
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Building a production grid in Scandinavia

Eerola, Paula; Konya, Balazs; Smirnova, Oxana; Ekelof, T; Ellert, M; Hansen, JR; Nielsen, JL;
Waananen, A; Konstantinov, A; Ould-Saada, F
Published in:
IEEE Internet Computing

DOI:
10.1109/MIC.2003.1215657

2003

Link to publication

Citation for published version (APA):
Eerola, P., Konya, B., Smirnova, O., Ekelof, T., Ellert, M., Hansen, JR., Nielsen, JL., Waananen, A.,
Konstantinov, A., & Ould-Saada, F. (2003). Building a production grid in Scandinavia. IEEE Internet Computing,
7(4), 27-35. https://doi.org/10.1109/MIC.2003.1215657

Total number of authors:
10

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/MIC.2003.1215657
https://portal.research.lu.se/en/publications/832f86f0-354c-4d89-b1b5-c7e5167981bf
https://doi.org/10.1109/MIC.2003.1215657

Download date: 05. Nov. 2025

IEEE INTERNET COMPUTING 1089-7801/03/$17.00©2003 IEEE Published by the IEEE Computer Society JULY • AUGUST 2003 27

Th
e

G
ri

d
G

ro
w

s
U

p

Paula Eerola, Balázs Kónya,
and Oxana Smirnova
Lund University, Sweden

Tord Ekelöf and
Mattias Ellert
Uppsala University, Sweden

John Renner Hansen,
Jakob Langgaard Nielsen,
and Anders Wäänänen
Niels Bohr Institute, Copenhagen

Aleksandr Konstantinov
and Farid Ould-Saada
University of Oslo

Building a Production
Grid in Scandinavia
Innovative middleware solutions are key to the NorduGrid

testbed, which spans academic institutes and supercomputing

centers throughout Scandinavia and Finland and provides

continuous grid services to its users.

Academic researchers in the Nordic
countries participate in many com-
mon projects that process large

amounts of data. To function effectively,
such collaborations need a grid comput-
ing infrastructure that works across a wide
area and uses distributed resources effi-
ciently. Initial evaluations of existing grid
solutions, however, showed that they
failed to meet this requirement. The
Globus Toolkit (www.globus.org), for
example, had no resource brokering capa-
bility, and the European Union’s DataGrid
project (EDG; www.edg.org) did not satis-
fy stability and reliability demands. Other
grid projects had even less functionality.

In May 2001, researchers at Scandina-
vian and Finnish academic institutes
launched the NorduGrid project
(www.nordugrid.org), with the goal of
building a Nordic testbed for wide-area
computing and data handling. We first
developed a proposal for an original
architecture and implementation.1,2 We

then developed middleware based on the
Globus libraries and API, adding a set of
completely new services such as resource
brokering and monitoring. The NorduGrid
middleware thus preserves Globus com-
patibility and permits interoperability
with other Globus-based solutions. It also
meets our goal of providing a lightweight,
yet robust solution that is noninvasive,
portable, and requires minimal interven-
tion from system administrators.

We launched our testbed in May 2002,
and it has been continuously operating
since August of that year, providing reli-
able, round-the-clock services for acade-
mic users. NorduGrid spans several coun-
tries and incorporates several national
computing centers, making it one of the
largest operational grids in the world.

NorduGrid Overview
We built the NorduGrid testbed using the
resources of national supercomputer cen-
ters and academic institutes, and based it

on the Nordic countries’ academic networks. Cur-
rently, the testbed uses more than 900 CPUs in 20
clusters that range in size from 4 to 400 proces-
sors. Except for a few test clusters, the resources
are not grid-dedicated. Among the active Nordu-
Grid users are high-energy physics researchers
who use the Grid daily and physics theorists who
use it to perform complex computational tasks.3,4

Guiding Philosophy
We planned and designed the NorduGrid architec-
ture to satisfy the needs of both users and system
administrators. These needs constitute a general
philosophy:

• Start with something simple that works.
• Avoid single points of failure.
• Give resource owners full control over their

resources.
• Ensure that NorduGrid software can use the

existing system and, eventually, other prein-
stalled grid middleware, such as different
Globus versions.

• Leave installation details (method, operating
system, configuration, and so on) up to system
administrators.

• Pose as few restrictions on site configuration
as possible — for example, permit computing
nodes on private as well as public networks, let
clusters select the amount of resources they’ll
dedicate to the Grid, and install NorduGrid
software only on front-end machines.

We thus designed the NorduGrid tools to handle
job submission and management, user area man-
agement, and minimal data management and
monitoring capacity.

System Components
The NorduGrid architecture’s basic components are
the user interface, information system, computing
cluster, storage element, and replica catalog.

The NorduGrid’s user interface is a new service
that includes high-level functionality not com-
pletely covered by the Globus Toolkit — namely,
resource discovery and brokering, grid job sub-
mission, and job status querying. NorduGrid thus
does not require a centralized resource broker. The
user interface communicates with the NorduGrid
grid manager and queries the information system
and replica catalog. Users can install the user inter-
face client package on any machine, using as
many interfaces as they need.

The information system is a distributed service

that serves information for other components, such
as monitors and user interfaces. The information
system consists of a dynamic set of distributed
databases that are coupled to computing and stor-
age resources to provide information on a specific
resource’s status. The information system operates
on a pull model: when queried, it generates
requested information on the resource locally
(optionally caching it afterward). Local databases
register to a global set of indexing services via a
soft-state registration mechanism. For direct
queries, the user interface or monitoring agents
contact the indexing registries to find contact
information for local databases.

The computing cluster consists of a front-end
node that manages several back-end nodes, typi-
cally through a private closed network. The soft-
ware component is a standard batch system, with
an extra layer that acts as a grid interface and
includes the grid manager, the GridFTP server,5

and the local information service. Although Linux
is the operating system of choice, Unix-like sys-
tems, including Hewlett-Packard’s UX and Tru64
Unix, can be used as well. The NorduGrid does not
dictate batch system configuration; its goal is to
be an add-on component that hooks local
resources onto the Grid and lets grid jobs run
along with conventional jobs, respecting local
setup and configuration policies. The cluster has
no specific requirements beyond a shared file sys-
tem (such as Network Filesystem) between the
front- and back-end nodes. The back-end nodes
are managed entirely through the local batch sys-
tem; no grid middleware is required on them.

We’ve yet to fully develop NorduGrid’s storage
element; so far we’ve implemented storage as plain
GridFTP servers, which come as either part of the
Globus or the NorduGrid Toolkit. We prefer the lat-
ter because it allows access control based on users’
grid certificates rather than their local identities.

To register and locate data sources, we modified
the Globus project’s replica catalog to improve its
functionality. The catalog’s records are primarily
entered and used by the grid manager and the user
interface. The user interface can also use the
records for resource brokering.

How It Works
Users access NorduGrid resources and related pro-
jects, such as EDG, using certificates issued by the
NorduGrid certification authority. Like other grid
testbeds, NorduGrid uses a central service that
maintains a list of authorized users. The list is
stored in an open-source implementation of the

28 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

The Grid Grows Up

lightweight directory access protocol database
(Open-LDAP; www.openldap.org), which uses the
grid security infrastructure6 mechanism for secure
authentication. The Open-LDAP server’s built-in
security mechanisms control access at the entry
and attribute levels, based on the grid certificates.
We also developed the NorduGrid mapping utility
to periodically query the LDAP server and auto-
matically create and update local user mappings
according to site policy.

The NorduGrid task flow includes four basic
steps. First, the user prepares a job description
using the extended Globus Resource Specification
Language (RSL). This description might include
application-specific requirements, such as input
and output data descriptions, as well as other
options used in resource matching, such as the
architecture or an explicit cluster. These options
are needed only if the user has specific preferences
and wants to direct a job to a known subset of
resources. The user can also request email notifi-
cations about the job status.

Next, the user interface interprets the job
description and brokers resources using the infor-
mation system and replica catalog. It then for-
wards the job to the grid manager on the chosen
cluster and eventually uploads the specified files.
The grid manager handles preprocessing, job sub-
mission to the local system, and post-processing,
on the basis of the job specifications. It manipu-
lates input and output data with the help of the
replica catalog and storage elements.

Finally, users can receive email notifications or
simply follow the job’s progress through the user
interface or monitor. Once the job is complete,
users can retrieve the files specified in the job
description. If the files are not fetched within 24
hours, the local grid manager erases them.

NorduGrid Middleware
We based the NorduGrid middleware almost
entirely on the Globus Toolkit’s API, libraries, and
services. To support the NorduGrid architecture,
however, we used several innovations such as the
grid manager and the user interface, and we
extended other components, including the infor-
mation model and RSL.

Grid Manager
The grid manager software runs on the cluster’s
master node and acts as a smart front end for job
submission to a cluster, job management, data pre-
and post-staging functionality, and metadata cat-
alog support.

We wrote the grid manager as a layer above the
Globus Toolkit libraries and services. At that time,
the existing Globus services didn’t meet the
NorduGrid architecture’s requirements, including
integrated replica catalog support, sharing cached
files among users, and staging input and output
data files. Because the system performs data oper-
ations at an additional layer, it handles data only
at a job’s beginning and end. Hence, we expect the
user to provide complete information about the
input and output data. This is our approach’s most
significant limitation.

Unlike the Globus resource allocation manag-
er,7 the grid manager uses a GridFTP interface for
job submission. To allow this, we developed a
NorduGrid GridFTP server based on Globus
libraries.5 The main features that distinguish our
server from the Globus implementation are:

• a virtual directory tree, configured for each
user;

• access control, based on the distinguished
name stored in the user certificate;

• a local file access plug-in, which implements
ordinary FTP-server-like access; and

• a job submission plug-in, which provides an
interface for submission and control of jobs
that the grid manager handles.

NorduGrid also uses the GridFTP server to create
relatively easy-to-configure GridFTP-based stor-
age elements.

The grid manager accepts job-submission
scripts written in Globus RSL with few new attrib-
utes added. For each job, the grid manager creates
a separate session directory to store the input files.
Because a cluster front end directly gathers the
input data, there is no single point (machine)
through which all the job data must pass. The grid
manager then creates a job-execution script and
launches it using a local resource management
system. Such a script can perform other actions as
well, including setting the environment for third-
party software packages that a job requests.

After a job has finished, the grid manager
transfers all specified output files to their desti-
nations or temporarily stores them in the session
directory so that users can retrieve them later. The
grid manager can also cache input files that jobs
and users can share; if the protocol allows it, the
manager checks for authorization of user access
requests against a remote server. To save disk
space, the grid manager can provide cached files
to jobs as soft links.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 29

Production Grid in Scandinavia

As in Globus, the grid manager implements a
bash-script interface to a local batch system, which
enables easy interoperation with most local
resource management systems. To store the state
of all jobs, the grid manager uses a file system,
which lets it recover safely from most system
faults after a restart. The grid manager also
includes user utilities for data transfer and meta-
data catalog registration.

Replica Catalog
NorduGrid uses the Globus replica catalog, which
is based on an Open-LDAP server with the default
LDAP database manager back end. We fixed Open-
LDAP’s problems with transferring large amounts
of data over an authenticated or encrypted con-
nection by applying appropriate patches and
automating server restart. These modifications,
combined with fault-tolerant client behavior, made
the Globus system usable for our needs.

We used the Globus Toolkit API and libraries to
manage the replica catalog’s server information.
Our only significant change here was to add the
Globus grid security infrastructure mechanism for
securely authenticating connections.

Information System
We created a dynamic, distributed information sys-
tem8 by extending the Globus Toolkit’s monitor-
ing and discovery services.9 MDS is an extensible
framework for creating grid information systems
built on Open-LDAP software. An MDS-based
information system consists of an information
model (schema), local information providers, local
databases, a soft registration mechanism, and

information indices. Adding NorduGrid extensions
and a specific setup gave us a reliable information
system backbone.

An effective grid information model results
from a delicate design process that shows how to
best represent resources and structure resource
information. In an MDS-based system, we store
information as attribute-value pairs of LDAP
entries, organized into a hierarchical tree (see Fig-
ure 1). The information model is thus technically
formulated through an LDAP schema and LDAP-
tree specification.

Our evaluation of the original MDS and EDG
schemas9,10 showed their unsuitability for simul-
taneously describing clusters, grid jobs, and grid
users. We thus designed our own information
model.8 Unlike Globus and other grid projects
that keep developing new schemas (see for exam-
ple, the Glue schema at www.hicb.org/glue/
glue-schema/schema.htm and the CIM-based Grid
Schema Working Group at www.isi.edu/~flon/
cgs-wg/) we’ve deployed, tested, and used our
model in a production facility.

NorduGrid’s information model describes the
main grid components: computing clusters, grid
users, and grid jobs. Figure 1 shows the LDAP-
tree of a cluster. The cluster entry describes its
hardware, software, and middleware properties.
A queue entry represents grid-enabled queues,
and branches represent authorized user and job
entries. Authorized user entries include informa-
tion on each user, such as free CPUs and avail-
able disk space. Similarly, each grid job submit-
ted to the queue is represented by a job entry,
which is generated on the execution cluster. We

30 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

The Grid Grows Up

cluster

queue

jobs users

job-01

job-02

job-03

user-01

user-02

queue

jobs users

job-04

job-05

user-03

user-01

user-02

Figure 1. The LDAP subtree corresponding to a cluster resource. A queue entry represents grid-enabled
queues and branches job entries, and authorized user entries, which include information such as each
user’s available resources.

thus implement a distributed job status monitor-
ing system. The schema also describes storage
elements and replica catalogs, albeit in a sim-
plistic manner.

The information providers are small programs
that generate LDAP entries when a user or service
enters a search request. Our custom information
providers create and populate the local database’s
LDAP entries by collecting information — about
grid jobs, grid users, and the queuing system —
from the cluster’s batch system, the grid manag-
er, and so on.

The information system’s local databases pro-
vide clients with the requested grid information
using LDAP and first-level caching of the
providers’ output. To this end, Globus created the
grid resource information service, an LDAP back
end. We use this back end as NorduGrid’s local
information database, and configure it to tem-
porarily cache the output of NorduGrid providers.

The local databases use MDS’s soft-state reg-
istration mechanism to register their contact
information into the registry services, which can
in turn register with other registries. This soft-
state registration makes the grid dynamic, letting
resources come and go. It also lets us create a spe-
cific topology of indexed resources. The registries,
or index services, maintain dynamic resource lists
with contact information for the soft-state-regis-
tered local databases. They might also perform
queries by following the registrations and using a
higher-level caching mechanism to cache the
search results. For an index service, NorduGrid
uses Globus’s grid information index service, an
LDAP back end.

In the NorduGrid testbed, we organized local
databases and index services into a multilevel
tree hierarchy through the soft-state registration
to upper-level indices. The registries do not use
the higher-level caching; they work as simple,
dynamic “link catalogs,” which reduces the over-
all system load. Clients connect to the (higher-
level) index services only to find local databases’
contact information, then query the resources
directly.

Our goal with NorduGrid’s hierarchy was to
follow a natural geographical organization that
grouped resources belonging to the same country
together and registered them with the country’s
index service. These indices are further registered
with NorduGrid’s top-level index services. To
avoid single points of failure, NorduGrid oper-
ates a multirooted tree with several top-level
indices.

User Interface and Resource Brokering
The user interacts with NorduGrid through a set of
command-line tools:

• ngsub: job submission
• ngstat: show status of jobs and clusters
• ngcat: display a running job’s stdout or

stderr
• ngget: retrieve output from a finished job
• ngkill: kill a running job
• ngclean: delete a cluster’s output
• ngsync: recreate the user interface’s local

information about running jobs
• ngcopy: copy files to, from, and between stor-

age elements and replica catalogs
• ngremove: delete files from storage elements

and replica catalogs

(For detailed information about each command, see
the user interface’s user manual at our Web site.)

To submit a grid job using ngsub, the user
describes the job using extended RSL syntax.
This xRSL contains all required job information
(the executable’s name, the arguments to be
used, and so on) and cluster requirements

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 31

Production Grid in Scandinavia

&(executable=“ds2000.sh”)
(arguments=“1101”)
(join=“yes”)
(rsl_substitution=(“TASK” “dc1.002000.simul”))
(rsl_substitution=
(“LNAM”
“dc1.002000.simul.01101.hlt.pythia_jet_17”))

(rsl_substitution=
(“LC”
“lc=DC1,rc=NorduGrid,dc=nordugrid,dc=org”))

(replicaCollection=ldap://grid.uio.no/$(LC))
(stdout=$(LNAM).log)
(inputfiles=(“ds2000.sh”
http://www.nordugrid.org/$(TASK).NG.sh))
(outputFiles=
($(LNAM).log
rc://dc1.uio.no/2000/log/$(LNAM).log)
(atlas.01101.zebra
rc://dc1.uio.no/2000/zebra/$(LNAM).zebra)
(atlas.01101.his
rc://dc1.uio.no/2000/his/$(LNAM).his)
(jobname=$(LNAM))
(runTimeEnvironment=“DC1-ATLAS”)

Figure 2. An xRSL file. Extensions to RSL1.0 include inputFiles
and outputFiles attributes that list URL pairs or the
local–remote file name.

(required disk space, software, and so on). The
user interface then contacts the information sys-
tem, first to find the available resources, and
then to query each available cluster to match
requirements. If the xRSL specification requires
that input files be downloaded from a replica
catalog, that catalog is contacted to obtain file
information. Next, the user interface matches the
xRSL-specified requirements with cluster infor-
mation to select a suitable queue at a suitable
cluster. When one is found, the user interface
submits the job. Resource brokering is thus an
integral part of the user interface, and does not
require an additional service.

Resource Specification Language
NorduGrid uses Globus RSL 1.0 as the basis for
communication between users, the user interface,
and the grid manager.7 Our RSL extensions include
both new attributes and the ability to differentiate
between two sets of attributes:

• User-side RSL. A user specifies the attribute set
in a job description file, which the user inter-
face interprets, modifies as necessary, and pass-
es to the grid manager.

• Grid manager-side RSL. The grid manager

interprets the preprocessed user interface
attribute set.

xRSL uses the same syntax conventions as the
core Globus RSL, although we changed some
attributes’ meaning and interpretation. The most
notable changes are those related to file move-
ment. The major challenge for NorduGrid appli-
cations is that they must pre- and post-stage
many (often large) files. We thus added the
inputFiles and outputFiles attributes, each
of which lists the local–remote file name or URL
pairs. The user interface uploads to the execution
node the inputFiles that are local to the sub-
mission node; the grid manager handles the rest.
Upon job completion, the grid manager moves
outputFiles to the specified storage element. If
no storage element is specified, the system
expects users to retrieve the files through the
user interface.

We also added several xRSL attributes for the
convenience of users. Figure 2 shows a typical
xRSL job-submission script. So far, xRSL seems
sufficiently complex for job description, and the
ease with which we can add new attributes is par-
ticularly appealing. We plan to use xRSL in further
NorduGrid development.

Monitoring
Our grid monitor is realized as a Web interface to
the NorduGrid information system (see Figure 3).
The monitor lets users browse through all pub-
lished information about the system, offering them
both real-time monitoring and a primary debug-
ging tool.

The grid monitor follows the information sys-
tem’s structure, displaying either a subset of object
classes or the whole list, making them easily acces-
sible to users as a set of windows associated with a
corresponding module. Figure 3 shows the main
grid monitor window. Most of the objects are linked
to appropriate modules, so users can simply click
the mouse to launch another module window and
expand the available information about an object
or attribute. Each new window is linked to other
modules as well, which makes browsing intuitive.

Because the grid monitor’s server runs on an
independent machine, it imposes no extra load on
NorduGrid, apart from the frequent LDAP queries.
(The default refresh time for a single window is
30 seconds.)

Software Configuration and Distribution
The Grid’s goal is multisite deployment, and

32 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

The Grid Grows Up

Figure 3. The grid monitor. The monitor interlinks objects of the
NorduGrid’s information system, making them easily accessible.

many site administrators are involved. Because
we can’t expect all of these administrators to be
grid experts, we made the NorduGrid Toolkit’s
configuration as simple as possible. Basically, it
requires writing two configuration files:
globus.conf and nordugrid.conf. The globus-
config package uses globus.conf to configure
the Globus Toolkit’s information system from a
single file. We developed this configuration
scheme in collaboration with EDG, and it is not
NorduGrid-specific. The nordugrid.conf file
configures various NorduGrid Toolkit compo-
nents.

Our approach has proven convenient, letting
administrators set up sites as remote from Scandi-
navia as Canada or Japan in a matter of hours,
with little help from NorduGrid developers.

Use Case:
The Atlas Data Challenge
We initially designed the NorduGrid architecture
for data-intensive tasks, such as those in experi-
mental high-energy physics projects like the
Atlas experiment (http://atlasexperiment.org).
Atlas is scheduled to begin collecting data in
2007, at a rate of about 3 Petabytes per year. To
prepare, Atlas is running a series of increasingly
complex computing challenges to test its com-
puting model and software suite, as well as those
of existing grid solutions.

The first such challenge, Atlas Data Challenge 1
(DC1) consisted of large-scale physics simulations
and ran from July through September 2002. Sim-
ulation participants included 39 institutes from
around the world, including a group of Scandi-
navian researchers using NorduGrid. The Nordu-
Grid team’s task was to process two different data
sets. In the first stage, the input data were 15 files
(totaling 18 Gbytes) that were stored locally at
different NorduGrid sites. The files had to be
processed by a total of 300 simulation jobs that
used 220 CPU-days for the simulations and pro-
duced 1,500 output files totaling about 450
Gbytes. After job execution, NorduGrid automat-
ically uploaded the output files to a storage ele-
ment in Norway and registered them in the repli-
ca catalog.

Figure 2 shows a typical xRSL job-submission
script. The executable attribute specifies the
executable running the simulation. In this case,
ds2000.sh is a script downloaded from the URL
that the inputFiles specify. This script calls
Atlas’s preinstalled physics simulation program,
which runs on the input data that the arguments

attribute specifies. To ensure that such a program
exists, xRSL also requests the runTimeEnviron-
ment DC1-ATLAS. The job is sent only to those
clusters advertising this environment, which indi-
cates that they have the required Atlas DC1 soft-
ware installed. The grid manager uploads the
indicated outputFiles to the specified output
location — in this case, a physical location regis-
tered in the replica catalog collection and defined
by the replicaCollection attribute so that the
replica catalog will resolve on request (rc://
dc1.uio.no/log to gsiftp://dc1.uio.no/
dc1/2000/log).

DC1’s second task was more challenging: the
input data consisted of 100 files with a total vol-
ume of 158 Gbytes. Some NorduGrid sites could
not accommodate all the files, and the team there-
fore decided to distribute file subsets. They then
registered all distributed input sets into the replica
catalog so that, during job submission, the broker
could query the catalog for clusters that had the
necessary input file for the corresponding physics
simulation. However, the jobs were not exclusive-
ly data-driven; when requested input files were
not found locally, the grid manager used the repli-
ca catalog information to download them into
local temporary cache.

In all, the second task had 1,000 jobs that used
about 300 CPU-days and produced 442 Gbytes of
output. NorduGrid uploaded all output files to the
dedicated storage element and registered them in
the replica catalog.

NorduGrid’s success in the Atlas DC1 task
showed its reliability, and the Atlas collaboration’s
validation of the testbed’s calculations confirm
that the project achieved its goals.11 As a matter of
comparison, the EDG testbed could not reliably
perform the task in preliminary tests, and thus was
not used in DC1.

Conclusion
We developed NorduGrid in the Nordic countries’
highly cooperative and efficient environment,
which let us easily overcome various administra-
tive, legal, financial, and technical obstacles. We
plan to further extend and develop NorduGrid in
keeping with the principles of simplicity, reliabil-
ity, portability, scalability, and noninvasiveness.
Among our future development plans are

• enabling an efficient and scalable distributed
data-management system;

• further developing resource discovery and bro-
kering to allow interoperability with complex

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 33

Production Grid in Scandinavia

local scheduling policies;
• improving the authorization and authentica-

tion system, while maintaining its flexibility;
• modifying the information system to accom-

modate heterogeneous clusters, providing more
sophisticated caching mechanisms; and

• developing and implementing bookkeeping and
accounting services, as well as a user-friendly
grid portal.

The NorduGrid Toolkit is freely available at
www.nordugrid.org as RPM distributions, source
tar-balls, and as CVS snapshots and nightly
builds. We also offer a standalone local client
installation, distributed as a tar-ball, which we
designed as a NorduGrid entry point that works
out-of-the-box.

Acknowledgments
The NorduGrid project is funded by the Nordic Council of

Ministers through the Nordunet2 program, and by NOS-N.

We are grateful to the system administrators across the

Nordic countries for their courage, patience, and assistance

in deploying the NorduGrid environment. In particular, we

thank Ulf Mjörnmark and Björn Lundberg (Lund University),

Björn Nilsson (Niels Bohr Institute, Copenhagen), Niclas

Andersson and Leif Nixon (National Supercomputer Centre,

Linköping), and Åke Sandgren (High Performance Comput-

ing Center North, Umeå).

References

1. A. Wäänänen, “An Overview of an Architecture Proposal

for a High-Energy Physics Grid,” Proc. Applied Parallel

Computing (PARA 2002), LNCS 2367, Springer-Verlag,

2002, pp. 76-86.

2. A. Konstantinov, “The NorduGrid Project: Using Globus

Toolkit for Building Grid Infrastructure,” Nuclear Instru-

ments and Methods A, vol. 502, Elsevier, 2003, pp.

407–410.

3. T. Sjöstrand and P.Z. Skands, “Baryon Number Violation

and String Topologies,” Nuclear Physics B, vol. 659, nos.

1-2, 2003, pp. 243–298.

4. O.F. Syljuåsen, “Directed Loop Updates for Quantum Lat-

tice Models,” Condensed Matter, e-print no. 0211513, 2002;

http://arxiv.org/abs/cond-mat/0211513.

5. B. Allcock et al., “Secure, Efficient Data Transport and

Replica Management for High-Performance Data-Intensive

Computing,” IEEE Mass Storage Conf., 2001; http://

storageconference.org/2001/proceedings.html.

6. I. Foster et al., “A Security Architecture for Computational

Grids,” Proc. 5th ACM Conf. Computers and Security, ACM

Press, 1998, pp. 83–92.

7. K. Czajkowski et al., “A Resource Management Architec-

ture for Metacomputing Systems,” Proc. 4th Workshop Job

Scheduling Strategies for Parallel Processing. LNCS 1459,

Springer, 1998, pp. 62–82.

8. B. Kónya, “The NorduGrid Information System,” tech.

manual, NorduGrid, www.nordugrid.org/documents/

ng-infosys.pdf.

9. K. Czajkowski et al., “Grid Information Services for Dis-

tributed Resource Sharing,” Proc. 10th IEEE Int’l Symp.

High Perf. Distributed Computing, IEEE Press, 2001, pp.

181–194.
10. M. Sgaravatto, WP1 Inputs to the DataGrid Grid Informa-

tion Service Schema Specification, tech. report 01-TEN-

0104-0 6, DataGrid, 2001.

11. P. Eerola et al., “ATLAS Data-Challenge 1 on NorduGrid,”

to be published in Proc. Computing in High Energy Physics,

World Scientific, 2003.

Paula Eerola is a professor of physics at Lund University, Swe-

den. Her research interests include B-mesons physics relat-

ed to the Atlas experiment and physics beyond the stan-

dard model, application of grid technologies to high-energy

physics data processing, and the Atlas Transition Radia-

tion Tracker. She received a PhD in experimental particle

physics from the University of Helsinki, Finland. Contact

her at paula.eerola@hep.lu.se.

Balázs Kónya is a lecturer at Lund University, Sweden, and is

working on the NorduGrid Project. His recent work in grid

computing focuses on information system models and their

implementations. He received a PhD in theoretical physics

from the University of Debrecen, Hungary. Contact him at

balazs.konya@hep.lu.se.

Oxana Smirnova is a docent (associate professor) in the Exper-

imental High Energy Physics Department of Lund Univer-

sity, Sweden. Her recent interests include multiparticle

dynamics and porting high-energy physics applications

onto the Grid. She is a member of the Delphi and Atlas

high-energy physics experiments, and participates in the

Large Hadron Collider (LHC) Computing Grid, the EU’s

DataGrid, and the NorduGrid projects. She received her

PhD in physics from Lund University for experimental

studies in quantum chromodynamics and interferometry.

Contact her at oxana.smirnova@hep.lu.se.

Tord Ekelöf is a professor at the Department of Radiation Sci-

ences of Uppsala University, Sweden, where he received his

PhD in particle physics. He has worked with many experi-

ments at the European Particle Physics Laboratory at CERN

in Geneva, including the Delphi and Atlas detectors. He

chairs the SweGrid project, aimed at building a grid infra-

structure for research in Sweden. His other interests include

developing and deploying various Atlas detector compo-

nents, and searching for the Higgs particle. Contact him at

tord.ekelof@tsl.uu.se.

34 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

The Grid Grows Up

