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1. _INTRODUCTION

The area of system identification has expanded widely in the
last two decades. Since micro-computers now are becoming
more powerfuls it is time to start implementing various
algorithms for identification and control. These algorithms,
howevers ought to be simple and robust» since the
micro—computer after all is rather slow and has limited
numerical precision.

In an identification experiments there is always the trouble
of choosing a suitable input signal. One attractive choice
is to wuse discrete time sinusoidss which are easy to
generate in a small computer by recursive equations.

The first reascn for writing this paper is:

Some vyears agos Per Molander and 1 tried to make the
mini—-computer of the department s a PDP-15, into a
music—-machine. We implemented the recursive equation of an
oscillators and by changing one parameter and initial
conditions it was possible to change frequency and amplitude
of the "music-—instrument'" output.

We observeds however:s that often the amplitude of the
oscillation was either increasing or decreasing with time.
This of course was the effect of numerical troubless such as
round-off errors etc.

Hences if for identification purposes or other reasonss one
wants to implement an algorithm for an oscillator on a
computers it is suitable to incorporate some amplitude
stabilizing device.

The second reasaon for writing thiss is that there 1is very
little material published on nonlinear discrete time
systems. These systems are generally hard to analyzes but
they nevertheless will appear more and more frequently as
computers will take over the control of industrial
processes.

This paper presents one example where analysis is succesful.

The paper is organized as followst in Section 2 the problem
is formulated. 1In Section 3 it is attacked with a
Lyapunov-type approachs and certain types of stabilizing
controls are characterized. The choice of one certain
solution leads to an intuitively appealing implementations
which is elaborated in Section 4. Section 5 is a conclusions
and references are contained in Section 6.



2.__THE_PROBLEM

A state—-space realization of a discrete time oscillator is
x (t+h) - x (€ D]
— ~ ﬁ * (2.1)
x (t+h) x )
& = cos(wh? B = sintuh?

where h is the sample interval and w is the osecillation
angular frequency.

The state trajectory x(t) will for all times lie on a circle
with radius

r=1L[x ADVM+ X aOuNu»\Nn xcad (2.2

1 2

Since the system is on the stability boundarys small
disturbances can cause the state vector to move away from
its nominal trajectory. In a practical implementation of
(2.1 such disturbances typically are round-off errors in
the matrix multiplication and 1limited capacity to represent
numbers.

The_problem thus is: Find (nonlinear) control functions u

1
and cm such that the system
¥ (t+h) = ax () = Bx () + u (x Ctrsx (t))
1 1 2 1 1 2
(2.3)
x (t+h) = gx () + ax (t) + u (x (trax (t2)
2 1 2 2 1 2
is trajectory stable in the sense that
lim |jxctr) = 1 (2.4)

toe

irrespectively of initial conditions x<(0).

The choice of "reference amplitude" to unity is of course



arbitrary.
A feedback solution to the problem is desired since it then

can handle disturbances affecting the system at any time
instant.



S3.__ANALYSI1S

In this section the problem will be analyzed with the second
method of Lyapunov. Characterization of some possible
gstabilizing controls will be made.

The idea of using a Lyapunov approach has been borrowed from
Astrom [1].

The system equaticns are

X (t+h) = ax (t) - Bx (t) + u
1 1 2 1
(3.1)
x (t+h) = Bx () + ax (t) + u
2 1 2 2
A possible candidate to Lyapunov function is
Vi) = n=xaﬁu=ml num (3.2
Insertion of equation (3.1) gives
Vit+h) =
2 2 2
= [(u +ax ()-Bx (t)) + (u +Bx ()+ax (£)) - 1] (3.3
1 1 2 2 1 2

Nows for the sake of simple analysiss :n and :M are

restricted to be of the form

u = C(ax (t) — Bx C(EIIF(fxctI|P
1 1 2
(3.4)
u = (Bx (£ + ax CEIIFYnctI |
2 1 2
The equation (3.3) for V(t+h) then reduces to
Vit+h) = nau+ﬁvw=xanv=n = aum (3.5

where it has been used that

o<+ 8= 1 (3.6)



From well known stability resultes see e.g. LaSalle [2]1 the
system (3.1) will now be asymptotically trajectory stable in
the sense that

lim jIxCE)]] = 1 3.7)
tae=

if
TV(t) = Vit+h) - V(t) =

naA+th=xnnu=N l »uNl n=xnnu=N l »um mc nu‘mv

with equality only for |[[x<{t)]| = 1.

Relation (3.8) can be separated into three cases!

=xanv=wlﬂ < aA+mVM=xnnu=Mlﬂ < al:xanu=m if Jix(t) <1
2 2 2
(1+F) |Ix(d}] -1 = [[x(t)|] - 1 if |In<tdj] = 1 (3.9

2 2 2 2
1-ix<td || < (1+F) |Ix<t) || =1 € [xCtI]| -1 if [[xC(tIf>1

or equivalentlys that

1 <€ <1+ ¢ 2xetrp - 1 if fIxCEd) <€ 1
2
(1+6)° = 1 1F fIxctd) = 1 (3.1
-2 2
2% -1 € (4+6° < 1 1F [xCed] > 1

Additionallys of course

n»+ﬂvm 2 0 (3.11)

This leads to the picture in Fig.3:1



4. __A_SPECIFIC SOLUTION

In the previous section: a class of stabilizing controls in
feedback form for the system (3.1) was characterized.

Now a specific choice of the function f(-) will be made:

ECIxCEI = [IxCtr T - 1 (4.1)

It is easily veryfied that this f(-) is admissible.

The nonlinear system then can be written with the aid of
equations (3.1)s (3.4) and (4.1)¢

x (t+h) = [ ax (t) — Bx (t) J/|Ix<tor))
1 1 2
(4.2)
x (t+h) = [ Bx (£) + ax (t) 2/||x(t)|
2 1 z
ar in matrix form
®x(t+h) = Ax(t)/|Ix<ta ) (4.3)
where
a -8
A = (4.4)
] &

It is now evident what the control with f as in (4.1) does
to the system: When recursion is performeds the state vector
is normalized to unity.

This can also be seen in the Lyapunov funcion (3.5)

1 2

Vit+h) = [¢1 + [Ix<td)| - Auw=xﬁnv=m -11° =0 (4.5)

An error is totally compensated for in one step. Since this
is the fastest possible convergence to the stationary
amplitude: the control with f(-) as in (4.1) is
time—optimal.

In Astrom [11y the corresponding continuous time problem is
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solvad. It is interesting to see that the convergence
properties are superior in the discrete time case.

A straightforward extension of the stable system (4.3) for
the state vector to converge to any chosen amplitude My is

x(t+h) = AxCEIM/Ix (D) (4.6)
which will have the same stability properties as (4.3).

Here it is appropriate to point out that the system (4.6)
will be trajectory stable also if there are errors in the
coefficients « and B. The trajectory then converges to a
circle with radius

r =1 QN + uNHA\NZ (4.7

The number of arithmetic operations required in a
straightforward implementation of (4.3) are

3 additions
8 multiplications
1 evaluation of y = 1/va

The last function can be solved in a few iterations of the
Newton—Raphson algorithm

Y =y [ 3 - m%Nu\N {4.8)
n+1 n n

The final results system (4.6) is intuitively appealing for
its simplicity. It is also very simple to implement in a
computer.
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2 CONCLUSIONS

The problem of nonlinear amplitude stabilization of a
discrete time oscillator has been attacked by a Lyapunov
wmethod approach. A class of stabilizing controls has been
characterized. A specific choice of control turned out to be
time-optimale in that an error in amplitude is totally
eliminated in one recursion step.

This solution is intuitively appealing - when knowns it is
almost trivial!

The final equations for the amplitude stable oscillator are
easily implemented in e.g. a micro-computer.
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