

LUND UNIVERSITY

Modeling of Dynamic Systems Applications to Physics, Engineering, Biology, and Medicine

Åström, Karl Johan

2001

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Çitation for published version (APA):

Åström, K. J. (2001). *Modeling of Dynamic Systems Applications to Physics, Engineering, Biology, and Medicine*. (Technical Reports TFRT-7594). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors: 1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00 ISSN 0280-5316 ISRN LUTFD2/TFRT--7594--SE

Modeling of Dynamic Systems Applications to physics, engineering, biology, and medicine

Karl Johan Åström

Department of Automatic Control Lund Institute of Technology March 2001

Department of Automatic Control	Document name INTERNAL REPORT
Lund Institute of Technology	Date of issue March 2001
Box 118 CE 221 00 Land Smoden	Document Number
SE-221 00 Lund Sweden	ISRN LUTFD2/TFRT7594SE
Author(s) Karl Johan Åström	Supervisor
	Sponsoring organisation
<i>Title and subtitle</i> Modeling of Dynamic Systems Applications to phys	ics, engineering, biology, and social science
Abstract	
analysis of complex dynamical systems from a broad	Spring 2001, gives an introduction to modeling and d perspective. A special feature of the course is that it hysics, biology, medicine, engineering, and economics. ows:
1. Introduction	
2. First Order Systems (2 lectures)	
3. Linear Time Invariant Systems (2 lectures)	
4. Compartment Models, Pharmacokinetics	
5. Nonlinear Systems	
5. Nonlinear Systems6. Mechanical Systems, Advanced Modeling Tools	
6. Mechanical Systems, Advanced Modeling Tools	
 Mechanical Systems, Advanced Modeling Tools Electrical Systems and Mechatronics 	
 Mechanical Systems, Advanced Modeling Tools Electrical Systems and Mechatronics 	
 Mechanical Systems, Advanced Modeling Tools Electrical Systems and Mechatronics 	
 Mechanical Systems, Advanced Modeling Tools Electrical Systems and Mechatronics 	
 Mechanical Systems, Advanced Modeling Tools Electrical Systems and Mechatronics 	
 Mechanical Systems, Advanced Modeling Tools Electrical Systems and Mechatronics Neurons and Neural Systems 	

Supplementary bibliographical information

ISSN and key title 0280–5316			ISBN
<i>Language</i> English	Number of pages 118	Recipient's notes	
Security classification			

The report may be ordered from the Department of Automatic Control or borrowed through: University Library 2, Box 3, SE-221 00 Lund, Sweden Fax +46 46 2224422 E-mail ub2@ub2.lu.se

Modeling of Dynamic Systems Applications to physics, engineering, biology, and medicine.

Lectures at University of Pavia, Spring 2000 K. J. Åström

Department of Automatic Control Lund Institute of Technology Box 118, S-221 00 Lund, Sweden Fax +46 46 138118, email kja@Control.LTH.se

Introduction

This course gives an introduction to modeling and analysis of complex dynamical systems from a broad perspective. A special feature of the course is that it draws from examples from a wide range of fields, physics, biology, medicine, engineering, and economics. The course consists of 10 lectures organized as follows:

- 1. Introduction
- 2. First Order Systems (2 lectures)
- 3. Linear Time Invariant Systems (2 lectures)
- 4. Compartment Models, Pharmacokinetics
- 5. Nonlinear Systems
- 6. Mechanical Systems, Advanced Modeling Tools
- 7. Electrical Systems and Mechatronics
- 8. Neurons and Neural Systems

Modeling of Complex Dynamic Systems	Organization
K. J. Åström	1. Introduction
Goals	2. First Order Systems (2 lectures)
 Appreciation of modeling in a wide range of fields 	3. Linear Time Invariant Systems (2 lectures)
 A good understanding of modeling of systems 	4. Compartment Models, Pharmacokinetics
 A good understanding of the underlying mathematics 	5. Nonlinear Systems
 Familiarity with the standard models for dynamics 	6. Mechanical Systems, Advanced Modeling Tools
Ability to model and simulate moderately complex systems	
 Awareriess of continuational tools for systems intoteming Practical experience of modeling through a project 	o. Neurons and Neural Systems
Team Formation	Lecture 1 - Introduction
 A wide spread of students 	1. Introduction
 Formation of project teams 	 Cosmology - A Role Model Impact of Computers
	4. Modeling Paradigms
	5. Summary
© K. J. Aström Lectur	J. Åström Lectures in Pavia April, 2000

Caution • A model captures only some aspects of the system • Simplicity. Parsimony • Simplicity. Parsimony • The purpose of modeling • What parts are essential for the problem under investigation • Families of models	A Voice from The Past Vannevar Bush 1927 inventor of the mechanical differential analyzer 1928-1931. "Engineering can proceed no faster than the mathematical analysis on which it is based. Formal mathematics is frequently inadequate for numerous problems pressing for solution, and in the absence of radically new mathematics, a mechanical solution offers the most promising and powerful attack "
Models and Modeling Why Models Why Models • Compact summary of knowledge Reductionism Tycho Brahe, Kepler and Newton Tycho Brahe, Kepler and Newton • Communication • Education • Education • Education • Education • The role of experiments • The role of experiments	Many Elements • Physics • Physics • Engineering • Biology • Biology • Biology • Biology • Medicine • Medicine

Uses of Modeling	 Insight and understanding Analysis Simulation (Virtual reality) Design, decision and optimization Design, decision and optimization Diagnosis fault detection Hardware in the loop simulation (Eg VTI, SSPA) Rapid prototyping 	How to Handle the Diversity? Appropriate abstractions Standard forms of models Standard forms of models Libraries Libraries Software tools	Åström Lectures in Pavia April, 2000 3
A Voice from Industry	Ralph P Schlenker, Exxon:	A Rich Field Mechanical systems Electrical systems The Human Body The Human Body Huernal systems Ecosystems The Economy 	© K. J. Åström Lectur

The Origin of Ideas	The early speculations were based on crude observations, philosophy about the heaven and some mathematics. Pythagoras had a heliocentric view. Aristoteles was earth centered, prevailed for a long time for religious reasons. Ptolemeios had an effective description based on circles. Copernicus reintroduced the earth centric view. The scientific view started with measurements by Tycho Brahe, data analysis by Kepler, who was schooled in Copernicus spirit. Newton made the final synthesis.	Features from Observation roon,Tycho Brahe was mathematician at the court of EmperornoTycho Brahe was mathematician at the court of EmperornoRudolf II in Pragye, Kepler was his assistant. Brahe gavenoRudolf II in Pragye, Kepler was his assistant. Brahe gavenoPath deviates most from a circle.by analysis of the data Kepler found three laws.ns1. Planets move in ellipses with the sun at the centerns1. Planets move in ellipses with the sun at the centerabout2. Equal areas are covered in equal times3. Time to go around the sun related to the size of the orbitepicy-4. Keplers formula $M = E - esin EXS$
The Emergence of Cosmology	 experiments ogy • Tycho Brahe 1546-1601 ogy • Tycho Brahe 1546-1601 Timur Lenk Insight from data J. Kepler 1571-1630 542 • J. Kepler 1571-1630 542 • Theory emerges 542 • I. Newton 1643-1727 	Early Cosmology In Pythagoras cosmology the earth, along with the sun, moon, and planets, revolved around a body known as a central fire, The Pythagorean astronomer Aristachus simplified the system by putting the sun at the center. werholm p. 32: Ptolemaios approx 100-165 BC Geocentric system. Moon, Mercurius, Venus and sun rotates around the earth. Motions in cycloids. Circles and spheres the perfect forms. Nationation plained time for rotation, Mercury 88, Venus 225, Earth 365, Mars 687, Jupiter 4333, Saturn 10759. Planets moved in epicy- cles as complicated as Ptolemeios. Network p. 46.
The Eme	 The heliocentric view Phytagoras cosmology Aristarchus 300 BC The dark ages The dark ages Revival of helicentrism Copernicus 1474-1542 G. Galilei 1564-1642 	Early Cosmology In Pythagoras cosmology the earth, along with and planets, revolved around a body known a fire, The Pythagorean astronomer Aristach system by putting the sun at the center. Worthold Ptolemaios approx 100-165 BC Geocentric sy Mercurius, Venus and sun rotates around the in cycloids. Circles and spheres the perfect fo Copernicus 1474-1542 proposed heliocentric plained time for rotation, Mercury 88, Venus 2 Mars 687, Jupiter 4333, Saturn 10759. Planet cles as complicated as Ptolemeios. Worthold Net

© K. J. Aström Lectures in Pavia April, 2000

പം

ers Concepts, Observations and Patterns Early astronomers came up with the conceptual idea that the planets rotate around the sun in circles. Cycloids had to be introduced to fit observations. Tycho Brahe and Timur Lenk made extensive observations of the planets and gathered a large experimental material. Kepler analyzed Tycho Brahes data and found that the planets moved in ellipses. He also observed several regularities. Newton used Keplers results to invent the law of gravitation, Newtons equations and calculus.	Abstraction 1 - Lagrange Jbject to a Introduce vitation q generalized coordinates p generalized momenta p manipulate Potential energy $T(p, q)$ p manipulate The equations of motion are $\frac{d}{dt} \frac{\partial d}{\partial t} - \frac{\partial L}{\partial q} = F$ p $\frac{d}{dt} \frac{\partial d}{\partial t} - \frac{\partial L}{\partial q} = F$
An Example - The Giant Modelers The Problem: Predict the future positions of the planets. The different phases The different phases • Observations: Tycho Brahe and Timur Lenk • Finding features: Kepler • Finding features: Kepler • Theory development: Newton • Theory development: Newton • Improved data treatment: Gauss • Abstraction: Euler, Lagrange and Hamilton • Further abstractions: Poincare, Birkhoff • Recent contributions Smale, Arnold and Chaos	Newton a Modeling Giant Newton investigated the motion of two planets subject to a gravitational force. He formulated the law for gravitation $F = k \frac{mM}{r^2}$ and he also formulated the law of momentum balance $\frac{d}{dt}mv = F$, $F = ma = m \frac{d^2x}{dt^2}$ and the analog for angular momentum. He also developed differential calculus to be able to manipulate the equations. The theory that emerged covered much more than the original problem. The three-body problem defied analysis.

Abstraction 2 - HamiltonianIntroduce $\partial L(p,q)/\partial q$ and formIntroduce $\partial L(p,q)/\partial q$ and form $H(p,q) = p^T q - T(p,q),$ If the system is scleronomic (only stationary constraints) wehave $H(p,q) = V(q) + T(p,q)$ have $H(p,q) = V(q) + T(p,q)$ Hamiltons equations $\frac{dq}{dt} = \frac{\partial H}{\partial q}$ $\frac{dp}{dt} = -\frac{\partial H}{\partial q}$ Compare with Pontryagins Maximum Principle!	The Three Body Problem - Poincare most cir- Newton could solve his equations for two bodies, the sun and method method Efforts to solve the equations for three planets failed. Poincare gave a new view. He emphasized the qualitative aspects and started a new vigorous development. rences a mini- is of prob- e could Astrom Lectures in Pavia Abril. 2000 Astrom Lectures in Pavia Abril. 2000
A Nice Way to Obtain Equations of Motion Introduce coordinates Introduce coordinates Compute positions and velocities of centers of masses Compute positions and velocities of centers of masses Compute positions and velocities Compute positions and velocities of centers of masses Compute positions and velocities of centers of masses Compute positions and velocities of centers of masses Compute positions $I = T - V$ Compute kinetic energy $2T = m\dot{x}^2 + J\dot{\theta}^2$ Form Lagrange function $L = T - V$ Lagranges equations $\frac{d}{dt} \partial \dot{q} - \partial g = F$ give the equations of motion	Effective Use of Observation The story of the planet Ceres, discovered in 1781, almost circular orbit. Vanished from view. Recovered by Gauss method in 1801. K. F. Gauss Teoria Motus Corporum Coelestium 1809. "The most probable values of the unknown parameters, are those which minimize the sum of the squares of the differences between the observed and computed values." "The principle that the sum of the squares of the differences between observed and computed quantities must be a minimum may be considered independently of the calculus of probabilities." "Instead of using the sum of squares (our principle) we could use sum of any even power of the errors. But of all these principles ours is the most simple."

Dynamics Differential Equations and Flows	Lecture 1 - Introduction
Ordinary differential equation $\frac{dx}{dt} = f(x)$ Controlled differential equation $\frac{dx}{dt} = f(x, u)$	 Introduction Cosmology - A Role Model Impact of Computers Modeling Paradigms Summary
Philosophical implications: Determinism and free will. Chaos 	
Impact of Computers Typical uses - Typical uses - Solve the equations, find trajectories - Solve the equations, find trajectories - Fit parameters to experimental data - Fit parameters to experimental data - Absent in the early development - Absent in the early development - Early efforts 1850-1950 - Based in the early development - Explosive development 1950-2000 - Explosive development 1950-2000 - Moores law, doubling in 18 months (100 in 10 years) Herman Goldstine: When things change by two orders of magnitude it is revolution, not evolution. With Moores Law a revolution every 10 years!	Commentary on Computations Herman Goldstine: "When things change by two orders of magnitude it is revolution not evolution." • Herman Goldstine: "When things change by two orders of magnitude it is revolution not evolution." • Herman Goldstine: "When things change by two orders of magnitude it is revolution not evolution." • Important to complement computation by understanding and insight • Important to complement computation by understanding and insight. • Hamming: "The purpose of computing is insight not numbers" • Expect software errors! Important to check results to make sure that they are reasonable. Look at results and <i>Think</i> . • Look for special case where you know the solution • Compute an auxiliary quantity to check the results

 Analog Simulation Kelvins Tide Predictor 1879 Kelvins Tide Predictor 1879 The Differential Analyzer 1925 Ball and disk integrator Torque amplifier Modeling by analogs Masses, springs, dash-pots Capacitors, inductors, resistances Electronic Analog Computers 1947 The operational amplifier Commercial systems Philbrick, Electronic Associates, Applied Dynamics 	 nifying Derive differential equations Derive differential equations Derive differential equations Derive differential equations Convert to explicit state space form Convert to explicit state space form Scale equations to make sure numbers are in the right range. A very useful exercise! Make analog computer diagram Make the connections on a patch board and connect recorders Simulate Initial conditions, Operate, Hold Change parameters - Almost instantaneous response Bactrim Lectures in Pavia April, 2000
Vannevar Bush 1927 "Engineering can proceed no faster than the mathematical analysis on which it is based. Formal mathematics is frequently inadequate for numerous problems pressing for solution, and in the absence of radically new mathematics, a mechanical solution offers the most promising and powerful attack " The mechanical differential analyzer 1928-1931. Simulation and modeling.	Analog SimulationIdea: Physical analogs. Differential equations as a unifying concept description.Idea: Physical analogs. Differential equations to $\frac{dx}{dt} = f(x)$ Idea: Physical analogs. Differential equations to $\frac{dx}{dt} = f(x)$ Invo components \bullet Invo components \bullet Integration \bullet Integration

Digital Simulation Integration of ordinary differential equations Mixture of modeling and integration Need for modeling simulation languages Different paradigms Different paradigms Ecological systems Electronic systems Control systems Object Oriented Modeling - Modelica	 Mimic an Analog Computer Try to make a digital computer behave like an analog Man machine interfaces Man machine interfaces Standardization effort spear-headed by the Simulation Standardization effort spear-headed by the Simulation Council (Society for Computer Simulation) Order out of chaos. Farsighted and long lasting. Good features of earlier programs, Mimic, DSL90. Textual representation of analog world Expressions (J_z + n²J_n) Sorting Macros
 Total for this course Lecture 1 - Introduction 	A Fortran preprocessor Modeling Paradigms
 Introduction Cosmology - A Role Model Impact of Computers Modeling Paradigms 	 Ordinary Differential Equations Matlab Block Diagram Modeling Physical Modeling
5. Sumary	Mechanical systems Electrical circuits Hydraulics A General Approach • Modeling Languages • Summary
© K. J. Åström Lecture	Aström Lectures in Pavia April, 2000 10

<pre>Solving Differential Equations using Matlab %Basic ODE simulator %Basic ODE simulator %Basic ODE Simulator %Basic ODE Simulator %De[0;0.5;1;1]; fut,x] = 0DE45('nf',tspan,x0); plot(x(:,1),x(:,3),'b-')) function dxdt=f(t,x) function dxdt=f(t,x) %The right hand side for a two-body problem r=sqrt(x(1)^2+x(3)^2); r=sqrt(x(1)^2+x(3)^2); r=1;%G=6.6720 10^{-(-11) Mm^2/kg^22} dxdt=[x(2);-k*x(1)/r3;x(4);-k*x(3)/r3];</pre>	 Block Diagram Modeling Environments System Build, Simulink and VisSim "Virtual" Analog Computer "Virtual" Analog Computer Easy to use Easy to use Teasy to use Easy to use Teasy to use Teanularity and Structuring Granularity and Structuring Teanularity and Structuring
Ordinary Differential Equations • Derive the equations for the system • Write them in standard form • Write them in standard form • Write them in standard form $\frac{dx}{dt} = f(x)$ • Use an integration routine to simulate the equations • Simple and straight forward • Much tedious work • Error prone • Difficult to structure and reuse	Block Diagram Modeling Block Diagram Modeling The block diagram is a nice abstraction which is an early example of information hiding. A nice way to structure a system Well coupled to transfer functions Well coupled to transfer functions SystemBuild SystemBuild Simulink Unidirectional interaction

Electrical Circuits	 Large systems A few component types A few component types Resistors, capacitors, inductors Resistors, capacitors, inductors Amplifiers, transformers, gyrators Amplifiers, transformers, gyrators Two-ports, four-ports and <i>n</i>-ports Two-ports, four-ports and <i>n</i>-ports Two-ports, four-ports and <i>n</i>-ports Superposition (Linear) Kirkhoffs voltage and current Laws Telegens Theorem Thevenins Theorem Passivity A history lesson 	Modeling and Simulation of Electric Circuits - SPICE - Donald O Pedersen, Berkeley - Write all circuit equations - Watch equations - Match equations - Match equations - Mix modeling and simulation - Wery large following - Very large following - Public domain version - Public domain versions - Complicated transistor models	Aström Lectures in Pavia April, 2000 12
Limitations of Block Diagram Modeling 1	 States may disappear States may disappear Unidirectional interaction very limiting Much manual error prone work required to go from physics to a state space model Progress requires a paradigm shift! 	Kirkhoffs LawsKirkhoffs LawsNumber nodes Z_{ij} impedance between i and j I_{ij} current from i to j I_{ij} current from i to j $V_{ij} = V_i - V_j$ $V_{ij} = V_i - V_j$ Kirchoff's current law $\sum_{ij} I_{ij} = 0$, $\sum_{j} I_{ij} = 0$ $\sum_{ij} V_{ij} = 0$ Kirchoff's voltage law $\sum_{anyloop} V_{ij} = 0$ Generalizations through variables and across variables!	© K. J. Åström Lecture

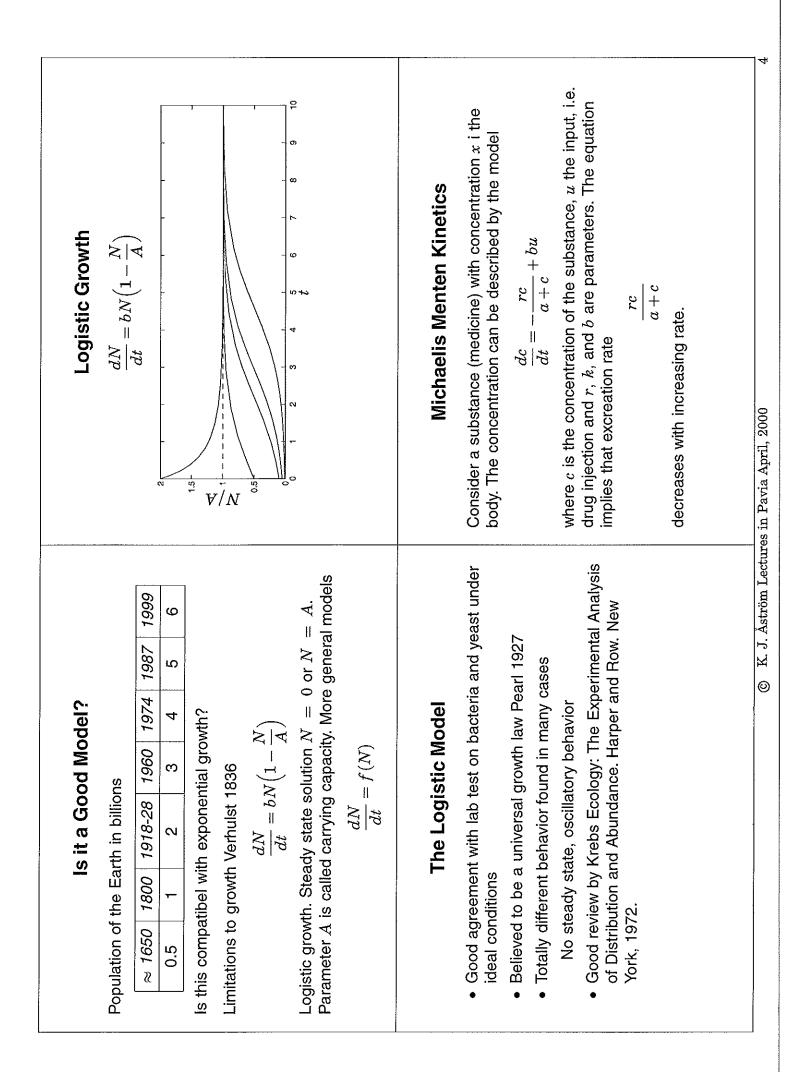
 A General Approach Cut a system into subsystems Cut a system into subsystems Write mass, momentum and energy balances for each subsystem Write mass, momentum and energy balances for each subsystem Use object orientation to structure the system Let software handle book keeping and transformations Code generators for many different purposes Build component libraries 	The Modelica Effort The Modelica Effort • Multi-domain object oriented physical modeling • Background • Background • Standard language backed by international body not by an individual company • An European effort • An European effort • Close to physics • Multiple views • Multiple views • Many different representations - Equations • Schematic pictures tailored to different domains • Libraries public domain and commercial • Reuse • Reuse • Reuse
Mechanical Systems Figid bodies, springs, dampers Figid bodies, springs, dampers Tedious and error prone to write all the equations Many coordinate systems Many coordinate systems Transformation of coordinates Transformation of the system is intuitively very clear Special integration routines may be required Special software Adams Dynola	 A General Approach Eliminate unnecessary variable Use graph theory to reduce equations to block diagonal form Use graph theory to reduce equations to block diagonal form Solve linear blocks analytically Solve linear blocks analytically Generate iterations for nonlinear blocks Generate code for finding equilibria Generate code for simulation Generate code for linearized models K. J. Astroim Lectur

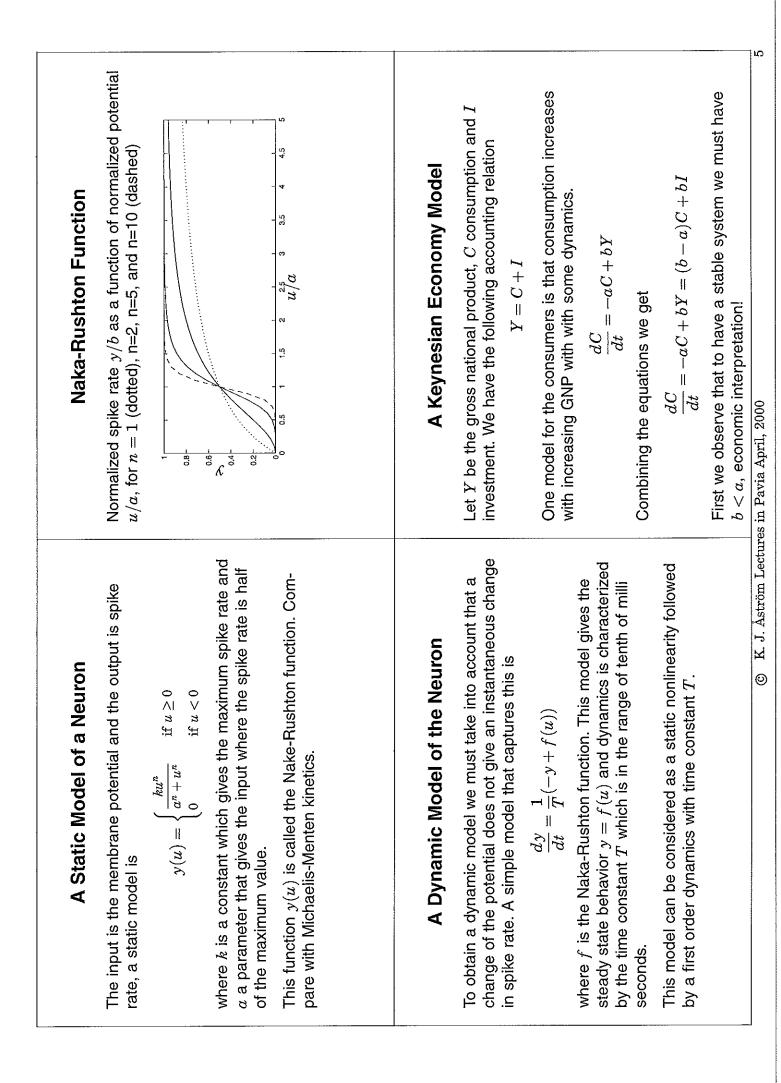
Summary • Modeling is a key activity in all sciences • Cosmology is a nice prototype - The beginning of Natural Science • Cosmology is a nice prototype - The beginning of Natural Science • Cosmology is a nice prototype - The beginning of Natural Science • Cosmology is a nice prototype - The beginning of Natural Science • Cosmology is a nice prototype - The beginning of Natural Science • Cosmology is a nice prototype - The beginning of Natural Science • Observations • Mathematical models Abstraction • The role of computers • Modeling paradigms	References	Physiologi- Wertheim (1995) Pythagoras' Trousers - God, Physics and the Gender War. W. W Norton & Company, New York, London	MIT Press.	s. Mc Graw H. R. Wilson (1999) Spikes, decisions and actions - Dynamical foundations of neuroscience. Oxford University Press. Oxford		and Analysis P. Thomas (1999) Simulation of Industrial Processes. Butterworth- A. Heinemann, Woburn MA.	Corrected	J. Åström Lectures in Pavia April. 2000
Lecture 1 - Introduction 1. Introduction 2. Cosmology - A Role Model 3. Impact of Computers 4. Modeling Paradigms 5. Summary	References	D. S. Riggs (1963) The Mathematical Approach to Physiologi- cal Problems. MIT Press Boston MA	R. Feynman (1967) The Character of Physical Law. Reprinted by The Modern Library 1994.	Canon, R. H. (1967) Dynamics of Physical Systems. Hill,New York.	F. E. Cellier (1991) Continuous System Modeling. Springer- Verlag, New York.	Close, C. M. and D. K. Frederick (1993) Modeling an of Dynamics Systems. Houghton Mifflin, Boston, MA.	J. D. Murray (1993) Mathematical Biology. Second Corrected Edition. Springer, Berlin	© K.J.

Systems Introduction	 A gentle beginning The richness of dynamics Similarities betweeen different areas A simple way to look at basic concepts Equilibria Stability Vector fields and flows Linear systems - Analytical solutions Nonlinear systems - Qualitative analysis Numerical solutions 	Systems First Order Systems • A water tank • A water tank • RC and LC circuits • Reat conduction • Heat conduction • Population dynamics • Population dynamics • The Logistics equation • Michaelis-Menten kinetics • A simple neuron • A simple model of a national economy
Lecture 2 & 3 - First Order Systems	K. J. Åström 1. Introduction 2. Examples 3. Linear systems 4. Nonlinear systems 5. Bifurcations 6. Summary 7Theme: Starting to look at simple dynamics.	Lecture 2 & 3 - First Order Systems 1. Introduction 2. Examples 3. Linear systems 4. Nonlinear systems 5. Bifurcations 6. Summary

A Water Tank	The RC Circuit
Let V be the volume of water in the tank. Let q_{in} be the inflow and q_{out} be the outflow. Then	The charge of the capacitor is $Q = CV$
$rac{dV}{dt}=q_{in}-q_{out}$	The rate of change of the charge is equal to the current, hence
Integrating this equation we find that	$\frac{dQ}{dt} = C\frac{dV}{dt} = I = \frac{E - V}{R}$
$V(t) = V_0 + \int_0^t (q_{in}(au) - q_{out}(au)) d au$	Cleaning up we get
 Notice that the solution is the sum of two terms, one depends on the initial volume, and the other depends on 	$\frac{dV}{dt} = -\frac{V}{RC} + \frac{E}{RC}$
inflow and outflow.Notice role of storage variable.	• Notice similarity to water tank • Notice the role of the storage variable, charge = $Q = CV$
The RL Circuit	Thermal Systems
The flux of the inductor is	Consider a steel ingot in a liquid cooling bath
$\Psi = LI$	$mC_n \frac{dT}{dT} = k(T_l - T)$
The rate of change of the flux is equal to the voltage across the inductor, hence (Faraday's Law)	Rapid thermal processing of silicon wafers
$\frac{d\Psi}{dt} = L\frac{dI}{dt} = V = E - RI$	$mC_prac{dT}{dt}=\sigma A(T_l^4-T^4)$
Cleaning up we get	 Notice similarity to water tank
$\frac{dI}{dt} = -\frac{R}{L}I + \frac{E}{L}$	• Notice the role of the storage variable, energy mC_pT
 Notice similarity to water tank 	
• Notice the role of the storage variable, flux $\Psi = LI$	
© K. J. Aström Lectur	K. J. Aström Lectures in Pavia April, 2000

Mathematical ModelA simplified mathematical modelA simplified mathematical model $m \frac{dv}{dt} + vd = F - mg\theta$ With reasonable parameters Audi in 3rd gear $\frac{dv}{dt} + 0.02v = u - 10\theta$ where v velocity [m/s], u normalized throttle $0 \leq u \leq 1$ and θ slope in [rad/s]• Notice similarity to water tank• Notice the role of the storage variable, momentum mv	th rate d. The Shape of the Solutions $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} $ th rate d. \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} th rate d. \\ \begin{array}{c} \end{array}
Cruise Control Cruise Control \mathcal{A}	Population Dynamics Let the population be N , the birth rate b and the death rate d . The population is then governed by $\frac{dN}{dt} = bN - dN$ The solution is $N(t) = N_0 e^{(b-d)t}$ Malthus 1798 (actually earlier by Euler) \bigotimes K. J. Astroin Lecture





Keynes MultiplierLecture 2 & 3 - First Order SystemsThe model $\frac{dC}{dx} = (b - a)C + bI$ The model $\frac{dC}{dx} = (b - a)C + bI$ Estanbles $\frac{dC}{dx} = (b - a)C + bI$ Detween the standen of the standen on estimation and GNP is1. ImroductionDetween consumption and GNP is3. Linear systemsThe steady state relation3. Linear systemsDetween investment and GNP is3. Linear systemsThe steady state relation5. Examplesthat the enconsumption and GNP is5. BifurcationsThe steady state relation between investment and GNP is5. SummaryThe steady state relation between investment and GNP is5. SummaryThe steady state relation between investment and GNP is6. SummaryThe steady state relation between investment and GNP influential to bring countries out of the depression8. BifurcationsMilenrial to bring countries out of the depression6. SummaryBandard model $\frac{dx}{dt} = ax + bu$ Solving the EquationIntear Systems $\frac{dx}{dt} = ax + bu$ The homogeneous equation, put $u = 0$ Why use standard model $\frac{dx}{dt} = ax + bu$ $\frac{dx}{dt} = ax + bu$ Standard model $\frac{dx}{dt} = ax + bu$ The homogeneous equation, put $u = 0$ $\frac{dx}{dt} = ax + bu$ <tr< th=""></tr<>

The Input-Output Relation If the initial value is zero we have $x(t) = \int_0^t be^{a(t-\tau)}u(\tau)dt = \int_0^t g(t-\tau)u(\tau)dt$ to obtain the output at time t, the input at time τ is multiplied with $g(t-\tau)$ and the product is integrated from 0 to t. The function $g(\tau)$ is therefore called the weighting function, another name is the impulse response. The state is a number of variables that summarizes the past behavior for the purpose of predicting the future development of the system. The state is the only information about the past required for prediction.	Summary The equation $ \begin{array}{c} \frac{dx}{dt} = ax + bu \\ $
Verification Differentiation of $x(t) = e^{\alpha t} x(0) + b \int_0^t e^{\alpha (t-\tau)} u(\tau) d\tau$ gives $\frac{dx}{dt} = a e^{\alpha t} x(0) + a b \int_0^t e^{\alpha (t-\tau)} u(\tau) d\tau + b u(t) = a x(t) + b u(t)$ Furthermore the initial condition is $x(0)$.	Graphical Illustration

Example - The RC network What is the effect of the drive voltage E $\frac{dV}{dt} = -\frac{1}{RC}V + \frac{1}{RC}E$ A comparison with the solution of standard model $x(t) = e^{\alpha t}x(0) + b \int_0^t e^{\alpha(t-\tau)}u(\tau)dt$ gives $V(t) = V_0 e^{-t/RC} + \int_0^t e^{-(t-\tau)/RC}E(\tau)d\tau$ Notice $a = 1/RC$, where RC is the time constant	Lecture 2 & 3 - First Order Systems 1. Introduction 2. Examples 3. Linear systems 4. Nonlinear systems 5. Bifurcations 6. Summary	K. J. Aström Lectures in Pavia April, 2000
Parameter <i>a</i> Tells a lot: $x(t) = e^{at}x(0) + b \int_{0}^{t} e^{a(t-\tau)}u(\tau)dt$ First term depends on initial conditions, second term depends on input signal $\int_{0}^{0} \frac{1}{a^{2}} \int_{0}^{0} 1$	The Shape of the Solution $ \frac{1}{2} + \frac{1}{2$	© K. J. Åström Lecture

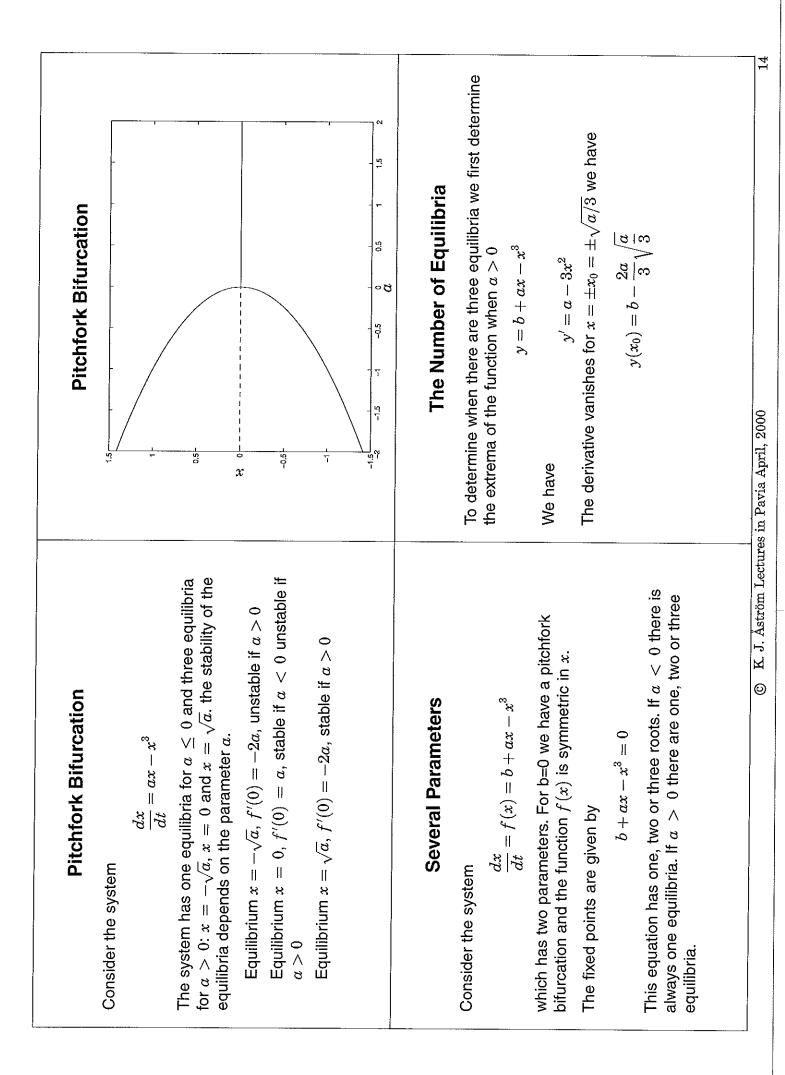
Equilibria and StabilityEquilibria and Stability $\frac{dx}{dt} = f(x)$ $\frac{dx}{dt} = f(x)$ Equilibria are given by $f(x) = 0$ An equilibrium $x = a$ is stable if all solutions starting in the neighborhood of $x = a$ moves towards it. A sufficient condition is that $f'(a) < 0$.A complete characterization is obtained by plotting the function $f(x)$.alDiscuss interpretation.	Logistic Growth $ \frac{dN}{dt} = bN(1 - \frac{N}{A}) = bN - \frac{bN^2}{A} = f(N) $ Equilibria $N = 0$ and $N = A$. $ f'(N) = r - \frac{2bN}{A} $ Hence $N = 0$ unstable and $N = A$ stable. Vector field.
Nonlinear SystemWhy standard models?Why standard models? $\frac{dx}{dt} = f(x,u)$ The steady state relation is given by $f(x,u) = 0$ $f(x,u) = 0$ Much richer behavior than linear equationsEquation can be solved analytically only in a few special casesWhat to do?What to do?What walksis and numerical solutions	Example $\frac{dx}{dt} = f(x)$ Interpretation as flow $\frac{dx}{dt} = f(x)$ Interpretation as flow $\frac{dx}{dt} = \frac{f(x)}{\frac{1}{2}}$ How fast does it move?

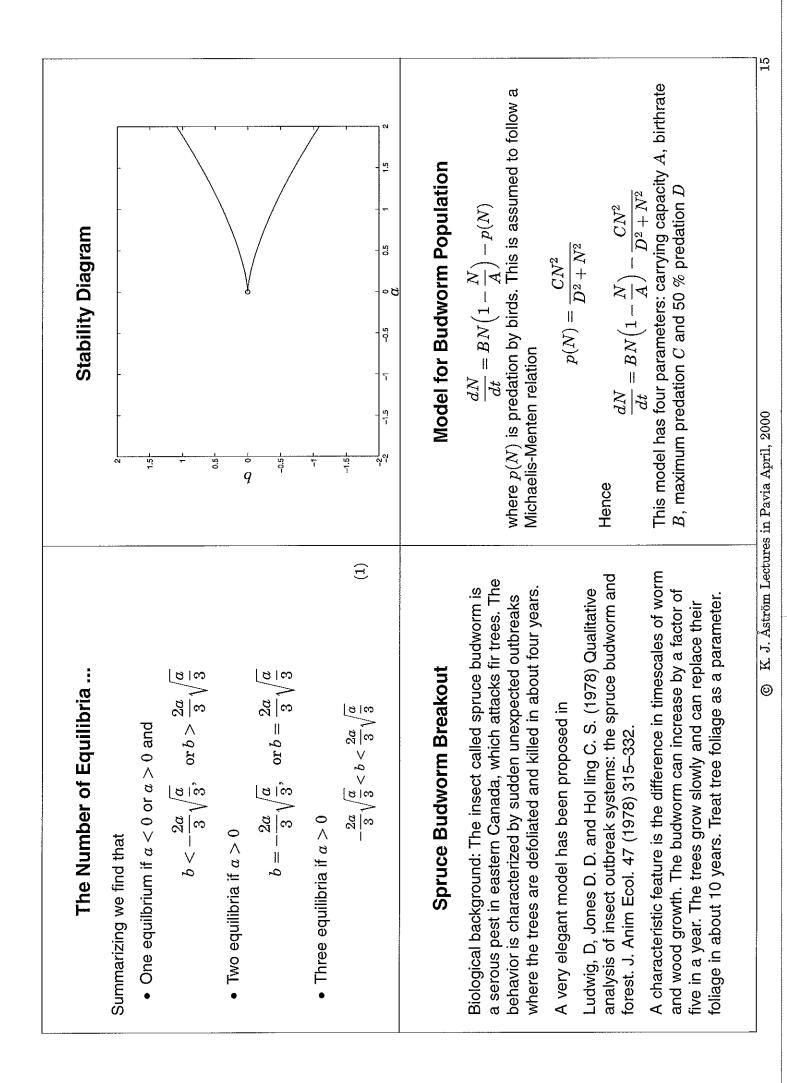
PotentialsPotentialsConsider the differential equationGunsider the differential equationGunsider the differential equationThe potential equation $\frac{dx}{dt} = f(x)$ The potential V(x) associated with the function $f(x)$ is definedby $f(x) = -\frac{dV}{dx}$ We have $\frac{dV}{dt} = \frac{dV}{dx} \frac{dx}{dt} = -f^2(x)$ Since $f^2 \ge 0$ the potential is never increasing along a trajectory of the differential equation. The function $V(x(t))$ will thus decrease unlesss $x(t)$ happens to be an equilibrium where it remains constant.	Interical Solutions Numerical Solutions • The role of computers • The role of computers • H. Goldstine: When things change by 2 orders of magnitude it is revolution not evolution. Moores law implies revolution every 10 years. • The dangers of computers • The dangers of computers • The dangers of computers • Numerical solutions are useful both for linear and nonlinear systems • What do we mean by a solution to a problemXS • Tools are available: Matlab, SCilab, Octave, SysQuake, • Computer algebra tools: Mathematica, Maple • Computer algebra tools: Mathematica, maple
Another Example	Example - The Logistic Equation
$\frac{dx}{dt} = x^2 - 1$ Equilibria $x = 1$ and $x = -1$.	$\frac{dN}{dt} = bN(1 - \frac{N}{A}) = bN - \frac{bN^2}{K} = f(N)$ The potential is
f'(x) = 2x Hence $x = -1$ stable $x = 1$ unstable. Vector field.	$V(N) = -\frac{bN^2}{2} + \frac{bN^3}{3K} + C$ $\int_{-\frac{0.05}{0.0}} \int_{0}^{-\frac{0.05}{0.0}} \int_{0}^{-0$

ODE Solvers	<pre>o orders of [T,Y] = ODE23('F',TSPAN,YO) with TSPAM = [T0 TFINAL]</pre>	Lecture 2 & 3 - First Order Systems	 Introduction Examples Linear systems Nonlinear systems Bifurcations Summary 	
Commentary on Computations	 Herman Goldstine: "When things change by two orders of magnitude it is revolution not evolution." Important to complement computation by understanding and insight Hamming: "The purpose of computing is insight not numbers" Expect software errors! Important to check results to make sure that they are reasonable. Look at results and <i>Think</i> Look for special case where you know the solution Compute an auxiliary quantity to check the results 	Simulation Code	<pre>%Simulation of logistic growth tspan=[0,10]; %</pre>	

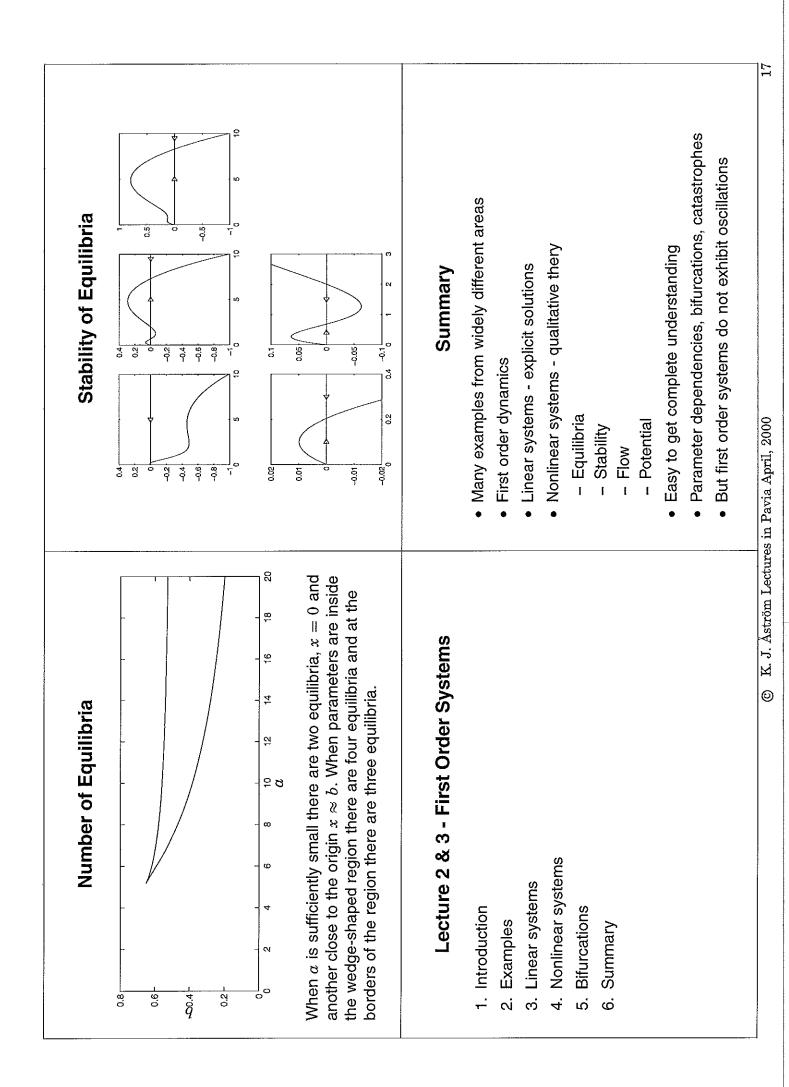
Example	Consider the equation $\frac{dx}{dt} = \alpha + x^{2}$ Equilibria changes with the parameter, different qualitative behavior $\int_{-2}^{-5} \int_{0}^{-5} $	Terminology Bifurcation theory is filled with bewildering names The bifurcation we have studied has been named: fold bifurcation, saddle-node bifurcation, turning point bifurcation, blue sky bifurcation (equilibria appears out of the clear blue sky) Other types of bifurcation are Transcritical bifurcation Pitchfork bifurcation Pitchfork bifurcation Pitchfork bifurcation Flip bifurcation	Aström Lectures in Pavia April, 2000 12
Bifurcations	• First order systems are simple • Can be completely understood by plooting $f(x)$ • Are there interesting questions? • Parameter dependencies • Parameter dependencies • Can changes of parameters cause qualitative changes? • Bifurcations • Bifurcations • Catastrophe theory • Catastrophe theory • Consider the equation $\frac{dx}{dt} = f(x, a)$ where <i>a</i> is a parameter. How does the behavior change with	Bepresentation of Bifurcations Representation of Bifurcations A diagram which shows the equilibria as a function of the state. The dashed line indicates unstable equilibra and solid lines represents stable equilibria $\int_{0}^{0} \int_{0}^{0} $	© K. J. Åström Lect

Transcritical Bifurcation The system $ \frac{dx}{dt} = f(x) = ax - x^{2} $ has the equilibria $x = 0$ and $x = a$, the stability of the equilibria depends on the parameter a . • Equilibrium $x = 0$, $f'(0) = a$, stable if $x < 0$ unstable if $x > 0$ • Equilibrium $x = a$, $f'(0) = -a$, stable if stable if $a > 0$ unstable if $a < 0$	The Audience is Thinking Sketch the function $f(x)$ for the system Sketch the function $f(x)$ for the system $\frac{dx}{dt} = f(x) = ax - x^3$ • Determine equilibria and their stability • Sketch the bifurcation diagram • Interprete the bifurcation diagram
The Audience is Thinking Sketch the function $f(x)$ for the system $\frac{dx}{dt} = ax - x^2$ • Determine equilibria and their stability • Sketch the bifurcation diagram • Interprete the bifurcation diagram	Bifurcation Diagram





Equilibria $\frac{dx}{dt} = bx(1 - \frac{x}{a}) - \frac{x^2}{1 + x^2}$ the equilibria are given by $bx(1 - \frac{x}{a}) - \frac{x^2}{1 + x^2} = 0$ $bx(1 - \frac{x}{a}) - \frac{x^2}{1 + x^2} = 0$ A fourth order equation, $x = 0$ is always a solution, the other can be visualized graphically by plotting $y = bx(1 - x/a)$ and $y = x^2/(1 + x^2)$.	Coinciding Equilibria $f(x) = bx(1 - \frac{x}{a}) - \frac{x^2}{1 + x^2} = 0$ $f'(x) = b(1 - \frac{2x}{a}) - \frac{x^2}{(1 + x^2)^2} = 0$ Dividing these equations we get $2(1 - \frac{x}{a}) = (1 - \frac{2x}{a})(1 + x^2)$ Hence $a(x) = \frac{2x^3}{x^2 - 1}, b(x) = \frac{2x^3}{(1 + x^2)^2}$ and we have $a(x) = \frac{2x^3}{x^2 - 1}, b(x) = \frac{2x^3}{(1 + x^2)^2}$ Astrom Lectures in Pavia April, 2000 16
Graing $\frac{dN}{dt} = BN(1 - \frac{N}{A}) - \frac{CN^2}{D^2 + N^2}$ Introduce the scaled population $x = N/D$ and divide by C $\frac{D}{C} \frac{dx}{dt} = \frac{B}{C}x(1 - \frac{Dx}{A}) - \frac{x^2}{1 + x^2}$ Introduce a new time scale and parameters a and b $\tau = \frac{Ct}{D}$, $b = \frac{B}{C}$, $a = \frac{A}{D}$ The model then becomes $\frac{dx}{dt} = bx(1 - \frac{x}{a}) - \frac{x^2}{1 + x^2}$ This model only has two parameters a and b	Figurities Plot the functions $y = b(1 - x/a)$ and $y = x/(1 + x^2)$. $\frac{2}{2} + \frac{2}{2} + $



		ျတ္
		Pavia April, 2000 18
References	John Maynard Keynes (1936) The General Theory of Employ- ment Interest and Money. MacMillan, London J. Maynard Smith (1968) Mathematical Ideas in Biology. Cambridge University Press. J. D. Murray (1993) Mathematical Biology. Second Corrected Edition. Springer, Berlin. S. H Strogatz (1998) Nonlinear Dynamics and Chaos. With applications to Physics, Biology, Chemistry and Engineering. Perseus Books, Cambridge MA.	© K. J. Åström Lectures in Pavia April, 2000

Introduction First order systems easy to deal with Standard form and analytical solutions Linear systems of high order Approximate nonlinear systems close to equilibria Standard form Numerical solutions	Parameter <i>a</i> Gives Much Insight $x(t) = e^{at}x(0) + b \int_{0}^{t} e^{a(t-\tau)}u(\tau)dt$ First term depends on initial conditions, second term depends on input signal n input signal $\int_{0}^{20} \int_{0}^{20} \int_{0}^{0} \int_{0}^{0$
Lecture 4 & 5 - Linear Time-Invariant Systems	First Order Systems
K. J. Åström	Recall linear systems of first order
T. Introduction	$\frac{dx}{dt} = ax + bu$ which has the solution
1. Introduction	which has the solution
2. Examples	$x(t) = e^{at}x(0) + b \int_0^t e^{a(t-\tau)}u(\tau)dt$ •
3. Second Order Systems	The solution has two terms
3. Second Order Systems	• The solution has two terms
4. High Order Systems	• One depends on the initial condition
5. Summary	• The other depends on the control signal
6. References	How can this be generalized to systems of high order?
Theme: Increasing Dimensions	• K. J. Astrôm Lectu

ems Examples	 Spring mass system RLC circuit Simple compartment model Electric motor A compartment model A simple model of a macro economy Can we find a suitable standard form 	he An RLC Network There is energy stored in the capacitor and the inductor. The system can be described by the equations $E = RI + L \frac{dI}{dt} + V$ $T = C \frac{dV}{dt}$ These equations can be written as $\frac{dV}{dt} = \frac{1}{C}I$ $\frac{dI}{dt} = -\frac{1}{L}V - \frac{R}{L}I + \frac{1}{L}E$ Astrom Lectures in Pavia April. 2000
Lecture 4 & 5 - Linear Time-Invariant Systems	 Introduction Examples Second Order Systems High Order Systems Input-output relations Input-output relations Summary References 	Spring Mass Damper System A spring mass damper system can be described by the equations $m \frac{d^2y}{dt^2} + d \frac{dy}{dt} + ky = ky$. This is a second order differential equation. We will write it as a system of first order equations. Introducing $x_1 = y$ and $x_2 = dy/dt$ the system can be written as $\frac{dx_1}{dt} = x_2$ $\frac{dx_2}{dt} = -\frac{k}{m}x_1 - \frac{d}{m}x_2 + \frac{k}{m}y_r$

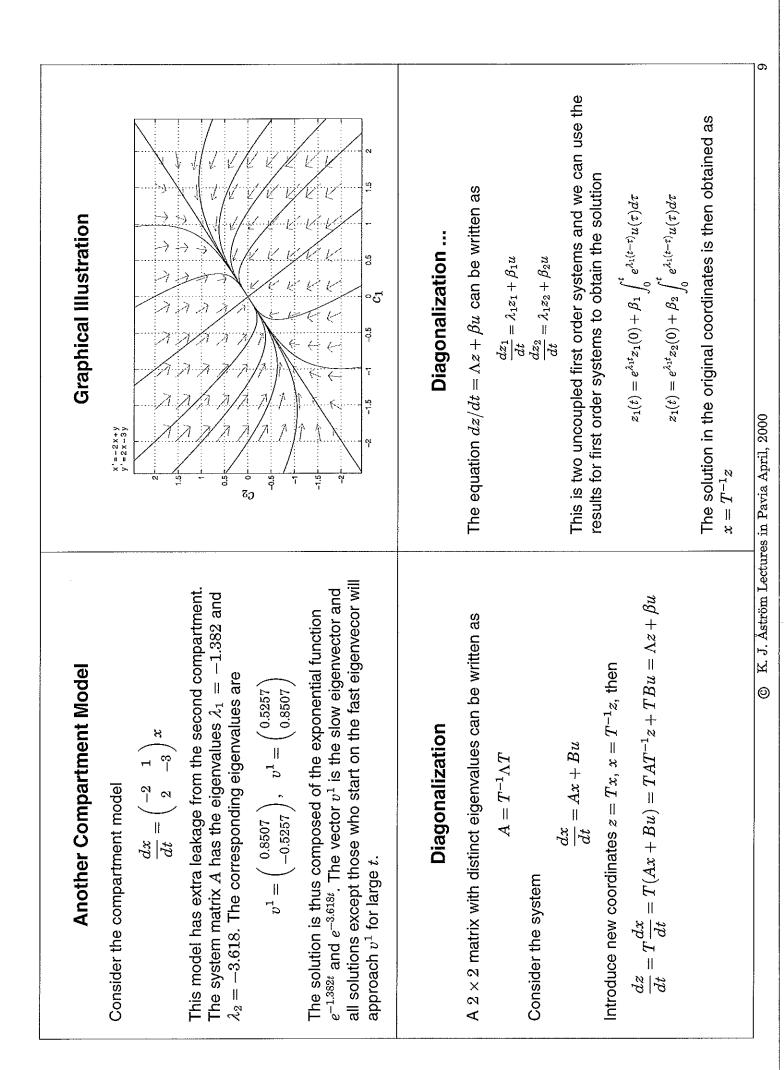
iplying it by C and t the model can $\frac{IE}{\delta t}$ E el	An Electric MotorAn Electric MotorEnergy stored in capacitor, inductor and rotor.Momentum balance $J \frac{d\omega}{dt} + D\omega = kI$ Kirchoffs laws for the electric circuit $E = kI + L \frac{dI}{dt} + V - h \frac{d\omega}{dt}$ Kirchoffs laws for the electric circuit $E = kI + L \frac{dI}{dt} + V - h \frac{d\omega}{dt}$ The equation can be written as $\frac{d\omega}{dt} = \frac{1}{J}x$ $\frac{d\omega}{dt} = \frac{1}{J}x$ $\frac{d\omega}{dt} = \frac{1}{JL}x - \frac{1}{L}V + (\frac{k^2}{JL} - \frac{R}{L})I + \frac{1}{L}E$ A National product, C consumption, I investment, and G government expenditure. We have $Y = C + I + G$ Assume that consumers react to the general economic climate with first order dynamics
$\frac{dc_1}{dt} = -\frac{k_1}{V_1}c_1 + \frac{k_1}{V_1}c_2 + \frac{b}{V_1}u$ Moreover assume	e that
$\frac{dc_1}{dt} = \frac{k_1}{V_2}c_1 - \frac{k_1}{V_2}c_2$ Of change of control of chan	sumpti

A National Economy	A National Economy
$\frac{dC}{dt} = -aC + bY$ $\frac{dC}{dt} = -cI + d\frac{dC}{dt}$ can be written as can be written as $\frac{dC}{dt} = (b - a)C + bI + bG$ $\frac{dC}{dt} = (b - a)C + (bd - c)I + bdG$ $\frac{dI}{dt} = d(b - a)C + (bd - c)I + bdG$ The static input-output relation is $K = \frac{Y}{G} = \frac{2b - a}{b - a} \ge 1$ Konce multiplied Send of for the cimple model	The system $\frac{dC}{dt} = (b-a)C + bI + bG$ $\frac{dI}{dt} = d(b-a)C + (bd-c)I + bdG$ has the characteristic polynomial $\lambda^2 + (a - b - bd + c)\lambda + (a - b)c$ The system is stable if (a - b)c > 0 $a - b - bd + c > 0$
Standard FormsStandard FormsThe examples show that systems can be written in at least two different waysThe examples show that systems can be written in at least two different ways• As a high order differential equation $LC \frac{d^2V}{dt^2} + RC \frac{dV}{dt} + V = E$ • As a high order differential equations• As a system of first order differential equations $\frac{dV}{dt} = \frac{1}{C}I$ $\frac{dV}{dt} = -\frac{1}{L}V - \frac{R}{L}I + \frac{1}{L}E$ Which one should we choose to develop the theory?	Lecture 4 & 5 - Linear Time-Invariant Systems 1. Introduction 2. Examples 3. Second Order Systems 4. High Order Systems 5. Input-output relations 6. Summary 7. References
© K. J. Åström Lectur	K. J. Åström Lectures in Pavia April, 2000 4

Standard Form for Second Order Systems	Matrices
A system of second order can be written as $\frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + b_1u$ $\frac{dx_2}{dx_2} = a_{11}x_1 + a_{12}x_2 + b_1u$	
$\frac{\overline{dt}}{dt} = a_{21x_1} + a_{22x_2} + a_{2u}$ or with matrix notation $\frac{dx}{t} = Ax + Bu$	 Matrices are userul for qualitative reasoning There are many powerful concepts such as eigenvalues and eigenvectors There are powerful computational tools (Matlab) for computing with matrices. Using this you can easily obtain
$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, A = \begin{pmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},$ Looks like a first order system! Can be extended to arbitrary order!	 Solutions to specific problems numerically There is a beautiful theory for matrices
Simple Examples	Determinants, and Inverses
Consider the following matrices and their transpose	Consider the 2×2 matrix
$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{pmatrix}$	$A=egin{pmatrix} lpha_{11}&lpha_{12}\ lpha_{21}&lpha_{22}\ lpha_{21}&lpha_{22} \end{pmatrix}$
 Which matrices can be added? Which matrices can be multiplied? 	The determinant is $\det A = a_{11}a_{22} - a_{12}a_{21}$
• The inverse of A is a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$	The trace is $trA = a_{11} + a_{22}$ If the determinant is different from zero the matrix has an inverse which is given by
	$A^{-1}=rac{1}{\det A}igg(egin{array}{ccc} a_{22}&-a_{12}\ -a_{21}&a_{11} \end{array}igg)$
© K. J. Åström Lectu	. Äström Lectures in Pavia April, 2000 5

Second Order Homogeneous Equations A system of second order can be written as A system of second order can be written as $\frac{dx}{dt} = Ax = \begin{pmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ Let <i>v</i> be an eigenvector of the matrix <i>A</i> and consider the solution $x(t)$ with initial condition $x(0) = v$. $x(t) = ve^{\lambda t}$ Proof: $\frac{dx}{dt} = \lambda ve^{\lambda t}, Ax = Ave^{\lambda t} = \lambda ve^{\lambda t}$ Froof: $\frac{dx}{dt} = \lambda ve^{\lambda t}, Ax = Ave^{\lambda t} = \lambda ve^{\lambda t}$ The general solution is thus $x(t) = Ce^{\lambda_1 t} + De^{\lambda_2 t}$ where <i>C</i> and <i>D</i> are arbitrary vectors	Roots of Characteristic Equation give Insight:Roots of Characteristic Equation give Insight:A real eigenvalue λ corresponds to the time function $e^{\lambda t}$.A complex eigenvalue $\lambda = \sigma \pm i\omega$ corresponds to the time functions. $e^{\sigma t} \sin \omega t$, $e^{\sigma t} \cos \omega t$ $e^{\sigma t} \sin \omega t$, $e^{\sigma t} \cos \omega t$ $e^{\sigma t} \sin \omega t$, $e^{\sigma t} \cos \omega t$ $o 0.25\omega$ <td colspa<="" th=""></td>	
Eigenvalues and Eigenvectors in Matlab EIG Eigenvalues and eigenvectors. EIG Eigenvalues and eigenvectors. E = EIG(X) is a vector containing the eigenvalues of a square matrix X. [V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the corresponding eigenvectors so that X*V = V*D. Notice $X = VDV^{-1}$ comparing with our previous calculation we find that matlab gives $V = T^{-1}$.	Eigenvalues Give Much Insight The equation The equation $\frac{dx}{dt} = Ax$ where <i>A</i> is a 2 × 2 matrix has the solution where <i>A</i> ₁ and <i>J</i> ₂ are the eigenvectors of <i>A</i> and <i>C</i> and <i>D</i> are where <i>A</i> ₁ and <i>J</i> ₂ are the eigenvectors of <i>A</i> and <i>C</i> and <i>D</i> are arbitrary vectors. Discuss the form of the solution for • Real eigenvalues • Complex eigenvalues	

Example RLC Circuit	Example RLC Circuit
$\frac{dV}{dt} = \frac{1}{C}I$ $\frac{dI}{dt} = -\frac{1}{L}V - \frac{R}{L}I + \frac{1}{L}E$ Introducing $I = -\frac{1}{L}V - \frac{R}{L}I + \frac{1}{L}E$	Characteristic polynomial $\det(\lambda I - A) = \det \begin{pmatrix} \lambda & -1/C \\ 1/L & \lambda + R/L \end{pmatrix} = \lambda^2 + \frac{R}{L}\lambda + \frac{1}{LC}$
$\frac{dx}{dt} = v \text{and} x_2 = x \text{and} \text{assume that} x_2 = 0, \text{ hence}$ $\frac{dx}{dt} = \begin{pmatrix} 0 & 1/C \\ -1/L & -R/L \end{pmatrix} x = Ax$ Characteristic polynomial	Introduce the numerical values $C = 10^{-6}$, $L = 0.0025$ and $R = 10$. The characteristic polynomial then becomes $\lambda^2 + 4000\lambda + 4 \times 10^8$
$\det(\mathcal{X}I - A) = \det\left(\begin{array}{cc}\lambda & -1/C\\ 1/L & \lambda + R/L\end{array}\right) = \lambda^2 + \frac{R}{L}\lambda + \frac{1}{LC}$ Compare with the other way of writing the equations $\frac{d^2V}{dt^2} + \frac{R}{L}\frac{dV}{dt} + \frac{1}{LC}V = 0$	This equation has the roots $\lambda = -200 \pm 19900i$. The solution to the differential equation is of the form $C_1 e^{-2000t} \sin 19900t + C_2 e^{-200t} \cos 19900t$
A Compartment Model	A Compartment Model
• Consider the body as a collection of compartment concentration in each compartment constant concentration in each compartment is proportional to the difference in concentration (C) or activity. For a system with two compartments we have $\frac{dx_1}{dt} = k(C_2 - C_1) = k\left(\frac{x_2}{V_2} - \frac{x_1}{V_1}\right) = k_2x_2 - k_1x_1$ $\frac{dx_2}{dt} = k(C_1 - C_2) = k\left(\frac{x_1}{V_1} - \frac{x_2}{V_2}\right) = k_1x_1 - k_2x_2$ where x_k is the number of molecules in compartment k, C_k the concentration and V_k the volume in compartment k, C_k	The standard form of the model is $\frac{dx}{dt} = \begin{pmatrix} -k_1 & k_2 \\ k_1 & -k_2 \end{pmatrix} x = Ax$ The matrix A has the characteristic polynomial det $\lambda I - A = \det \begin{pmatrix} s + k_1 & -k_2 \\ -k_1 & s + k_2 \end{pmatrix} = \lambda^2 + (k_1 + k_2)\lambda$ The characteristic equation thus have two roots $\lambda_1 = 0$ and $\lambda_2 = -k_1 - k_2$. The solution is thus of the form $x_i(t) = A_i + B_i e^{-(k_1 + k_2)t}$
© K. J. Åström Lectur	Áström Lectures in Pavia April, 2000 8



Lecture 4 & 5 - Linear Time-Invariant Systems	Systems of Arbitrary Order
1. Introduction	The first order system
2. Examples	$\frac{dx}{dx} = \alpha x + bu$
3. Second Order Systems	dt - dt
4. High Order Systems	has the solutions
5. Input-output relations	$x(t)=e^{at}x(0)+b\int^t e^{a(t- au)}u(au)d au$
6. Summary	
7. References	We have generalized to second order systems and we will now generalize even further to systems of arbitrary high order
	$\frac{dx}{dt} = Ax + Bu$
Linear Dynamical Systems - The State Model	Vector and Matrix Notations
$\frac{dx}{dt} = Ax + Bu$	 Very compact and practical notation Numerical calculations supported by nice software
y = Cx + Du	 Learn to formulate and interpret
 Variables denote deviations from equilibrium 	 Essentially the same as for scalar equations
 Think scalar and interpret as vectors 	• BUT remember that $AB eq BA!$ for matrices
x state vector	 Use scalar results to guess the results for vectors and
 u control variable, input 	matrices
• <i>y</i> measured variables, output	
All information about the system in the matrices A , B , C and D and the initial condition.	
© K. J. Åström Lecture	Åström Lectures in Pavia April, 2000

An Educated Guess Consider the equation $\frac{dx}{dt} = Ax + Bu$ If A and B are real numbers the solution is $x(t) = e^{At}x(0) + \int_{0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau$	Matrix FunctionsMatrix FunctionsLet $f(x)$ be a polynomial in real variables $f(x) = a_0 + a_1x + \ldots + a_nx^n$ Let A be a square matrix, the matrix function $f(A)$ can then bedefined as $f(A) = a_0I + a_1A + \ldots + a_nA^n$ If $f(x)$ has a converging series expansion
 Can this be the solution also when A is a matrix? How to define funtion of matrices? 	$f(A) = a_0I + a_1A + \ldots + a_nA^n + \ldots$ The matrix exponential $e^{At} = I + At + \frac{1}{2}(At)^2 + \ldots + \frac{1}{n!}A^nt^n + \ldots$
Calculating with the Matrix Exponential The matrix exponential is defined as $e^{At} = I + At + \frac{1}{2}(At)^2 + \frac{1}{3!}(At)^3 \dots + \frac{1}{n!}(At)^n + \dots$ $e^{At} = I + At + \frac{1}{2}(At)^2 \dots + \frac{1}{(n-1)!}(At)^{n-1} + \dots = Ae^{At}$ $\frac{d}{dt}e^{At} = A + At + \frac{1}{2}(At)^2 \dots + \frac{1}{(n-1)!}(At)^{n-1} + \dots = Ae^{At}$	"Solving" Linear Equations "Solving" Linear Equations The equation $\frac{dx}{dt} = Ax + Bu$ has the solution $x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$ $x(t) = e^{At}x(0) + A \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau + Bu(t)$ $\frac{dx}{dt} = Ae^{At}x(0) + A \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau + Bu(t)$
 K. J. Aström Lecture 	Aström Lectures in Pavia April, 2000 11

Diagonalization - Distinct Eigenvalues Consider an $n \times n$ matrix A with distinct eigenvalues λ_i and corresponding eigenvectors v^i . We have $A(v^1 \ v^2 \ \dots \ v^n) = (\lambda_1 v^1 \ \lambda_2 v^2 \ \dots \ \lambda_n v^n)$ $= (v^1 \ v^2 \ \dots \ v^n) \begin{pmatrix} \lambda_1 \ 0 \ \dots \ \lambda_n \end{pmatrix} = T^{-1} \Lambda$ For a matrix with distinct eigenvalues we find that $AT^{-1} = T^{-1} \Lambda$ or $A = T^{-1} \Lambda T$, and $\Lambda = TAT^{-1}$	AT-1.DiagonalizationAT^-1.The equationAT^-1. $\frac{dz_1}{dt} = \lambda_{1z_1} + \beta_{1u}$ $\lambda T^{-1}.$ $\frac{dz_1}{dt} = \lambda_{nz_n} + \beta_{nu}$ βu $\frac{dz_n}{dt} = \lambda_{nz_n} + \beta_n u$ $\lambda_1(t) = e^{\lambda_1 t} z_1(0) + \beta_1 \int_0^t e^{\lambda_1(t-t)} u(\tau) d\tau$ $z_n(t) = e^{\lambda_n t} z_n(0) + \beta_n \int_0^t e^{\lambda_n(t-t)} u(\tau) d\tau$ Astrôm Lectures in Pavia April, 200012
An Example An Example $ \frac{dx}{dt} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u $ We have $ A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $ Hence $ e^{At} = I + At = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, e^{At}B = \begin{pmatrix} t \\ 1 \end{pmatrix} $ and we get $ x(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} x(0) + \int_0^t \begin{pmatrix} t - \tau \\ 1 \end{pmatrix} u(\tau) d\tau $	Diagonalization $\begin{aligned} \frac{dx}{dt} = Ax + Bu \\ \frac{dx}{dt} = Ax + Bu \\ \text{Assume that there exist a matrix T such that \Lambda = TAT^{-1}. \\ \text{Assume that there exist a matrix T such that \Lambda = TAT^{-1}. \\ \text{Introduce new coordinates } z = Tx, \text{ then} \\ \frac{dz}{dt} = T(Ax + Bu) = TAT^{-1}z + TB = \Lambda z + \beta u \\ \text{Componentwise} \\ \frac{dz_{1}}{dt} = \lambda_{1z_{1}} + \beta_{1u} \\ \vdots \\ \frac{dz_{n}}{dt} = \lambda_{n}z_{n} + \beta_{n}u \\ \otimes \text{ K. J. Aström Lecture} \end{aligned}$

The Cayley-Hamilton Theorem Let the $n \times n$ matrix A have the characteristic equation $det(\lambda I - A) = \lambda^n + a_1\lambda^{n-1} + a_2\lambda^{n-2} \dots + a_n = 0$ then it follows that $det(\lambda I - A) = A^n + a_1A^{n-1} + a_2A^{n-2} \dots + a_nI = 0$	Proof for Distinct Eigenvalues If a matrix has distinct eigenvalues it can be diagonalized and we have $A = T^{-1}\Delta T$. This implies that $A^2 = {}^{-1} T\Lambda T T^{-1}\Lambda T = T^{-1}\Lambda^2 T$ $A^3 = {}^{-1} T\Lambda TA^2 = T^{-1}\Lambda TT^{-1}\Lambda^2 T = T^{-1}\Lambda^3 T$
A matrix satisfies its characteristic equation.	and match = $I - X^n I$ conce λ_i is an eigenvalue it follows that $\lambda_i^n + \alpha_1 \lambda_i^{n-1} + \alpha_2 \lambda_i^{n-2} \dots + \alpha_n = 0$ Hence $\Lambda_i^n + \alpha_1 \Lambda_i^{n-1} + \alpha_2 \Lambda_i^{n-2} \dots + \alpha_n I = 0$ Multiplying by T^{-1} from the left and T from the right and using the relation $A^k = T^{-1} \Lambda^k T$ now gives $A^n + \alpha_1 A^{n-1} + \alpha_2 A^{n-2} \dots + \alpha_n I = 0$
A Consequence for Matrix Functions Let <i>A</i> be an $n \times n$ matrix. A matrix function of <i>A</i> can always be written as $f(A) = a_0I + a_1A + \ldots + a_{n-1}A^{n-1}$ For matrices having distinct eigenvalues the coefficients can be determined from the equations $f(\lambda_i) = a_0I + a_1\lambda + \ldots + a_{n-1}\lambda^{n-1}$	A Sharper Result The minimal polynomial of a matrix is the polynomial of lowest degree such that $g(A) = 0$. The characteristic polynomial is generically the minimal polynomial. For matrices with common eigenvalues the minimal polynomial. The matrices with common from the characteristic polynomial. The matrices $A_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ have the minimal polynomials $g_{1}(\lambda) = \lambda - 1, g_{2}(\lambda) = (\lambda - 1)^{2}$
© K. J. Åström Lecture	Aström Lectures in Pavia April, 2000 13

Lecture 4 & 5 - Linear Time-Invariant Systems	Two Views on Dynamics
1. Introduction	State Models - White Boxes
2. Examples	 A detailed description of the inner workings of the system
3. Second Order Systems	 The heritage from mechanics
4. High Order Systems	The notion of state and stability
5. Input-output relations	 States describe storage of mass, energy and momentum
6. Summary	Input-Output Models - Black Boxes
7. References	 A description of the input output behavior
	The Table
	 The heritage of electrical engineering
	The notion of weighting function
Input and Output Relations	The Impulse Response
$\frac{dx}{dt} = Ax + Bu$	
y = Cx + Du	
Input-output relation	
$y(t)=Ce^{At}x(0)+\int_{0}^{t}Ce^{A(t- au)}Bu(au)d au+Du(t)$	
$= Ce^{At}x(0) + \int_0^t g(t-\tau)u(\tau)d\tau$	ð(10
 The same formula as for first order systems! 	t) 05 1 2 3 4 5 5 7 8 9 10
 Notice two terms, initial conditions and input 	-01
• Weighting function or impulse response $g(t)$	
© K. J. Åström Lectur	Aström Lectures in Pavia April, 2000 14

.

Input and Output Relations	Input and Output Relations
$\frac{dx}{dt} = Ax + Bu$ $y = Cx$	$y = Cx$ $\frac{dy}{dt} = C\frac{dx}{dt} = CAx + CBu$
y = Cx $\frac{dy}{dt} = C\frac{dx}{dt} = CAx + CBu$ $\frac{d^2y}{dt^2} = CA\frac{dx}{dt} + CB\frac{du}{dt} = CA^2x + CBu + CB\frac{du}{dt}$ \vdots	\vdots $\frac{d^n y}{dt^n} = CA^n x + CBu + CAB \frac{du}{dt} + CA^2 B \frac{d^2u}{dt^2} + \dots + CA^{n-1} B \frac{d^{n-1}u}{dt^{n-1}}$ Let the characteristic polynomial of the matrix <i>A</i> be $\lambda^n + \alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \dots + \alpha_n$
$ \begin{aligned} \frac{d^n y}{dt^n} &= CA^{n-1} \frac{dx}{dt} + CAB \frac{du}{dt} + CA^2 B \frac{d^2 u}{dt^2} + \dots + CA^{n-1} B \frac{d^{n-1} u}{dt^{n-1}} \\ &= CA^n x + CB u + CAB \frac{du}{dt} + CA^2 B \frac{d^2 u}{dt^2} + \dots + CA^{n-1} B \frac{d^{n-1} u}{dt^{n-1}} \end{aligned} $	Multiply the first equation by a_n the second by a_{n-1} etc and add $\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_1 \frac{d^{n-1} u}{dt^{n-1}} + \dots + b_n u$
The Transfer Function	Summary
The system $rac{d^ny}{dt^n}+a_1rac{d^{n-1}y}{dt^{n-1}}+\ldots+a_ny=b_1rac{d^{n-1}u}{dt^{n-1}}+\ldots+b_nu$	$\frac{dx}{dt} = Ax + Bu$ $y = Cx$
is characterized by two polynomials	has the input-output relation
$A(s) = s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n \ B(s) = b_1 s^{n-1} + b_2 s^{n-2} + \ldots + b_{n-1} s + b_n$	$rac{d^n y}{dt^n} + lpha_1 rac{d^{n-1} y}{dt^{n-1}} + \ldots + lpha_n y = b_1 rac{d^{n-1} u}{dt^{n-1}} + \ldots + b_n u$
The rational function $G(s) = \frac{B(s)}{A(s)}$ is called the transfer funtion of the system	a_i coefficients of the characteristic polynomial and $b_1 = CB$ $b_2 = CAB + a_1CB$:
	$b_n=CA^{n-1}B+a_1CA^{n-2}B+\ldots+a_{n-1}CB$
© K. J. Aström Lecture	Aström Lectures in Pavia April, 2000 15

Linear Time Invariant Systems	Roots of Characteristic Equation give Insight!
$\frac{dx}{dt} = Ax + Bu$ $y = Cx + Du$	A real root $s = \alpha$ to the characteristic equation corresponds to the time function $e^{\alpha t}$. Complex roots $s = \sigma \pm i\omega$ corresponds to the time functions.
Variables now denote deviations from steady state. Solution	$e^{\sigma t} \sin \omega t$, $e^{\sigma t} \cos \omega t$
$egin{aligned} x(t) &= e^{At}x(0) + \int_0^t e^{A(t-s)}Bu(s)ds \ y(t) &= Ce^{At}x(0) + C\int_0^t e^{A(t-s)}Bu(s)ds + Du(t) \end{aligned}$	$\sigma = 0.25\omega$
First terms depend on initial condition the second on the input. Transfer function: $G(s) = C(sI - A)^{-1} + D$	K
Impulse response: $h(t) = Ce^{At}B + D\delta(t)$	$\frac{-24}{6}$ $\frac{5}{6}$ $\frac{10}{6}$ $\frac{15}{15}$ $\frac{-20}{6}$ $\frac{5}{6}$ $\frac{10}{15}$ $\frac{15}{6}$
Coordinate Changes	Diagonal Form
Coordinate changes are often useful	
$\frac{dx}{dt} = Ax + Bu \qquad z = Tx \qquad \frac{dz}{dt} = \tilde{A}z + \tilde{B}u$ $y = Cx + Du \qquad x = T^{-1}z \qquad y = \tilde{C}z + \tilde{D}u$	$\frac{dz}{dt} = \begin{array}{c c} \lambda_2 & & \\ & \ddots & \\ & \ddots & \\ & \ddots & \\ & \vdots & \\ & u \end{array}$
Transformed system has the same form but the matrices are different	$y = \begin{pmatrix} 0 & \lambda_n \end{pmatrix} (\beta_n)$ $y = \begin{pmatrix} \gamma_1 & \gamma_2 & \dots & \gamma_n \end{pmatrix} z + Du$
$\tilde{A} = TAT^{-1}, \tilde{B} = TB, \tilde{C} = CT^{-1}, \tilde{D} = D$	Transfer function
The impulse response is an invariant with coordinate transforma-	$G(s) = \sum_{n=1}^{n} \frac{\beta_i \gamma_i}{\beta_n} + D$
$ ilde{g}(t) = ilde{C}e^{ ilde{A}t} ilde{B} = CT^{-1}e^{TAT^{-1}t}TB = Ce^{At}B = g(t)$ and	Notice appearance of eigenvalues of matrix A
$\tilde{G}(s) = \tilde{C}(sI - \tilde{A})^{-1}\tilde{B} = CT^{-1}(sI - TAT^{-1})^{-1}TB$ $= C(sI - A)^{-1}B = G(s)$	
© K. J. Åström Lectures in Pavia April, 2000	in Pavia April, 2000 16

Controllable Canonical Form	Observable Canonical Form
$ \frac{dz}{dt} = \begin{pmatrix} -\alpha_1 & -\alpha_2 & \dots & \alpha_{n-1} & -\alpha_n \\ 1 & 0 & 0 & 0 & 0 \\ \vdots & & & & \\ y = \begin{pmatrix} -\alpha_1 & -\alpha_2 & \dots & \alpha_{n-1} & -\alpha_n \\ 0 & 1 & 0 & 0 & z + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ z + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ u $ Input-output relation	$ \frac{dz}{dt} = \begin{pmatrix} -a_1 & 1 & 0 & \cdots & 0 \\ -a_2 & 0 & 1 & 0 & 0 \\ \vdots & -a_{n-1} & 0 & 0 & 1 \\ -a_{n-1} & 0 & 0 & 1 \\ -a_n & 0 & 0 & 0 & 0 \end{pmatrix} z + Du $ Input-output relation
$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_1 \frac{d^{n-1} u}{dt^{n-1}} + \dots + b_n u$ Transfer function	$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_1 \frac{d^{n-1} u}{dt^{n-1}} + \dots + b_n u$ Transfer function
$G(s) = rac{b_1 s^{n-1} + b_2 s^{n-2} + \ldots + b_n}{s^n + a_1 s^{n-1} + a_2 s^{n-2} + \ldots + a_n} + D$	$G(s) = rac{b_1 s^{n-1} + b_2 s^{n-2} + \ldots + b_n}{s^n + lpha_1 s^{n-1} + lpha_2 s^{n-2} + \ldots + lpha_n} + D$
Working with Linear Systems	Using Matlab
$\frac{dx}{dt} = Ax + Bu$	IMPULSE(SYS) plots the impulse response of the LTI model SYS (created with either TF, ZPK, or SS).
 Compute the eigenvalues of the matrix A, gives the components of the solution 	<pre>IMPULSE(SYS,TFINAL) simulates the impulse response from t=0 to the final time t=TFINAL.</pre>
	IMPULSE(SYS,T) uses the user-supplied time vector T for simulation.
• Plot the impulse response using Matlab	STEP(SYS,T) uses the user-supplied time vector T for simulation.
$g(t) = C e^{At} B$	LSIM(SYS,U,T) plots the time response of the model SYS to the input signal described by U and T.
© K. J. Åström Lectu	K. J. Åström Lectures in Pavia April, 2000 17

Lecture 4 & 5 - Linear Time-Invariant Systems	Summary
 Introduction Examples Second Order Systems High Order Systems Input-output relations Input-output relations Summary References 	• Linear systems are very common • The role of standar models • State models and input output models • The concepts of state , input and output • The state variables describe storage of mass, momentum and energy • The state model for linear time invariant systems $\frac{dx}{dt} = Ax + Bu$, $y = Cx + Du$
Summary	References
• Computational tools • Combine qualitative and quantitative techniques • The standard input-output models • The standard input-output models • Impulse response representations $y(t) = \int_0^t Ce^{A(t-\tau)} Bu(\tau) d\tau = \int_0^t g(t-\tau)u(\tau) d\tau$ • High order differential equations $\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_1 \frac{d^{n-1} u}{dt^{n-1}} + \dots + b_n u$ • Relations between representations $G(s) = \int_0^\infty e^{-st} g(t) dt = C(sI - A)^{-1}B + D$	John Maynard Keynes (1936) The General Theory of Employ- ment Interest and Money. MacMillan, London S. H Strogatz (1998) Nonlinear Dynamics and Chaos. With applications to Physics, Biology, Chemistry and Engineering. Perseus Books, Cambridge MA.
© K. J. Åström Lectur	Aström Lectures in Pavia April, 2000 18

Introduction • Early work by Widmark on propagation of alcohol in the body 1920 • Teorell coined the term compartment model around 1937 • Teorell coined the term compartment model around 1937 • Extensive application in pharmacokinetics Dost 1953 Models required for FDA approval of new drugs Sheppard and Householder 1953 • Pulse testing • Standard technique in ecological systems Measurement of blood volume and blood flow in vessels Extensive use in industry	A Single Compartment Model A sume questions: A single compartment with volume V and flow q. Assume that the amount m is injected into the volume. The concentration is then given by Iy, intramus- Consider a single compartment with volume V and flow q. Assume then given by where the initial concentration is $c(0) = m/V$. Solving the differential equation where the initial concentration is $c(0) = m/V$. Solving the differential equation where the initial concentration decays exponentially. If addition of $c(t) = \frac{m}{V}e^{-qt/V}$ If the dynamics can be captured by two quantities $c(t) = \frac{m}{V}e^{-qt/V}$ If the ratio q/V [s ⁻¹] is called the elimination constant. If attrim Lechnes in Pavia Amil 2000	ures in Favia April, ZUUU
Lecture 6 - Compartment Models K. J. Åström T. Introduction 1. Introduction 2. Compartment Models 3. Flow Systems 4. Measurement of Volumes and Flows 5. Summary 6. References Theme: Compartment Models and Flow Systems	 A Practical View Doctors need simple models for the daily work. Key questions: How much drug should be administered? How should it be taken: inhalation, intravenously, intramuscularly, orally? How quickly will it act? How long will it act? These questions all relate to the dynamics of propagation of drugs in the body. 	4

Finding the Parameters	Back to Reality
The concentration is given by $c(t) = rac{m}{V} e^{-qt/V}$	Unfortunately the simple model does not agree with experiments. The concentration curve typically looks like this π^{n}
If the clearance and the volume of distribution are known it is easy to determine the concentration as a function of time t and dose m . The parameters q and V can be determined experimentally in the following way	
- The volume of distribution can be determined from the dose m and the initial concentration $c(0)$ using the formula $V=m/c(0)$	Which indicates that the first order model is too simplicatio. In
• The elimination constant q/V can be determined by observing that $\log c(t) = -qt/V$. Plotting $\log c(t)$ versus time gives a straight line with slope t .	practice it is still used by neglecting the initial part of the curve and approximating the tail by a single exponential.
Volume of Distribution	Lecture 6 - Compartment Models
Typical values Extracellular 0.5 l/kg Plasma 0.1 l/kg 	 Introduction Compartment Models Flow Systems
 High tissue concentration 20 – 30 l/kg Make a detailed example for a two compartment model. 	
	6. References
© K. J. Aström Lecture	Aström Lectures in Pavia April, 2000

