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DUAL CONTROUL DF A LOW ORDER SYSTEM

by

K J Astrdm and A Helmersson

Department of Automatic Control
Lund Institute of Technhology
LUND SWEDEN

Abstract:

The dual control law for an integrator with constant but
unhknown gain is computed. Numerical problems associated with
the solution of the Bellman equation are reviewed. Properties
of the dual control law are discussed. A representation which
makes it easy to compare dual control with certainty
equivalence and cautious control is also introduced.

1. INTRODUCTION

The rnotioh of dual control was introduced by Feldbaum (1760) as
a result of an attempt to formulate optimal control problams
which would give adaptive control laws. Several attewpts were
made to compute dual control strategies for different problems
after Feldbaum’s original publication. See e.g. Florentin
C1762)y  Astrom (19653 Bohlin (196%7)y Astrdm and Wittenmark
€1971)y Jacobs and Patchell (1972)s Hughes and Jacobs (1974,
Tse and Bar—Shalom (1973, 1975), Bar—Shalom and Tse (1974,
1774 . Although the dual control formulation is conceptually
appealing it leads to excessive computations. The computational
difficulties led sowme researcher to despair and abandon the



fields Wonhawm €(1968). The computational power available in the
late sixties was limited. Since wuch larger computing power is
available today it seems reasonable to reconsider computation
of dual control laws. The main reason is to develop an
understanding of how dual control works. Another reason is to
understand the limitations of the heuristic approaches to
adaptive control like wmodel reference adaptive control and
self-tuning regulators.

In this paper the dual control law is cowmputed for a process
which can be described as an integrator with constant but
unknown gain. This is one of the simplest nontrivial adaptive
control problems.

The problem is stated in Section 2 and the Bellwman equation is
derived. Suitable scaled variables which adwmit good physical
interpretations are also introduced. It is a nontrivial problem
to solve the Bellman equation numerically. Different aspects on
the huwmerics are discussed in Section 3. The results obtained
are summnarized in Section 4. Simulations of the optimal control
laws are given in Section S.

2. PROBLEM STATEMENT

Consider the first order discrete time system described by
yit+1l) = y(t) + b udt) + o ect+1 (2.13

where y(t) 1is the output or the process state, u(t) is the
control variable and {e(t)»} is a sequence of independent normal
(Oy 1) random variables. Furthermore ¢ is a khowh constant and

A
b is a random variable with a narmal (b(0)s P(0)) distribution.

The model (2.1) represents an integrator whose gain b is an
unknown constant. The control problem for such a plant is
nontrivial because a constant feedback may not necessarily give
a stable system.

Assume that the purpose of control is to wminimize the loss
function

t+T 2
J=E { LI [ytk)l | V¥ } (2.2)
k=t+1 t

where Yt denotes the sequence of observed outputs and inputs

available at time ts i.e. Yt = (yCEdoy(t—1)9...9

ult=13»u(t-229...25 ov more precisely the sigma algebra



generated by those variables. The symbol E(.IYt) denotes the
conditional expectation given Yt. The admissible controls are

such that udt) is a function of Yt.

To formulate the optimal control problem it is wuseful to
introduce the hyperstate of the problem. See e.g. Astrdm
(1973>. The hyperstate is the state y(t) of 2.1 and the
conditional distribution of b given Yt. In this case the

conditional distribution is gaussian with mean

A

bity = EEth)lYt]

and covariance

A 2
Pty = E{ILb(t) - b(t>1 IYt}.

See &strom (1973). These moments can be computed recursively
froim

A A A
b(t+1) bty + KetdLy(t+1)y — y(td — bCtiultll (2.3

PCt+1D [1 - KCtiuctyIP(t) (2.4)

where the estimator gain is

- o

= 2 2
KCt) = uCtiIPCE3y (td)s y (£) = g + u P(L).
Introduce the normalized innovation

A
g(t) = [y(t+1) = y(t) = bCEiuctdA/y(td,

and the normalized state variables

A
NiEY = y(td)/as ALY = bot)/VPCE)

ECty = 1/¢g(t)! vit) = u(t)VP(t) /o

The equations (2.1)y (2.3) and (2.4) can then be written as

o

net+1y = (n + By + Ji+v° ) () (2.5)



BLE+1) = (R/L+v + ve) (t) (2.6)
/2
ECE+1) = (EVI+vTI (). (2.7)

Assume that the winimum of the loss function exists for an
admissible control law and introduce the function

A t+T 2
W (ysbsPst) = min E { T y (k) | Y }-
T k=t+1 t

A standard Dynamic Programming argument gives the following
Bellman equation

A 2
W (ysbiPst) = min E {th+1) +
T uCt)

A
W Cy(t+1)s bit+1)s P(t+1), t+1)|Yt}.

A
The conditional distributions of y(t+1) and b{(t+1) are normal,

and the conditional distribution of P(t+1i) is a point
distribution. Hence

A A 2 2 2
NTCysbsPat) = min {(y+bu) +g +u P+
u

2
//5_ 2 uP o P
Jm(E)NT 1(y+bu g +u P gsb+—— £y ———st+1)ds}.

/2 2 2 2
-o g +u P g +u P

where
2
] i - /2
(£) = === @& .
® van
Usin the normalized wvariables and the corresponding loss

function V the equation can be written as



J

L]
-,

2 [
VT(nstEut) = min {(n+ﬂv) +1+v + (2.3
v

T //_?? Z J/“E’
Jm(s) VT 1Cn+Bv+ 1+v &y RAVi+v +veEs EV1+v t+1)ds}.

Far T = 1 the loss function becomes

A A 2 2 2
NICysbaPst) = min {(y+bu) + o +u P}.
u

The corresponding equation in normalized variables is

]
[y
+

|

|
|
|

2 2
VICnaﬁygst) = min {(n+ﬂv) + 1 + v }
v

The optimization is easy to do because the right hand side is
quadratic in v. Notice that V1 does not depend on § and t.

It follows by induction that VT also does not depend explicitly

on £ and t.

Introducing

2
UTCnstv) = (n+pvI” + 1 + ve o+ (2.9

/ =z P
J pled VT 1Cn+ﬁv+ i+v g+f4vV1i+v  + ve) de

the equation (2.8) can thus be written as

V ine3) = min U (qesv) (2.10)
T v T

The solution to the stochastic optimal control problem is thus
reduced to solving the recursive optimization problem given by
the Bellman_equatioh (Z2.103. The solution of this equation

defines an optimal control as



v = v (s ) (2.11)
B N 3

which gives the normalized v control as a function of the
nhaormalized hyperstate n and f3.

If the parameter b is known the control prnblem has a simple
solution given by the minimum variance control law

u = —-x/b.
See Astrom (1770). This gives the normalized loss function

VT = T.

The difference

L.tnsy B2 =V_(ny g = T
0 L B

tan thus be interpreted as the part of the loss function which
is due to the uncertainty in the parameter b. This is called

3. NUMERICS

The Bellman equation does not have an analytical solution. It
is therefore necessary to solve (2.10) numerically. One
iteration of (2.10) can be decamposed into three steps.

1. Representation of the functions V (v 3 by their values

in discrete points. Values for other arguments are obtained
by interpolation.

Evaluation of the integral in (2.9) using a quadrature
formula.

rx_.l

2

Minimization of the function U(nsgiv).

The steps are closely interrelated. The selection of methods in
each step requives insight into the properties of the funhction
Vinsps.
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For T = 1 there is an analytical solution to the optimization
problem. Although there is no khown anhalytical solution for
larger T there arve some symwetry properties which are useful.
The loss function V is symmetric in both v and . The optimal
control function v is asywmetric in 1 and . This can be
derived recursively from equation (2.10). It can also be
understood intuitively because if the output n of the process
changes sign then the control variable v must also change sign.

For T = 1 the control law v is equal zero both when n = 0 and §
= 0. For T % 1 we can expect that v is not equal zero for
either n = 0 or § = O because of probing. We way thus expect

discontinuities in v when n ovr R change signs due to asymmetry.
The function vins ) may also have other discontinuities. To
understand how these occur notice that it follows from (2.107
that the value of the function v for the arguments n and # are
obtained by searching U(rs R+ v) for the value v which gives
the smallest value. If the function U(n: B v) for fixed n and
# has several loecal minima with respect to v it may happen that
the minimum switches from one local minimum to another when n
or  is changed a little. This occurs e.g. for USCO, B+ v) as

is shown in Fig. 1. The function Vin:pd? may have a
discontinuity in its first partial derivatives where v(n:f3) is
discontinuous.

Some Difficulties

In ordinary quadratuve algorithmss like Simpson’s rules a
continuous integral is vreplaced with a weighted sum of the
values of the integrand at discrete points in the integration
interval. '

‘U3(0,B,v)

2.40

Fig. 1 Illustrates why the control law is discontinuous.



To compute the integral in equation (2.10)s the loss function

VT ) is first evaluated in several old coordinates (n:f?
dependent on v and . For each v a weighted sum is computed on
a set of data points of V (niB). When v is varied the set of

data pointss for which the sum is computedy is also varied.
Such a computation may introduce artificial local wminima in the
computed function.

It is thus important to consider the interplay between
interpolations quadrature and optimization. It is also very
important to remember that the optimal control may be
discontinuous. Having understood some of the difficulties
invaolved it is now possible to tailor the algorithwms to the
problem.

The wminimization algorithm wused is straightforward. Three
equally spaced node points ave fitted to a parabola and the
winimum of this parabola is tested as a potential glaobal
minimum. Since the function U may have several local minima it
is necessary to combine the local optimization with a gleobal
search.

The functions V and v were represented by their values in
discrete points. The variable n and 8 were transformed by the
mapping x 2% x/(1+x). A wuniform grid in the transformed
variables was used. The grid sizes were varied from 16 x 14 to
128 x 128. The function values were interpolated using an
interpolation polynomial having sixteen coefficients. Because
of the symmetry properties of V and v the functions are
tabulated for one quadrant only.

Buadrature

The range of integration is reduced to the interval [-5+53,
without any sighificant loss of accuracy. The Qquadrature
algovithm is modified to cope with discontinuities in the first
derivative of V for n =0 and § = 0. The discontinuwity points

are i.e. € = - (n+ﬁv)/¢1+v‘ and € = — 3li+v2/v;

The integral is evaluated by an ordinary GSimpson’s algorithing
except for those intervals where there are discontinuities.
These intervals are divided into two subintervalss one on
either side of the discaontinuity. The integral is then
evaluated using Simpson’s algorithm on each subinterval.



4. RESULTS

The algorithms were programmed in Pascal on a Vax—-11/730
computer. Simple commands were introduced to give flexibility
to change parametersy sequences of iterations» input/output
handling etec.

s e et e S e e e s A e

The dual control 1law (2.11) which is a function of two
variables may be represented by surface and level plots. It is
useful to introduce some scaling. The control variable u or v
is represented as

A

ub via
H = = = = = == (4.1)

y n
To obtain finite plots the state variables n and § are also

2 2

represented using the scales n/Ci+nd) and R{ /Ci1+3 2. The
advantage of this representation is that the certainty

Ho= 1, (4.2

and the cautious control is the plane

“ TR — (4-3)

Using the chosen representation it is easy to compare dual
control with certainty equivalence and cautious control. A
graph of the cautious control law is shown in Fig. 2. Notice
that cautious control is a plane with the chosen scales on the
axes. OGraphs of the dual control laws for different time
horizons are shown in Fig. 3y Fig. 4 and Fig. 5. With the
chosen representation the certainty equivalence control law is
simply a plane parallel to the horizontal plane. Notice that
all control laws agree when the parameter  is very large i.e.
when the estimates are precise. They all go to p =1 as § 4 =.
Also notice that the dual control laws and the cautious control
laws are very close for large n i.e. for large control errors.

Also notice that the certainty equivalence and the dual control
laws are discontinuous for B = Oy g changes sign with g. The
cautious control law is» howevers continuous for f = O.
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Fig. 2 Graph of the cautious control law.

For small wvalues aof 1 and f§ the dual control is much larger
than the cautious control. Notice that there is a zone where
dual control is larger than the certainty equivalence control.
This zone grows with increasing time horizon T. This indicates
that approximations like those proposed by Padilla and
Cruz (1777 which result in control laws which are convex
combinations of cautious and certainty equivalence control laws
are far from optimal.

The dual control is larger than the cautious control except for
2 £ T £ & when there exists a small region where the dual
control is smaller than the cautious control.

It appears from Fig. 3 that the dual control law is
discontinuous. This is shown more clearly in Fig. 6 where
v(0:B) 1is plotted wversus . Notice that both the certainty
equivalence and the cautious controls are zero for v = 0. For T
= 3 there is a discontinuity at f§ = 0.37. The reason for this
is the switch from one local wminimum to another which was
demonstrated in Fig. 1. The discontinuity is wmore pronounced
for T =6 but it appears that the discontinuities are less
pronounced for increasing T. Computations up to T = 100
indicate little difference between the control policies for T =
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Fig. 3 Graph of the dual control law for T = 3. Levels above
p = 3 are not shown.

100 and T = 31. The difference |v - v_ | is less than 0.012
100 30

for all n and §.

The question whether a limiting control policy exists T 4 = is
open. A simple approximations Helmersson (1781) indicates that
no limit learning loss functian existsy i.e. is the learning
loss tends to increase infinitely.

S. SIMULATIONS

A few simulations were performed to get further insight into
the properties of the dual control law. This includes
comparisons with self-tuners and cautious control laws.
Differences between the control laws may be expected only
during the transient phase when there are significant parameter
uncertainties. The steady state performance of the control laws
will be more or less the same.
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Fig. 4 Graph of the dual control law for T = 4. Levels above
H =3 are not shown.

Transient Behavigur

To perform the simulations it is necessary to have some
representation of the dual control law. A table and an
interpolation formula could be used. It iss howevers more
convenient to have an analytic approximation. The following

approximation aof the dual control law obtained for T = 31 was
used
0.56+8 1.9
viniR) = — -~ n—--————-=syn?* 0y 3 O (5.1)
2.2+0.08 ﬁ+62 1.7+

Notice that v is asymmetric in n and 3. The first term can be
interpreted as a wmodified certainty equivalence and cautious
term. The second term represents active praobing. It excites the

process even when n = 0. The loss function of this suboptimal
control was only 0.2 units larger than the optimal loss
function for T = 31. This corresponds to an increase in the

loss function of less than one percent.
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Simulations were made usihng the interactive simulation language
Simnon. See Elmgvist (1973). The simulations showed that the
dual regulator is very robust. The loss function did not vary
much for different simulations with different parameters and
initial values. The learning period for dual control is in most
cases less than five steps. There are no problems even if the
algorithm is initialized with the wrong sign of the gain. The
initial value of the variance P(0) shoulds however» not be too
smalls because the learning period will then be extended and
the loss increases.

The dual regulator was compared with certainty equivalence
control and cautious control.

The certainty equivalence control is sometimes good. During
start-up periods it gives: howevers too large control signals
when the gain estimate is close to zero. It may therefore give
very large losses during start-up. The asymptotic behaviour iss
howevers very close to optimal. The cautious control is too
cautious which results in 1laong learning periocds when gain
estimate is close to zero because of turn—off. The dual control
does not have any tendencies of turn—off. The simulations
indicate clearly that it may be wuseful to make some
modifications of the self-tuning regulator in order to improve
its transient behaviour.

Even if the dual controller discussed in this paper is hot
intended for time varying gainy it can be expected to be a good
approximation to the optimal controller if the parameters do
not change too rapidly. Suppose that the gain can be modelled
as

b(t+1) = 4 b(t) + p vit) (5.2

where {v(t)} is white gaussian hoise with zero mean and unit
variance.

The estimator must then be wmodified. The Bellman equation is
more difficult to solves because it has three independent
variables instead of two. The execution time for the new
problem is significantly longer. It has been investigated how
well the regulator (5.1) behaves in combination with the
correct state estimator for (S5.2). The tracking loss

1 N =
- & y(t)
N t=1

was evaluated for different noise realizations and different
values of p. The parameter § was chosen so that the gain b



would get unit variance.

J

The tracking loss is d° as N 4 = in the constant gain case i.e.
when ¢ = 0 and 4 = 1. In the simulations the estimator
equations were wmodified to cope with nownconstant gain as
modelled above. Three simulations were made for each p to
compare the steady state performance of the regulators. 1In
Fig. 7 the tracking laoss versus p is plotted for cautious
control and dual control. Certainty equivalence contraol
deteriorated and gave wmuch larger tracking losses than the
other regulators. This was due to too large control signals
when the gain estimate was close to zero.

Simulations of the cautious and the dual control laws for
e = 0.05 are shown in Fig. 8 and Fig. 9. The same noise
sequences were used for both the controllers. The cautious
controller regulates wells except in intervals where the gain
is close to zero. It can clearly be seen that the cautious
controller behaves to cautious in these intervals. The dual
controllery on the other handy copes well with these problems
using active probing.

l Tracking loss

10 —
cautious

dual

Fig. 7 Comparison between dual and cautious control for a
process with time varying gain. The tracking loss is
plotted versus the gain hoise parameter g.
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Fig. 2 Simulation of the cautious controller applied to a
process with drifting parameters (5.7) with p = 0.05.

4. CONCLUSIONS

Calculations of dual control laws give interesting insight into
the nature of the optimal solutions to adaptive control
problems. In particular it is shown that the optimal control
may be discontinuous. This may be one possibility to define the
probing action. The comparisons with cautious and certainty
equivalence control explain why the certainty equivalence
control behaves so well asymptotically. It alsoc explains the
poar behaviour of cautious control under certain conditions
(turn off). The results also indicate that the heuristic
algorithms may be improved. There have been suggestions for
improved strategies based on approximative solutions to
problems with a short time horizon e.g T=2y See Sternby (1977).
Such approximations are of limited value for the example
discussed in this paper because there is a considerable
difference between the strategies obtained for T=2 and T=30.
Based on the results of this paper it seems important to use a
much longer time horizon to obtain the full benefits of
learning.
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Fig. 7 Simulation of the dual controller (S5.1) applied ta a
process with drifting parameters (5.2) with ¢ = 0.05.
The same hoise sequence as in Fig. € was used.
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