higher order dynamics. This has not yet been
dones but it seems to be possibles maybe with slight extensions of
existing identification procedures.
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APPENDIX 1

An approximate function minimization

11



APPENDIX 1.

Approximate minimizati

on of

V(u) = (u-K )2 + f(u)
where
f(u) = 02P/(o2 + 4Pu2)
We have
£'(u) = g“Psz s < O
(o™ + 4Pu™)
(c” + 4Pu”)
Then

]

f"(u)
f"(O)

_._————”"”“’—_-

- 8P2/0

0 for u2 = 02/12P

<

(u K)2

_ll\-'— -f(u)

—hf (u)

L

[
N’ o
‘#///’,/" u

12
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The basic idea is now the following. In the area where f£'"(u) > O the
dérivative f'(u) is approximated by a straight line. Close to u = 0,
where f'"(u) < 0, this second derivative is approximated by a straight
line. Since the problem is symmetric with respect to the sign of K, we

will assume that K > 0.

a) The case K2 > 02/12P

First assume that f'(u) = £'(K) for all u, i.e. find the point where

2(u = K) = - £'(K)

The solution is u, = K —-% f'(K). Then calculate V‘(ul), and make a

linear interpolation between K and u, to find approximately the point

1
where V'(u) = 0. This gives

1 (£ )

= K+3 FCup) - 26 ()

u . =
optimal

b) The case K2 < 02/12P

Make a linear interpolation of f" between u = 0 and u = ¢// 12P to give

/178 . p?

£ (u) = 8 —5e(u - —7%7? )
g

Integrate this with the initial condition £'(0) = 0 to form a second order
polynomial approximaticn to V'(u). Solving for V'(u) = O with the positive

square root chosen will then give

-
.. el 1__tﬁ+ (1_ﬁ)2+0_¢m’.1<
optimal Y12P 4P2 4P2 2P2




APPENDIX 2

Program listings
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DISCRETE SYSTEM SYS
TIME T S
TSAMP TS

INPUT E1 E2 C U
OUTPUT Y

STATE X

NEW NX

TS=T+DT

DT:1
YR(X-CI#(X=C)Y+S1#E1
DYNAMICS
NX=X+U+S2#F2

S1:1

5210

END

DISCRETE SYSTEM REG

TIME T —

TSAMP TS

INPUT Y|

QUTPUT UT

STATE YO UD XH P

NEW NYQ NUD NXH NP

TS2T+DT

DT:1

EPS=zYI-YN~UD#UD~R-2#U0%XH ‘
SIG2=IF SIGY<0.5 THEN SIG*5|G ELSE SIG#SIG+2#R#R+4#R*P
HP=P/(S|G2+4#P+U0%U0)

Ka2xlJQeHP

UL=XH+UJO+KRERS

PT=SIG2#HP+R

SG2=S R34S | G+2%R*R+4%xRuPT

KA=ABRS (UL)

KMX=SQRT(SG2/12/PT)

HL1=SG2+44KARKARPT

DU=4#KA#PT#PT%#SG2/HLL /HLL
HL2=zSG2+4#PT# (KA+DU) % (KA+DU)
DF=8%PTx#PT#SG2% (KA+DU) /HL2/HL2

U2=F KADKMX THEN KA+2#DU#DU/(4%DU~DF) ELSE O
BETA=SG2/4/PT/PT

U3=KMX# (1-BETA+SORT((1~BETA)#(1L=BETA)+2#4BETA#KA/KMX))
Ud=|F KADKMX THEN ~S|IGN(UL)#U2 ELSE -SIGN(UL)Y=U3
UT=DELT#SIN(2%#T)+ (IF REGC1.,5 THEN =UL ELSF U4)
DYNAMICS

NXH=zUL

NYO=YI

NUD=zUT

NP=PT

P10

R:O

SIG:1

DELT:0

REG: O

SIGV:1

END



DISCRETE SYSTEM LOSS
TIME T '
TSAMP TS

INFUT VI

STATE VOL

NEW NVOL

TSsT+DT

DT:1

VaVOL+V |

VSTEP=IF T»0.5 THEN V/T ELSE 0
VS=sVYSU+VSTEP
VES=VSSU+VSTEP#VYSTEP
VsuU: Q0

VESU:0

DYNAMICS

NVOL=Y

END

CONNECTING SYSTEM CON1

TIME T i o
EL1[SYSI=EL1INOISB1)
E2[SYS)=F2(NOIS1) B
CISYS)®|F TCTO THEN NIVl ELSE NJV2
T0:200

Nivi:o

Niv2:0

YI[REG)=Y[SYS)
UISYS1=UT{REG]
VIILOSSI=YESYS)

END

MACRO SIART
LET N.NO|S1=2

LET NODD.NOIS1=19

SYST SYS REG LNSS NOIS1 CON1
PLOT

AXES

INIT UDt~1

PAR S1:0

PAR S2:11

PAR R1i1

PAR SIG:0

END
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