LUND UNIVERSITY

INTEROPTDYN-SISO
A Tutorial
Polak, Elijah; Astrém, Karl Johan; Mayne, David Q.

1982

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Polak, E., Astrom, K. J., & Mayne, D. Q. (1982). INTEROPTDYN-SISO: A Tutorial. (Technical Reports TFRT-
7240). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
3

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/9cf25608-f8f8-4763-b46d-0389f523f4d5

CODEN: LUTFD2/ (TFRT-7240)/1-053/(1982)

INTEROPTDYN-SISO: A TUTORIAL

.E POLAK
K J ASTROM
D Q MAYNE

LUND INSTITUTE OF TECHNOLOGY
DEPARTMENT OF AUTOMATIC CONTROL
MARCH 1982

DOKUMENTDATABLAD RT 3/81

Document name
LUND INSTITUTE OF TECHNOLOGY INTERNAL REPORT
DEPARTMENT OF AUTOMATIC CONTROL Daifies 0T HESUS
Box 725 March 1982
S 220 07 Lund 7 Sweden Document number
CODEN:LUTFD2/(TFRT-7240)/1-053/(1982)
Authorls) Supervisor
E Polak
. Sponsoring organization
K'J Astrom STU Contract 77-3548
D Q Mayne NSF, SRC

Title and subtitle
INTEROPTDYN-SISO: A TUTORIAL

Abstract

INTEROPTDYN-SISO is an interactive package for design of a special class of single-
input single output linear feedback systems. The performance specifications are
given in terms of the closed loop step response, frequency response criteria, bounds
on plant input and its derivative, and bounds on design parameters. The package is
based on INTRAC-C, a University of California, Berkeley, extension of the language
INTRAC, from Lund Institute of Technology, the classical design package CDP from
Imperial College, and the semi-infinite optimization code OPTDYN, developed at the
University of California Berkeley. The package runs under UNIX and produces
graphical displays for HP2648A, and TEKTRONIX 4025 black and white terminals and
for TEKTRONIX 4027 and RAMTEK color terminals.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 53

Security classification

Distribution: The report may be ordered from the Department of Automatic Control or borrowed through
the University Library 2, Box 1010, $-221 03 Lund, Sweden, Telex: 33248 Lubbis lund.

INTEROPTDYN-SISO: A TUTORIAL

by

E. Polak*, K. J. Astrom** and D. Q. Mayne***

ABSTRACT

INTEROPTDYN-SISO is an interactive package for design
of a special class of single-input single-output linear
feedback systems. The performance specifications are given
in +terms of the closed loop step response, frequency
response criteria, bounds on plant input and its derivative,
and bounds on design parameters. The package 1is based on
INTRAC-C, a University of California, Berkeley, extension of
the language INTRAC, from Lund Institute of Technology, the
classical design package CDP from Imperial College, and the
semi-infinite optimization code OPTDYN, developed at the
University of California Berkeley. The package runs under
UNIX and produces graphical displays for HP2648A, and TEK-
TRONIX 4025 black and white terminals and for TEKTRONIX 4027
and RAMTEK color terminals.

¥Department of Electrical Engineering and Computer Sciences
and the Electronics Research ILaboratory, University of Cali-
fornia, Berkeley, Ca. 94720

**Department of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden.

*¥**¥Department of FElectrical Engineering, Imperial College,
London, SW7 2BT, England.

CONTENTS
1. INTRODUCTION
2. HOW TO RUN THE PACKAGE
3. AN EXAMPLE
4. INTRAC-C
5. REFERENCES
APPENDIX A: COMMANDS FOR CONTROL SYSTEM DESIGN
APPENDIX B: INTRAC-C COMMANDS
APPENDIX C: MACROS FOR OPTIMIZATION EXECUTION
APPENDIX D: MACROS FOR GRAPHICS
APPENDIX E: MACROS FOR MATRIX CALCULATIONS

24
27
33

- 34

36
40

42
45

1. INTRODUCTION.

INTEROPTDYN-SISO is an interactive package for the
design of single-input single-output (SISO) linear feedback
systems. It was developed at the University of California,
Berkeley, by extending, modifying and combining INTRAC
[A1,W1], an extendible interactive language from, CDP [D1] a
SISO classical design package, and a semi-infinite optimiza—
tion FORTRAN code OPTDYN [B3] which implements the Gonzaga-
Polak-Trahan algorithm [G1].The package currently runs on
the DEC VAX 11/780 wunder the UNIX operating system and
allows the use of HP2648A and TEKTRONIX 4025 black and white
terminals as well as TEKTRONIX 4027 and RAMTEK-color termi-
nals. Since almost all of the code in the package is in

standard FORTRAN, the package is highly portable.

The package is intended for the design of control sys-
tems of the form shown in Fig. 1, i.e., a simple feedback
configuration. The controller may be broken up into two

parts as shown in Fig. 1.

The control system performance specifications must be
given in terms of (i) an envelope on the closed loop step
response, (ii) frequency domain criteria, (iii) upper and
.ower bounds on the amplitude of the plant input and its
derivative, resulting from a step input to the control sys-
tem, and (iv) upper and lower bounds on design parameter

amplitudes.

The allowed envelope on the step response shown in

Fig. 2.

The frequency domain specifications are in the form of
a parabola in the s-plane, to the left of which closed loop
poles are to be placed, see Fig. 3, below, and of gain and
phase margins. To ensure that the closed loop poles are in
the region specified, one plots a modified Nyquist diagram
of the return difference evaluated along the parabola in the
s-plane and one makes sure that the origin is not encircled
in the G(s)-plane by encasing the origin in the G(s)-plane
inside a parabolic region defined by the gain and phase mar-
gins. To avoid problems caused by "unstablé" open 1loop
poles, the return difference is renormalized (see Sec. 2.3).
Note that when the parabola in the s-plane degenerates to
the jw-axis, the usual Nyquist criterion and gain and phase

margins are obtained.

The plant and the compensators and are assumed to be
linear. They may be characterized either in terms of the
coefficients or in terms of the poles and zeros of their
transfer functions. A state space characterization is also
available and the command CONVERT may be used for transform-
ing one description into another. However, the design param-
eters can only be the coefficients of the denominator or the
numerator of the compensator transfer functions. The CDP
commands for manipulating system descriptions, refer to the

plant as SYS, +the (continuous) feedforward controller as

CFF, and the (continuous) feedback controller as CFB. Ve
shall use this notation in referring to the appropriate

parts of the closed loop control system.

The design problem 1is reformulated as a semi-infinite
optimization problem with inequality constraints, of the
fornm

j X
min{f(z) | g (z) <0, j =1,2,...,m; phi (z,pk) <0,

P€P ’ k = 1929"91} (1)
k k

The algorithm used in the package for the solution of
this problem is the Gonzaga-Polak-Trahan phase I - phase II
method of feasible directions for semi-infinite problems
(see [G1]). This algorithm has been used successfully in the
design not only of control systems, but also of electronic
circuits [P2], digital filters [L1], and structures [B2,
P1]. To display a simple description of the algorithm, type
the command ALGO. To obtalin more detailed information on the
operations in each step, type the command ALGO STEPn, where

n stands for step number.

The upper and lower bouqu on the design parameters
give rise to the functions g‘(z). The constraints on the
open loop frequency response, OnN the step response, on the
plant input and its time derivative give rise to 9 functions

phik (z,p,). The built in cost functions f(z) are the

ke

integral square error of +the closed 1loop system step

response

tfinal
2
g [1 - y(z,%)] dt (2)

and, for some cases, the integral of the square of the input

to the plant u(x,t) due to a step input to the system:

tfinal
2
£ u(z,t) dt (3)

2. HOW TO RUN THE PACKAGE

A short description of how the package may be used is
given in this section. The package runs on the VAX 11/780
under the UNIX operating system. The package does not dis-
tinguish between upper and lower case letters and the user

may issue commands in either form.

2.1 Start Up

After entering the appropriate UNIX directory, the com-

mand d.siso starts the package. The package requests data in

an interactive mode. To leave the package temporarily, one
types CNTRL z. The package is then suspended and one 1is
brought back to UNIX. The UNIX command fg returns the user

to the package again.

2.2 Control System Definition

The control system 1is specified by entering the

transfer functions of the plant SYS, and of the compensators

OFF and CFB by means of CDP [D1] procedures which have been
converted to INTRAC-C commands. The design parameters in CFF
and CFB which are to be adjusted by the optimization program
are identified while entering the transfer functions. (The
need %o enter transfer function coefficients either as
numbers or as variable names has necessitated some modifica-

tion to the procedures in CDP [p1].)

To assist the user in the selection of compensator
structure, ‘the package includes the commands NYQUIRST,
ROOTLOCS and BODE, which request parameters in conversa-

tional mode and produce the appropriate plots.

The command ENTER is used %o define the transfer func-
tions. PFollowing this command the package will ask for the
parameters in a conversational mode. Two dialogues illus-
trate how the command operates. The numbers entered in these
dialogues correspond to the example to be considered in the

next section.

Dialogue 1.

This dialogue shows how the command ENTER is used to
define the plant. The user's inputs are in capitals:
ENTER
Form of data, element
CPY SYS
Gain

1

Time delay
0]
Order of numerator and denominator
03
Numerator coefficients is ascending order
6.0 8.0 5.0 1.0
Denominator coefficients in ascending order
6.0 8.0 5.0 1.0
#

A slightly modified dialogue is used to describe a com-

pensator with adjustable parameters.

Dialogue 2
ENTER
Form of data, element
CPY CFF
Gain
1.0
Order of numerator and denominator
2 2
Numerator coefficients in ascending order
z(1:1) 2(2:1) 2(3:1)
Denominator coefficients in ascending order
0.0 1.0 0.0
#

The transfer function CFB is entered in a similar way.

The feedback compensator is set to unity by default.

-8

The coefficient values that were entered may be checked
by the command CHEK; they may be altered by the command

MODIFY. The modifications are made conversationally.

2.3.

Initialization of the Optimization

Once the system descriptions have been entered the
design problem is converted into the form of the optimiza-
tion problem (1) and the optimization 1is initialized by the

command SISOINIT.

*

The program defines 2n functions g‘(z) from the ine-
qualities: b1(i) & z(i) £ bu(i), i = 1,2,3,...,1, where n is
the dimension of the design vector, bl(i) is the Ilower
bound on z(i) and bu(i) is the upper bound on z(i). The user
may specify one of the following two constraints in the fre-
quency domain: (i) phase and gaiﬂ margins, which are con-
verted into a forbidden parabolic region in the Nyquist
plane from which the ordinary Nyquist locus is to Dbe
excluded, or (ii) a parabolic region in the s-plane in which
the closed loop poles are to be located, which is translated
into a parabolic region in the G(s) plane from which the
modified Nyquist locus is to be excluded. Given that G(s) =
n(s)/d(s), the ordinary Nyquist locus of G(s) is obtained by
plotting [d(s) + n(s)]/d(s) for s = jw, 0 £ wO <w L we &
o0, while the modified Nyquist locus igs obtained by plotting
[n(s) + a(s)]/(s + a)**k for s on the parabola in the s-
plane, again for wO £ w £ wc, with a such -a is inside the

parabolic region and k = degree[n(s) + d(s)]. In both cases,

-9-

'(when the zeros of the denominator of the expression are in
the stable region in the s-plane) stability is ensured by
requiring that the origin in the G(s) plane not be encircled
by the locus. The frequency domain constraints give rise to
phi1(z,w). In addition, the user may specify constraints on
the step response: overshoot, rise time and rise amplitude,
settling time and settling amplitude, which give rise to the
functions phih(z,t), with k¥ = 2,3%3,4,5; the user may also
specify upper and lower bounds on the plant input u and its
derivative udot (stored in BUU, BLU, BUUDOT, BLUDOT, respec-
tively), which give rise to the functions phik(z,t), k =
6,7. Constraints on u and udot can only be séeoified when
the corresponding transfer function relating them to the
system input is proper. Finally, the user has a choice of
two cost functions: integral squaré error or integral square
plant input, both corresponding to a unit step input to the

system, see (2) and (3).

The selection of constraints to be used is achieved by
changing an indicator in the symbol table from O to 1. The
appropriate indicators are NYCON1, NYCON2, STPCON, UCON,
UDTCON, for the ordinary Nyquist locus, modified Nyquist
locus, step response, plant input, and derivative of plant
input (for a step input to the closed loop system), respec-—
tively. The names in the symbol table of the constants a and
kX used for defining the modified Nyquist locus are ACONST

and KEXP. The parabola in the s-plane 1is defined by x =

~10=-

RLP1*y**¥2 + RLPO, while the parabola in the G(s)-plane is
defined by y = P1¥x**2 - PO, with x and y corresponding the
the real and imaginary axes, respectively. To select square
integral error cost one sets OBJECT = 1, for square integral

input cost, one sets OBJECT = 2.

When the command SISO is typed in, the program asks for
a description of the specifications in conversational mode,
as shown below and sets all constants and variables to
appropriate values, so the user need not concern himself
with the above described constants in the symbol table at
this stage. The user is assistéd by (color) diagrams which
are displayed on the screen. The following fesponses are
reasonable for the problem defined by the dialogues 1 and 2,

above. The user's responses are in upper case.

Dialogue 3
SISOINIT
COMMENT: define bounds on z
type in bu(1)
#50.
type in bl(1)
#0.
type in bu(2)
#50.
type in bl(2)
#0.
type in bu(3)

-11=

#50.
type in b1(3)
#0.
COMMENT: define an initial parameter vector Z do you wish %o
use the default values z(i) = 1.9
#NO
type in z(1)
#5.
type in z(2)
#5.
type in z(3)
#5.
COMMENT: define the frequency interval [wO,wc] for the con-
straints.
do you wish to use the default Qalues wO = 10E-6, we = 30
?
#YES
COMMENT: define the stability constraints.
do you wish to use constraints on the actual Nyquist
plot?
#YES
do you wish to use the default gain margin of 2.2 and
default phase margin of 45 deg?
YES
do you wish to use constraints on the modified Nyquist
plot?
#N0

-12-

COMMENT: define the time domain constraints.
do you wish io have constraints on the step response?
#YES
please give values for the above diagram
over = 7
#1.1
risamp = ?
#.
setamp = ?
#.05
trise = 7
#.5
tset = 7
#2.5
tfinal = ?
#5.
do you wish to have amplitude constraints on the control?
#NO0
do you wish to have amplitude constraints on udot?
#NO0
COMMENT: select a criterion.
if you wish to use integral square error criterion, type
in 1; if you wish to use input energy criterion, type in
2
#1
COMMENT: adjust algorithm parameters.

do you wish to use the default values e = .2, oldstp =

13-

100. %
#YES

2.4 The Optimization Algorithm

It is difficult to use this package in an intelligent
way without having, at least, an elementary idea of how the
optimization algorithm works and how it is implemented in
the package. TFor a complete descriﬁtion of the code and
parameters of +the Gonzaga-Polak-Trahan algorithm used in
this package see [B3]. In brief, the algorithm has the fol-

lowing form:

ALGORITHM:

STEP O: 1Initialize the design vector Z, the iteration
counter ITER and algorithm parameters E, OLDSTP,
ALPHA, BETA, DELTA, PUSH (the optimization problem
definition also occurs in this step).

STEP 1: Evaluate the cost and constraint functions.

STEP 2: Determine the E-active constraints and the
corresponding gradients.

STEP 3: Evaluate the E-optimality function THETA and the
corresponding search direction H.

STEP 4: If THETA < -DELTA*E go to Step 6.

STEP 5: Adjust E or Q, as required.

STEP 6: Compute ZNEW by means of the phase 1 - phase II

Armijo stepsize rule.

-14-

STEP 7: Set Z = ZNEW.

END.

In Step 2, the algorithm computes the maximum con-

straint violation

i .
PSI(Z) = max{0; g (Z), j = 1,2,...,m;
k .
max phi (Z,p), k = 1,2,...,1} (4)
pE€P k
k k
It then computes the gradients of those g (Z) and phi (Z,p)

which satisfy

2 (2) 3 PST(2) - B, 3 {1,2,...,n) ' (5)

k
phi (Z,p) > PSI(Z) - B, ¥ {1,2,...,1]} (6)

These gradients are then used to construct the quadratic
program which defines THETA, as its value and H (the search
direction) as its argmin. The quadratic program has parame-
ters PUSHG (for the g constraints), PUSHF (for the func-
tional phi constraints) and SCALE which can be wused %o

recondition a badly scaled design problem.

The algorithm code is written in FORTRAN. It has a

number of break points in it (e.g. COPFE110, QP90) at which

it tests a flag and if the flag is set, computation is
suspended and the program calls INTRAC-C, as if it were a

subroutine. This enables the user to examine the current
results of the computation either by printing out values or

by plotting graphs, modify parameters in the algorithm or

-15-

compensator and carry out whatever diagnostic computation
the user may find to be helpful. To find out where the algo-
rithm execution has been suspended, the sophisticated user
types the command WHERE. For a list of all break points use
the command BREAKS. The breaks can be used to modify the
execution of the algorithm. For example, to ensure that the
algorithm stops at COPFE110 (before the function evalua-

tions), the user sets a flag by means of the command

HALT COPFE110 ALWAYS

To continue execution after a stop, the user issues the com-

mand

GO

To re-evaluate all the functions, the user types

GO COPFE110

For more complex examples of execution control, use the LIST
command to display the macros STEP2, STEP3, STEP45, ARMIJO
and RUN. These macros largely remove the need for the user
to be knowledgeable as to the locations of the break points

in the FORTRAN code.

The parameters and variables in the FORTRAN code which
the user may need to examine or modify interactively, are
stored in the SYMBOL table. They can be listed by means of
the command SYMBOL and they can be altered by the command

SET. See Section 4 for further details.

16—

The algorithm can cycle in the loop defined by Steps 2
to 5 and in the stepsize calculation in Step 6. We shall
refer to this cycling as "inner iterations". The algorithm

can be executed in two ways.

(i) One can execute k iterations of the algorithm and

store the results, by means of the command

RUN k STORE

which stores Z, PSI and F in the arrays ZG, PS3IG and FG
(where PSI is as defined above and F is the value of f(Z2)).
When storage is not desired, but only the values of ITER F
PSI THETA and E are to be displayed, replacé STORE with

PRTALL (ITER is the iteration number).

(ii) One can execute the algorithm almost one Step at a
time by means of the commands STEP2, STEP3, STEP45 and
ARMIJO (for Step 6), which allow one to inspect its behavior

in the inner iterations.

The algorithm normally stops at the end of Step 2 so as
to allow one to examine the values of design parameters and
corresponding constraints. The macro RUN, ARMIJO, RARMIJO,
RARMIJOS and some of the other macros for optimization call
the macro SETXBR which detects if any of the algorithm
parameters have been changed and returns execution to the
correct point in the program. For example, initialization
changes 7, E, OLDSTP, and possibly ALPHA, BETA, DELTA and

MU, which results in Step 2 being executed one more time

~17-

before proceeding. However, SETXBR does not detect if any of
the problem parameters have been changed (viz. NYCON1,
NYCON2, STPCON, UCON, UDTCON, OBJECT, BL, BU, BLU, BUU, BLU-
por, B»BUUDOT, PO, P1, RLPO, RLP1, OVER, RISAMP, SETAMP,
TRISE, TSET, TFINAL). Consequently, whenever one of these
parameters is changed, the user should execute the command
STEP2 in order to return to program to the correct point of

execution. Otherwise the program may jam.

2.5 Optimization Execution

After the initialization is completed, the optimization

is executed by the command

RUN ITER STORE

The number ITER specifies the number of iterations to be
executed; the option STORE causes the values of 72, F and PSI
to be stored in the arrays ZG, FG and PSIG, respectively. F
is the value of the cost function; PSI is the value of the
largest constraint violation. During execution, the results

of each iteration are printed as follows:
I F PSI THETA E

where I 1is the iteration number; THETA and E are internal
variables related to the optimization algorithm. The value E
= 0 indicates that the current design parameters satisfy the
F. John optimality condition for semi-infinite programming

(see [G1]). All constraints are satisfied if PSI is =zero.

-18-~

In the normal, "time varying" version, the number E is
monotonically reduced during the optimization (a "time
invariant" version can be created by the command RUN ITER
STORE TI). Sometimes the optimization becomes suspended
because the quadratic program which computes the search
direction fails. When this happens a message appears. To
"resuscitate" the program, it is necessary to decrease E in
order to reduce the number of active gradients. This can be

done by making use of the scratch pad, as follows.

ps BE = E/4

Set E = EE

It is also possible to experience very slow progress in
the computation due to a poor initial design or to poor
problem scaling. In that case, an experienced designer can
execute the algorithm one step at a time using the commands
STEPn, n = 2,3,45, and RARMIJOS, and examine the results of
the computation at the end of each step. The most interest-
ing information is obtained at the end of Step 3, where one
can. compute the angles between the computed search direction
H and the active gradients by means of the macro PRTANG, and
in the step size calculation in Step 6, where the active
constraints and the difficulties encountered in step size
calculation can be displayed by means of the macro RARMIJOS.
When +the angles between the search direction H and the
active gradients are badly unbalanced due to poor problem

scaling, the experienced designer can restore a certain

-19-

amount of balance by modifying the PUSHG and PUSHF factors
for the optimality function THETA. The push factors are in
the symbol table (see [B3]). The macro RARMIJOS displays
graphically the inner iterations in the step size calcula-
tion. In particular, when this macro is executed, one gets a
very good idea as to which of the constraints is causing
most of the difficulty as well as to whether the values of
ALPHA or BETA are too large. OLDSTP, the first step size
tried in the Armijo subprocedure, is automatically adjusted
in the course of the computation and usually needs to be set
only during the first few iterations. When more than 3 or 4

inner iterations are required for step size calculation, it

may be desirable to reduce the parameters ALPHA and BETA.
OLDSTP should be increased if the inner iterations were
spent in increasing step length and reduced if the inner
iterations were used to reduce the initial step length. Cau-

tion: The parameters should not be changed frequently or

unpredictable algorithm behavior may result. If the jamming
in Step 6 is attributable to E being too small, so that a
certain constraint is neglected in the‘calculation of H, E
can be increased at this point to improve computational

efficiency.

It is not always clear in advance that all the con-
straints that are specified in the initialization stage can
actually be met with the given compensator structure. When

the constraints cannot be met, the algorithm will eventually

-20-

jam with PSI > 0. At this point, the designer may decide to
change the compensator or relax some of the design con-
straints. As we have mentioned earlier, when a design
parameter is changed, it is necessary to execute the command
STEP2 before any other command such as RUN or RARMIJOS. The
package also includes an interrupt feature, activated by
hitting the interrupt key, which can be used to interrupt

macros such as RUN.

2.5 Analysis of Results

When the optimization is suspended after the number of
iterations specified in the RUN command, the properties of
the resulting closed loop system may be investigated. The

command

SYMBOL

can be used to find out which of the quantities of interest

are in the main symbol table, while the command

PTABLE

can be used to display the quantities stored in the scratch

pad symbol table (see Section 4). The command

PRINT

can be used to display any value in either symbol table.
First, display PSI: PSI = O indicates that all the con-
straints are satisfied, PSI > O indicates that they are not.

To find out which constraints are not satisfied, first

~21 =

display G, to determine if the bounds on the design parame-
ters are violated. Next, PHI is a matrix whose rows are the
constraints on the frequency and time domain responses. To
find the values of the parameters p at which the maximum

occurs in each row, use the command

MATMX V1 V2 = MAX(PHI)

to compute the indices of the maximum row values of PHI in
V1 and the corresponding column numbers in V2. Alterna-

tively, use graphics. The command

SISOSTEP col iter k; window
displays the step response for i1teration number iter in
color col. The variable k should be 1 for the first
display. This gives scales. For the following displays k
should be set to the display number in order to ensure
correct labeling. When window is not specified, the display

will be in window WSTEP, otherwise it will be in whatever

window is named.
Similarly, the commands
SISOU col iter k; window

SISOUDOT col iter k; window

will display the plant input and its derivatives.

The command

s

SISOSTAB col iter k

displays the Nyquist or the modified Nyquist curve, which-
ever one is used in the problem, with col, iter and k as

above.

To obtain the final value of the design parameters use

the command

PRINT Z

To obtain intermediate values, use the command

PRINT ZG(:iter)

with iter the desired iteration number. To obtéin the final
value of the compensators that are being designed. use the
command CHEX. To obtain the final closed 1loop transfer
function, use the command RESPONSE which will display this
transfer function and, in addition, if requested, the
response of the final closed loop system to step, ramp, par-

abolic and sinusoidal inputs.

2.6 Summary.

By using eight commands d.siso, ENTER, SISOINIT, RUN,
SISOSTEP, SISOU, SISOUDOT and SISOSTAB, it is possible to
carry out simple control system design exercises. A complete
example is given in the next section. There are additional
commands in the package for more sophisticated displays and

diagnostic computations. A list of all available commands 1is

-2%—

given in the appendices.

3. AN EXAMPLE

We shall now present a complete example to illustrate
how the optimization-based SISO control system design pack-

age may be used.

The plant to be controlled has the transfer function

It is desired to find a PID controller which satisfies step
response specifications of the form given in TFig. 2, with
over = 1.1, risamp = 0.7, setamp = 0.05, trise = 0.5, tset =
1.2 and tfinal = 5. It is also required that the phase mar-

gin be 45 degrees and the gain margin be at least 2.2.

The PID regulator has the transfer function

2
Z(1) + z2(2)*s + Z(3)*s

where Z(1), Z(2) and Z(3) are the components of the design

vector Z; they are constrained to lie between O and 50.

To obtain a solution to the design problem the package
is 1initialized as before with the commands d.siso, ENTER,
and SISOINIT, as shown in the Dialogues 1-3 in Sections 2.2

and 2.%. The command

-4

RUN 2 STORE

results in the following display on the screen.

I=0.0 F=0.0 P3I=0.0 THETA=0.0 E=0.2

I=2 F=0.248 PSI=0.04% THETA=-0.05 E=0.2

H

Since PSI is positive, the constraints are not satisfied and
the optimization is continued for one more iteration with

the command

RUN 1 STORE

The following results are then obtained

I=3 F=0.27 PSI=0.024 THETA=-0.03 E=0.1

The algorithm is unable to solve the quadratic programming
problem and a message appears. The current design parameters

are

7 (15.5 19.0 12.9)

The step response (displayed by the SISOSTEP command) has a
slight undershoot. (See Figs. 4a and 4b). To continue the
optimization the parameter E is changed manually by the com-

mand

SET E = 0.02

This reduces the number of active constraints and the optim-
ization can be continued. After 8 iterations we get

I=7 F=0.267 PSI=0.0 THETA=-0.014 E=0.02

~D5-

I=-8 F=0.245 PSI=0.0 THETA=5.7e-5 E=0.02
The design vector is

7 = (22.9 19.0 15.9)

The displays produced by the commands SISOSTEP and SISOSTAB
show that all constraints are satisfied.

The standard PID regulator has very high gain at high
frequencies. To reduce the high frequency gain of the regu-
lator, the transfer function of the regulator is modified to

2
z1 + z2¥s + z3%*s

using the MODIFY command on the file CFF. With the previous
value of the design vector the overshoot beconmes 25% which
is far too high. Running the optimization algorithm for 11

more iterations gives
I=19 PF=0.34 P8I=0.05 THETA=-0.07 E=0.0025

Since PSI is not zero the constraints are not satisfied.
Analysis of the step response (see Fig. 5b) shows that the
overshoot is 15%. The Nyquist curve (see Fig. 5a) also

reaches into the forbidden region. The design vector 1is
7 = (20.8 12.8 15.7)

No substantial improvement is obtained even if the program

is run for many more iterations. The conclusion 1is clear

Y-

that the specifications cannot be satisfied with the chosen
configuration. Either one must be satisfied with the design
obtained or else one may try to change the value 0.1 in the

regulator to a smaller wvalue.

4. INTRAC-C

4.1. Introduction

INTRAC [A1, W1] is an extendible, interpreted, BASIC
like language. It is a small nucleus, written in FORTRAN,
which can be used for converting a set of FORTRAN subrou-
tines into an interactive package. These subroutines are
accessed via INTRAC commands. In its nuclear fofm, INTRAC is
a very simple language: it has neither an arithmetic expres-
sion parser (so that only Dbinary arithmetic operations are
allowed), nor subscripted variablés. However, it does have
complete logic capability, interrupt capability, an ability
to read both numbers and strings inputted from a terminal,
as well as to produce both alphanumeric and graphical out-
put, and an ability to control the execution of a FORTRAN
program. In addition, it has a macro facility which makes it
possible to write programs (macros) (which can call other
macros as subroutines up to 7 layers deep) and hence new
commands in INTRAC itself rather than in FORTRAN. INTRAC has
very nice diagnostic features which make it very easy to
write and debug macros. (The run time diagnostic are

sctuated in +this package by the ON command (macro) and

—27-

switched off by OFF). INTRAC executes rather slowly, par-
ticularly when loops are present (for i = 1 to k) and hence
it is not suitable for coding of optimization algorithms or
cost and constraint functions. However, it is excellent for
writing display macros. (See Appendix B.7 for a summary of
INTRAC statements.) On the other hand, commands and routines
in TFORTRAN are much more difficult to write, debug and
implement, but they execute much more rapidly than INTRAC.
INTRAC has been used in a number of other packages as well,

viz. SIMNON, IDPAC, MVDPAC, POLPAC AND SYNPAC, see [A1].

INTRAC-C is an extension of INTRAC for use with the
OPTDYN semi-infinite optimization code. The reéulting pack-
age is called INTEROPTDYN. To use it for solving a specific
problem, FORTRAN subroutines for function and derivative
calculation must be written, added to the package and the

whole code recompiled.

INTRAC-C includes scratchpad commands for both scalar
and matrix calculations, and elementary commands for color
graphics (see [B1,B3]). The scratch pad commands can be used
in macros which can call other macros as subroutines, but it

does not allow the use of internal variables.

INTEROPTDYN makes use of three symbol tables: one for

the FORTRAN variables and parameters which appear in OPTDYN
and the user supplied FORTRAN subroutines, one for the
scratch pad variables and one for the INTRAC variables. The

contents of the FORTRAN symbol table are displayed by the

=)=

command SYMBOL, those of the scratch pad by the command PTAB
and those of INTRAC by the command WRITE. All INTRAC-C vari-
able names must end in ., e.g., X., y.. TFor a FORTRAN or
scratch pad variable to be used in an INTRAC-C expression,
it must first be transferred to the INTRAC-C symbol table by
means of the TRANS command. When a FORTRAN variable, say
ALPHA, is transfered to the INTRAC-C symbol table by means
of the TRANS command, it becomes ALPHA. in the INTRAC-C
symbol table. The same holds true for variables which are
transfered into the INTRAC symbol table from the scratch pad
symbol table. No special command is necessary for using FOR-
TRAN or INTRAC-C variables in scratch pad expressions.
Arithmetic statements in INTRAC-C are preceded by LET, while
those in the scratch pad by PSCAL; matrix expressions in the
scratch pad must be preceded by PMAT. Scratch pad and
INTRAC-C expressions (other than SET) cannot be wused to
assign values to FORTRAN variables and scratch pad expres-
sions cannot be used to assign values to INTRAC-C variables.
When an attempt to make an illegal assignment is made, an
error message appears. Thus, the FORTRAN and INTRAC vari-
ables are protected from accidental alteration in the
scratch pad. The arithmetic capability of INTRAC-C is nor-
mally not used in INTEROPTDYN so as to avoid confusion. It
is mostly useful when it is essential to create internal or
logic variables, which is not possible in the scratch pad.
INTEROPTDYN-SISO is an extension of INTEROPTDYN for SISO

control system design which was obtained by (i) augmenting

-29-

the PFORTRAN symbol table to include the parameters needed
for control system design specification and (ii) by adding
to INTRAC-C all the commandé for SISO control system specif-
ication, manipulation, computation and display that are con-
tained in CDP [D1] package. The cost and constraint func-
tions for control system design are evaluated by FORTRAN

subroutines, some of which were obtained from CDP.

For a complete listing of all the available INTRAC-C
commands, see Appendices A and B; [W1] is an INTRAC language

manual which is summarized in Appendix B.7.

INTEROPTDYN-SISO includes an extensive library of mac-
ros which combine the various elementary INTRAC-C commands
into higher level commands. Some of the commands implemented

as macros are discussed below.

4.2. Macros for optimization

The flow of the optimization execution is controlled by
macros. These can be used to execute one step of the algo-
rithm at a time, to run a given number of iterations and
store the results, to perform diagnosfic calculations, to
display graphically the Dbehavior of the algorithm as it
cycles in inner iterations, and so forth. A full list of

these macros is given in Appendix C.

4.3. Macros for graphics

The package contains macros for general purpose graph-

ics, e.g., for window selection and for array row or column

-30-

plotting, with zoom capability, and labeling, as well as for
displays that are specific to SISO design, e.g. of Nyquist
plots and step responses. Root locii, Nyquist plots and Bode
plots can also be plotted via elementary commands based on
CDP [D1] graphics. A full list of macros for graphics is

given in Appendix D.

4.4. Macros for matrix calculations.

The scratch pad commands of INTRAC-C allow both scalar
and matrix unitary (e.g. ps x = pwr(y 3)) and bdbinary
expressions (e.g. pmat A = B + €). These expressions can be
used in macros, both to create a still higher level language
which eliminates the need to declaring matrix dimensions and
for creating arrays and other data for graphical displays.
Unfortunately, scratch pad commands do not allow the use of
internal variables in macros, which can become a problem
when several layers of calls to other macros are used in a
macro. To get around this shortcoming we recommend the use
of a special convention: names such as ox, oy oox, ooy, for
"internal" variables and x, y for "global" variables. As has
already been pointed out, the scratch pad has its own symbol
table. It can read all the quantities in the main symbol
table, which contains the results of the computation of the
optimization program and its parameters, but it cannot alter
the entries in the main symbol table. Thus, the main symbol
table is protected from inadvertent alteration in the pro-

cess of diagnostic calculations. The SET command must be

-3 =

used to transfer values from the scratch pad symbol
table to the main symbol table. A full list of available
macros for matrix calculations is given in Appendix E.
Note also that the macros for graphics also make heavy

use of scratch pad commands.

ACKNOWLEDGEMENT :

This research was supported by the National Science
Foundation under grants ECS-79-13148 and CEE-81-05790,
the Joint Services Electronics Program under grant
F49620-79-C-0178, The Swedish Board for Technical Develop-
ment under contract 77-3548, and the U.K. Science Research
Council. The programming at Berkeley was done by M.A.
Bhatti, T. Essebo, E. Eschen, W. Nye, E. Polak, and A.L.
Tits.

-32-—

REFERENCES

[B1]

[B2]

[B3]

[D1]

[&1]

[T1]

[p1]

[P2]

[w1]

Bhatti, M. A., Essebo, T., Nye, W., Pister, K. S.,
Polak, E., Sangiovanni-Vincentelli, A., and Tits, A.,
"A Software System for Optimization Based Interactive
Computer Aided Design", Report No. UCB-ERL M80/14,
Electronics Research Laboratory, University of Cali-
fornia, Berkeley, 1980. Proc. IEEE I.S5.C.A.S. Hous-
ton Tx., April 1980.

Bhatti, A., Pister, XK. S., and Polak, E., "Optimal
design of an earthquake isolation system", Proc. IUTAM
Symp. on Structural Control, Univ. of Waterloo, Water-

loo, Ont., Canada, June, 1979.

Bhatti, M. A., Polak, E., and Pister, K. S., "Optdyn -
A General Purpose Optimization Program for Problems
With or Without Dynamic Constraints", Report No.
UCB/EERC - 79/16, Earthquake Engineering Research
Center, University of California, Berkeley, July 1979.

Daly, K. C., and Katzberg, P., "COSDIC documentation:
The Classical Design Suite", Publication No. 73/18,
Department of Computing and Control, Imperial College,
London SW7 2BT, U.K., June 1973.

Gonzaga, C., Polak, E., and Trahan, R., "An Improved
Algorithm for Optimization .Problems with Functional
Inequality Constraints", IEEE Trans., Vol. AC-25, No.
1, 1980.

Lee, T. P., Nye, W. T., and Tits, A. L., "The Design
of Digital Filters Using Dynamic Optimization", Proc.
20th IEEE CDC, Dec. 16-18, San Diego, Ca.

Polak, E., Pister, K. S., and Ray, D., "Optimal Design
of Framed Structures Subjected to Earthquakes", Eng.
Optimization, Vol. 12, 1976.

Polak, E., "Algorithms for a class of computer aided
design problems: a review", Automatica, Vol. 15, pp
531-538, 1979.

Wieslander, J., and Elmquist, H., "INTRAC a communica-
tion module for interactive programs: Language
Manual", CODEN LUTFD2/(TFRT-3149)/1-060/(1978),

Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, August 1978.

-3%

APPENDIX A: COMMANDS FOR CONTROL SYSTEM

The commands needed for SISO design via interactive
optimization fall into two categories: those for entering
and examining the design problem and those used in optimiza-
tion.

For further information on the commands ENTER, CONVERT,
CHEX, MODIFY, ROOTLOCS, NYQUIST, RESPONSE and BODE type in
the command and then ?7°7

A.1. INTRAC-C commands for SISO Control System Manipulation.
SISOBD: displays the block diagram of tThe con-
trol system to be designed. Be sure to type in
GRINIT to initialize the graphics before using
this command.

ENTER: to be used for entering system and compensator
coefficients. Note: the coefficients to be optim-
ized must be entered as z(1:1), z(2:1) z(3:1),....

CONVERT: +to be used for converting system or compensator
from one form to another.

CHEK: to check the data describing system part.

MODIFY: to modify part of system or compensator descrip-
tion.

ROOTLOCS: to plot root 1locus and display pole placement
region.

NYQUIST: +to plot Nyquist diagram.
BODE: to plot Bode diagrams.
RESPONSE: to plot step, ramp, parabola and sin responses.

A.2. Macros for Optimization.

SISOINIT: initializes design parameters and defines
constraints.

RUN k STORE: will execute k iterations of the optimiza-
tion algorithm and store the results.

SISOSTEP c¢ 1 k: displays step response 1in color ¢
corresponding to design parameter values
at iteration i, with k indicating the
number of the graph plotted.

SIS0U ¢ 1 k: displays ©plant input in color ¢

corresponding to design parameter values
at iteration i, with k indicating the

—F4-

SISOUDOT ¢ 1 k:

SISOSTAB c 1 k:

SISOLBLN ¢ 1 k;Jj:

STPCNSTR ¢

MARGINS:

PARABOLA ¢ MOD; y:

number of the graph plotted.

displays time derivative of plant input in
color c¢ corresponding to design parameter
values at iteration 1, with k indicating
the number of the graph plotted.

displays nygquist or modified Nyquist plot
in color ¢ corresponding to design parame-
ter values at iteration i, with k indicat-
ing the number of the graph plotted.

labels nyquist plot in color c correspond-
ing to frequency point i. When i and
are given, will label j points beginning
with i th (the frequence range wO to wc is
divided into q points).

will draw the step constraints in step
response diagram in color c¢. Black will
erase. :

will enable you to reset both phase and
gain margins by recomputing and reseting
PO and P1.

will draw constraint parabola in Nyquist
plain in color c¢. If y is typed in, it
will recompute the parabola from the new
gain and phase margins. (The option MOD is
needed to make this macro wusable in
another macro, as well).

35—

APPENDIX B: INTRAC-C COMMANDS

B.1. Commands for control flow

ALGO - Displays program structure and associated break-
points

BREAKS - Displays a list of all breakpoints

WHERE - Displays name of breakpoint

HALT - Sets up halt condition at specified breakpoint

GO - Transfers control to optimization program

B.2. Commands for diagnostics

SWITCH ECHO ON/OFF - enables/disables echoing of commands

SWITCH TRACE ON/ OFF - enbales/disables echoes of execution
of commands

VAXDEBUG FILE ON/OFF - enables/disables file handling trace
(off is default condition).

VAXDEBUG FILEDUMP ON - will produce one snapshot dump on
fort.7 of filehandler internal data
(to be used if file handling seems in
error).

B.3. Commands for manipulating variables in the symbol table

PRINT - Displays a variable from the symbol table or the
scratchpad

SET - Changes the value of a single variable in the
symbol table

SETDIM - Changes actual dimensions of a variable in the
symbol table

TRANS - Transfers value of symbol table variable to
INTRAC

CHECK - Checks if a variable has been changed by SET

CLEAR - Clears flag used in CHECK

SYMBOL - Displays symbol table

B.4. Commands for the Scratchpad

36—

GETDIM
PDIM

PREM
PTAB
PSCAL

PMAT

Returns actual array dimension from symbol table

Creates a variable in external symbol table
(scratch pad)

Removes a symbol from the scratch pad
Displays external symbol table (scratch pad)
Scalar operations in the scratchpad

Array operations in the scratchpad

B.5. Miscellaneous Commands

COPY
DELETE

ED

HELP

LIST

CsSH

Copies a macro file
Deletes a macro file

Brings in an editor containing most of the UNIX
ex commands for editing macro files.

Explains usage of the commands

Lists a macro file on the terminal or deposits it
in the file fort.11.

This command makes it possible to call the shell
and execute any UNIX command from the package

B.6. Commands for Graphics

COLOR

CURSOR

CURSOREL -

CURVE

DEFINE

DRAVW

ERASE

GRINIT

Sets color for subsequent graphics output.

Moves cursor to x,y coordinate in preparation for
text output

Positions cursor a specified number of character
size units away from x,y coordinate.

Draws curve specified by an array.

Defines rectangular windows on screen by a user
specified name.

Draws vector from previous 'MOVE'ed position to
X,y coordinate

Erases the whole screen or just a specified win-
dow

Graphics initialization. Must be given Dbefore
doing any graphics. The first time this command

-3~

is given, the terminal type is requested.

MOVE - Moves cursor to x,y coordinate in preparation for
a DRAW.

PARCURVE - Draws curve in parametric form.

TEXT - outputs strings or numeric values at the position
of the graphics cursor. A CURSOR or CURSOREL
command must precede a TEXT command.

VECTOR — Draws a vector between specified starting and
ending coordinates.

WINDOW - Enters specified window so that 0.0 to 1.0 coor-
dinates appear only in the previously defined
rectangular window.

B.7. Summary of INTRAC Statements

These statements are used in writing macros. For details,
see the INTRAC language manual [W1].

MACRO <{macro identifier>[<formal
argument> | <delimiter>|<termination marker>]*
Begins a macro definition and creates a macro. The del-
imiter is a symbol such as (,*,+,#, etc. The termina-
tion marker is a semicolon and is used to separate
groups of optional arguments.’

FORMAL {<formal argument>{delimiter}<termination marker)} ¥
Declares formal arguments in a macro definition and

when creating a macro.(termination marker = ;).

END
ends a macro and ends macro creation mode. Deactivates
suspended macros.

LET {<variable>=}*{<number><pad variable>[{+|-
i*l/}(number>'<pad variable>j number> |<pad variable>]
.<identifier>t+<integer>]}(delimiter> | <unassigned
variable>

Assigns (allocates) variables.

DEFAULT {<variabled>=}* <argument>
Assigns a variable if it is unassigned or does not
exist previously.

LABEL <label identifier>
Defines a label.

GOTO <label identifier>
Makes unconditional jump.

-38-

If <argument> {EQ|NE|GE|/LE!GT!LT} <argument> GOTO <label
identifier>
Make§ a conditional jump. (argument is an INTAC vari-
able).

FOR <variable> = <number> to <number> [STEP <number>]
Starts a loop.

NEXT <variable>
Ends a loop.

WRITE [(LP)] [<variable>|<stringd>]
Writes variables and text strings in ! ' or displays
currently available variables. (LP) (or (1lp)) option
causes the string to be written in the file fort.8 for
later print-out.

READ { {<variable> {INT|REAL|NUM|NAME|DELIM|YESNO} }! <ter-
mination marker)>}* _
Reads values for variables from the terminal. (termina-
tion marker = ;) '

SUSPEND
Suspends the execution of a macro.

RESUME
Resumes the execution of a macro.

SWITCH {EXECIECHO}LOG}TRACE} {ON}OFF}
Modifies switches in INTRAC.

FREE { {<global variabled>}* | *.¥}
Deallocates global variables.

STOP
Causes exit from package.

B.8. Macros for Obtaining Help

HLPEX - Displays the list of macros for execution.

HLPGR -~ Displays the 1list of macros for graphics.

HLPPAD - Displays the list of macros for matrix calcula-
tions,

-39~

APPENDIX C: MACROS FOR

OPTIMIZATION EXECUTION

The following is a list of macros which are used either
directly or as subroutines for the control of the optimiza-
tion flow and information monitoring. They are classified as
either being primary or subroutine in nature.

C.1. Primary Macros

ARMIJO

OFF
ON
PRTALL

PRTANG

PRTFPSI

RARMIJO N

RARMIJOS N

executes one iteration with Armijo
stepsize calculations display

turns off diagnostic display
turns on diagnostic display
prints f psi e theta

prints angles between search direc-
tion and active gradients

prints f and psi

executes N iterations ™ with Armijo
stepsize calculations display

executes N iterations with Armijo
stepsize calculations display and
stores results by means of STORE

RUN N; OPTION1; OPTION2..where N = no. of iterations to per-

STEP2
STEP3
STEP45
STORE

TI

form, OPTIONY1 can be STORE, PRTALL,
PRTFPSI, and OPTION2 can be TI

executes Step 2 of algorithm
executes Step 3 of algorithm
executes Steps 4-and 5 of algorithm

stores f psi and z in the arrays fg,
psig and zg

turns the algorithm into a time
invariant version

prints information normally displayed
by ARMIJO graphically

—40-

CHECK
CLR

EPS
EXEC

GR
MESSAGE
NIL
SCAL
SETXBR
SKIP
STANDARD
STARM
STARM™

-41-

APPENDIX D: MACROS FOR GRAPHICS

In the macros listed below, the following notation and
mnemonics are used:

V denotes a column vector.

H(I:) is the ith row of H.

H(:I) is the ith column of H.

ROW denotes operation on a row of a matrix.

COL denotes operation on a column of a matrix.

¢, Ci1, C2 are colors.

I J denote the first and last index of array to be plot-
ted NS denotes no internal scaling: precomputed scaling

information must be in the form oVMAX oVMIN.

YESNO refers to asterisk on graph: y YES, n NO.

AXES Ceeeeoesosssanasasse Plots axes in color C.

BARCOL H(I:) C; I J; TOP BOT.. Computes scale when TOP BOT
are not given and barcharts

BARMIJO:wesssssnnoeosisos Produces bar charts for Armijo step
size calculations when both conven-
tional and functional constraints
are to be plotted.

BARG s swis e & & easeiare e & @ . Produces bar charts for Armijo.
step size calculation when only
conventional constraints are to be
plotted.

BARROW H(I:) C; I J; TOP BOT.. Computes scale when TOP BOT
are not given and barcharts.

BARS V C; I J; TOP BOT.. Computes scale when TOP BOT are not
- given and barcharts.

BOX:eoosooooroaooonnnnae Draws box in prespecified color.

GRAPHO TI...cuicvevecocnns Produces Armijo stepsize informa-
tion when STORE is not used.

GRAPHOS Teeeveeeveneeen Same as above to be used with
STORE.

—42~

GRAPHPSI YESNO; RUN..... Plots values in PSIG; PSIT.

LBL V C; K; I Jessssness Computes max and min of els in V in
the range I J and writes the ele-
ment values K units to left of y-
axis. (Negative K is ok)

LBLCOL H(:I) C; K; I J.. Same as above.
LBLROW H(I:) C; K; I J...Same as above.

LBILMNMX C; Kjeuoe ceese Labels a graph with min and max
values produced by PRESCALE.

LBLX C N1 N2 D;Y;X,YESNO... Iabels x-axis from N1 to N2, in
increments D, Y X are shift parame-
ters, n omits first label

LINE CLR LVL; SLP..... Draws 1line in color CLR through
level LVL default SLP = 0. (slope).

LINA ANGLE Cuivvevevnnse Draws horizontal 1line at angle
value. -

LVL V C Ly I J; YESNO; INCR.. Computes level L for vector V
and plots it in color C; if yes,
will 1label 1line as x-axis with
default incr(ement) = 5. :

LVLCOL H(:X) ¢ L; I J; YESNO; INCR... same as above

LVLROW H(X:) C L; I J; YESNO; INCR... same as above

PLTBCOL H(:I) C1 C2; I J; TOP BOT... Same as PLT followed by
BARS

PLTBROW H(I:) C1 C2; I J; TOP BOT... Same as above.

PLTBMXR H C1 C2; I J... Plots and barcharts maximum, by
rows, of matrix H. Scales may be
produced by PRESCALE.

PLTCOL H(:I) C YESNO; I J; TOP BOT... see PLT

PLTMXC H C YESNO; I J; TOP BOT...Same as PLOt for maximum by
columns of matrix H, scales may be
precomputed by PRSECALE.

PLTMXR H C YESNO; I J; TOP BOT... same as PLOT for maximum
by rows of matrix H, scales may be
precomputed by PRESCALE.

PLTROW H(I:) C YESNO; I J; TOP BOT ... see PLT

~4%-

PRESCALE H; I Jeesuwuenn Computes the min and max elements
of a matrix H between the I-th and
J-th columns.

UNIVECT ; N.ovewuwuns .+ Computes a vector ONE of length N
with 1 as all the elements.

UP ; Ko winision 2 5 » mommames - Opens up K lines for text.

WBs ewews s e E & Eaeaee B Window: bottom third of screen.

WBE..... TR Erase WBE.

WCeveeeeoansns teecesssnas Window: center of screen.

WCE:eeoeeennns GNe o SHms [s (3 3 ome Erase WCE.

Wilis saiwnma s o s saaesss ass ca Window: lower half of screen.

WLE. .o veneeeensanans Erase WL.

WM sowin woe s & & cww srems s & & &8 Window: middle third of screen.

WME

L Window: bottom quarter of screen.

WQ1E

wQ2

WQ2E

WQ3

WQ3E

wQ4

WQ4E

Whss wieoein & ¥ o soiwoiai s 9o Window: top third of screen.

WTE

WTOPCR. v s vt SO E LT Window: small upper right corner.

116 Window: upper half of screen.

WUE

—44-

APPENDIX E: MACROS FOR MATRIX CALCULATIONS

This is a list of macros used for matrix manipulation.
names ending in g are single precision for use in graphics.

ANG C ANGLE(U V)

COL V

B(:J)
COLCLIP V = B(:I J)
CON C

1

CON(A)
DET C

DET(A)
EIG V L = EIGEN(A)

EQ C =238
INV C = INV(A)
MAT C = A op B

MATMNG V1 V2

MATMX V1 V2

MN M I = MIN(V)

MNG M I = MIN(V)

MCOL C(:I)

1]
03]
e

S

MROW C(I:)

I

o
<
=

NRM C = NORM(V)

COMPUTES ANGLE IN DEGREES, COL. VEC-
TORS

SET V EQUAL T0 JTH COL OF B

CLIP OUT COLUMNS I TO J

COMPUTES CONDITION NUMBER

COMPUTES DETERMINANT

COMPUTES EIGENVECTORS V EIGENVALUES L
SET C EQUAL TO B

COMPUTES INVERSE

WHERE A, B ARE MATRICES AND op is + -

* * (" stands for multiplication of B
by scalar A)

MAX(Q);I J...Q IS A MATRIX, TO BE TRUNCATED

T0 COLUMNS I TO J, V1 IS A VECTOR OF
MIN ELEMENTS TAKEN OVER ROWS, V2 IS A
VECTOR OF CORRESPONDING COLUMN INDI-
CATORS

MAX(Q);I J...Q IS A MATRIX, TO BE TRUNCATED

T0 COLUMNS I TO J, V1 IS A VECTOR OF
MAX ELEMENTS TAKEN OVER ROWS, V2 IS A
VECTOR OF CORRESPONDING COLUMN INDI-
CATORS

Vv IS A VECTOR, M ITS MIN ELEMENT, I
THE CORRESPONDING INDEX

V IS A VECTOR, M ITS MIN ELEMENT, I
THE THE CORRESPONDING INDEX

SET ITH COL OF C EQUAL TO JTH COL OF
B

SET ITH ROW OF C EQUAL TO JTH ROW OF
B

COMPUTES NORM OF V

=45~

MX M I = MAX(V) V IS A VECTOR, M ITS MAX ELEMENT, I
THE CORRESPONDING INDEX

ROW V = B(J:) SET V EQUAL TO JTH ROW OF B
ROWCLIP V = B(I J:) CLIP OUT ROWS I T0 J

SP C = <A B> SCALAR PRODUCT

TRC C = TRACE(A) COMPUTES TRACE

TRS C = TRANS(A) COMPUTES TRANSPOSE

DR C = RAD(A) CONVERTS DEGREES TO RADIANS
RD C = DEG(A) CONVERTS RADIANS TO DEGREES

46~

-o98yoed °Uy 4£q poMOTTE °Jn3ond

15 wegsfs 8yl -~ *| 8and1d

by

UG TZop 4811043 UCD-0ST=

JO1194300

mum>mw .

jusid

AIT[OAJUDD

v

e

-guoTqeoTIT0eds UTBUOP SWTY,

— +2 2in3Td

IBUT}} 1231 AST4} a
" |
.
dmesta _
|
]
~T
daeya | [
|
Lmbow

+guoT13BOTFI0ads UTBWOPD Lousnboag -

¢ 2andTd

\.!\
\.\
it rd
ol Qi
it \
r]! N
] ' i
aurd-y=sh9 ﬂ aued-s /,;
:) =

sWT)

SUOL1BUB]L | 43340 S}INS3Y - *,§ d4nbL4

asuodsaa da3s (q)

o

=
o w3 W
LI S 1 R
-~ -~ 3 L] -

L
W3]

o

o

301d 3SLnbAN paLiLpoy

(

e)

7

1
uotTjedall

igy *

L1,

)

ol

-suoT9BIL}T ¢ Jd9%Fe S3TNS3dY -~ ey 2anITd

3014 3SLNbAN paLsitpow (®)

// &
.\,
asuodsaa dais (q)
awey @Y% W Wk 12 a7 i : i
i 1 1 1 1 — -
__....q. __
I/ 3eg° /
A ELES ¢
! rw 54° s Rt 2° 1 .E\k\\ 88
— e I
|..||Il|l|.llllrll|lf-|”_.lflll..l.h.“alllvl.@-ﬁ \ _.- w
| 5277

i
€
UOTITA23T

aw(y

*SUOLJRUDIL § 49I4e SIINS3Y - *,p a4nbLy

asuodsaua dals (q)

(=

T
DA
[
()
i
=
-
[y

—
= W
ol

L s
|
|
|
“‘i;
T
P L

I
il
i
I
F\
'
K
|
[}
& e

e

i}

1014 3StnbAN paLsLpop (®)

J-—
___ !
l !
m Tty
. Tt Y-
IR
_m. n ¥
Hha _ L
& |
B" T 4, G H
Illlllfﬂ\.\lhl-ll—.m.lmlu
—- _I)
) |
.... |
__. i
¥ I= e 7.
p @t T
_ i
)
._. |

00

UoTleda3t

[nS}

=

Su(

*SUOTYBIBGT | J89J®

asuodsads da3s (q)

s i LS CE: @t @
1
1
_ 3Z°
iy o mm-
— L_ [5
e = e =% Ll.\.\ ™. L
e T N - —| 8a°1
Sz 01

sqInssy ~ °*°G 8anIrg

301d 3SLnbAN paLsipow (e)

6l

UOT}ELE}T

