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0.3 Summary

In this report, fracture mechanics studies of tensile stress induced
fracture of non-yielding materials such as concrete are presented. The
greatest part of the report deals with applied strength and fracture
analyses of specimens and structural members: fracture mechanics
specimens, beams loaded in tension, bending or shear, pipes and
longitudinally reinforced concrete beams failing in diagonal tension.
Although different theoretical models of tensile failure and crack
development are utilized and studied, almost all parts of this report are
based on, concerned with, or related to the model for tensile fracture and
strain localization called "the fictitious crack model". Numerical
calculations are carried out with help of a computer and most of them by
means of the finite element method. Fracture models are compared with
respect to basic characteristics and numerical results. Comparisons to
test results reported in literature are presented. The applied
calculations are preceded by, and accompanied with, some more general and
more or less theoretical descriptions, studies and discussions regarding
strength, fracture and fracture models, '

In Chapter 1 introductory remarks are made, and in particular general
limitations of the present work are listed. Among these limitations: (1)
the materials are studied on such a macroscopical scale that they may be
assumed to have identical, or stochasticaily identical properties in all
infinitesimal points, (2) the material outside a fracture zone is assumed
to behave in a linear elastic manner, (3) only a single discrete fracture

zone or crack is considered.

Chapter 2 is also of a rather general introductory nature. Basic reasons
for structural failure and methods for failure load prediction are
separated into three groups each. It is argued that the most important
reason for failure of structures made of non-yielding materials may be
fracture, i.e. decrease of stress in the material at increased deformation.
It is also arqued that it is beneficial from the point of view of
generality to establish methods for failure load prediction on the basis

of assumptions regarding the mechanical properties of the material, i.e.
primarely on assumptions regarding the stress ys, deformation properties.

Chapter 3 concerns descriptions and theoretical and numerical studies of
tensile fracture models and methods of strength analyses subsequently
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applied in Chapters 4 and 5.

In Section 3.2 basic characteristics of the fictitious cack model are
described and discussed. Analogy between tensile stress strain
localization and bending moment curvature localization is noticed. The
magnitude of relevant material property parameters for different materials
is surveyed. An analytical and numerical study of the stress and
displacement field close to the tip of a fracture zone may also be found
in this Section.

In Section 3.3, strain distribution, instability and localization in a
specimen in uniform uniaxial tension is studied.

In Section 3.4 material models for analysis of fracture and strength are
surveyed with respect to applicability and assumed extension of fracture
process region. The linear elastic fracture mechanics and the Weibull
theory are dealt with in an somewhat more detailed manner. The strength of
corners in large specimens made of brittle materials and with arbitrary
opening angle is discussed.

In Section 3.5 hypotheses regarding structural strength as suggested by
fictitious crack analysis are discussed. These concern common properties
of the strength functions oh/ft=f(d/£ch)’ where U‘U/ft is the normaiized
structural strength and d/{ h is the ratio between the absolute size of
the structure and a characteristic length of the material. The strength
function is justified. Upper and Tower bounds of the strength, and upper
and lower bounds of the stope of the strength function are formulated.
Expressions for the asymptotical shape of the strength function at large
d/)lch are discussed and compared to numerical results.

In Section 3.6 possible finite element methods for fictitious crack
analysis and for linear elastic fracture mechanics analysis are briefly
surveyed. The methods used during the present calculations are described
in a more detailed manner, Where fictitious crack analysis is concerned,
convergency in calculated load carrying capacity during mesh refinement is
studied. '

In Chapter 4, applied strength and fracture analyses of a few unreinforced
specimens and structural members are found. This Chapter is rather
extensive and for a survav nf the snecimens. the fracture models and the
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types of results, Fig 4.1 (1) (Chapter 4, page 2) may be helpful. The
specimens dealt with nave been chosen so that different aspects of strength
analysis and fracture are dealt with in the different Sections. Comparisons
are made to experimental results from literature. In conjunction to the -
applied analyses a few theoretical discussions may be found.

It may be appropriate to supplement the information given in Fig 4.1 (1)
with some additional information. In Section 4.2 bending moment vs.
fracture hinge rotation relations may be found and in this Section is also
a few other matters regarding bending failure and flexural strength
discussed, i.a. a combination of the fictitious crack model and the
Weibull model. The specimen studied in Section 4.3 was used in an
experimental study which has often been refered tc and also, on some
points, questioned in literature. In Section 4.4 the effect of a groove
along a crack propagation path and the effect of pre-stressing is studied.
In Section 4.5 the effect on experimentally determined material properties
of an undesired non-uniform stress distribution within test specimens is
studied and the possiblity to determine tensile stress vs. deformation
properties by means of indireci methods is discussed. The statically
indeterminate ring-failure dealt with in Section 4.6 involves unloading of
fracture sections and the strength of statically indeterminate beams is
discussed. Section 4.7 concerns crack growth from the ccrner in an
orthotropic material and the modes of ultimate failure of the actual type
of beam is discussed. From the point of view of design, parts of Sections
4,2, 4,6 and 4.7 may be of special practical interest. The results of
Chapter 4 indicate that it is meaningful to take into account fracture
softening and strain Tocalization during strength analysis of non-yielding
materials such as concrete, mortar and wood.

Chapter 5 conceirns shear strength analysis of longitudinally reinforced
concrete beams by means of the fictitious crack model. Rather crude
approximations are adopted during these finite element calculations. The
steel-concrete interaction is modelled in a conventional manner by means
of bond stress-slip elements, the fracture zone development is modelled
according to the fictious crack model and a special purpose method is used
during check of compressive failure in the upper edge of the beam. For
each beam, different assumptions regarding the Tocation of the single
discrete fracture zone are considered. For the different fracture zone
locations, the load at unstable crack growth and the load at final
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failure is calculated. The shear strength is then obtained with the help
of a diagram which, for beams sensitive to shear, shows a load carrying
capacity valley in the shear span.

Shear strength is calculated for a rather large number of beams. The
calculations indicate a strong influence of ratio d/2 on the shear
strength. d represents the absolute size of the beam gnd Lch the
characteristic length of the concrete. Comparisons are made to
experimental results, empirical and semi-empirical expressions and fo
theoretical upper and lower bounds of the shear strength. The strong
influence of absolute size is in agreement with experimental results.
Agreement is also found with respect to the relative influence of the
ratio between bending moment and shear force, the percentage of
longitudinal reinforcement and magnitude of prestress in the reinforce-
ment. The absolute values of shear strength are underestimated by the
theoretical calculations. This is believed to be due primarely to the
crude and conservative modelling of the fracture zone and to the
disregardment of dowel action.

Empirical, semi-empirical and theoretical size effect relations are
surveyed. It is found that the empirical relations are in fair agreement
with each other and with the numerical results in the intermediate range
of size, but, if taking into account all sizes, only the numerical results
are consistent with the basic theoretical hypotheses of Section 3.5. On
the basis of the present numerical results and on shear strength studies
reported in literature, a few special and génera] remarks on shear
strength analysis are made, e.g. with regard to building code design
expressions and model-testing with the help of micro-concretes. Essential
conclusions in Chapter 5 are that theoretical calculations based on
mechanical properties of materials are able to indicate size effect in
shear strength, that the size effect may be explained by strain
localization and instability during fracture softening and that the
characteristic length, L , of concrete is theoretically identified as

a parameter of great significance for shear strength.
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0.4 Notations

Notations and symbols are explained in the text where they first occur.
Below, symbols used in more than one Section are listed. Other symbols
are explained in the actual Sections where they are used. Symbols and
notations in the different studies in this report have been chosen in
comformity with the corresponding main literature references and with
common practice, and in some cases a symbol has different meanings in

different Sections.

Latin capital letters:

o m O W

= X_O o
m O

1) area

2) abbreviation of lengthy
expressions p

thickness (Section 4.3)

constants

modulus of elasticity

1) energy release rate

2) shear rigidity

critical energy release rate

fracture energy, eq (3.2:2)

stress intensity factor

critical stress intensity

factor

Latin lower-case ietters:

depth (of ¢rack or fracture
zone)
coefficient

. breadth, width

1) compliance

2) constant in exponent
position

measure of absolute size

(often depth of beam)

flexural strength

tensile sirength

integer number

=

“ v v X2 =2
i =

(o

> e X G

ch

3

bending moment

ultimate bending moment
load, force

ultimate Toad -

1) accumulated probability
2) slip steel-concrete
potential energy

1) shear force

2) volume

shear force at instability
ultimate shear force

1) work

2) width (Section 4.3)

integer number

stiffness

length

=EGF/ft’ characteristic length
of material

measure of scatter {Weibull)
1) coordinate in r-o system
2) radius of circle

1) length of fracture zone
2) coefficient of variation
thickness

displacement in x-direction
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displacement in y-direction
widening of fracture zone
widening of fracture zone

(L to fracture plane)

w_ shear deformation of fracture

Zone

Greek capital letters:

A+ increment/addition in -
Ax side length of finite
element
© 1) coordinate in r-e system
2) relative rotation in
fracture hinge

Greek lower-case letters:

@ 1) opening anle of corner,

Fig 3.4 (9)
2) coefficient
g 1) angle
2) coefficient
vy 1) angle (incTinatio)
2)

coefficients, eq (3.4:10)
and eq (4.2:6)
3) shear strain
8§ deflection
¢ strain
A coefficient, Fig 3.4 (9)

w  mikro, 107°

X

y
z

coordinate
coordinate
coordinate

0(+) term with first order -

il
z
4]

multiplication
summation
rotation

Poissons ratio
3.14159...

stress

9 in point X

internal initial stress
oy in point X at time i

) ~Pu/d2, normalized ultimate Toad

stress in x-direction
stress in y~direction
first principal stress
second principal stress
third principal stress
shear stress
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1. INTRODUCTION

1.1 General introduction and aim of report

The study presented in this report may be considered as part of the
research work carried out at the Division of Building Materials on the
tensile fracture of concrete and other materials with similar fracture
mechanics characteristics: its modelling, experimental determination. of
fracture mechanics properties and applied theoretical fracture analyses of
specimens and structural members. Major parts of this research previously
reported in English may be found in (Hillerborg, Modeer and Petersson,
1976), (Modeer, 1979) and (Petersson, 1981).

A major part of this report deals with some applied computational analyses
of tensile stress induced fracture of some specimens and structural
elements with and without initial cracks. Different methods of strength
and fracture analysis, all based on assumptions regarding the mechanical
properties of materials, are dealt with during the actual applied
calculations and also, to some extent, during more general studies and
discussions. The modelling and the influence of the post peak tensile
stress behaviour of materials are elucidated while the pre-peak stress
behaviour and the behaviour at high compressive stresses are treated in a

very brief and simple manner.

The pre-peak stress behaviour of materials . and its influence on the over-
all behaviour of structures have been investigated theoretically and
experimentally in extensive research works during the last century and
have become a comparatively well established and developed part of the
science of strength of materials. This development has been strongly
supported by the assumptions of continuity and homogeneity of materials,
making it possible to utilize the concepts of continuum mechanics of
homogeneous media and associated mathematical tools. No real material is
a continuous and homogeneous medium, but at any reasonable ratio between
the size of the studied body and the size of the heterogenities of the
material, these assumptions appear to be appropiate and well adapted to
their purpose when analysing the pre-fracture behaviour. On the other
hand, during analyses of fracture and calculation of ultimate load
carrying capacity of specimens and structural elements, the concepts of
continuum mechanics of homogeneous media are in general not sufficient as
the continuum i ehaviour at the
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start of fracture of the material: strain instability and strain
localization. At fracture the local properties of the small scale non-
continuous micro structure of the material becomes decisively important.
Thus, one difficulty in the analysis of fracture is to find a
macroscopical description of the mechanical properties of the fracture
process region, i.e. a description of the small scale fracture behaviour
of the material, which may be combined with a description of the mean
macroscopical pre-fracture mechanical properties of the material.

Among researchers, teachers and engineers of building materials and
building structures, the post-peak stress behaviour, i.e, fracture
mechanics, appears to have attracted much less interest than the pre-peak
stress behaviour. This is rather remarksble as theoretical calculations
of the ultimate load carrying capacity of aimost any specimen, structural
detail, structural element or entire structure require, in one way or
another, some tacit or explicit assumption regarding the post-peak stress
behaviour of the material. With few exceptions one of two extreme
assumptions regarding the behaviour after the peak stress or the 1imit
strain have been adopted: an immediate drop in the stress to zero or an
unlimited strain capacity at peak stress. One reason for the delay of
incorporation of fracture mechanics into the analyses of building
structures may be that many non-metallic materials are apparently brittle,
but in spite of this they often don"t seem to behave in accordance with
the predictions of linear elastic fracture mechanics. Another reason for
the delay may be that traditional fracture mechanics models only apply to
specimens with pre-existing cracks or sharp notches. Furthermore,
suitable numerical methods of calculation have not become available until
the last decades and, due to the lack of continuity at fracture, the
traditional fracture mechanics models, often adapted to analytical methods
of calculation, might have been associated with theoretical and advanced
mathematics, From these points of view it is understandable that many
building engineers and teachers of civil engireering might previously have
regarded fracture mechanics as useless and theoretical.

Specifically where concrete is concerned, tensile fracture and cracking
are, i.,a. according to Argyris, Faust and William (1979), the primary
ingredients of the non-linear behaviour of concrete structures, and, as
i.a. suggested by the results presented in in this report, the tensile
fracture properties often have a major influence on the ultimate load
carrying capac* ToomTEes of Akis. dk de el coma 90 years ago,
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(Kaplan,1961), since the first experimental study of cracking in concrete
was carried out in view of the traditional linear elastic fracture
mechanics *); some years later, (Hughes and Chapman,1966), the descending
branch of a stress-deformation curve of concrete in tension was recorded
and published; in 1967, (Ngo and Scordelis,1967), cracks Were, for the
first time, taken into account in a finite element analysis of a concrete
beam **); some ten years later, (Hillerborg, Modeer and Petersson, 1976),
a description of the tensile fracture was presented, which enabled .
consideration of the changing properties of a growing and moving process
region and a unified method for the analyses of specimens with and without
pre-existing cracks; and in recent years advanced finite element programs
have been developed for the analyses of concrete structures taking into
account, in different manners, the discrete cracking in concrete,
(Grootenboer,1979), (Saouma and Ingraffea, 1981). Please note that the
above mentioned references only cover a few of the contributions to the

development.

Thus, in recent decades interest in the post peak tensile stress

behaviour (fracture mechanics, strain softening and strain localization,
material damage and damage localization) of concrete and similar materials
has grown and is now being dealt with at a number of institutions in
different countries. This report deals essentially with some studies of
applications of fracture mechanics during the strength analyses of
concrete and similar materials, and, in general terms, the aim of the
report is to contribute to the knowledge within this area of research.

The ultimate goal of the kind of research presented in this report may be
to achieve improvements in design. In practice, the design of most
building structures is governed by codes, but the work on development of
new codes is in turn influenced by practical experiences and experimental
and theoretical research, Where the Swedish concrete building codes are
concerned, it is interesting to know that different basic assumptions
regarding the stress-deformation behaviour of the material seem to have

*) A historical review of experimental applications of fracture
mechanics to concrete has been presented by Mindess (1983).

**) A brief history of finite element analysis of reinforced con-
crete has been presented by Scordelis, Nilson and Gerstle
(1982).
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influenced the work on the development of the codes, see Fig 1.1(1). This
figure is simplified and shows only a schematic illustration. It seems,
however, that the code in 1945 was primarily only influenced by the
assumption of linear elasticity. In the code from 1957 some rules based
on the theory of plasticity were included, and the code from 1979, BBK-79,
was not only influenced by the assumption of linear elasticity but was
also strongly influenced by the assumption of plasticity. The development
of BBK-79 was probably only to a small extent influenced by considerations
of fracture mechanics, but it might be logical to guess that work on the
development of future codes will be increasingly influenced by
considerations of the complete stress-deformation curve of the material,

including the descending fracture mechanics part of the curve.

It is also interzsting that the logical development illustrated in Fig 1.1
(1) appears to be analogous to the historical development regarding
pioneering studies within new areas of research of the mechanical
behavoiur of materials: elasticity, Hook, 1676; plasicity, Tresca, 1864;
fracture mechanics, Griffith, 1921. As in this report some studies of the
influence of the scatter in strength are included, it may also be
mentioned that a pioneering study within this area of research was
presented by Weibull in 1939,

Stress
Deformation
\ 195?w .,
\ 1979 ,

-
7

Fig 1.1(1) An illustration, ~ schematical and simplified -, of the
development of the Swedish concrete building codes.
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1.2 Method of investigation

The studies on which this report are based, have essentially been
performed by means of efforts to carry out applied computational fracture
analyses of some specimens and structural elements. The material model
called the fictitious crack model, FCM, giving a description of the
behaviour of materials when fracturing in tension, has formed the basis
for the work. The model of unlimited plasticity and the two models of
linear elastic fracture, i.e. linear elastic fracture mechanics and the
strength concept of linear elastic brittle materials, have also been
utilized and studied. Where studies of the influence of scatter in
strength are concerned, the density function of Weibull has been utilized.
Most of the numerical calculations have been performed with the help of
the finite element method, and for this purpose public finite element
programs have been utilized and smaller special-purpose programs have been
developed. Experimental test data, reported in literature, have been very
helpful during studies of the computational results.

1.3 Limitations

The major Timitations of the analyses are as listed below. The listed
limitations concern the applied computational analyses, while some
discussions to a certain extent are extended beyond the Timitations.

* The fracture of materials is studied on such a scale of size, in this
case called a macroscale, at which composite materials such as cement
paste, wood, mortar, concrete and fibre reinforced concrete may be assumed
to have identical, or stocastically identical, properties in all infini~
tesimal parts while the composite material reinforced concrete, on the con-
trary, is dealt with as a two-phase material at the current scale of size.

* The analyses concern tensile stress induced tensile fracture and
the growth of a single discrete tensile crack.

* The path of crack growth is known or assumed in advance and, apart from
a study of the crushing strength of pipes, structural interaction between

two or more cracks has not been taken into account.

* Before start of fracture. the material is assumed to behave in a linear
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etastic manner.
* The specimens and the structural elements studied are assumed to be in
a state af plane stress, and the theory of small strains and small global

displacements is adopted.

* Time dependency on the properties of materials is not taken into
account, and quasistatic structural behaviaur is assumed.
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2. THE PREDICTION OF FAILURE LOQADS
2.1 Introduction

In this report fracture load calculations are carried out by means of
descriptions of the tensile stress-deformation properties of non-yielding
materials Tike concrete. Fracture is one of the phenomena that may cause
failure of structures, and descriptions of stress-deformation properties
of materials form the base for one of the methods of failure Toad
prediction. In this chapter, a brief survey and discussion of the causes
of failure and the methods of failure load prediction can be found. The
chapter is of a rather general introductory nature and it is not necessary
to read this chapter in order to understand the contents in subsequent
chapters.

2.2 Causes of failure

The ultimate load carrying capacity, the failure Toad, of building
structures and elements is governed by instability. This instability may
be due to large displacements, great strains, fracture of the material or
combinations of these three causes of instability. The decisive cause of
instability and the magnitude of the Toad at instability are dependent on
the geometry and the size of the structure, the distribution of the Toads
acting on and within the structure, and the'mechanical properties of the
material. Indirectly, failure of a structure may be due to a great number
of causes. One example is deterioration of the material, but this is
reflected as a variation of the mechanical properties of the material
during the Tifetime of the structure. No indirect causes of failure will
be further discussed, only the direct causes of failure from the point of
view of theoretical structural analysis will be surveyed.

Buckling of a slender column made of ordinary mild steel represents an
example of the instability caused by large displacements. This type of
instability is a result of significant alterations to the conditions of

equilibrium due to the changes in the geometry of the structure. In most
cases, the instability due to Targe displacements is of interest during
the analysis of structures which have a significant capacity of
deformation before ultimate failure, in particular if the action-lines of
the loads are rotated ar maved durina the defarmatinn.
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When a reinforcement bar, or some other bar made of mild steel, becomes
unstable during tensile loading it is normally due to great strains.
During the development of great strains, the size of the load carrying
cross section decreases significantly and consequently the load carrying
capacity may decrease even if the stresses within the material increase.
The development of great strains is usually localized to a very small part
of the structure and, if an engineering small strain approach is used
during the structural analysis, the instability due to large strains
resembles instability due to fracture of the material. This reflects two
different measures of stress: true stress (increasing) and nominal stress
(decreasing). However, the development of large strains involves
significant changes in the local geometry and thereby significant changes
in the three dimensional state of stress and these changes, as well as the
extent to which the large strains are localized, are dependent on the
geometry of the specimen. Consequently, if the engineering small strain
appreach is used and the instability due to large strains is dealt with as
a fracture of the material, one may not expect the apparent fracture
mechanics properties of the material to be independent of the geometry of
the specimen. For example, it is well known that the apparent critical
stress intensity factor of steel, as evaluated during assumption of plane
strain, is not only dependent on the properties of the material but is
also dependent on the thickness of the specimen. The structural
instability due to large strains is of interest when analysing mild steel
and similar materials which have a significant capacity of deformation
before such a state of stress and deformation is reached at which the
material becomes unsfab1e, i.e. starts to fracture. During analysis of
instability involving large strains, consideration of the three
dimensional state of stress may be of great importance.

Probably the most common prime cause of failure and instahility of
building structures is fracture: the decreasing ability of materials to
transfer stress during increased deformation. A number of examples may be
found. The failure of most structural elements made of cement composites
(paste, mortar, unreinforced concrete and fibre reinforced concrete),
rock, wood, ceramics, cast iron and glass is likely to be due to fracture.
When snow or soil start to slide down a hill it is basically due to
fracture of the materials. A number of large steel structures, such as
ships, pressure vessels and bridges, have collapsed due to rapid
progressive fra~turo af tha matarial Whare matal allavs are concerned,
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the risk of fracture precipitated by structural stress concentrators,
initial cracks, fatigue and weld discontinuities is well known. Fracture
in structural connectors built up of dowels, friction joints, welds, glue
or nails may serve as additional examples.

Where unreinforced concrete specimens and structural elements are

concerned, it seems rather obvious that the instability is, with few or no
exceptions, governed by fracture of the material. Not only the ultimate
strength, but also the post peak stress fracture mechanics propertieS of
the unreinforced concrete are decisive for the use of this material, in
which the ultimate tensile stress may be reached due merely to rather
small variations in the temperature or moisture conditions of the
environment.

As to reinforced concrete structures, they comprise a number of entirely

different types and they are, on the macroscopical level, built up of two
materials with entirely different mechanical properties: concrete and
steel. Consequently it is impossible to make any general prediction with
regard to the type of instability at the final collapse of reinforced
concrete. In addition, the instability may often be governed by a
combination of causes, for instance fracture and Targe global
displacements. However, the frequent requirement of limited allowed
displacements is usually more restrictive than the requirement of avoiding
instability and total collapse caused by large global displacements or
large strains (in the steel). ConseqUent1y, in the cases where the
requirement of avoiding instability and toté] collapse are decisive for
the design, it is probable that the risk of fracture is of the prime
importance. Normally, this fracture takes place as a development and
growth of cracks in the concrete. In macroscopical regions of structural
tensile stress, cracks may develop and start to propagate; close to the
reinforcement bars, a few splitting cracks or a large number of smaller
cracks may develop with anchorage failure as the result; in regions of
high compressive stress, a small or large number of cracks may develop
parallel to the direction of the compressive stress with splitting or
crushing and a loss of ability to sustain the compressive stress as a
result. If concrete did not start to fracture at as Tow tensile stress or
strain as it does, then the instability load (as well as the displacements
and the general non-linear behaviour and possibly also the tightness and
durability) of reinforced concrete structures would have been entirely
different. The Tow tensile strength of concrete does not mean that this
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strength is neglible or unimportant: on the contrary, if the tensile
strength had been zero, or if the tensile fracture toughness had been
zero, then, most probably, it simply would have been impossible to use
reinforced concrete as a structural material. It may thus be argued that
the tensile strength and the tensile fracture toughness of the concrete
are decisive properties for the use of reinforced concrete as a structural
material.

The applied analyses in this report only concern fracture and single
discrete cracking in macroscopical regions of high tensile stress. Where
the analysis of cracking close to reinforcement bars is concerned, recent
research has been presented by Ingraffea, Gerstle, Gergely and Saouma
(1983). A study of the crack propagation under high compressive states of
stress was presented as early as in 1928. A more recent study has been
presented by Lusche (1972), and Carino, Nilson and Slate (1974) have
presented unanimous results for bi-axial states of stress. The theoretical
modelling of the pre-fracture stress-strain behaviour of concrete under
high compressive states of stress has been the subject for the development
of advanced three-dimensional ncn-linear models adapted to finite element
analyses: see (Chen,1981), (Nilsson, 1979), (Glemberg, 1984) and also
other references given in these refererces. Where the modelling of post
compressive fracture behaviour is concerned, it may be difficult to take
into account the strain instability and the possible strain locaiization
in a theoretically correct manner in such a way that also the physical
behaviour is reproduced in a sufficiently realistic manner. However, a
shear-band model for the strain localization and the fracture softening
within a band of localized shear deformations during compressive fracture
has been presented by Pietruszczak and Mroz (1981).

2.3 Methods of failure load prediction

The methods of failure load prediction may be separated into different
kinds of groups, and in practice different methods of failure load
prediction are often combined. Below the methods are separated into three
large groups.

The straight forward method is to make experimental ultimate load carrying
capacity tests on the actual type of structure. An obvious disadvantage of
this method is that the structure aets destroved durina the test. However,
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this direct experimental method may be a useful aid for the design of
structural elements which are planned to be manufactured in series. In
addition, this direct method is of very great value during studies of the
accuracy of more general empirical or theoretical methods of failure Toad
prediction, which have been developed independently of the actual tests

results.

The second and often more convenient method of failure load prediction is
the interpolation or, in more general cases, the statistical regression
analysis. In this method, data obtained from tests on structural elements
of similar geometry, material and load are used together with some more or
less arbitrarily chosen interpolation formula. If the amount of test data
is sufficient, such predictions of the strength of common types of
structural elements may be the simplest way to achieve a safe design, and
many rules in building codes concerning the load carrying capacity of
common types of structural elements have probably arisen from this type of
analysis. Although this method may be very useful in many cases, it has
some disadvantages which may be noted as the apparent simplicity of the
method and the close connection to actual test results may result in an
overestimation of the value and the applicability of the method.

The method requires no knowledge or understanding about the causes and
mechanisms of failure. This convenient feature may turn out to be a
disadvantage where the desired safety is concerned. The failure of wooden
beams with different slenderness ratio and with jags by the supports,
discussed in section 4.7, might serve as anvi11ustrat1ve example of this
matter. For such beams, simple considerations of the probable failure
mechanisms show that the load carrying capacity varies with the
slenderness ratio in such an irregular manner that the application of any
normal smooth interpolation formula is Tikely to give misleading results.

Where assembled statically indeterminate structures are concerned, the
discussed method of failure load prediction is usually combined with some
assumption regarding the distribution of the forces within the structure,
chosen in such a way that the different structural members are in
equilibrium with each other, but without consideration of the actual
stiffness and fracture properties of the members and the structural
connectors. This common engineering approach basically rests on the lower
bound theorem of plasticity, and it is consequently tacitly assumed that
the fracture ductilitv of the structural members is infinite and,
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furthermore, that instability due to large global displacements of the
structure does not occur., This may yield an overestimation of the load
carrying capacity, particularly if the structure is of a great physical
size. At increased physical size, the requirements on the toughness
properties of the material for fair app]fcabi]ity of the theory of
plasticity increases and, furthermore, if the structure is assembled from
large number of structural elements into a large slender structure the
risk for instability due to large global displacements becomes

significant.

A more obvious disadvantage of empirical interpolation formuias for the
strength of structural elements is their limited range of validity. Thus,
they may not be used if the design concerns uncommon qualities of
materials, types of geometries or types of lcads. Often the range of
validity is not clearly defined, which can lead to mis-interpretation. In
this case the influence of the absolute size of a structural element on
its strength may serve as one example. Other examples may be some of the
many relations between the compressive strength of concretes and other
properties of concretas or its relation to the strength of structural
elements: it may be that such relations are valid only as long as some
other variable (in some cases perhaps the tensile strength) happens to be
changed in accordance with some unique function of the compressive

strength.

Other risks for miss-interpretatiorn of empirical formulas concern their
accuracy and estimations of the scatter in strength betweer nominally
equal structural elements. To determine the accuracy of of an empirical
formula, test data entirely independent of the test data used during the
development of the formula and arbitrarily chosen within the claimed range
of validity should be used. The mean deviation between the predictions of
a formula obtained by means of regression analysis and the test data on
which the formula is based, may not produce any valid information about
the reliability and the accuracy of the formula and may not preduce any
valid information about the scatter in strength between nominally equal
structural elements either. When developing empirical formulas intended
for the use in building codes or elsewhere, it might be a good idea to
separate the available test data into two independent parts: one part for
use when devaloping of the formula, and the other part for use during the

determination of the accuracy of the formula.
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The third method of failure load prediction is based on experimental
studies of the mechanical properties of the parts of structures or the

parts of structural elements. The mechanical properties of the parts
primarily concern their stress-deformation behaviour, but may also concern
interaction between the state of stress and deformation and the
temperature, transfer of mass and time dependent chemical or physical
changes of the parts. In the case of concrete, the influence on the
deformation of stress, temperature, content of moisture (shrinkage),
continued hydration and lasting loads (creep) may serve as .
exemplifications., Although the method is primarily based on experimental
studies of the stress-deformation behaviour of the parts, i.e. their
stiffness properties, the method is usually called the theoretical method.
Knowing the stiffness properties of the parts, it is in principle possible
to calculate the Toad-displacement behaviour of any structure or
structural element built up of such parts. The basic relations, i.e.
equilibrium and geometrical compatibility between the parts, that enable
these calculations form the basis for structural mechanics, see (Petersson
and Thelandersson, 1982) or text-books on structural mechanics. Direct
applications of this structural mechanics method seem to be rare. Instead
the method is generalized:

The description of the properties of the parts may consern small or large
parts of structures. From the point of view of generality it is thereby
preferable to determine the properties of small parts, as, i.a., if the
parts are small enough, i.e. infinitesimal volumes of the material, any
structure may be regarded as being built up of such small parts and,
furthermore, the state of stress and deformation of an infinitesimal
volume can be defined with the help of a limited number of variables.
‘Basically when using this wellknown generalized structural mechanics
method, three tasks have to be faced: experimental investigations of the
mechanical properties of specimens made of the studied material;
development of a description of the mechanical properties of an
infinitesimal volume of the material; and finally calculation of the
mechanical properties of the assembled structures to be studied. Theée
three tasks are usually not very easy to solve in practice and during
applied analyses a number of simplifying assumptions normally have to be
made. One advantage of the method is its generality: once the mechancial
properties of the material have been defined it is in principle possible
to obtain the properties of any structure made of this material by means
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of theoretical calculations. Another advantage is the possibility to
comparatively clearly define the bases and the simplifying assumptions
that are adopted during an analysis.

Some of the difficulties involved in app]fed analyses by means of the
actual generalized structural mechanics method may be mentioned. Ideally,
the experimental investigations should regard the surface tractions (the
stresses) acting on the specimen (of finite size) in all of the infinite
number of possible kinematical boundary conditions, and, if not only the
first part of the stress-deformation response is to be obtained,
requirements regarding the stiffness and the stability of the testing-
system must be met. The development of a description of the mechanical
properties of a characteristic infinitesimal volume of material is bound
to involve, sometimes tacitly, generalizations and assumptions: knowing
the load-deformation behaviour of the parts of a structure, the behaviour
of the structure can in principle be calculated, but if the behaviour of a
structure or a specimen is known , the behaviour of the parts cannot be
determined without the use of additional assumptions which may, or may
not, reflect the true properties of the parts. Finally, the theoreticeal
analysis of a structure assembled from infinitesimal parts involves an
infinite number of degrees of freedom. Normally this makes it necessary to
introduce artificial restrictions for the allowable distributions of
stress or deformation within the structure. Such restrictions are
characterized by, for instance, beam theory, plane stress, plane strain
or, where finite element analyses are concerned, some certain choice of
shape functions for the allowable distributions of the deformations within
the finite elements.

The generalizations, assumptions and test results utilized during the
development of descriptions of the mechanical properties of materials are
summarized in material models. For a limited number of loading conditions,
the validity and accuracy of such models can be tested indirectly by means
of comparisons between theoretical results predicted by the model and
experimental test results. In this way some models may be shown to be
invalid or inaccurate, but, on the other hand, it is difficult, and
probably impossible, to prove that a model is generally valid and
accurate.,

Most material models are formulated as a description of the
characteristice ~f an infinitacimal unluma nf matarial Taking into
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account that the major part of a piece of material consists, on the atomic
scale of size, of empty space, it is obvious that these material models
don"t give a valid description of the actual properties of an
infinitesimal volume of the material. However, the applicability of
material models seems to rest on a basic assumption: if the material model
is capable of correctly predicting the behaviour of macrescopical finite
pieces of the material, then the model is also capable of predicting the
behaviour of larger specimens or structures built up of these finite
pieces of the material, no matter whether the model gives a correct 6r
erroneous description of the behaviour of the smaller parts of the
macroscopical finite pieces of the material. As a result of this, an
apparently trivial test of the possibilty for validity of material models
may be formulated: the model must be such that it, together with the
associated computational method for the analyses of assembled structures,
can reproduce the very test results on which the description of the
material properties is based. From this point of view, two methods for the
description of the uniaxial tensile stress-deformation properties shall be
studied in section 3.3.

When making the choice of simplification necessary for the applied
analyses by means of the "theoretical" method, it may be of importance to
take into account the goal of the analysis. Thus some differences between
analyses of the pre-fracture behaviour of structures at normal service
loads and the analyses of fracture and ultimate load carrying capacity may
be noted. At the analyses of fracture and ultimate lead carrying capacity:
it is neccessary to know or make some assumbtion of the post peak stress
behaviour of the material (provided that a peak stress is assumed to exist
at some certain deformation); the material properties in a very small part
of the structure may be decisive to the failure load of the entire
structure; the deformations within the structure may become very irregular
and localized; as more than one incremental change in the state of stress
and deformation may satisfy the equations of equilibrium, material
properties and geometrical compatibility, these basic equations of
structural analysis may sometimes have to be supplemented with an eduation
for stability analysis of states of equilibrium. These features deviate
from those of the analyses of the pre-fracture stiffness properties of
structures. During such analyses the post peak stress behaviour of the
material is of no consern; the simplifications adopted when describing the
mean characteristic properties of the material might preferably be chosen
differently; stresses and deformations within the structure are usually
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smoothly distributed; and an incremental change in the ioad acting on the
structure corresponds normally to only one possible state of stress and
deformation within the structure that satisfies the equations of
equilibrium, material properties and geometrical compatibilty.

In addition to the methods for failure load prediction discussed above,
other more special methods are available. These methods are normally

developed only for special applications and may be useful in such
applications but are normally not intended to give a contribution to the
development of general methods with a wide range of potential
applicability, not restricted to some certain type of structural elements.
Within the analysis of the propagation of sharp pre-existing cracks, the
resistance curve method of different kinds may serve as an example of a
special purpose method with a comparatively wide theoretically possible
applicability. This method may be regarded as a kind of theoretical
method, but is not based on a description of the stress vs deformation
properties of the material. When the load carrying capacity is estimated
very approximately by means of intuition, perpaps by someone not trained
in engineering, the normal procedure may be to first estimate a probable
kinematical failure mechanism and then estimate the magnitude of ioad
corresponding to this mechanism. This method, sometimes very convenient
and useful, may be regarded as a special method but may also be regarded
as an application of the upper bound theorem of piasticity at the tacit
assumption of ideal plastic stress vs deformation properties of the
material.

It may also be appropiate to include some remarks with regard to failure
load predictions by means of linear elastic fracture mechanics. On the one
hand, this theory comprises and is to great extent based on an assumption
of stress vs deformation properties of the material and might therefore be
referred to the group above calied the theoretical method of failure load
prediction. On the other hand. the properties of materials assumed within
this theory are obviously unrealistic (infinite tensile strength) to such
an extent that this theory perhaps should be referred to the group of
special methods, in particular as the theoretically possible applicability
is limited to specimens with sharp pre-existing cracks. However, in spite
of the unrealistic basic assumption the actual theory can sometimes be
successfully applied during failure load predictions (but not during
realistic studies of the fracture process in the material). Broberg (1982)
has emphasized the imnortance and the central role of the Barenblatt
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consept of atonomy or self-similarity in usually practiced conventional
fracture mechanics and it seems that success during application of the
linear elastic fracture mechanics basically rests on this autonomy. The
autonomy means that the mechanical events within the fracture process
region are only dependent of the properties of the material and are
consequently, within each class of specimens, independent of the
geometrical size and shape of the specimen. Autonomy is at hand if all
relevant geometrical dimensions of the specimen are very large in
comparison to some merely material property dependent characteristic'
length of the material. In such cases the mechanical events within a
fracture region can be modelled in an unrealistic manner, provided that
the same unrealistic approach is used both during interpretation of test
results and during subsequent theoretical failure load predictions. This
also means that the parameter that relates crack growth to external load
can be chosen in different and rather arbitrary manners, e.g. theoretical
stress or strain intensity, theoretical stress or strain at some point in
the vicinity of the process region, theoretical crack opening angle,
theoretical crack opening displacement, theoretical energy density or
theoretical energy release rate.

It may be noticed that "brittleness" of a material is not (alone) decisive
for successful application of linear elastic fracture mechanics, but
instead the ratio between the "brittleness" and a relevant geometrical
dimension of the specimen, e.g. the depth of the initial crack. The
“brittleness” is primarily governed by a characteristic, or intrinsic,
length of the material, but is also influenced by the shapes of the
normalized stress vs deformation curves of the material. The importance
of (large) dimensions for applicability of linear elastic fracture
mechanics is well-known among fracture mechanics researchers, but,
according to subsequent chapters, it also seems that the importance of
(smal1) dimensions for applicability of the theory of (unlimited)
plasticity may be equally great.

Most probably, for potential general applicability, methods of failure

load prediction must, in one way or another, be based on a defined
description and assumption of the stress-deformation properties of the
material. The description of the stress-deformation properties might not
necessarily refer to an imagined infinitesimal characteristic volume of
the material, but this common approach seems convenient from a number of
points of view. This approach is applicable to the macro level of size and
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at this level the material may be described as being looked upon as quasi
homogeneous. However, during the development of the material models it may
be helpful to numerically model or to think of the material as a structure
put together of elements or pieces of finite size. In some cases it might
also be helpful to, in turn, consider these small finite parts as being
built up of smaller finite pieces, reflecting the hierarchic structural
nature of most materials. Modelling of the mechanical behaviour of the
microstructure of materials may lead to a possibility to study the
influence of the non-unifrom properties, the scatter in strength, the non-
uniform fracture and the non-uniform forces within the microstructure at
zero and non-zero external load. Such a modelling might provide a starting
point for development of models of the macroscopical quasi homogeneous
properties, and may facilitate the understanding of some of those
properties of materials like concrete which are difficult to understand by
intuition if the material 1§ thought of as a continuous homogeneous
medium. It may be of particular interest that consideration of non-uniform
forces within the microstructure at zero external load should lead to a
possibility to model permanent "plastic" deformations in materials built
up of elastic and brittle pieces which accordingly, one by one, don’t
exhibit any plastic deformations. A numerical study of the tensile
fracture and fracture localization in an idealized material built up at
random of brittle bars with finite length has been presented by Burt and
Dougill (1977).

A development towards more modulated models of the behaviour of materials
and more efficient finite element methods for the numerical calculations,
should reduce the need for extensive experimental investigations and
purely statistical-empirical formulas for the strength of structural
elements. However, also the so called theoretical methods of failure load
prediction require experimental studies and experimental data: during the
development of the material model; during the determination of required
méteria] property parameters; and finally during the verification of the
validity and the accuracy of the theoretical method. In many cases,
application of the theoretical methods of failure load prediction involve
significant difficulties and drastic simplifications may have to be made.
However, general relations, estimations and understanding obtained by
means of thecretical studies are often very useful, also where the
structural elements which can not be theoretically analysed in a modulated
manner are concerned. As a matter of fact, some convenient general
relations obtained with the help of theoretical studies are utilized and
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generally accepted to such an extent that it may be easy to forget that
the relations may be based on idealizing assumptions regarding the
properties of the material.
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3. MATERIAL MODELS FOR THE ANALYSIS OF FRACTURE INDUCED BY
TENSILE STRESS

3.1 Introduction

This chapter deals with material models of tensile fracture and cracking,
which are primarily intended for the analysis of concrete and similar non-
yielding apparently brittle materials. The type of models dealt with.are
based on assumptions regarding the macroscopical mechanical properties of
materials expressed with reference to a characteristic infinitesimal
volume of the material, and the models dealt with are intended for use in
quantitative strength analysis of structures, structural members and

specimens.

Most of the sections in this chapter directly or indirectly concern the
fictitious crack model. In Section 3.2 the model is described and
discussed, material property parameters are surveyed and the stress field
close to tip of the fracture zone is studied. In Section 3.3 strain
instability and strain localization in uniaxial tension are studied. In
Section 3.4 material models of tensile stress induced fracture, other than
the fictitious crack model, are dealt with. Section 3.5 concerns some
hypotheses regarding ultimate strength, and in Section 3.6 methods of
applied numerical calculations by means of the finite element method are
dealt with,

3.2 The fictitious crack model (FCM)

3.2.1 Introduction

Sections 3.2.2, 3.2.3 and 3.2.4 concern a description and discussion of
the model in question, order of magnitude of material property parameters
and the stress field close to the tip of the fracture zone, respectively.

Before describing the model, it may be appropriate to refer to some
previous presentations of the actual model. Its name, "fictitious crack
model”, and its abbreviation, "FCM", was first used in a thesis by Modeer
(1979), the first report in English that gave a description of the model
was presented by Hillerborg (1978), and, before that, Hillerborg, Modeer
and Petersson (1976) presented a numerical analysis of the flexural
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strength of unreinforced concrete by means of the model which was later on
called the fictious crack model. The comprehensive work by Petersson
(1981) has also attracted attention to the model. The model was first used
by Hillerborg (1973) in a Swedish compendium for a course about building
materials and was intended to provide students with an interpretation of
experimental results obtained by Evans and Marathe (1968). These
experimental results regarded the load vs. deformation behaviour of a
concrete specimen during-direct stable uniaxial tensile loading.

Models more or less similar to the fictitious crack model were proposed
before the fictitious crack model was proposed. Two such models are the
Dugdale model and the Barenblatt model. It may be that the original
features of the fictitious crack model are the rational macroscopical
description of the fracture of the un-notched uniaxial tensile specimen
and the assumption of ana]ogy/between this type of fracture and the
behaviour of the fracture process region in front of a growing crack.
Numerical analysis of a fracture process region by means of a stress vs.
widening relation has been carried out previously: Andersson and Bergkvist
" (1970), and the model studied in this paper was suggested by prof B
Broberg in 1968. In recent years the fictitious crack model and other
similar models have been dealt with in a number of experimental and
theoretical studies, and a large number of reports and papers have been
prepared by a number of researchers. However; it is not the intention of
this study to try to compile a list of these reports and papers.

3.2.2 Description and discussion

In this report the bases of the fictitious crack model are described in
essentially the same manner as in the previous presentations of the model,
see Section 3.2,1. The model is based on a description of the
macroscopical behaviour of materials in uniaxial tension. Before peak
load, see Fig 3.2 (1), the deformations along the specimen are assumed to
be uniformly distributed, and the total elongation, a2, of the specimen
may be written as the total length of the specimen times the constant
strain:

AL = Re (3.2:1) a)

At the moment of peak load, i.e. when dP/da2=0, a localized fracture zone
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is assumed to start to develop. This fracture zone is not assumed to start
to grow from any of the edges of the actual specimen in uniform tension,
but is assumed to develop simultaneously across an entire cross-section.
During further total elongation the stress along the specimen decreases
and the parts of the specimen outside the localized fracture zone start to
unload, i.e. both the stress and the uniform strain decrease according to
the unloading branch in the stress vs. strain diagram of the actual
material, Also in the localized fracture zone the stress decreases, but
this zone is softening, not unloading, i.e. the stress decreases during
increased deformation. After peak load, the total elongation of the
specimen is the sum of the uniform deformation along the specimen, which
is assumed to be proportional to the length of the specimen, plus the
additional localized deformation within the fracture zone, w, which is
assumed to be independent of the length of the specimen:

AL = Ze + W (3.2:1) b)

During numerical calculations the fracture zone is assumed to be localized
to a section with initially zero width. In reality the fracture zone is
not a straight plane and in reality the fracture zone is also likely to
have some extension along the specimen. However, as long as the total
length of the uniform tensile specimen is greater than the extension of
the fracture region, the assumed value of this extension is of no
importance regarding the analysis of the global behaviour of the specimen.

For materials which are isotropic at the moment of peak stress, it is
assumed that the fracture plane orientates itself perpendicular to the
first principal strain in the actual infinitesimal volume of the material
at the moment of peak stress. This orientation of the fracture plane is

the only orientation that can be uniquely defined for an isotropic

material in 1D state of stress. For materials which are orthotropic and for
materials which become orthotropic before the fracture zone develops, no
general assumption has been stated with regard to the orientation of the
fracture zone.

Where the present numerical applications are concerned, the question of
the orientation is rather theoretical as the orientation is assumed in
advance. However, during the analysis of concrete and similar initially
isotropic materials, the orientation has been chosen in accordance with
estimations of the direction of the first principal strain. During a study



3 - MODELS, page 4

"’LT Localized
X deformations 1)

N1
4
ol

a) * * ' Al
4 40 ¢ le

—"_I Concentrated A
s | X fracture surface w
m»:/gw
Al
AR’ Al=lgsw 1)
Al=1¢ 2)
0, MPa 0,MPa
£ % w, mm

1) After peak stress
2) Before peak stress

Fig 3.2 (1) Main characteristics of the fictitious crack model
: description of tensile fracture.
a) Possible reaiistic structural behaviour (concrete)
b) Model of structural behaviour
¢) Model for description of the properties of the material

of wood, see Section 4.7, the orientation was chosen in accordance with
the direction of the grain.

Eq:s (3.2:1) a) and b) are kinematical relations. In order to define the



3 - MODELS, page 5

mechanical properties of the material two relations are used: one stress
vs. strain relation valid for the material outside the fracture zone and
one stress vs. elongation relation valid for the fracture zone. Thus the ¢
vs. € and the 0 vs. w diagrams of the type shown in Fig 3.2 (1) c¢) are
assumed to define the uniaxial tensile mechanical properties of the
material. Both these diagrams may include unloading branches and the
curves may be dependent on the loading speed, the loading history and the
temperature, but are assumed to be independent of the shape and size of
the specimen and are accordingly assumed to represent the mechanical
properties of the material in the sense that they give a description of
the local mechanical action of each infinitesimal volume of the material.

The description of the properties with reference to an infinitesimal
volume, the assumption of local action and the consistent assumption of
zero, or infinitesimal, initial width of the fracture zone are consistent
with basic assumptions utilized in conventional continuum mechanics.
However, the assumptions impose some restrictions with regard to the
possibility of analysing all (hypothetical) types of uniaxial P vs. AL
curves. Thus the assumptions suggest that the P vs.A? curves shown in Fig
3.2 (2) a) and b) cannot be interpreted by means of the fictitious crack
model. In terms of the actual model, at point A in Fig 3.2 (2) a) a
fracture zone develops in which the deformations are finite and at point B
an infinite number of infinitely closely located fracture zones are
predicted to develop. The sum of the deformations in these zones is
infinite, which is in disagreement with the (hypothetical) uniaxial P vs.A®
curve. It is not known whether any real material with essentially time and
loading path independent properties can clearly behave as indicated in Fig
3.2 (2) a) or b) during a direct uniaxial tensile test of a uniform
specimen, It might be that some fibre reinforced composites can behave in
this manner, and during the transition from the elastic range to the
plastic range mild steel seems to have some tendency towards such a
behaviour. The types of P vs. ALl curves indicated in Fig 3.4 (2) ¢) and d)
can be interpretated by means of the fictitious crack model without any
extension or modification of the model. Fig:s ¢) and d) are examples of
curves where the first local maximum is also the global maximum, and

Fig:s a) and b) are examples of curves where the first lTocal maximum is
not the global maximum.

During all numerical applications presented in this report, the 0 vs. £
curve has been simplified to a straight line, i.e. before fracture a linear
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a) - b) -
Al Al
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C) 9 d) ¥
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Fig 3.2 (2) Hypothetical P vs.A®? curves with multiple maxima for
materials in direct uniaxial tension.
a) and b) contradict the fictitious crack model
¢) and d) do not contradict the fictitious crack model

elastic behaviour of the material is assumed, Fig 3.2 (3) a). Where the o
vS. W curve is concerned, several different shapes have been applied.
However, in most of the calculations either the simple straight line
shape, Fig 3.2 (3) b), or the bi-linear shape, Fig 3.2 (3) ¢), has been
used, The bi-linear shape has been developed by Petersson (1981) on the
bases of experimental tests of different qualities of concrete and seems
to be a reasonable approximation for this type of material: see Fig 8.15
in Petersson {1981). A1l the 0 vs. w curves applied in this report are
linear, bi-1inear or multi-linear. The division of the curve into linear
pieces have been adopted in order to facilitate the numerical
calculations. Non-linear 0 vs. w curves with a continuous variation in
d0/dw for w>0 have been applied by Nilsson and Oldenburg (1982) and
Glemberg (1984} (O'/ft = e-cw), and by Catalano and Ingraffea (1982),
Ingraffea, Gerstle, Gergely and Saouma (1984) and Ingraffea and Gerstle
(1984) (3/F = /(C,#)+C +C W), and by Reinhardt (1984) (O'/ft=1-(w/c1)c ).

The non-linear curves mentioned above have a d0/dw<0 for w=0. However, it
may be more realistic to assume a non-linear curve so that d¢/dw=0 for
w=0, and recently Gopalaratnam and Shah (1984) have proposed a such non-
linear curve (¢/f =e—CWL°( ). One of the piece-wise linear curves

presently applied has d0/dw=0 for w=0.

A do/dw>0 for w=0 seems to contradict the basic assumptions of the
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fictitious crack model. However, if a material such as concrete, within
which the strength is most likely scattered, is modelled on the assumption
of deterministic properties of the material, it may be argued that a o vs.
w curve with do/dw>0 for w=0 may provide a better description of the true
behaviour of the uniform uniaxial tensile specimen. If one considers the
influence of scatter, one may also arrive at the conclusion that the o vs.
€ and the o vs. w curves are size dependent, i.e. dependent of the

length of the specimen. One may imagine that a number of specimens with
reasonably scattered P vs. a2 curves are assembled into a chain and then
the assembled long specimen pulled and the recorded P vs. AZ curve used for
evaluation of the o vs. & curve and the o vs. w curve. For a resonable
scatter, such an imagined test may suggest that the recorded 0 vs. £ curve
becomes more and more linear at increased length of the specimen, that
great strains become concentrated to the subsequent fracture region

before peak stress (for experimental verification of this suggestion, test
results presented by Heilman, Hilsdorf and Finsterwalder (1969) might be
relevant), and, of course, that the mean tensile strength decreases at
increased length.

The simplified O vs. w curves shown in Fig 3.2 (3) are normalized into
dimensionless stress vs. elongation curves: O’/ft VS, w/(GF/ft). ft is the
tensile strength of the material and GF is the fracture energy of the
material. By definition, GF is equal to the area under the g-w curve:

GF =

o8

a{w) dw (3.2:2)

G_ may be expected to be equal to the total work carried out by the
external force, P, divided by the area of the fracture section only if (1)
the material outside the single tensile fracture zone behaves in a Tinear
or non-linear elastic manner, if (2) no energy is lost in the loading
arrangement in between the points where force and elongation is measured,
if (3) no initial stresses within the specimen, e.g. shrinkage stresses,
are released during the test, if (4) the test is stable and if (5) P is the
only force that carries out work (in particular, work carried out by dead-
weight may not always be negligible).

It might be questioned why w is normalized to GF/f instead of to, for
example, the value of w that corresponds to 0=0, w . It seems, however,
that GF is often a suitable and convenient parametgr: (1) while it is
rather difficult, and for some materials probably even impossible, to
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Fig 3.2 (3) Simplified material property curves.
a) Gvs.g , linear elastic
b) ¢ vs. w, straight line (SL)
¢) 0 vs. w, bi-linear, concrete (C)

carry out stable dirgct tensile tests, the value of G: can often be
determined rather easily by means of ordinary testing equipment; (2) it is
difficult to obtain and define any accurate value of w as, at least in

the case of concrete, it seems that d0/dw is close to gero when 0
approaches zero: (3) for very large specimens with deep pre-existing
cracks, G_ corresponds to the parameter G of linear elastic fracture
mechanics, and for such specimens the u1t$mate Toad is proportional to the
square root of G_, but is independent of the shape of the 0 vs. w curve and
also independent of the (small) value of wc.

Eq (3.2:1) b) indicates that A2 is not proportional to £ after peak stress.
This suggests that it is not very useful to present experimental or
theoretical data regarding the softening behaviour of materials in terms
of 0 vs. a¢/£, unless the gauge length, £, is indicated. This also means
that it is difficult to compare theoretical resuits to experimental data
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regarding the “total mean strain” across a propagating fracture zone if
the gauge length is unknown.

The two basically most essential requirements for validity of the
fictitious crack description of the tensile fracture are that a descending
branch in the P vs.Af behaviour exists and that the fracture takes place
within a localized fracture zone. The existence of a descending branch in
the tensile P vs.A £ behaviour of materials, in particular an apparently
brittle material like concrete, might contradict intuition, but has been
verified in a number of direct experimental tests on concrete: Hughes and
Chapman (1966), Evans and Marathe (1968), Petersson {1981), Gylltoft
(1983), Reinhardt (1984), Gopalaratnam and Shah (1984), and maybe also by
others. A complete P vs.Af curve for rock (sandstone) in uniaxial tension
may be found in Krech and Chamberlain (1974). The requirement that the
fracture is localized and accordingly that the deformation behaviour
inside and outside the fracture region, respectively, are entirely
different after peak stress, is supported by experimental results
presented by Heilman, Hilsdorf and Finsterwalder (1969) and is also
supported by theoretical arguments of the type dealt with in Section 3.3.
In addition this matter may be supported by intuition: it is easy to
imagine that a specimen in tension will fracture into exactly two pieces,
separated by a single localized fracture section which finally attains
zero strength without any simultaneous decrease in the strength of the two

pieces.

During application of the model in question to the analysis of other
specimens than the uniform tensile specimen, it is simply assumed that
each infinitesimal volume of the material behaves and fractures as in
uniaxial tension. This means that the maximum principal stress criterium
is used for start of fracture, and that the ¢ vs. £ and ¢ vs. w relations
are not influenced by the 2D or 3D state of stress. For concrete and
similar materials, these assumptions should be reasonable as Tong as the
absolute value of the smallest principal stress is less than about 3 or 4
times the uniaxial tensile strength of the material. The treatment of each
infinitesimal volume of the material as being in the state of uniaxial
tension, also means that the effect of possible rotations of the principle
direction of the deformation within the fracture zone are not taken into
account. If the specimen, the load or the fracture zone propagation path
is such that this direction rotates, then shear stresses are very likely
to develop across the fracture zone and the normal tensile stress is also
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very likely to be affected. However, no assumption has been made with
regard to the description of this effect. Rather obvious extensions of the
model would be to take into account the influence of the 2D or 3D state of
stress on the 0 vs.€ performance, the fracture criterion and the 0 vs. w
performance, and to take into account thé influence of possible rotation
in the direction of deformation by means of relations which in the
simplest case are of the type 0=0(w, , w;) ) and T =T (w; , w; ), where w,
and W, are the deformations of the fracture zone perpendicular and along
the fracture plane, respectively, and where ¢ and v are the normal and
shear stresses across the fracture plane. These extensions might perhaps
not involve any difficulties in principle, but may involve significant
difficulties when it comes to the experimental determination of the actual
material properties and to applied numerical calculations.

The fictitious crack model has been described and discussed above in a
rather engineering-1ike manner. An other fairly similar model has been
described in a more mathematical manner by Bazant and Oh (198l) and
Bazants and Onh (1983).

From the analogy between a tensile specimen and a beam in bending, it is
rather obvious that the structural behaviour of a beam and the moment vs
deformation properties of a section of a beam may be described by means of
one moment vs. curvature curve and one moment vs. rotation curve in the
manner indicated in Fig 4.2 (18). This type of description is linked to
beam-theory (and slab-theory) and is accordingly not estimated to be very
suitable for analysis of in-plane interaction between closely located
fracture zones. A quantitative difference between a concrete specimen in
urniaxial tension and a beam in uniform bending is that the behaviour of
the tensile specimen is probably not very much affected by constraints
(plane stress or plane strain) perpendicular to the specimen, while the
behaviour of the beam is probably significantly dependent on whether the
normal force is zero or the elongation is zero. This may make a difference
of importance between the analysis of in-plane loaded plates (by means of
plane stress or plane strain theory) according to the principles of Fig
3.2 (1) and possible analysis of perpendicular to plane Toaded piates {by
means of slab-theory) according to the principles of Fig 4.2 (18).
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3.2.3 Order of magnitude of material property parameters

Within the fictitious crack model, the properties of the material are
defined by means of one stress vs. strain relation and one stress vs.
widening relation. If the shapes of these two curves are known, then the
curves can be described by means of three parameters. During all the
present analyses, the material is assumed to behave in a Tlinear elastic
manner before fracture (v=0.2 and plane stress) and the maximum principal
stress fracture criterium is adopted. This makes it natural to choose the
three following parameters: (1) tensile strength, ft’ (2) modulus of
elasticity, E, and (3) fracture energy, GF.
These material parameters govern the strength, fracture and deflection
properties of structures built up from the actual material. If only the
strength of the structure or specimen is to be studied, then the absolute
values of the stiffness properties of the material are of no importance,
only the strength, f , and a measure of the ratio between the slope of the 0
vs. £ curve and the slope of the 0 vs. w curve. The slope of the 0 vs.€
curve is E and a general measure of the slope of the Tinear or non-linear
vs. w curve is f /(G _/f ). Thus a measure of the ratio between the slopes
of the two curves is EG_/f . This ratio has the dimension length, and is
called the characteristic Tength of the material and is denoted lch.

Ech is an intrinsic material length parameter and may be looked upon as a
measure of the brittleness of the material during fracture.

{(h governs the size of the fracture procesé zone and, together with f ,
it governs the strength of specimens with and without initial cracks. The
value of { is of significance regarding the choice of suitable method of
strength aﬁa]ysis (please see Sections 3.4 and 3.5 and other parts of this
report), and a Tow value of lch suggests that the load carrying capacity
of the specimen or structure is sensitive to notches and initial cracks.

In Fig 3.2 (4) approximate values of-[ (- EG /f 2), , E, GF VEE} and
G_/f for some different types of bu11d1ng mater1a1s have been

compiled. For large specimens with deep initial cracks, V_—} corresponds
to the linear elastic fracture mechanics strength parameter K . G /f

is a measure of the width, or opening, of the fracture zone: gor the linear
and bi-linear shapes of the o-w curve (Fig 3.2 (3)), the opening that
corresponds to zero stress. is ZGF/ft and 3.6 GF/ft’ respectively. It should

be noted that the values indicated in Fig 3.2 (4) are approximate and that
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they are only intended to provide a survey of the order of magnitude. The
values of the parameters may also be significantly different for different
qualities of the same type of material. In addition, the shapes of the
Gvs. £ and 0 vs. w curves are not the same for the different types of
materials. Thus, for instance, the shape'of the 0 vs. w curve of steel
fibre reinforced concrete is normally quite different from that of plain
concrete. Similarly, the shape of the 0 vs. £ curve of steel is often quite
different from that of concrete. Steel may have a very strongly non-linear
0 vs. € curve and the indicated value of E corresponds to the stiffness
during unloading. For estimation of the size of the fracture zone, this

value of E is probably more appropiate than the secant modulus.

Material Lch ft E GF EGF GF/ft
mi MPa MPa N/m MPaym~  mm
Steel fibre concrete 30000 4, 30000 15000 20.
Glass fibre mortar, new 4000 25000 10000 15. .3
Glass fibre mortar, aged 1000 5 25000 1000. 5 2
Concrete 400 3.5 35000 140. 2. .04
Mortar 120 3.5 25000 60. 1. .02
Wood fibre board 120 7 4000 1500. 2. .2
Sandstone 100 7 5000 10. .2 .014
Gypsum 20 1 4000 5. 14 .005
Steel 20. 1000.  200000. 100000. 150. A
Glass fibre/polyester 15. 140. 12000.  25000. 20. .2
Marble 15. 20. 80000. 75. 2. .004
Wood, perpend. to grain 10. 4, 500. 400. .5 A
Cement paste 10. 4, 10000. 15. .5 .004
Aerated concrete, 300 kg/m3 10. .5 800. 3. .05 .006
Aerated concrete, 600 kg/m3 10. 1.2 1700. 10. .15 .008
Carbon fibre/epoxy laminate 8 600 70000 40000 50. .07
MDF cement paste 6 100 40000 140, 2. .0014
Plexiglas 5 70 7000 400. 2. .006
Glass 5 30 75000 5. .€ 0002

Fig 3.2 (4) Order of magnitude

of fracture mechanics material property para-

meters. The values of the parameters may be significantly diffe-
rent for different qualities of the same type of material.
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Fig 3.2 (4) has been compiled from estimations which are based essentially
on data presented in the following references: Gustafsson (1977) (steel
fibre concrete, glass fibre concrete and lightweight concrete), Helmersson
(1978) (wood fibre board, wood, gypsum and plexiglass), Petersson (1981)
and Hillerborg (1983) (concrete), Petersson (1982) and Alford, Groves and
Double (1982) (MDF Cement paste, i.e. macro defect free cement paste, i.e.
extremely high strength cement paste), Modeer (1979) (mortar and paste),
Hillerborg (1980) (paste, glass), Aronsson (1984} (glass fibre polyester
and carbon fibre/epoxy laminate), Krech and Champerlain (1974) (sandstone)
and Ouchterlony (1981) (marble).

3.2.4 Stress and displacement close to tip of fracture zone

According to the fictitious crack model a drastic change in the mechanical
behaviour of the material takes place at the tip of the fracture zone,
particularly if the stress-strain curve is assumed to be linear. At the
tip of the fracture zone the deformation changes from relative strain to
absolute deformation and in addition the tangential stiffness of the
material changes from positive to negative.. This invokes the suspicion
that the distribution of stress and displacement may not be very smooth
close to the tip of the fracture zone and it has also been put into
question whether or not it is theoretically possible for a finite non-zero
stress to exist exactly at the tip of the fracture zone. Consequently it
may be difficult to study the detailed performance very close to, and
within, the tip of the fracture zone by means of numerical methods.

The question whether or not it is possible to define and calculate a state
of stress exactly at the tip of the fracture zone is, of course, of great
importance on grounds of principle and is also of an apparently somewhat
confusing nature. In the Barenblatt description of a self-similar
fracture zone, a non-zero finite stress at the tip is proposed, but
subsequent authors have refered to this finite stress in the Barenblatt
description as being a postulate and consequently not as necessarily being
a consistent result of assumptions regarding the mechanical properties of

materials.

The stresses (the tractions) acting across the fracture zone may formally
be regarded as a Toad acting on the specimen, and the stresses within the
specimen may then ha ralrilated ac a Tinear ramhinatinn nf the stresses
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produced by the tractions across the fracture zone and the stresses produced
by the external load. However, at zero tractions the external load produces
an infinite stress at the tip of the fracture zone, and at zero external
Toad the tractions produce an infinite (negative) stress at the tip of the
fracture zone. A reason for misleading éonfusion may then be that the actual
external load at equilibrium may be regarded as being calculated by means

of ‘an equation where these two infinite stresses are added and put equal

to a certain finite value, i.e. the tensile strength of the material.

During applied finite element calculations, the two stresses do not become
infinite, but - which also may be a reason for misleading confusion - the
two stresses become greater and greater without any limit during

refinement of the finite element mesh. (Where convergency during mesh

refinement is concerned, please see Section 3.6.4)

Fig 3.2 (5) A fracture zone in a plate and the dividing up of stresses.

In order to understand the performance close to the tip of the fracture zone,
the fundamental case of an infinite centre cracked plate, Fig 3.2 (5) a), is
studied. It =~ ~° 7 T e "ttt " results of such a
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study for other cases of loading. The stress acting across the fracture zone
is regarded as an external load, and the loading case shown in Fig 3.2 (5) a)
is separated into the two cases of loading shown in Fig 3.2 (5) b) and c).
Case b) corresponds to a uniform tensile stress distribution: c&;;ft

and 0 =T=0, In case c) the c& component of stress is zero at the

X
tip of the fracture zone.

The separation into two cases of loading is possible because the material
outside the fracture zone is linear elastic. However, validity of the
separation requires that the total opening of the fracture zone and the crack
proves to be greater than, or equal to, zero. Validity of this trivial
assumption is evident from the subsequent results regarding the distribution
of displacements.

In addition, in the actual fiqgure the stress in the tip is put equal to

ft. According to the material property description, the stress in the tip
may have any value less than, or equal to, ft. Presently the common

and interesting case when the stress in the tip is equal to f will

be dealt with, but an analogous discussion should be possible to carry out
also for any smaller positive stress in the tip. Such smaller stresses

may develop during cyclic loading. The actual assumption regarding the stress
in the tip requires that the principal stress in no point in the vicinity of
the tip proves to be greater than f . Validity of this assumption is

evident from the subsequent results regarding stress distribution.

For case c), it is now, as a temporary guess,‘assumed that ¢ =0 not only
exactly in the tip but also along a non-zero distance behindythe tip. For
case c), this means that the general linear elastic results regarding the
stress and displacement close to a tip of a crack, eq (3.4:1) and eq (3.4.2),
are applicable in a small vicinity of the tip. In these relations a_=0

as o =0 in the tip. Taking into account only the dominating terms in the
actugl relations and then adding case b) to case c), the following result is
obtained:

% T %0 \/7_3%1 {5cos(0/2)-cos(~30/2)} + ...
o, = fy - v;ﬁ§§j_{3cos(o/2)+cos(—3e/2)} + e (3.2:3)

4
T =rdasine + ...
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dxo is identical to —4a2. Where the components of displacement in the x-
and y-directions, u and v, are concerned the following result is
obtained in the case of plane stress. The actual coordinate system is
fixed by u=v=0 in the point r=0 and by v=0 along the Tine 9=00.

1 u = % {r(cxo-vft)cose -
ﬁ r3/24 ((772-v/2)cos(30/2) -(3/2+43v/2)cos(-0/2)} + ...
3.2:
v = % {r(ft-vcxo)sine - ( 4) a)
r3/ 23, 1(5/2-3v/2)sin(30/2)+(3/2+3v/2)sin(-0/2)}  + ...

In the case of plane strain:

(u =1t {r(oxo(1-v)-vft)cdse -

£ a2
r* “as{(7/2-4v)cos(36/2)-3/2cos(-0/2)} + ...

), (3.2:4) b)

. E oY .
v = _EM {r(ft(1 v) vcxo)s1ne -

§ r3/ 20, 1(5/2-0v)sin(36/2)+3/2sin(~0/2)}  + ...

0
The fracture zone widening, w, is equal to 2v (6=180 ). Thus, according to
eq (3.2:4) the fracture zone widening in the close vicinity of the tip of
the fracture zone is:

W= 1-8a3r3/2 at plane stress (3.2:5) a)
E

_ (=8
E

8a3r3/2

at plane strain (3.2:5) b)
To investigate whether the above temporary guess for the loading case cof

Fig 3.2 (5) ¢) is valid, it may now be checked if both eqg (3.2:3) and eg
(3.2:4) (or eq (3.2:5)) together with the constitutive equation of the
fracture zone give 0 =f and 30 /ar=0 when r—~0 até =1800. (3.2:3) gives

og=f ate =1800 and %onsequent1§ that aQ/ar=0 at e =1800. If the constitu-
t%ve equation is 0&=f(w) then, for @ =180%, (3.2:5) gives (at plane stress):
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o, = fwi(r)) (3.2:6)
ic_y - B(f(W(r))) - w1/3 §(§_a_3_)2/3 df(W) (3.227)
ar  or 2 t dw

Consequently it is required that the 0-w curve is as follows:

flw) ~ ft when w > 0 (3.2:8)
w3 df(w) > 0 when w > 0 (3.2:9)
dw

These conditions for validity of eq:s (3.2:3) to (3.2.5) close to the tip
of a fracture zone do not impose any very strong limitations on the shape
of the 0-w curve: sufficient conditions are that the peak stress in the (-
w curve coincides with the peak stress in the 0-£ curve and that the slope
of the 0-w curve (at small w) is finite.

The phrases "close to the tip" and “"in the vicinity of the tip" are used
above to describe the currently studied region, but no exact definition of
the size of this region can be given. However, the important thing is not
the size of the region but the knowledge of the existence of such a region
in the vicinity of the tip, including the tip, in which eq:s (3.2:3) and
(3.2:4) are valid. If the region is made extremely small, then these
relations should be exact, and if relations are applied during calculation
of stress or displacement at an increasing distance from the tip, then the

result will become more and more approximate.

As an iterative calculation, eq (3.2:3) gives the first order result
regarding the stress across the fracture zone, i.e. 0 =f at® =1800, while
the second order result can be obtained by means of e% (3.2:5) together
with the constitutive equation for the behaviour of the fracture zone. For
the stress across the crack propagation path this gives:

oy = Fy+ 8a,r/ 2 4f(w) for o = 180° (3.2:10) a)
E dw
o, = fy - 3as|r ~ foro- 0° (3.2:10) b)

0
df(w)/dw is the slope of the ¢o-w curve for small w and the result for =0
is taken from eq (3.2:3). The above eq (3.2:10) a} is valid. for plane stress.

The discussion & " an infinite
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l' rlich=0.02
AN

Fig 3.2 (6) Theoretical fracture zone opening displacement
(plane stress) and stress distribution in the close
vicinity of the tip of fracture zones (acc to domina-

ting term in series expansion).

centre-cracked piate in tension, but it is probable that the above

relations regarding the shape of the distribution of stress and displace-

ment close t ~ 1ode 1 fracture.
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The above discussion can be repeated for all cases where a dividing up

of the stresses can be made in a similar manner as shown in Fig 3.2 (5).

For other types of external loading it is probable that the actual shapes
of the stress and displacement distribution are still valid as one may
expect a self~similarity of the behaviour of the material in the close
vicinity of the tip as long as this close vicinity is small in comparison
to the length of the fracture zone and also small in comparison to the
distance to boundaries of the specimen and the points where load is applied.

The distribution of stress, eqg (3.2:3), and the displacement in the y-
direction at 6=1800, i.e. the fracture zone opening displacement, eq (3.2:
5), are illustrated in Fig 3.2 (6). In eqg (3.2.3) it can be noticed that
0 and 0 dominate over the shear stress,T . Even if 6 —f =0, U and U
aﬁe domi%ating over T at small ras 0 -0 and 0 -f are both proport1ona]
to \r, while T is proportional to r. %hiéomeans,yif 0 =0, that the first
principal stress, 0 _, is equal to U and that the segondxprincipal
stress, 0 _ is equal to 0 ., The shape 05 Ehe fracture zone opening
illustrated in Fig 3.2 (f), i.e. w~r , is consistent with the rather
well-known result presented by Barenblatt (1963). In particular,
Barenblatt demonstrated that the faces of a.crack must close smoothly.

Eq (3.2.3) (and eq (3.2:10)) produce interesting information about the
stress field and some particular features may be noticed. At the tip of

the fracture zone 0 and 0 are finite and the shear stress is zero. For#®
$180°, the gradien% in U'yand 0 approaches infinity very close to the

tip, and in the tip the s%ress d¥str1bution'breaks. When r+0, the same

Timit values for the components of stress are obtained for all 6. The
directions of the principal stresses, 0_ and 62, are the same for all 6, and
these directions coincide with the orientation of the actual mode-1 fracture
zone, At any constant (small) distance from the tip, 0 has its smallest,
not greatest, magnitude in front of the fracture tip, i.e. at e=0°. The
ratio between ¢ and 0" in the tip of the crack is not restricted to

having some cer¥ain va%ue, but is dependent on the global geometry of the
specimen and the type of the loading. In most cases one may expect 0 > (¢ ,
but in some case one may expect 0 =0 , 0>0 means that the mode-1

fracture zone will start to try té gr%w pérpzndicular to the previous
direction. This will activate shear stresses in the fracture zone and the
subsequent crack propagation path may become curved. An example of a
specimen where U may become greater than 0 is the double cantilever

beam. It is poss . Y 5 during mode-1
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fracture mechanics tests by means of the double cantilever beam. In order
to attain the desired crack propagation along the symmetry line of this
specimen, one may have to pre-stress the specimen in the x-direction:

an example may be found in Fig 4.4 (1).

The above mentioned features of the stress field produced by the
fictitious crack model may be compared to the corresponding features of
the stress field produced by the linear elastic fracture mechanics, eq (3.
4:1). This theory predicts an infinite stress in the tip and instead a
finite measure of the stress is obtained from the 1imit value of the
stress times \r, when r—-0. Furthermore, this measure has no limit value
in its truer sense as it approaches different values for different 6, and
is therefore defined as the 1imit along a certain line, i.e. along e=0°.
The shear stress is not predicted to be zero in the region r- 0, and the
direction of the first principal stress is different for different® .
These matters may give rise to confusion during theoretical analyses by
means of the linear elastic fracture mechanics, particularly if the stress
field is utilized during the prediction of the crack propagation path.
Approaches for the prediction of the propagation path based on some
direction of the first principal stress, based on the point of the maximum
first principal stress in the vicinity of the tip or based on energy
density in the vicinity of the tip have been proposed. It is, however,
probable that such approaches may be successfully applied in a majority of
cases only if they simply predict that the mode-1 crack will continue to
grow straight ahead. But then it is difficult to explain possible
deviations from this path. With regard to the prediction of the subsequent
propagation path of a mode-1 crack, the basic difference between eq (3.2:
3) and linear elastic fracture mechanics is that the stress in the tip is
described by two vardiables ¢ and 6 , and only one variable (the stress
intensity factor), respect1ve¥y.

Eq (3.2:3) and eq (3.2:4) are difficult to verify or demonstrate by means
of the results of numerical calculations. This is due to the break in the
stress field at r=0 and the infinite gradient in stress when rs0 (ate=*
1800). However, in order to attain some verification and also in order

to illustrate the analytical and numerical fields of displacement and
principal stress, the three point bend beam shown in Fig 3.2 (7) is
anaiysed by means of the finite element method. The beam is initially un-
notched and at the studied moment of fracture zone propagation, the tip of
the fracture ' foo7 dmmAb 440N ~f 4hs haam, f.e, the node
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- 15mm
lP(-0.1831 MN

Ax=15
d= mm

015m X _

7 4
y \\\\\\\\“‘==::::::::£E;;7

— K
¥ A

K 0.45m

E =30000 MPa 4LOMPa
G = 80x10° MN/m

v = 0.2 (plane stress) "
fs = 4.0 MPa 10,0 pm
dllch=10 dGldw=-1.0x10° MPa/m

Fig 3.2 (7) Characteristics of the specimen (short un-notched beam with
the width, b, =1.0 m) used during a finite element veri-
fication of the performance close to the tip of a fracture
zone. A fine finite element mesh is applied close to the tip.
Total number of elements in x-direction = 50, and in y-
direction 28 (symmetrical half).

along the centre line of the beam located at x/d=0.2000 is the first node
which is not opened and in which a fracture zone modelling spring is not
inserted. In this node, the nodal force divided by bAx is equal to f . The
calculation is carried out with the help of an easy-to-use finite element
program developed by Petersson and Backlund (1973) for linear elastic
analysis of plates. The parts of the beam outside the fracture zone are
modelled by the rectanqular 4-node plane stress element of Turner, Clough
et al., presented in 1956, This element has, in particular, the ability to

represent exactly pure bending, free of shear strain.

Eq:s (3.2:3), (3.2:4) and (3.2:10) give information about the shape of the
distribution of stress, displacement and stress across the symmetry line
of the beam in the vicinity of tip, but give no information about the
location of the tip and the numerical values of 0 and a_. These unknown
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factors can be obtained by substitution of stress, displacement and/or
nodal forces in the analytical relations. Presently egq (3.2:10) and the
calculated nodal forces are utilized to obtain the location of the tip
(indicated by Ar) and the numerical value of a_, valid for the actual
example, The sum of the nodal forces in fhe vicinity of the tip should
equal the corresponding area under the 0 (r) curve at® =00 and B=180°.
With the notation shown in Fig 3.2 (8) t%is gives:

(3+1/2)Ax-Ar J
§o_(r)dr = 1P,
~(§+1/2)8x-Ar j=-j
(3.2:11)
(§-1/2)Ax-Ar -1
go(rmr = 1P, = =jueeiliand, j=2

Gd2ax-ar i=-(G-1)

In this system of two equations Ar and a_ are the two unknown facors,
while it is assumed that 0 (o)=P /bAx(=f ). Eq (3.2:11) is non-linear, but
can be solved with the help of iterations. The results for j=2,3,4 and 5
are shown in Fig 3.2 (9). For j=1, the equation has no solution. About the
same result is obtained for the different lengths of integration, and the
values a_=4.80 MPa/ym and Ar/Ax=0,.36 are used in the subsequent
comparisons. Eq (3.2:11) represents only one of many possibilities to
determine a_ and Ar, but it is believed to be better to carry the fitting
to the sum of stress (nodal forces) than to the stress in certain points.
Here it has been assumed that 0 (o0)=P /bAx. This assumption is not
necessary if eq (3.2:11) is supplemented with an additional equation. Such
an equation, close at hand, is equilibrium in moment between the nodal
forces and the theoretical stress distribution. In Fig 3.2 (8) the
numerically obtained stress across the symmetry line of the beam is
represented by a histogram, while an alternative would be to represent
this stress distribution in accordance with the stress at the edge of the
plate elements along the symmetry line.

In other parts of this report knowledge of eq (3.2:10) is not utilized and
during the analyses of the fracture zone Tength the tip of the fracture
zone is assumed to be located exactly in the node where Po/be=ft' This
assumption is in accordance with previous analyses by means of the
fictitious crack model. In general, one may expect Ar/Ax to be influenced
by the shape o T N ' ’
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A t t f f T T f Node forces,
Pi
\ Location of node
Location of tip
Oylr)
08 |- Y
Ax
0.8 — \
i= -3 -2 -1 0 1 2 3 l
I | I | ! l |
0.7 + | | [ I‘r ] { |
x/d=0.2000
i r|
| , j+1/2) Ax+ar {je1/2)Ax~Ar
A - L
|
Fig 3.2 (8) Notation used in eq (3.2:11). The Figure also shows
the actual stress across the symmetry line of the
specimen shown in Fig 3.2 (7): the curve shows the
analytical result for a3=4.80 MPa/ Vm and Ar/ax=0.36,
and the histogram shows the FEM-results.
j Ar/hx a3, MPa/ vm
1 - -
2 .37 4,82
3 .35 4,77
4 .36 4,79
5 .37 4,79
Present choice .36 4,80
Fig 3.2 (9) Ar/Ax and a_ for the numerical example of

Fig 3.2 (7) as obtained from eq (3.2:11) at
different j. Notation acc to Fig 3.2 (8).
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Tip of fracture zone at x/d=0.2036

o = numerical resuit, FEM

curve = analytical result, eq(3.2:10).u3=l..80 MPa/Vvm'

0.1 0.2 03 x/d

Fig 3.2 (10) Stress across the symmetry line of the specimen

shown in Fig 3.2 (7).

In Fig 3.2 (10) the theoretical and numerical results are compared, and in
Fig 3.2 (8) an enlargement may be found. It seems that the theoretical and
numerical results are in agreement in the vicinity of the tip. Extension
of the theoretical curve all the way to the edge of the beam, i.e. to x/d=
0, gives Uy/ft=0'83’ while the finite element results give 0&/ft=0.8l
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Substitution of 0 in the centre of the elements close to the tip in eq
(3.2:3) gives 0X°§1.3 MPa, i.e. Oxo/ft=0.32. Thus, in the actual example
02/01=0.32 in the tip of the fracture zone. Knowing a_ and oxo’ the
displacements and principal stresses can be calculated. In Fig 3.2 (11)
the theoretical displacements are compared with the corresponding
numerical result and in Fig 3.2 (12) the principal stresses are shown in
the same manner. During the analytical calculation of 61 and 62, only the
dominating terms in eq (3.2:3) have been taken into account. Consequgnt1y,
shear stress has not been included in the analytical calculation of 01 and
Oé. Where the displacements in the x-direction are concerned, a slight
deviation between the analytical and theoretical results can be observed.
This deviation is due to different reference points: the numerical result
is shown for u=0 at x/d=0.2000, while the analytical result is shown for
u=0 at x/d=0,2036. The actual figures show agreement between the
analytical and numerical results. The figures also illustrate that the
deformations are smooth and that the direction of the principal stresses
is uniform.

Where the shear stresses are concerned, the numerical result suggests that T
is very small in the vicinity of the tip and that T seems to be
approaching zero when r-0. These features are in agreemewnt with eq (3.2:
3). However, with the exception of these features, agreement with reépect '
to the distribution of the (very small) shear stresses is not found. One
explanation for this might be that a4 is zero, or close to zero, and that
the shear stress is consequently dominated by a subsequent term in the
series expansion of T(r,® ). Another exp]anétion might be that the present
particular finite element analysis is not suitable where a study of the
distribution of the very small shear stresses close to the tip is
concerned. Such a study may require a very fine finite elelement mesh and
a very high nummerical accuracy.

In order to reduce the numerical work, during many numerical fictitious
crack analyses substructure technique is utilized and only the nodal
quantities along the fracture propagation path are calculated. Thus it may
be noticed that the above relations should make it possible to calculate
not only the location of the tip and a3, but also Oxo’ from the nodal
quantities along the propagation path, i.e. from the nodal forces and
displacements. If, - in contradiction to the fictitious crack model -, the
fracture zone is assumed to be a band of initially non-zero width, then it
o . ’ regarding the

is probably difi"
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Left side € Right si
Nodal displacement acc. : Displacements acc. to eq (3.2:4)
I

to FEM with @, =4.80 MPa ¥V, Oxo = 0.32
- 1T —_——TT ]
1 | | ;
' l | |
| | | |
| | | |
SN S
| | |
I ; $-1=0 |
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| |
I | |

|

[—— - —1"- ' e e -~ — — — _4
| | | | |
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I | ! | |
| I | I |
L e —— | . 1 o l_ J—
Displacement scale: ;_lgi"“__;
Length scale: p 13 mm

Fig 3.2 (11) Displacements in the vicinity of the tip of the fracture
zone in the specimen shown in Fig 3.2 (7) acc to FEM and
theoretical formula, respectively.
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Left side: € Right side:
0, and 0, acc. to FEM | 0, and 0, acc.to eq (3.2:3)
in mid-points of elements | with a, =4.80 MPa/Vm, 0, = 0.32 f;
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Fig 3.2 (12) Principal stresses (magnitude and direction) in the
vicinity of the tip of the fracture zone in the
specimen shown in Fig 3.2 (7) acc to FEM and
theoretical formula, respectively.
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performance close to the tip.

During some earlier studies of fracture zones, a stress distribution
across the fracture zone is assumed and then the corresponding 0-w curve
(or some corresponding relation) is calculated. According to eq:s (3.2:9)
and (3.2:10), if this assumed stress distribution, i.e. 0 (r) ate= 180°,
has a non-zero gradient when r-0 then the corresponding 0-w curve must
have an infinite slope for w>0 (and/or eq (3.2:8) must be violated).
Stéhle (1983) assumed a linear variation in 0 (r) (ate = 180°) and,
according to a graphical display of the numerical results, it seems that
the slope in the corresponding 0-w curve is great, and perhaps infinite,
for w~0, Stdhle also carried out the reverse calculation, i.e. calculated
0 (r) at the assumption of a linear linear 0-w curve. In this case,
according to a graphical display of the results (obtained by means of a
special numerical method), it seems that the gradient of the stress
distribution, 0 (r) at 6=1800, is small, and perhaps zero, when r-0. Also
this result is consistent with eq:s (3.2:9) and (3.2:10). Some other
numerical results presented in Tliterature seem to suggest that the stress
distribution has no breaking at r=0 or no infinite stress gradient in
front of the tip. Such results are not consistent with the present study
and may merely be due to a general smooth interpolation in between the
points where the stress is calculated.

It may be concluded that tha fictitious crack model does not seem to
produce any inconsistencies regarding the performance in the actual
region, i.e. in the tip of the fracture zone and its close surroundings.
The state of stress exactly in the tip of a fracture zone seems to be
possible to define and calculate. The numerical comparison seems to
support validity of the actual relations, or, vice versa, it seems to be
possible to analyse the vicinity of the tip by means of the finite element
method. Mixed mode Toading has not been dealt with above. A natural
extension of the above discussion may be to try to apply the same type of
approach to that type of Tloading.
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3.3 Ability to reproduce uniaxial tensile behaviour

3.3.1 Introduction

A prime requirement of a material model, a method for the description of
the properties of materials, should be that the description of a material
becomes such that, together with accepted laws of nature, it does not pro-
duce results that contradicts those experimental results on which the actual
description is based. From this simple and fundamental point of view two
methods for the description of the mechanical properties of materials in
uniaxial tension will be discussed. Section 3.3.2 deals with the stress vs.
strain description, and Section 3.3.3 deals with the fictitious crack

description.

For this discussion we imagine that the 0 vs. A{ curve in Fig 3.2 (1) a)
has been obtained during a direct tensile test of a uniform specimen, a
bar with the inital length, {. The loading speed is imagined to have been
slow, so that inertia forces can be ignored, the force of gravitation is
assumed to be zero, and stress and deformation perpendicular to the bar
are assumed to be zero. This means that the phenomenon of necking is not
dealt with. The cross sections of the bar are assumed to remain plane
during elongation of the bar and the sections are denoted by their
distance, x, to one of the ends of the bar in its initial state. This end
is assumed to be fixed, and the movement of the section x is denoted u(x).
Thus u(0)=0 and u({)=A4.

By means of the test results, the mechanical properties are described in
the two different ways and these descriptions are then imagined to be
handed over to a person who is asked to predict a ¢ vs.A{ behaviour of a
bar with an inital length of £. The prediction is carried out by means of
the following law: taking into account all kinematically admissable
variations, mechanical systems will incrementally behave in such a way
that the incremental work supplied to the system is minimized. The studied
system consists of the bar, while the external forces acting on the bar
are assumed to be outside the system. Thus the interaction between the
system and its surroundings is defined by the kinematical relations u(0)=0
and u(£)=A4

The discussions in Sections 3.3.2 and 3.3.3 concern an incremental

analysis startin ~ hese
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discussions are carried out on the assumption that the incremental
stiffness of any given section of material at any given time (this
stiffness may be positive or negative) is equal during a positive and
negative increment in its deformation. In Section 3.3.4 the conditions of
stability are surveyed for the different cases of different sign of the
incremental stiffness depending on the sign of the increment. These cases
are studied on the assumption that the states of the bar have been reached
by aid of some external constraint along the bar which is subsequently

removed.

Thecretically, the present discussion is equally valid for uniaxial
compression and uniaxial tension, but during compression it may be that
stresses and deformations perpendicular to the bar may be of great
importance. A beam in uniform bending is analogous to a specimen in
uniform tension and the present discussion and the present results are
accordingly applicable to the analysis of beams by changing force into
moment, strain into curvature and fracture zone widening into fracture
hinge rotation. The analogy between a beam in bending and the tensile
specimen requires that neighbouring secticns of the beam interact only
through a single variable, i.e. the bending moment, and accordingly not
through non-plane deformations of the sections. This means that the
analogy is not suitable for studies of in-plane interaction between

closely located fracture zones in a beam.
3.3.2 Stress vs. strain model
It might be that a better name for the intended model would be the smeared

model, the strain softening model or perhaps the conventional model. In
this model the experimental results are transferred into a description of

a

oy

Fig 3.3 (1) wranch.
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the properties of the material on the assumption that the strain,
(e=du/dx), is constant along the bar {or along the gauge length), i.e. on
the assumption £=A4/{. The description is shown in Fig 3.3 (1).

The descending branch in the 0 vs.€ curve in Fig 3.3 (1) clearly
contradicts the Druckers postulate of "stability in small" (AGAE >0, (Chen
and Saleeb, 1982)}. On the other hand, postulates form be base for
theories, but say nothing about their own validity. Thus, the violation of
the actaul postulate does not necessarily mean that the stress vs. strain
approach is invalid. If softening exists, then theoretical results derived
from the assumption of stability in the sense of Druckers demand may not be
valid. Key-words for such theoretical results are uniqueness, normality and

convexity.

Consider the studied bar again. The incremental work, 4&W, necessary to
attain a small strain increment, Ae(x), along the bar is:

) ae(x) dx (3.3:1)

The kinematically admissible strain increment distributions are restricted
by:
2

5 ae(x)dx = au(g) (3.3:2)
0

where a Au({)}=0 is prescribed. Integration by parts indicates that a
necessary requirement for equilibrium, i.e. a necessary requirement for
d0/dx=0 for all x, is the equality

a(x)ae(x) = o(2)nu(g) (3.3:3)

O =

Eq:s (3.3:1) and (3.3:3) give:

MW = o{2)au(r) + f
o]

(3.3:4)

When AW is minimized, Au({) may not be subjected to variation as its value
is prescribed.

With the first increment in u({) at hand, €(x)=0(x)=0 and accordingly
dd/dslxzconstant > 0. In this case, taking into account that Af (x) is
taken in square in increment
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Ag(x)=zconstant. With the next and subsequent increments at hand, € (x)30
and 0 (x)*0 but as long as az(x) is constant then dO/dslx is constant and
as long as this constant value of dO/dElx is greater than zero, eq (3.3:4)
shows that se(x)=zconstant. This means that the imagined experimental test
results are correctly reproduced, and accordingly the stress vs. strain
model may be valid in the range d0/d¢>0.

When the value of €(x) corresponding to dd/ds]xzo is reached, AW is
minimized by arbitrary A€ (x} and a zero-energy disturbance is sufficient to
produce a Ag(x) not identical to zero. These zero-energy disturbances are
bound to produce a d0/de<0 in at least some part of the bar. (The 0 vs.¢
curve has d0/de=0 in only one point.) And if dg/deg<0 in at least some part
of the bar, eq (3.3.4) shows that AW can attain an arbitrary small value
if, for instance, A¢ (x) is assigned a large value in some point where d0/dE
<0 and a constant negative value along the rest of the bar. The lack of a
minimum of AW means that the subsequent behaviour cannot be determined and
the possibility AW<0 means that the bar will immediately fracture in an
unstable manner. This result contradicts the imagined experimental results
on which the actual description of the properties of the material is based.
Thus it may be concluded that the stress vs. strain model is not valid in
the range d0/d€<0.

In the theoretical case when the 0 vs. £ curve is such that d0/d€=0 in a
finite interval of €, the prediction of the U vs. Al behaviour becomes
arbitrary as the prediction becomes governed by the arbitrary zero-energy
disturbance when € (x) has reached the values corresponding to d 0/d¢=0.
Thus the experimental results may be contradicted and accordingly the
stress vs. strain model is not valid in the range d6/d€=0 if dg/de=0 in a

finite interval of €.

The conclusion that the stress vs. strain model is not valid when dg/de<0
is not believed to be any new finding and has most probably been derived
from earlier studies, which may have been presented a very Tong time ago.
The conclusion regarding stress vs. strain curves with a descending branch
is not only a theoretical matter, but is also of great practical
importance. Test results regarding tensile softening of materials should
not be described in terms of stress vs. strain, and such a description of
softening should not be used during numerical calculations. In this case
only the uniaxial state of stress has been studied, but it is reasonable
to suspect t ' stress vs. strain
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does not become valid because of a more general state of stress.

The stress vs. strain model dealt with above gives a description of the
properties of materials with reference to an infinitesimal volume, which
interacts only with the neighbouring infinitesimal volumes (local action).
This is consistent with conventional continuum mechanics and, unless
nothing else is explicitly stated, reference to a localy acting
infinitesimal volume is tacitly always assumed. However, if the ‘
description is made by means of a stress vs. strain curve plus a defined
finite length of material for which the curve is stated to be valid, then
the discussion above is not applicable. In this non-conventional stress vs.
strain approach, strain is not calculated as du/dx, but as Aldef/f

s
{ of being the length which is given in the material property desc2$£tion.
In this case, when predicting the behaviour of the studied bar, the bar
should be considered as, if possible, being built up of a finite integer
number of pieces with the length £ . Another non-conventional stress vs.
strain approach is to refer the ascgnding branch to an infinitesimal
volume and the descending branch to a defined finite length. Perhaps this
approach might seem somewhat inconsistent, but the discussion above has
not dealt with this approach and accordingly the results above do not
suggest that this approach is not valid. This latter non-conventional
stress vs. strain description has been used by Gylltoft (1983), Bazant and
Oh (1983) and others.

3.3.3 Fictitious crack model

The fictitious crack description of the material properties is shown in
Fig 3.2 (1) ¢). As long as d0/d€>0, the actual model coincides with the
model dealt with in Section 3.3.2, which correctly reproduced the test
results in this range. Then the more difficult point where dG/dE]x sd(f/dwx
=01s reached. In this case the system is in neutral equilibrium and may be
altered by a zero-energy disturbance. The new state of equilibrium for a
system in neutral equilibrium after a zero-energy disturbance is a state
of stable equilibrium if a state of stable equilibrium exists in the
kinematically admissable immediate vicinity of the neutral state. In the
case of the stress vs. strain model, no such kinematically admissable
stable state existed in the immediate vicinity of the neutral state. After
the disturbance, w>0 (and thus d0/dw<0) in at least some parts of the bar,
¢,, while do/de: " : ?
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If a stable state exists, the minimum of AW will be greater than zero,
taking into account all admissable variations not indentical to zero

during zero energy transfer to the system (Au(1)=0):

2
Q_w_(%ig% |, (3.3:5)

2
. {ae(x))° do
0 < Al = £ ———?——~—-az»‘x dx + i 0 dx + E

- o
n is the number of sections along the part 4, of the bar. So far this
number may be finite or infinite, but not zero. . 1is the length of the
bar where d0/de=dg/dw=0. If equilibrium, this 1en8th must be zero as
different values of d0/d€ or d0/dw in different points along the bar would
mean that the stress is varying.

The admissable variations are restricted by:

0 = 5 de(x)dx + T aw(x) (3.3:6)
4 n

For any constant non-zero value of the integral in eq (3.3:6), the
integral in eq (3.3:5) attains its smallest value if A€ (x) is uniform and
this value is positive and finite. For any constant non-zero value of the
sum in eq (3.3:6), the sum in eq (3.3:5) attains a negative value and this
value can be made infinite if n22. Thus a stable state can exists only if
n=1, This result indicates that the model for description of the
structural behaviour, Fig 3.2 (1) b) is consistent with the model for
description of the properties of the material, Fig 3.2 (1) ¢).

The requirement n=1 and the result that a uniform distribution of A€ (x)
corresponds to minimum of AW makes it possible to obtain a simple
sufficient requirement for the existence of a stable state of equilibrium.
Eq:s (3.3:5) and (3.3:6) give:

do do
0<a-€+ 2 T (3.3:7)

But, with the notation AuzAu(l),:

Ao Ag _ (ag/aw)(ao/ae) (3.3:8)

AU 2he + bW ho/he + L(Ao/Aw)

and a comparison between these two relations, taking into account that
(MO /bw)(A0/AE )<0, indicates that if A0 /u is finite and negative then eq
(3.3:7) is valid. Thus the restriction (3.3.7) regarding the ability of
the fictitio yranch of the test
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results is that the test results actually did expose a stable descending

branch, i.e. not a sudden drop where AC /Au--o.

The subsequent incremental behaviour of the bar may be dealt with in essen-
tially the same manner. However, the subsequent behaviour is more simple

to analyse as, according to the description of the properties of the
material, no new section where w>0 can develop after peak stress. Eq (3.3:
7) is also applicable during the subsequent increments, and where A€ and

Aw are concerned, the following results are obtained:

_au(e) da/d .
te = 555 (- §rge v T doraw) (3.3:9) a)
dg/de (3.3:9) b)

ww = b (q7ge s r do7aw )

In the theoretical case when the Ovs. € curve or the 0 vs. w curve is such
that d0/de=0 or d0/dw=0 in a finite interval of € or w, the prediction of
the 0 vs. A{ curve becomes governed by the arbitrary zero-energy
disturbances when the peak stress is reached. Thus the experimental

results may be contradicted and accordingly the fictitious crack model,
just as in the case of the stress vs. strain model, is not valid if the
incremental stiffness is zero in a finite interval of € or w.

If, in addition to the two material property curves, it is explicitly stated
within the material property description that w>0 in exactly one section,
then the experimental results can be reproduced correctly also if do/dw=0 in
a finite interval of w. (But not if do/de=0 in a finite interval of €.)
However, an explicit statement already in the material property description
that w>0 in exactly one section would mean that the material in each section,
in some way, is assumed to know and take into account what is happening in
the other sections, even if the stress acting on the section is not altered.

Eq (3.3:7) is of practical interest regarding to the possibilities of
carring out experimental stable tensile tests. If this eq is contradicted,
then it is not possible to obtain a stable 0 vs.A{ curve during slow and
monotonous loading, no matter how stiff the testing machine is. As

mentioned in section 3.2.2, the characteristic length of materials, zrh’

may he regarded as a measure of the ratio (d0/dt)/(d0/dw). In the case of

a linear 0 vs. £ curve and a bilinear 0 vs. w curve according to Fig 3.2 (3)
c), (d(f/dE)/(d(f/d\r4)=-(ﬁ/5)18’_h in the steepest part of 0 vs. w curve. In

this case eq (3
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2 < (6/5)£Ch (3.3:10)

This is a theoretical upper limit for the length of the specimen in the
case of a linear 0 vs.£ curve and the bi-linear 0 vs. w curve. If the
testing machine is not infinitely stiff, then a shorter specimen must be
used in order to obtain a stable 0 vs.A{ curve. If fast closed loop
tensile testing equipment is used, then it might be possible to
successfully use Tonger specimens than those according to the theoretical
upper limit for slow and monotonous loading. Approximate values of zkh for
some different materials may be found in Fig 3.2 (4).

3.3.4 Stability, uniqueness and strain distribution in uniaxial tension

Refer once more to the bar studied in Sections 3.3.1-3.3.3. As in Section
3.3.2, the mechanical properties of the material are assumed to be
described by a stress vs. strain curve with a descending branch, but the
incremental stiffness is not assumed to be independent of the sign of the
increment. The incremental stiffness during a positive increment in strain
is denoted (dd/d€),, and the incremental stiffness during a negative
increment in strain is denoted (dd/dE)_. Both these stiffnesses are
allowed to be greater than, equal to or less than zero, which means that
nine combinations can be found. With the help of some external constraint
along the bar, the bar is brought to a state of equilibrium, i.e, 0 (x)=
constant, and then the constraint is removed and the state of the
equilibrium is studied by means of calculating the minimum of the
incremental work AW, taking into account all kinematically admissable
variations. During the study of the state of the current equilibrium,
these variations are restricted by the boundary condition Au(£)=0.

The calculation of AW . does not involve any essential difficulties and
the result is shown 1?1219 3.3 (2) a). In Fig 3.3 (2) b) the corresponding
different combinations of the sign of the incremental stiffness are
illustrated. The numerical values of the two stiffnesses are of no
importance, and the total strain in the different points along the bar
does not have to be equal.

It may be questioned whether all the nine combinations illustrated in Fig
3.3 (2) b) a yrding to the
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stress vs. strain description, materials with properties corresponding to
"U" (unstable) in Fig 3.3 (2) a) can not exist in reality. Where decrease
in stress at increased deformation is concerned, according to experimental
test results such materials exist in reality. Where increase in stress at
decreased deformation is concerned, it is not known if any common building
material is able to expose such a behaviour. However, in nature it is not
unusual that force between bodies increase during decrease in the
distance between the bodies. Thus, for example, a material with the
ability of exposing increased stress during decreased deformation may

be obtained if a number of small magnets are assembled into a chain.

After an initial elongation of this chain, the stress in the chain
increases during decrease in deformation of the chain.

In order to study whether the behaviour within a bar is unique, it

may be investigated whether only one incremental strain distribution, at(x),
corresponds to AW _ . In this case, the behaviour of the bar is unique.

The existence of 21Enique minimum is not only dependent on the properties
of the bar, but is also dependent on au(£): being greater than, equal to or
less than zero, or arbitrary. The result is shown in Fig 3.3 (3).

In all the cases where a unique incremental strain distribution can be
found, the distribution is uniform. In the cases of neutral and unstable
equilibrium, no unique incremental strain distribution can be found.
However, if introducing the artificial subsidiary condition lAs(x)Imax.s
constant, then minimum points can be obtained for the cases of unstable
equilibrium. Such strain distributions valid for Mu(2)=0 are indicated in
Fig 3.3 (4). Due to the artificial subsidiary condition these results may

(d0/dE), (d0/de),
>0 =0 < >0 =0 <0
>0] S S u >0 / S AN
dd da
(Ge)=o]s [~ [o | (&) -o]— =]~
<0} u u u <0 WV | N ~C
a) b)

Fig 3.3 (2) a) States of equilibrium: S=stable, N=neutral and U=unstable.
b) o . o . e . .o AW ST . (dd/de)_.
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be of limited interest. However, it might be of some interest to notice
that the combination (dd/d€)_=constant>0 and (dd/de), —»0_ gives o -

1, i.e. strain localization. This combination and behaviour are reminders
of the fictitious crack model and the structural behaviour at peak stress

as obtained from of this model.

[0 /d€), (d0 /dE),
>0 1| =0 <0 >0 1=0 |<0
>0| Y | Y| N >0l Y | N | N
dd do
(dC)_=0 Y N N (dE)_ =0] Y N N
<0 N N N <0 N N N
Aull)=const=0 Au{l)=const>0
{d0/dE), (dd /d€),
>0 | =0 |1<0 A >0 | =0 | <0
>0 Y Y N >01 Y N N
a0 ad)
<0 M N N <0 N N N
Aull)=const<0 Aull )= arbitrary
const

Fig 3.3 (3) Possibility of finding a unique strain increment. Y=yes, N=no.

(dd/dg)
20 120 |=0 #) = max of -1— d0IdE).
; >0| 0 | 0 |e=* - 2' (dO/dE)._ - (dOIdE),
dgy | N |ec=1/2
€)= ° okl I 1 [,
<0 |oe="*Mec=1/2 o =112 =min ot 9=, (d0/dE)_- (dO/dE),

Fig 3.3 (4) Incremental strain distributions AE(x) that minimizes
AW in the condition Au(£)=0 and the artificial subsidiary
condition AE(x) <constant. o £ is the length of
the part of the bggxwhere Ag(x) constant<0, and (1-x){ is
the Tength where AE(x) constant>0. N means no unique
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3.4 Material models for analysis of fracture and strength

3.4.1 Introduction

In Section 3.4.2 restrictions regarding the applicability of material
models are dealt with, and in this section also approaches for the
modelling of the process region in front of a crack are put together. In
this report two conventional non-trivial methods of fracture analysis are
applied. Basic relations and assumptions of these two methods, i.e. linear
elastic fracture mechanics and Weibull-theory, are summarized in Sections
3.4.3 and 3.4.4 together with a few remarks. The other methods of fracture
analysis applied in this report are either described elsewhere in this
report or may be considered as being trivial where the present applications
are concerned. In Section 3.4.5 strength analysis of brittle specimens with
inwards corners with arbitrary opening angles is dealt with, and it is
noticed that the detailed properties of a fracture zone may be of
significance for load carrying capacity, also where large specimens made of
brittle materials are concerned.

3.4,2 Limitations of applicability and extension of process region

The methods used during the theoretical analysis of strength and fracture
by means of material models may first be divided into one “"material
strength concept" group and one “structural strength concept" group, see
Fig 3.4 (1). The characteristic of the "structural strength concept" is
the inconsistent assumption that the entire structure will fail as soon as
the adopted fracture criterion is reached in one point of the material.
When using the “material strength concept" fracture is only assumed to
develop at the point, or points, where the adopted fracture criterion is
reached. In Fig 3.4 (1) only two material models are indicated for the
structural concept, but all models that can be used within the material
concept can also be used within the structural concept. The reverse is not
always possible: It may be questioned whether the original Weibull-model
can be used within the material concept.

During proportional loading and linear elastic behaviour of the material,
the structural concept is very convenient to use as only a single linear
calculation is required. This may be the reason why the structural concept
and the assumpticrc ~Ff nnarantineal Tasdina sed Tianae ~lacticity are very
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frequently used during engineering work.

The structural concept may produce very inaccurate predictions of the
failure load, but from the safety point of view the concept is
justifiable. Regardless of the properties of the material, the structural
concept always produces a prediction of a failure load less than or equal
to the prediction produced by the material concept, and if the properties
of the material are correctly described, the material concept produces the
correct prediction. The use of linear elasticity within the structural
concept may also be justified: the failure lcad obtained is a lower bound
solution within the theory of plasticity, which is also a Tower bound of
the true failure load if the material behaves in accordance with the
theory of plasticity.

Due to the basic assumptions of the Weibull-model (Section 3.4.4), the
model is restricted to the analysis of materials with zero fracture energy
and accordingly the softening must be abrupt. The Weibull-model cannot,
due to the singularity in stress, be used during the analysis of specimens
with inwards corners or sharp cracks. Dependent on the value of the
Weibull material property parameter, such a specimen is either predicted
to have zero load carrying capacity or else fracture is not predicted to
occur 2t the tip of the corner or at the tip of the crack. In order to
obtain some more realistic results for specimens with cracks or inwards
corners, one would have to make the material property parameter dependent

on the shape of the specimen.

The stress vs. strain type of models within the "material strength
concept” represents a large group of models, both simple and very
advanced. The characteristics of the intended models are that the stress
vs. deformation properties of the materials are described in terms of only
stress vs. strain with reference to an infinitesimal volume and that
frdcture, or softening, is assumed to develop when some finite stress or
strain is reached. In some cases, the models contain a stress vs. strain
relation with a softening branch. The models don”t produce any meaningful
result if the specimen has a crack or an inwards corner. The fracture
energy of the material, i.e. the energy/unit fracture surface required to
bring the material from peak stress to complete fracture, is restricted to
being zero and the softening is accordingly abrupt. For specimens without
cracks or internal corners, meaningful results regarding the load carrying
capacity can ~©t-- v chEofosd bk g4 de dEede-bse~ 4o know that once the
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Restrictions regarding: Influence of
Type of ])Geometry of 2)Softening Fracture | scatter com-
material models specimen, behaviour energy monly consi-
. dered
Group "structural
strength" models:
Eng. stress vs.
strain 180 co 0 No
Weibull 180 @ Yes
Group "material
strength” models:
Stress vs. strain 180 @® 0 No
LEFM 0 @ 0 -~ No
Unlimited plasticity 0 - 180 0 ™ No
Section 3.4.5 0 - 180 o] 0 -w No
FCM 0 - 180 0 -o 0 -» No

o 0
1) o¢ = 0 : sharp crack, o =180 : no crack or internal corner
2) d/{ch = 0: no softening, d/{ b= abrupt softening
c

Fig 3.4 (1) Restrictions regarding applicability of material models.

adopted fracture criterium has been reached, and a crack has started to
develop, then there is zero resistance to growth of the crack. This
reminds one about the structural strength concept. However, if the
structure is statically indeterminate or if the crack tip during its
spontaneous growth reaches a point where the stress is zero, then it may
also be meaningful to apply the material strength concept during strength
analysis by means of the stress vs strain models. An example of this is
strength analysis of reinforced concrete beams in bending.

The conventional Tlinear elastic fracture mechanics is restricted to the
analysis of sharp cracks, the fracture energy of the material can be
arbitrary, but the softening must be abrupt. The theory of plasticity can
be applied during strength analysis of specimens with arbitrary shape, but
the material mus* =n% ~~ftnn Tho nmmandida bo bl dbhooo. -“ plasticity in
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the other extreme of softening behaviour is discussed in Section 3.4.5. In
Fig 3.4 (1) this method is referred to the material strength concept, but,
as discussed in more detail in Section 3.4.5, it may be the case that the
method should be referred to the structural strength concept. Finally, the
fictitious crack model can be applied dufing the analysis of specimens
with and without cracks and corners, the fracture energy, as well as the
softening behaviour, may be arbitrary.

As suggested in Fig 3.4 (1), the influence of scatter is not very often
taken into account in material models. This is a drawback of the models,
but does not represent any basic limitation of the models as, in
principle, it may be possible to extend the models and take the influence
of scatter into consideration. In Section 4.2.5 efforts are made to extend
material models taking the scatter into consideration during applied
analysis of flexural strength, Fig 4.2 (15).

In order to carry out a meaningful fracture analysis of a specimen with a
crack, it is nessecary to take into account a finite non-zero fracture
energy of the material. This means that the existance of a fracture
process region must be considered and that two of the models indicated in
Fig 3.4 (1) are applicable during such fracture analyses. (The model
indicated by "Section 3.4.5" coincides with LEFM in the case of analysis
of a sharp crack.) The actual two models. i.e. LEFM and FCM, represent two
out of three basic approaches, each such approach being characterized by
an assumption regarding the extension of the fracture process region:

please see Fig 3.4 (2). According to the two first approaches, the
extension of the process region is represented by a point and by a line,
respectively (2D specimen). During pessible application of the third
approach, the heterogenous structure of the materials is considered
explicitly and the process region may become a surface (if the specimen is
modelled 2D), Any model according to the third approach does not seem to
have been established and it is not known whether this approach has been
applied during any study of crack growth. In addition to the actual three
basic approaches, modifications are also available. A few such
modifications are shown in Fig 3.4 (2).

The choice of suitable approach for some certain fracture analysis is
essentially dependent on: (1) intended accuracy and purpose of
calculation, (2) specific knowledge about the mechanical properties of the
material, (3) ~v~iTakla ~amn an sanacitu and (1) +ha cize of g "relevant”



Process region

T

e o
1)

>

Aa), Aa,
Type of approach Basic approach,| Modified Modified Basic approach, Modified Basic approach,
large specimens homogen. spec. heteroge. spec.
Size of region:
x-direction 0 const % 0 Not defined Not prescribed | Not prescribed |Not prescribed
y-divrection 0 0 0 0 const = b # 0 [Not prescribed
Description of 1 parameter, 2 parameters, |1 curve, 1 curve, 1 curve+1 para.,|Several curves
fracture properties |e.g. K, e.g. K_+ aa e.g. Kplaa) a(w) o(e) +b
Required (size of
reievant specimen
dimension)/{size of | > very large = large 2 large = small 2small 2very small
relevant process :
region dimension}
Example of model LEFM Equiv. crack Resistance FCM Blunt crack No established
length curve model with gra- [model known
approaches approaches dual softening

1) aa=

distance between Tocation of initial crack tip and its

assumed location during strength calculations

Fig 3.4 (2) Approaches for modelling of the process region in front of a mode-1 crack.

¢y obed ‘S73q0W - €
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dimension of the specimen and the magnitude of a “relevant” measure of the
extension of the process region. These aspects are contradictory in the
sense thar they do not suggest that any certain approach always is more
suitable and convenient than other approaches. Provided that the computer
capacity and the material knowlegde are sufficient, the range of
applicability of the approaches to the right in Fig 3.4 (2) is great while
the range of applicability of the approaches to the left is much more
limited. No general rule has been found possible to formulate, but, for
most cases, one may expect that approaches to the left in the figure are
suitable during analysis of "large" specimens and that approaches to the
right are suitable during analysis of smaller specimens and during
verification of the approaches to the left in the figure.

3.4.3 Linear elastic fracture mechanics

In linear elastic fracture mechanics, the material is assumed to be linear
elastic without any limit, i.e. the stresses and strains are allowed to
become infinite, In spite of the possibility of extremely great strains,
the concept of small strains is adopted within the actual theory. The
linear elastic fracture mechanics concerns analysis of pre-existing
cracks, and of the three modes of fracture, illustrated in most hand-books
in fracture mechanics, only mode 1, the opening mode, will be dealt with
here. Relations given below are taken from (Owen and Fawkes, 1982),
(Backlund, 1977) and (Hedner et al., 1976).

The stresses in a plate with a mode 1 crack, Fig 3.4 (3), are (in the
static case):

f;x g pln/2-1) %—an{[2+ g-+ (-1)n]cos[e(5 - 1)]-[% - 1]cos[e(% - 3]}
n=1
oy = §=1 r(n/2—1) %-an{[Z- ;--(—1)n]cos[o(%»— 1)]+[ 5 - 1Jcos[®(% - 3}
c=f VBN Da (B - q)sinfe(y - 1)-(5 + (-D"sinfe(3 - 0]
n
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~|lr |l-o
o

% 2]

Fig 3.4 (3) A crack and coordinate axes.

an are constants and their values depend on the boundary conditions. If al#
0 then 0 in the tip of the crack is infinite, and if a_=0 then 0 1in the
tip of t%e crack is zero. (This remarkable result, i.e. that the gtress
must be either zero or infinite, is interesting to compare to the
corresponding result produced by the fictitious crack model: as indicated
in Section 3.2.4, in this case a_=0 but nevertheless 0 may have a non-
zero finite value at the tip.) y

The displacements, u and v, in the x and y directions are:

w= LD T Ve B (0 eos[of] - § cos[ol] - 2))
(3.4:2)
V= (1?) ;Z"—1 M2 (- 5 - (-1)"sin(e3) + 5 sin(o( - 2))}

If v, Poisson”s ratio, is zero, then « =3, If V40, then k =(3-v)/(1+v) in
the case of plane stress and (3-4v) in the case of plane strain.

For mode 1, the definition of the stress intensity factor, K, is:

K= 113‘ oy V2mr (3.4:3)
0=0

Thus the stress intensity factor is proportional to the first constant in
the series expression of the stresses: K=a /V§7T1. al, and accordingly K,
has the dimension stress Vlength, e.g. MPa Vﬁi For specimens of equal
shape, K is proportional to the load, normalized regarding the size of the
specimen in square, P/d , and to the square root of the size of the

specimen, VET
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The energy release rate during crack extension, G, is:

B 1V (3.4:4)

b 2a
b is the thickness of the specimen, a is the length of the crack and U is
the potential energy of the studied system. The system consists of the
specimen, or a part of the specimen, and the forces acting on the

G

specimen, or on part of the specimen. For the linear elastic material in
the quasi-static condition, eq:s (3.4:1), (3.4:2) and (3.4:4) give:

G = KZ/E for plane stress a)
G = K2 (1—v2)/E for plane strain (3‘4'5))
b

Keeping the load (i.e. the external forces and stresses, but not possible
prescribed displacements) and the shape and the size of specimen equal, K
is equal in plane stress and in plane strain, while G is less in plane
strain than in plane stress.

So far no strength parameter has been introduced. To define the strength
of materials within the linear elastic fracture mechanics two different
approaches are used: the critical stress intensity approach and the
critical energy release rate approach., In the critical stress intensity
approach, the value of K at the instant when the crack starts to extend is
assumed to be a material property parameter. This parameter, the critical
stress intensity factor, is denoted K , In the critical energy release
rate approach, the value of G at the %nstant when the crack starts to
extend is assumed to be a material property parameter. This parameter, the
critical energy release rate, is denoted G ., If the K approach is valid,
then G is somewhat different in plane strgss and p]aﬁe strain, and if the
GC app?oach is valid then KC is somewhat different in plane strain and
plane stress. A1l applied linear elastic fracture mechanics analysis in
this report are carried out on the assumption of plane stress and eq (3.4:
5) a) is used to relate both K to G and K to G . As v is about 0,2 for
concrete and as the load at crack growth %s progortional to K, or VE;,
the difference between eq:s (3.4:5) a) and b) is small and accordingly of
minor practical importance during the analysis of concrete and similar
materials.

When K=K , or ~ 7~ =7 -oocto2- meodfero2eo ceoes oo —agy, Dependent on
c
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the type of load and dependent on the geometry of the specimen, the crack
growth can be stable, neutral or unstable. The crack growth in most of the
common specimens loaded by a force becomes unstable when K=K , but this is
not always the case: for example please see the specimen in Eig 4.3 (1)
and the corresponding K(a) relations in Fig 4.3 (2). Naturally, a crack
may grow in a stable manner also if the specimen is loaded through a
prescribed deflection or through a development of internal stresses within
the specimen, caused by a development of temperature or moisture gradients
within the specimen. The crack growth is stable if ¢K/3a<0, neutral if
3dK/3a=0 and unstable if 3K/da>0.

Finally it can be noted that the distribution of stress in the vicinity of
the crack tip produced by the Tinear elastic theory is unrealistic for all
materials, specimens and structures. In spite of this, under certain
conditions the linear elastic fracture mechanics can be successfully
applied during the analysis of the global behaviour of specimens and
structures. This apparent contradiction may be explained by the principle
of autonomy together with the principle of Saint-Venant.

3.4.4 MWeibull model

Basic relations of the Weibull model may be found in (Weibull, 1939
(151)). (Weibull, 1939(153)), (Hult, 1966) and (Dyrbye, 1979) have also
been used during interpretation of the model. Weibuil has dealt with
different statistical theories for the strehgth of materials, but when the
Weibull model is referred to, usually the weakest 1ink model for
continuous statistically homogenous materials is intended. Also in this
report this model is intended when the Weibull model is referred to.

In the actual model the material is assumed to be linear elastic before
fracture, At the instant of fracture the stress is assumed to suddenly
drop to zero, and the fracture in a point of the material is assumed to
occur when the state of stress in that point reaches the fracture state of
stress of that point. The fracture state of stress is not equal in
different points, but is distributed according to some probability density
function, The strength of neighbouring points is not correlated and,
during applications of the model, the family of density functions of
Weibull are used. These functions are subsequently referred to as one

function in whic’ :nt values.
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When the fracture state of stress is reached in one point, it is asumed
that the entire specimen fails. During applications of the model it seems
also tacitly assumed that the external loading system is proportional.
Unless otherwise stated, this is also assumed in the subsequent
discussion. Unless otherwise stated, it is also assumed that the strength
of a point of material is independent of the direction of the stress, i.e.
a complete correlation between strength in different directions is

assumed.

It may be that the Weibull model should not be interpretated as one model,
but as a group of different analogous alternative models: fracture can be
assumed possible to initiate only on the surface of the specimen or also
within the volume of the specimen, the two or three parameter density
functions can be used, and different 2D or 3D fracture criteria can be
adopted. As the different alternatives are analogous, only one alternative
will be deait with more closely: fracture is assumed possible within the
volume of the specimen, the two parameter density function is used and the
first principal stress criterion is adopted. This alternative is the
alternative used during applied calculations, presented in Sections 4.2.5
and 4.6.4.

Consider a unit volume of material, V , exposed to a uniform uniaxial
tensile stress. The probability of failure of this specimen before the
stress o is reached is according to the actual theory:

s -1 - e (o/og)" (3.4:6)

Og and m are material property parameters. The dimensionless parameter m
is a measure of the scatter in strength between different unit volumes and
qjis a type of measure of the mean strength. To be more exact, 05 is the
load that gives a 63.2 % probability of fracture of the unit volume, V .
The reference unit volume, V , for O can be chosen arbitrarily, but ig
order to enable use of mathematics fgr continuous functions it is

convenient to chose V as an infinitesimal volume.
0

For m=5, the distribution function (3.4:6) is shown in Fig 3.4 (4)
together with the corresponding density functicn. When m is greater than
about 3.5 the density function is warped to the right and for m less than
about 3.5, warped to the left. When m is greater than about 2.5 the

general shap B h Tttt 7 "1y similar to the
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density function of Gauss with only one exception of importance in
principle: the density is equal to zero for 0/0, equal to or less than

zero.
ds
s diora)
[ A
Wt = 2.0
05} 1.0
T T
1.0 010, 1.0 0/0,

Fig 3.4 (4) Distribution, S, of Weibull for m=5 (s=23 %) and
corresponding density function, ds/d(0/0 ).
0

Now consider a specimen put together of infinitesimal unit volumes. The
probability of failure of this specimen is equal to the probability of
fracture occurring in one of the unit volumes. In turn this probability is
equal to one, minus the probability that failure does not occur in unit
volume number one, times the probability that failure does not occur in
unit number two, times ... Thus (3.4:6) gives

- m
-é(o(X)/go) vy, (3.4:7)

In this case S is the probability of failure of the specimen, 0(Xx) is the
field of the first principal tensile stresses within the specimen and V is
the volume of the specimen. In points where the first principal stress is
less than zero, 0(X)=0.

In cases of proportional loading the magnitude of the stresses 0(x) can be
indicated by the magnitude of the stress at some characteristic point.
Denoting the stress at this characteristic point 0 , then

U(i)=0; (0(x)/0 ). Putting this into (3.4:7), it Egn be seen that
constants ¢ can be found so that S(c(0 /0 )) becomes equal for all
specimens, This means that the shape ofc%heofailure distribution function
is the same for °~ ’ ) T - ' there is a
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certain coefficient of variation, s, and a certain ratio between the
arithmetic mean of the failure load and the median mean of the failure
Toad, acp/G; . The coefficient of variation, s, is the standard deviation
of the failure load divided by the arithmetic mean of the failure load.
The possibility of definitely determining sand 0 /5 from m is another
convenient feature of the two-parameter Weibull d?gtrggution. Numerical
results regarding s vs. m are given in Figs 3.4 (5) and 3.4 (6), and
results regarding 5;p/5;p vs. m are given in Figs 3.4 (6) and 3.4 (7).

m
30

15: \
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— \\
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Fig 3.4 (5) Weibull parameter, m, versus coefficient of variation,
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Fig 3.4 (6) Ratio between arithmetic mean failure load and median
mean failure load, & /5 , versus the
cp ¢
Weibull parameter, m., P

m s acp/gcp m s acp/gcp
.2 15.84 750.0 5.0 L2291 .9880
.3 5.408 31.42 7.0 .1680 .9857
.4 3,141 8.308 10.0 L1203 .9869
.5 2.236 4.163 14.0 .0874 .9891
.7 1.462 2.137 20.0 .0620 .9915
1.0 1.0000 1.443 30.0 .0418 .9939
1.4 .7238 1.184 40.0 .0315 .9952
2.0 .5227 1.065 50.0 .0253 .9961
3.0 .3635 1.009 100.0 L0127 .9980
4.0 . 2805 .9934 200.0 .0064 .9990

Fig 3.4 (7) Coefficient of variation, s, and ratio mean strength/
median strength, ac /G, for different m in
the interval .2 to 280.
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These numerical relations were obtained by means of numerical integration
with the help of a computer. If it is utilized that @ /T is independent
of the geometry of the specimen, the calculation of G zz/ﬁzp vS. m may not
be of great practical interest. However, during applications of the
Weibull theory reference is often made to the median mean instead of the
arithmetic mean, and in such cases the 0 /3 vs. m relation may be
helpful. The s vs. m relation may be of ?Rteﬁgst since s is a more well-
known measure of scatter than m and as s is also easier to estimate from
experimental results, If making interpolations in the s vs. m relation of
Fig 3.4 (7), the interpolations should be carried out in 4n(s) vs.{n(m),
rather than directly in s vs. m.

By means of (3.4:7) the probability of failure before the external load
corresponding to Ucp has been reached can be calculated. But it may be
more interesting to calculate a mean value of the failure Toad. S=1/2
gives the median mean of the failure Toad expressed in 60, m and Vo:

~

- {g(c()-())m dv }-1/m

ep = D0 V;Eﬁ? (3.4:8)

For a specimen in uniform tension one obtsins ScpE f = (4n2 VO/V)I/m 60.
For more complex specimens, the value of O , or the corresponding
aritmethric mean, ¢ , can preferably be rg?ated to ?t, or F;. This gives
a general relation:

<P . {:_tﬂ/m yHm (3.4:9)

fe
where V is the volume of the tensile specimen corresponding to the
tensile strength f , V is the volume of the actual specimen, and ¥ is a
dimensionless parameter. ¥ is independent of the volume of the specimen
and the magnitude of the load, but depends on m and the geometrical shape

of the specimen:
¥ = :_f__iﬂi____ (3.4:10)

Fig 3.4 (5) and eq.s (3.4:9) and (3.4:10) indicate the relations used
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during the applications of the conventional Weibull model in this report.
In some cases ¥ is calculated analytically, and in some cases numerically.

If the three parameter Weibull model is used instead of the presently
discussed two parameter model, then 0/0 in (3.4:6) is replaced by
(o- Oi1m )/U , where 6 limit is the third material property parameter.
Limi 1nd1cates the stress below which the probability of failure is
zero. For the three parameter model one may not expect s vs. m to be

independent of the geometry of the specimen.

If failure is assumed possible to initiate only on the surfaces of the
specimen, then volume in the above relations is replaced by area.

If a 2D or 3D fracture criterion is used eq.s (3.4:9) and (3.4:10) should
still be valid if the first principal stresses, 0(x), are replaced by the
equivalent uniaxial tensile stress as calculated in accordance with the
adopted fracture criterion.

The first principal stress criterion used at present, is applied in such a
manner that only the first principal stresses are integrated over the
volume in (3.4:10). Tacitly this means that the strength in any certain
point of the material is equal in different directions of stress, i.e.
complete correlation. An alternative would be to assume that the strength
in the different principal directions of stress are not correlated. In
this case the integral in (3.4:10) should be replaced by the sum of three
integrals: one for the first principal tensi]e stresses, one for the
second principal tensile and one for the third principal tensile stresses.
If the strength in the different directions is not correlated then, as a
result of the corresponding version of (3.4:10), the fracture load of a
three-axially uniformly loaded cube of unit volume becomes governed by:

Zl)m+ ("2 m, (23 3

ft ft ft

1=0 (3.4:11)

Ul, UZ and 63 are the principal tensile stresses. In the case of plane
stress, this fracture criterion is shown in Fig 3.4 (8) for some different
values of m. This Figure shows the tension-tension space and (3.4:11) does
not allow compressive fracture. However, the effect of compressive
stresses might he taken inta account hv chanaina f ta f ipn those terms
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0.5 1.0

Fig 3.4 (8) Failure criterion for biaxially loaded unit
cube in tension-tensicn region = apparent
biaxial fracture criterion of material.

of (3.4:11) where the principal stress is less than zero. Fig 3.4 (8)
shows that the effect of biaxial stress in the tension-tension region is
rather small if s is less than about 25 %. This is in agreement with the
behaviour of concrete. By principle, (3.4:11) is interesting from a few
different points of view: (1) an apparent biaxial failure surface can be
obtained during tests even if the material is such that the strength in
one direction is quite independent of the stress in an other direction;
(2) the biaxial state of stress produces an apparent decrease in strength
in contrast to the yield criterion of von Mises, valid for many metals;
(3) in cases of extreme scatter in strength (m<l, s>100 %) an apparent
concave fracture surface is obtained. In (Weibull, 1939 (151))
polydimensional tensile stresses are dealt with in another manner.

In Section 4.6.6 a reference to this section is made regarding to the
possibility of applying the Weibull model in cases of non-proportional
loading, e.g. if shrinkage stresses develop within a specimen before the
external load is applied or if two, or several, external non-proportional
loads are applied to the specimen. In cases of non-proportional loading,
the probability of failure before a certain state of load is reached, is
in general dependent on the loading path even if the material is linear
elastic. To analyse the probability of failure, the load may be applied in
small increments and the corresponding total first principal tensile
stresses at *tha timac i ~ (Y)Y ralrulated. Due tn the linear elastic
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behaviour of the material the components of stress (in the case of plane
stress, Uxi(i), ¢ .(x) and T.(X)) can be calculated as the time dependent
linear combination of the components of stress corresponding to each of
the two, or several, non-proportional loads acting on the specimen. This
means that the effort to calculate 0 (X) is not very dependent on the
number of increments, in particular not if the loading system is such that
the direction of the first principal stresses does not rotate. To obtain
the development of the probability of failure, the following approach
might then be used:

m dV}
T

- - mdv. _ -
48, = eXp{'6§°max(X)/°o) V;} expl ggoi(x)/oo) -

+ ASi S=0 o (X)z0 i=1,2,3...,
o . (%) = max of oj(i) in point X for j =0, 1, 2, ..., (i-1)

V; = volume where o, (X) 2 Omax (%)

(3.4:12)

This gives the probability of failure as a function of time. In turn this
leads to the possibility of calculating different types of mean values of
the failure load. For instance in the case of shrinkage followed by external
loading, the mean failure load can be calculated with account to all speci-
mens or with account only to those speciméns which have not failed before
the external Toad is applied. Inspection of (3.4:12) shows, as may be expec-
ted, that ASi is always greater or equal to zero. Inspection of (3.4:12)
also shows that the probability of failure before 0 (x) is reached, is

equal for all loading paths when V is constant. An example of such a

case is the bending of a beam fo]]éwed by simultaneous bending and tension.
In such special cases of non-proportional loading, it should be possible to
use (3.4:7) instead of (3.4:12), Eq (3.4:12) has not been numerically tested.

In section 3.4.2 and 4.7.1 it is said that the Weibull model, i.e. the weak-
est link model for continuous statistically homogenous materials of Weibull,
is not applicable during the analysis of pre-existing cracks. This can be
seen in eq:s (3.4:1) and (3.4:7). When m > 4 the probability of fracture in
the tip of the crack is predicted to be 100 % regardless of how small the
load is, and when m < 4 the probability of fracture in the tip of the crack
is predicted to be 0 % regardless of how large the load is. The singularity
in the tip of crrnerc Sartinn 1 4 R aivac tha cama tvna of strange results.
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3.4.5 Strength of brittle corners

Firstly some matters regarding the stresses close to the tip of an inwards
corner in a linear elastic plate, Fig 3.4 (9), are summarized in this
section, This forms the basis for a subséquent discussion of the strength
of corners in brittle materials. In the last part of the section attention
is ‘attracted to an analogy between strength analysis of corners in the in-
plane Toaded plates and strength analysis of corners in slabs exposed to
bending. Analysis of specimens with inwards corners with an arbitrary
opening angle, o, is general in the sense that the analysis of specimens
with a sharp crack only is a special case,X=0, and that specimens without
any corner in its conventional sense, only is another special case, & =
1800. Where strength analysis of brittle specimens is concerned, these two
special cases correspond to the linear elastic fracture mechanics and to
the ordinary linear elastic strength theory, respectively.

Recently the stress field close to the tip of a corner has been studied by
Carpenter (1984). In this paper of Carpenter, references to previous
studies may also be found. It appears that the major contribution to the
solution of the general corner problem of a linear elastic plate was
presented by Williams in 1952 and 1957 in two papers referred to as
classical, Eq (3.4:13) below, utilized in the present study, is taken from
(Hellan, 1979) and may also be found in (Carpenter, 1984).

The components of stress in a linear elastic isotropic plate may be
written as rA R A S veeess Where 0 <A <A <,... and f  are
functons of 8, The stresses very close to the tip of the corner are k
totally dominated by the first term in the sum, and if Al < 1 then the
stresses approach infinity as r-0. A_ is dependent on the opening angle
of the corner and can be obtained as the smallest A > 0 that satisfies

either of the two equations:
+ Asin2(n-a/2) + sin2ix(n-a/2) = 0 (3.4:13)

By means of this equation also A\_, A\, ... can be obtained, but in this case
only A_ will be dealt with. Eq (3.4:13) can be solved numerically by a suit-
able standard computer 1ibrary routine for search of zero points of analytic
complex functions. In Fig 3.4 (9) the result of such a search for A_ for dif-
ferent x may be found. For all x, the imaginary part of A, proved to be zero.
In the actua® €%~+mn and cuheannantlu ) dc cimnlv dongted as /\, or Ne).
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Fig 3.4 (9) Stress, 0, close (r—»0) to the tip of a corner in an
isotropic linear elastic plate loaded in modes 1 and 2.

One approach to strength analysis of corners in brittle specimens, at
rather close hand, would be to define generalized stress intensity
factors: K ~0(r)r . , where r-0, and by experimental tests on the actual
material determine critical values, K , of these generalized stress
intensity factors. This means that a D;trength parameter must be
experimentally determined for each™. For «=0 one would obtain K =K , for
0(=1800 one would obtain Ko(c=f , and for each other o¢ one would h?Se %o
make an experimental tests in order to determine the relevant strength
parameter. This approach does not seem very rational.

Another rather analogous, but more rational and informative, approach
might be the follnwina Brcnrdina +n +ha dimancinnal analucig in Section
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3.5.1, if the properties of the material can be described by means of the
fictitious crack model, then the ultimate fracture load, ¢ /f , is a
function of d/4 he The problem at hand is to find this function, f(d/ich),
for different. For the validity of the above discussed stresses close to
a corner in a linear elastic material, F%g 3.4 (9), the fracture region
must be concentrated on the point of singular stresses. This means that it
is necessary that f »o or, alternatively, that d/f -+ . This is
equivaient to the assumed brittleness of the specimens in the currently
adopted sense of brittieness of specimens. Starting from r=0, the fracture
zone, or the fracture point, is assumed to have the extension Ar, where,
in the extreme 1imit, Ar-=0. In accordance with the concept of autonomy it
is also assumed that the size of the fracture zone, and also the stresses
and the mechanical events within the fracture zone, are independent of the
absolute global size of the specimen. This means that Ar, although close
to zero without any 1imit, is equal in specimens of different sizes.

o2 -

r Lo | A

d

e
AA———» »

Fig 3.4 (10) Two specimens of different size.

1444

bedd

To determine the function f(d/{ ) (for d/{ - « ) two specimens, A and B
of different size, d- and d , but equal shage, toad and material
properties are studied, Fig 3.4 (10). As the loads and the geometrical
shapes are equal, the distribution of the stresses may be assumed to be
equal and the magnitude of these stresses are proportional to the external
loads, 0 and 0 . For small r the first term in the series expression
for stregs domingtes, and accordingly for smail r:

UA(Y‘) : (:1 UOA(EE)'“—/\)
(3.4:14)
UB(r) - C1 UOB(EE)-(1-A)

C. is a constant of proportionality. According to the assumptions above,
the properties of the fracture process zones (or the fracture process
points) in A and B are equal and at the instant of instabiiity of the
zones (point-' *hn Famane trancfamnad hu tha vonac [nnints) are assumed
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to be equal:
Ar Ar g
o (r)dr = 5 o (r)}dr, ar»0 (3.4:15)
0 0
A B -(1-A
(3.4:14) %ggagher with (3.4:15) give O% u/6: " = (d /d) ( ), i.e.
g ~d . For the function f(d/{ ') this gives:
o,u ch
=(1-2)
Z_Uz ¢ (3.4:16)
t ch

0 1is an abbreviation of 0 , the external load at the instant of
fgacture normalized with rg§gect to the size of the specimen. The constant
C is independent of E, GF, ft and d (if d/lCh has large values). Of
course the value of C is dependent on the geometrical shape of the
specimen, and, even if d/{ 1is large, for 0<¢x1<1800 one may also expect
that C is dependent on the shape of the normalized 0 vs. w curve, i.e. the
shape of the O'/ft vs. w/(G_/f ) curve. For<x=0o andtx=180o one may not
expect C to be dependent of the shape of the normalized 0 vs. w curve (if
d/lch has large values).

The above suggestions regarding dependence of the shape of the normalized
Ovs. w curve are according to numerical results and theoretical
arguments. Fortx=180°, eq (3.4:16) (and also numerical results presented
in Chapter 4, and also the theoretical discussion in Section 3.5)
indicates that the fracture energy has no influence on the strength if
d/(c has large values. Consequently, the U{vs. w curve and its shape is
of no matter.

For« =0o informative numerical results may be found in Sections 4.3 and 4.
4, For the very large d/{ , these results seem to suggest that the
fracture zone is fully developed at the instant of instability, and,
consistently, also that the instability load as obtained during
calculations with due account to the non-zero size of the fracture zone
equals the instability load as obtained at the assumption of a single
fracture point (LEFM) in which the energy consumption equals the energy
consumption during movement (without change of its shape) of a fully
developed fracture zone. From ‘a theoretical point of view this may be
briefly explained as follows: if a local vicinity-region to the fracture
zone (the fracture point) is fixed to the tip of the fracture zone, then,
1fcx=0°, the geometrical shape of this vicinity, its boundary conditions
and its properti-~ A~ mnt cbosan dundas mausmant Af 4in
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For 0<d<180°, a few numerical results may found in Section 4.7. But,
where the actual discussion is concerned, these numerical results may not
be very relevant and informative. However, for the actual region of &,
local vibinity—regions to the fracture zone change their boundary
conditions during movement and there is accordingly no reason to expect
that the fracture zone growth may become unstable first when the fracture
zone is fully developed. Instead one may expect that only a first part of
the fracture zone is developed at the instant of instability. This means
that the remainig last part of the 0 vs. w curve is of no matter for the
load at instability, and of no matter for the size of the fracture zone at
instability either., The first part of the curve, on the other hand, is of
matter in both these respects.

It is interesting to notice that the shape of the 0 vs. w curve might be
of great significance for the global strength of specimens with inwards
corners also when d/{ h is large. This contradicts the opinion that the
shape of the actual curve is of no matter during strength analysis of
large specimens made of brittle materials, i.e. during strength analysis
of specimens in which the fracture zone is very small in comparison to the
size of the specimen. Accordingly, it may be of interest to try to, in
some way, determine the shape of the actual curve also for brittle
materials such as glass, cement paste and wood. (Of course, the shape of
this curve for these brittle materials is also of interest during analyses
of notched specimens, if having a notch tip radius with is not very small,
and not very great either, as compared to the characteristic length of the
material, If the tip radius is very small, then the LEFM may be applied,
and if very great, then the conventional limit stress criterium may be
applied.)

The numerical value of the constant C corresponding to a geometrical shape
of the specimen and a shape of the normalized 0 vs. w curve, may be
calculated by means of the finite element method, taking into account the
development of the fracture zone. Provided that d/{ is large enough, the
calculated ultimate Toad gives directly the numerical value of C. As d/{
should be large, a fine finite element mesh may be required in the
vicinity of the tip of the corner. However, in this regard it might be a
gcod idea to calculate the ultimate load for two fairly large d/{ h and
then utilize eq (3.5:6). This should make it possible to choose smaller

d//Zch and accordingly a coarser element mesh.
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(3.4:16) should be valid for the extreme limit d/f - , but is also
believed to be a useful approximation for large engugh finite values of
d/lch. To estimate how accurate (3.4:16) is for some particular value of
d/¢ , in general a numerical calculation may have to be carried out. If
thecaccuracy is known for some particular d/{ , the accuracy for larger
d/£  may be expected to be better. During ingpease in d (or d/4 ) first
thecsize of the fracture zone at failure, Ar, (orAr/{ ) reacheg an
almost constant value (numerical results may be found in Section 4.7) and
then, during a further increase in d (or d/{ ) Ar/d approaches zerd. To
produce exact results, (3.4:16) requires notconly that Ar (or Ar/lch) is
constant, but also that Ar/d> 0

Regarding the relative influence of size and material property parameters,
it is informative to write (3.4:16) in the following way:

EG. 1-
Fy g 2 (3.4:17)

Although being exact only if d/f - o , this relation, also illustrated in
Fig 3.4 (11), should be of pract?ca] interest. When d=0°, see Fig 3.4
(11), a doubling of E or G_ or a halving of d produce a 41 % increase in
OL, while a change in f has no influence on Uu. HhenCX=180°,00L is
proportional to f and independent of E, G_ and d. Whena=90 , a 100 %
increase in f produces only a 6 % increase in 0 , while a 100 % increase
in E or GF or a 50 % decrease in d produces/a 37u% increase in Uu.

In Section 3.4.1, the method of failure load calculation in Fig 3.4 (1)
called "Section 3.4.5", i.e. the method represented by (3.4:16), was with
some hesitation included in the "material strength concept" group of
theoretical methods of failure lcad prediction. This means that not only
the load at fracture in the tip of the corner (or, if6(=1800, at the
surface of the specimen) should be possible to calculate, but also, which
is the reason for the hesitation, the load carrying capacity after start
of crack growth. The method represented by eq (3.4:16) enables analysis of
the load at fracture of the corner and analysis of the load when a very
deep crack has developed from the corner, but does not allow for analysis
of the load carrying capacity in the interval of time in between. In this
interval, the requirement d/lch—aoo, or that d/£  is large, is not met:
when comparing tha ciza A af cnarimenc with a diffarent aeometrical
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Change in fracture stress, 0,(=R, 1421 (%)

A

100
x
75
~~——During doubling
of ft
50
During doubling
of E or G, or
25 ' halving of size,d
0 7 ,’ - Y B
45° 90° 135° 180° o

Fig 3.4 (11) Influence of different parameters, (E, GF, d, and
f ) on the strength (0 ) of a corner in a brittle
specimen (d/XCh-éco ) vs. the opening angle,(, of
the corner,

shape regarding this requirement, d should be taken as being the distance
from the fracture process region to the closest disturbance. By
disturbances are thereby meant all loads or boundaries, except the two
straight boundaries that meet in the fracture process region. However,
from the practical point of view, in many cases the load at fracture of
the corner is of prime practical interest even if this load may not always
represent the ultimate failure load of the specimen, It is interesting to
note that if failure occurs first when a deep créck has developed, then A=
0.5 in (3.4:16) and (3.4:17), regardless of the initial value of the
corner opening,o, As will be discussed in Section 3.5.4, this also means
that the function O /ft=f(d/{ch) may not always be smooth, but may, in
some cases, have a breaking (a knee-point) even for large d/fch.

Eq (3.4:13) and the corresponding variation in stress close to the tip of
corners indic-*-7 *- TTo % 4 Y cee em¥Ea de-fe- o2o-d gode loading, i.e.
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mode 1 plus mode 2. Eq (3.4:16), on the other hand, is only valid for mode
1 as ft and G_ refer to mode 1. However, this equation should also be
valid for mixed mode loading if the strength and fracture energy of the
material in the actual mixed mode are proportional to ft and GF’

respectively.

Eq (3.4:13) is valid for isotropic linear elastic materials. For
ortotropic materials, no correspondance to this eguation is known to the
writer. Accordingly it is not known whether Fig 3.4 (9) and eq (3.4516)
are valid for ortotropic materials, such as wood. The mixed mode
fictitious crack analysis presented in Section 4.7 of a 90°-corner in wood
does not exclude the possibility that (3.4:16) is also valid for
ortotropic materials.

Since the basic equation for a linear elastic slab in bending (without
loads acting on the studied part of the slab) is the same as the basic
equation for the above studied Tinear elastic in-plane loaded plate
(without body-forces acting on the studied part of the plate), the above
relations should be applicable also where the strength of inwards corners
in brittle slabs in bending are concerned. The actual basic equation is
the biharmonic equation. For the case of a slab in bending: o corresponds to
bending moment/length; 0 corresponds to ultimate load carrying capacity,
expressed as ultimate bending moment/lTength in some point away from the
fracture region; f corresponds to ultimate bending moment/length of a
section of the slab; E corresponds to the slope of the bending moment vs,
curvature relation of a section of the s]ab/(dimension: bending moment);

G_ corresponds to the area under the fracture hinge vs. curvature relation
of the slab (dimension: force); and d corresponds to the in-plane size of
the slab, i.e. not the thickness of the slab. This gives the possibility
to calculate a characteristic length, (£ ) , for sections of beams
and slabs. Application of the above re]agionsaregarding the strength of
inwards corners to slabs in bending requires that the slab is brittle, i.
e, that (d/L ) — oo or, if approximate results are accepted, that

(/2 £t fare
Ch) is large.

slab
A limitation of the ordinary theory for slabs in bending is that
perpendicular-to-plane deflection is the only variable in the basic
equation. During the (tensile) fracture of a brittle slab in bending, in-
plane forces and deformations may develop as a result of, and have influ-
ence on, the de ges in the slab.
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A slab exposed to such a loading system that perpendicular-to-plane shear
stresses develop in the tip of a sharp crack, or in the tip of a corner,
is loaded in mode 3. The basic equation for this perpendicular-to-plane
shear problem (or torsion problem) is the Laplace equation, V u=0, where u
is the displacement perpendicular to thelplane. According to Aking (1980),
Lehman (1959) showed that the solution to this equation has an
O(rTKKZTr‘“J) singularity in the tip of a corner. This should mean that
the perpendicular-to-plane shear stresses close to the corner are
proportiondal to r {17 where A =T/(2W-). A comparison between this
convenient explicit relation, valid for mode 3, and the corresponding
relation for mode 1 and 2, indicated in Fig 3.4 (9), shows that A is the
same for o = 0 and o¢ = 180°, but not in the interval O<a<180°.
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3.5 General hypotheses regarding strength suggested by fictitious crack
analyses

3.5.1 Introduction. The strength function @ /ft=f(d/X h).
u [4

This section deals with properties of the strength functions
OL/ft=f(d/{ch)' Many earlier and present results regarding ultimate load
carrying capacity obtained during applications of the fictitious crack
model have been presented by means of graphical illustrations of such func-
tions. Thus the components in these functions might be fairly well-known
and they are also described in this introduction. In this introduction, a
justification of the possibility of describing uitimate load carrying
capacity by means of the actual strength functions may also be found.

In Section 3.5.2 four general hypotheses are proposed. Theses hypotheses
concern the upper bound of strength and the lower bound of strength, and
upper and lower bounds for the magnitude of influence of d/l’.ch on Gu/ft.

In Section 3.5.3 restrictions are made and then less general "zero order",
“first order” and "second order" approximations of f(d/[ch) at large d/{Ch
are discussed. The need for such approximate relations originates
primarily from the limited computational capacity of computers: if the
fictitious crack model is to be applied during numerical finite element
analysis of specimens with very large d/lch, then the finite element
meshes may have to be very fine.

In Section 3.5.4 the approximate relations are compared to a few numerical
results. In Section 3.5.5 the hypotheses of Section 3.5.2 are compiled.

Throughout Section 3.5 it is assumed that the ultimate failure of the
actual specimens and structures is caused by fracture and not by, nor
influenced by, "large" displacements (e.g. buckling) or "large" strains
(e.g. necking). In addition, quasistatic equilibrium is assumed to be
present at each instant of time.

Throughout Section 3.5 it is also assumed that the mechanical properties
of the material can be described in accordance with a generalization of
the fictious crack model: Before the adopted fracture criterion of the
material is reached, the properties are assumed to be described by means
of a stress vs. ¢ fracture
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criterion (2) is reached, a Tocalized fracture surface is assumed to
develop in the actual point, and the properties of this section are
described by a stress vs. relative displacement relation (3), where in the
general case the relative displacement, or deformation, consists of three
components. The above three material relations are not allowed to be
entirely independent, instead the stress-variable in these three relations
must be connected according to eq (3.2:8). This connection simply means
that the peak stress in a stress vs. strain relation must equal the
corresponding state of stress in the fracture criterion, which in turn
must equal the stress at zero relative displacement in the corresponding
stress vs. relative displacement relation. A special limitation of the
applicability of the actual model is illustated in Fig 3.2 (2) and a
restriction regarding the shape of the stress vs. relative displacement
relation is indicated by eq (3.2:9). If several loads are applied to the
specimen or structure, these loads are assumed be proportional. In
particular, the development of shrinkage stresses within a specimen before
the external load is applied gives non-proportional loading. In order not
to make it necessary to discuss tensile and compressive states of stress
seperately, it is also assumed in this section that the fracture criterion
surface can be represented by some closed surface without any hole or
opening. When true or exact strength properties of a specimen or structure
are referred to in Section 3.5, it is tacitly assumed that the above
mentioned assumptions are valid.

The components of the strength function may be interpreted as follows: d
as a measure of the absolute size of the specimen, { as a measure of the
ratio between the slope of the stress vs. strain relation and the stress
vs. fracture zone deformation relation, f as a measure of the "size" of
the fracture criterion and ¢ , finally, as a measure of the ultimate load
carrying capacity of the spegimen or structure as expressed in the
dimension stress. Thus, for in;tance, if the specimen is loaded by a point
Joad, P, then 0 ~P /d . In the case of a linear elastic stress vs. strain
relation, {c ig égfined as EG /fz : where E is the measure of the slope
of the stress vs. strain relation and f /GF the measure of the slope of
the stress vs. fracture zone deformation relation.

Each strength function is valid for a "group" of specimens., By a group of
specimens it is then meant specimens of equal geometrical shape (and with
equal arrangement of the loading) made of materials with equal shape of
the stress vs. strain relations, the fracture criterion surfaces and the
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stress vs. relative displacement relations. Consequently, within each
group of specimens, each specimen is defined by 6 (not independent)
parameters., One parameter defines the absolute size of the specimen, two
parameters define the stress vs. strain relation (one parameter for the
"size" of the stress space and one parameter for the "size" of the
corresponding strain space), one parameter defines the "size" of the
fracture criterion, and two parameters defines the stress vs. relative
displacement relation (one parameter for the "size" of the stress space
and one parameter for the "size" of the corresponding deformation space).
According to the above, the "sizes" of the stress spaces in the three
material relations must be connected. Consequently, within each group of
specimens, each specimen is defined by 4 independent parameters. This
means that the ultimate load carrying capacity, 0 , may be influenced by 4
independent parameters. The choice of these paramgters can be made in
different manners. Here the parameters d, ft, E and {th are chosen,

Within each group of specimens, ¢ may change only if any of the above 4
parameters is changed. However, if comparing two specimens with different
E but with equal d, ft and £ and subjected to equal load {force), the
magnitude of strains and deformations is different but the distribution of
the strains and deformations is equal and the stresses in the two
specimens are identical. {(This is explained in a more detailed manner
below, and if the load does not only include forces but also imposed
displacements, then these imposed displacements must be proportional to
1/E.) As the stresses in these two specimens are identical at each
instant, also the ultimate strengths, ¢ , are equal. Thus 0 is
independent of E at constant d, f and £ . This means thatuon1y four
parameters are involved during strength gna]ysis: g and the three
parameters which may have influence on Gu, i.e. d, %t and Ich.

The possibility of describing ultimate strength by means of the strength
function might now be simplest explained and justified by means of
dimensional analysis. Relations between physical quantities are
independent of the units used during quantifying of the quantities and the
fictitious crack model does not require that some special units are used
when quantities are quantified. Thus any coupling between the four
parameters, which altogether have two dimensions (stress and length), must
be possible to describe by means of a dimensionless relation. Such a
dimensionless relation can be written as Uu/ft=f(d/{ ). This is not the

on]_y p0551b1]1t_y Af Fanmalla wmitina s Aimancianlace nal s+iAn between the
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four parameters, but it is a suitable and convenient possibility.
Alternatively, a coupling between the four parameters can be expressed as,
for instance, OL/(VEE;7E)=g(ft/(VEE;7E3, where GF is given by the identity
{c EEGF/f . In the case of initial stres§es within the specimen (caused
by non-proportinal loading, e.g. shrinkage) an additional parameter enters
into the analysis and in this case the strength function may be written
%/ft=f(d/{ h,0’1./ft), where 0} is a measure of the magnitude of the
initial stresses. A recent general investigation of fundamental principles
of dimensional analysis has been presented by Barr (1984).

According to one of the steps in the above justification, if comparing two
specimens with different E but with equal d, f and { and subjected to
equal load (force), the distribution (not the magnitude) of strains and
deformations is equal in the two specimens and the stresses are identical
in the two specimens. This step may require a more detailed explanation:
Assume that the stresses in two specimens, A and B, are, in fact,
identical and that the strains in specimen A can, in fact, be expressed as
a constant C times the strains in specimen B and that the deformations in
specimen A can, in fact, be expressed as the constant C times the
deformations in specimen B. Is this consistent with different £ and equal
d, f, Xc and load? Equal magnitude of stress is consistent with equal
load (equilibrium). Equal constant of propornality, C, for both strain and
deformation is consistent with equal size, d (geometrical condition)., The
assumptions of identical stress and proportional strain and proportional
deformation means that the stress vs. strain curves and the stress vs.
deformation curves for the materials in the two specimens must be
identical with the exception of only a proportional difference in the
magnitude of strain and deformation, This is consistent with different E
at constant Zch and ft: Xb is the ratio between the slope of the stress
vs. strain curve and the slope of the stress vs. deformation curve, and a
change in E at constant xch and constant ft means that the stress vs.
.strain and the stress vs. deformation curves are unchanged with the
exception of only a proportional change in strain and deformation.

The above explanation of a step in the justification of the strength
function is carried out "backwards" and for validity of the explanation it
must be noticed that the explanation can be repeted for each instant
during the course of lcading. If the explanation was applied only at some
certain instant during the course of loading, there is a theoretical
possibility that identiral ctresses and oroportional strain and
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deformation distributions may have been produced by different stress vs.
.strain and/or stress vs. deformation curves.

Often the sensitivity in 0 to changes of the parameters involved in a
strength analysis is of interest. By the sensitivity is meant

(AG /0 )/(AX/X), where X may represent d, f , E, or G_ and where AX
repgesents a small change in the actual parameter and Adu the
corresponding change in ultimate strength. In order to facilitate
sensitivity calculations, the strength function, Uu/ft=f(d/{ch), may be
written in the following manner by means of derivation:

poyfo, = (f/FUIR2(d/ac )£/ +
(Ad/d)(d/!l.ch)(f'/f) -
(AE/E)(d/;Lch)(f‘/f)

(86/6¢) (d/ 2cp) (/1)

where f is an abbreviation of f(d/4{ ) and where f~ is an abbreviation of
d(f(d/{ch))/d(d/{bh), i.e. the s]opg of the curve. If knowing f and f~
from, for example, finite element calculations, the sensitivity to
different parameters may be calculated by means of the above relation. The
sensitivity to f plus two times the sensitivity to E (or G_ or 1/d) is
equal to 1.0, The above relation is not valid only for the fictious crack
model, but for all models where the ultimate strength may be expressed by
means of the strength function. According to many conventional models

0 /f =constant, which means that f~/f=0. According to the linear elastic
f#acture mechanics, (d/LCh)(f’/f)=-0.5. According to Section 3.5.2, if the
loading is proportional, application of the fictitious crack model gives
-0.Sg(d/1bh)(f‘/f)50. For specimens without initial cracks or inwards
corners, numerical calculations (Chapters 4. and 5.) suggest that the
absolute value of the actual sensitivity ratio is especially large in the
case of shear failure of Tongitudinally reinforced concrete beams. In
cases of non-proportional loading, the absolute (apparent) value of the
actual sensitivity ratio may become very large and greater than 0.5.



3 - MODELS, page 70
3.5.2 Upper and lower bounds of strength and general influence of d/,{ch

In this section four hypotheses are given: I, II, III and IV. Hypotheses
are statements which may be true, but have not been proved to be true. The
only verification is that at present the Writer knows of no accurate
numerical or theoretical result which contradicts the hypotheses. Although
being hypotheses, they do of course not represent an arbitrary set of
statements.

Regarding the influence of d/f on 0 /f :
ch u t

I. Within each group of specimens or structures, an increase in
d/L h can never produce an increase in 0 /ft.
c u

Two of the results of I are that the maximum of 0 /ft is approached when
u v
d/ZCE>O and that the minimum of 0 /ft is approached when d/26300. These
u
limits are:

11, When d/iéﬁ 0, 0 /f will without any limit approach a
finite upper bound, and this upper bound is equal to the ultimate
load given by the (exact) theory of plasticity.

ITI. When d/zfﬁ” , 0./f will without any 1imit approach a
lower bound, and this lower bound is equal to the ultimate load
giveh by the ("material strength concept" of the) finite
maximum stress or strain theory of brittle materials.

A result of II is that the (exact) theory of plasticity always produces a
1imit load which is greater than, or equal to, the "true" 1imit load. This
means that the "effectiveness parameter", often used during applied limit
toad analyses by means of the theory of plasticity, must be less than, or

.equal to, unity. This is not very surprising and seems to be a generally
accepted fact. The word in parenthesis, (exact), is used to indicate that
the upper and Tower bound solutions within the theory of plasticity are
not intended. These upper and lower bounds give upper and lower bounds to
the 1imit Toad produced by the (exact) theory of plasticity, not upper and
lower bounds to the true limit load.

A result of III is that the ("material strength consept" of the) theory of
brittle materi=lc alwawve aivac a limit Tnad whirh ic lacs than, or equa'l
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to, the true limit load. This is a rather convenient result, especially if
it is utilized that the "structural strength consept" of the theory of
brittle materials always gives a limit load less than, or equal to, the
limit load given by the “material strength concept”. It is, however,
required that the actaul, perhaps non-linear, stress vs. strain relation
of the material is taken into account when the lTower bound of the Timit
load is calculated. For specimens with a sharp initial crack or a sharp
inwards corner, the "structural strength concept" gives Uu=0.

If a linear stress vs. strain relation is used during calculation of the
limit load in accordance with either of the two concepts of the theory of
brittle materials, then a lower bound to the 1imit load given by the
(exact) theory of plasticity is obtained and/or a lower bound to the true
1imit Toad is obtained. A Tower bound to the (exact) plasticity solution
is obtained if the stresses in all points in the specimen or structure are
allowed to be anywhere within the fracture criterion surface of the
material. A lower bound to the true limit load is obtained if the stresses
in all points in the specimeh or structure are allowed only to be anywhere
within the start-of non-linear-behaviour criterion surface of the

material.

The strength function is in general different for the different groups of
specimens. However, the upper and Tower bounds given by hypotheses II and
II1 are equal for groups of specimens. The upper bound is equal for all
groups of specimens that differ only in the shape of stress vs. strain
relation and the stress vs. deformation relation. In addition, according
to a theorem of the theory of plasticity, the upper bound is not
influenced by internal initial stresses within the specimen. Thus, for
example, for the flexural strength of a rectangular cross section one
obtains f _/f =3(f /ft)/((f /f )+1) when d/4 E;O, regardless of the shape
of the stress vs, strain relation, the shape of the stress vs. deformation
relation and initial stresses. f is the compressive strength of the
material and f =0=M /(bd /6). Tﬁe lower bound is the same for all groups
of specimens thatudi¥fer only in the shape of the stress vs. deformation

relation.

Hypothesis I is formulated in the negative manner. In reality, however,

there seem to be very few exceptions to the rule that an increase in d/,ECh

will produce a decrease in ¢ /f , i.e. not an unchanged constant value.

Thus, from the prartiral nniHi- Ef‘ viaw t+ha aunsctinn ic nnt whether ¢ /ft
u
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is influenced or not, but whether the influence is of an insignificant or
significant magnitude. A first estimation of the answer to this question
can be obtained by means of a comparison between the upper bound, II, and
the lower bound, III,

Obviously d/ich can generally be expected to be of great importance if the
specimen contains a sharp initial crack or a sharp inwards corner. For
other specimens, the magnitude of the influence of d/X,Ch is greatly
dependent on the shape of stress vs. strain relation of the material. An
example of this is given in Fig 3.5 (1). This figure shows the upper and
lower bounds for the ultimate bending moment capacity of two beams with a
rectangular cross section, made of different materials with stress vs.
strain relations that approximately reflect the behaviour of mild steel
and unreinforced concrete, respectively. The stress vs. strain relation
“A" gives 1,37<f_/f <1.50 during variation in d/i h’ while the stress vs.
strain relation “"B" gives 1.00<f _/f <2.73 during variation in d/&ch. The
actual example of how the significance of d/£ can be estimated in a
simple manner accordingly suggests that d/{ cmay not be expected to have
any great influence on the bending capacity of a beam (without any notch)
made of mild steel., Where the beam made of unreinforced concrete is
concerned, the actual example suggests that fictitious crack analysis may
be of great pratical interest.

While hypothesis I gives the lower bound regarding the magnitude of the
influence of d//?.Ch on U‘/ft, hypothesis IV gives the upper bound:
u

Iv. If E, G_ and d are kept constant, then an increase in f
will never produce a decrease in the ultimate load, 0 .
u

This means that 90 /af >0 if E, G_ and d are kept constant. Thus, with the
u

help of the rules of derivation, hypothesis IV can be formulated in the

-alternative manner:

-d(cu/ft) - I 1
d(d/e ) fo 2d/e .y,

The solution to the differential equation obtained in the 1imiting case of
equality is O /ffvl/\ﬁ/lch. This means that hypothesis IV can also be
formulated in *° T Yo s
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0, MPa 0. MPa
fy = 530
400 fy =3+
T T T s E,o/o
.083 /|01
T 1T T £ %
10, 2.2 10
400 - 25
530 - 30
A. " Mild steel” B: "Concrete "
du/ft
L 0=My/bd?/6)
3 -
B upper bound
24 _ A, upper bound
-— A, lower bound
1 B, lower bound

= d/l.p

Fig 3.5 (1) Two materials with different stress vs. strain curves, and
corresponding upper and lower bounds of bending moment
capacity of beams with rectangular cross section during
variation in d/2 .

ch

If f((d/lch)o) = (dﬁ/ft)o then

A
<
a/fy = Vd/%eh when /1,
A

>
—,ra;;;; when d/g = (d/zch)0
where A = (ou/ft)ow(d/lch)o

A

(d/lch)o

v

This alternative formulation shows a conclusion regarding the linear
elastic fracture mechanics: For 2D specimens with a sharp initial crack
made of a material with a linear elastic stress vs. strain relation, the
linear elastic fracture mechanics gives an upper bound to 0 /f for finite
d/{ch if the linear elastic fracture mechanics {with 6 =G \ugives the
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correct 0 /f when d/f 5 .
u t ch

The requirements for (possible) validity of the above hypotheses are
presently made generous. However, the limjtations made in Section 3.5.1
should not be forgotten. Where hypotheses 1I and III are concerned, the
requirement of proportional loading is not estimated to be necessary.
However, where hypothesis IV is concerned, numerical results presented in
Chapter 4. shows that the requirement of proportional loading is
necessary: if internal initial stresses, e.g. caused by non-uniform
shrinkage, are present before the external load is applied, then, if d, E,
GF and Ui/f are constant, an increase in ft may produce a decrease in the
ultimate value of the external load, UL.

3.5.3 Zero, first and second approximations of f(d/{ h) at large d/zE,ch
c

This section deals with approximate analytical expressions of the strength
function for in-plane proportionally loaded."statically determinate™ 2D
specimens with large d/4 , made of materials with an isotropic linear
elastic stress vs. strain performance outside the fracture process zone.
By "statically determinate" it is in this case meant that the failure is
governed by the growth of only one tensile fracture zone. The actual
expressions of the strength function, - zero, first and second order
approximations -, are believed to approach the exact result when d/[d?:»
and are approximations with different degrees of accuracy when d/{ s
finite. It is intended that the approximations should be such that, for
each group of specimens, a finite d/Zch exists beyond which the accuracy
of the approximations increase in a continuous manner during a further
increase in d/{ . Thus the approximations should facilitate strength
analysis of spegimens with large d/l . For such specimens analytical
relations may be needed due to the fine element meshes normally required
.during finite element analysis of such large and brittle specimens by
means of the fictious crack model. Occasionally the actual relations may
also be found to be useful during strength analyses of certain specimens
with fairly small d/lch.

Before going on to the actual approximations, the possibility for abrupt
breakings in f(d/{ h) should be noticed and a corresponding restriction
regarding the interpretation in Section 3.5.3 of Uu should be made. In
general Uu jg - mmmmrmo mE abe ladocke Teod coomfe s oo 1city during the
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course of complete collapse, while in the following, ¢ may be
_interpretated as the load at the first instability of the initial crack,
corner or edge at which the fracture zone is assumed to start to develop.
In some cases this load only represents-a local maximum in the carrying
capacity during the course of collapse. Thereby it is of special interest
to notice that the type of maximum, i.e. local or global, may not only
depend on “group" of specimens (“"group" is defined in Section 3.5.1), but
may also depend on the absolute size of the specimen, i.e. depend on the
value of ratio d/f . This is the case even if only specimens with véry

C
large d/lth are considered.

An example of this is illustrated in Fig 3.5 (2). For the interpretation
of this illustration, please see Fig:s 4.3 (1) and 4.3 (2) where in
particular the occurrence of a descending part in the upper curve in Fig
4,3 (2) is of importance for the actual example. For the sake of
simplicity, the exemplification in Fig 3.5 (2) concerns a specimen with
such a relative size of the hole, that the break-point occurs at such a
large d/4 h that 0 1=constant and 0h2~1/va7§;; in the vicinity of the
break-point. If the break-point occurs at a smaller d/{ , these relations
are not valid, but the crossing between the two curves may still be
expected to produce an abrupt breaking in the strength function.

In the example in Fig 3.5 (2) the breaking is such that the rate of
decrease in 0 /f decreases, while examples of specimens with the opposite
property may g]so be found. Such a specimen may be obtained if two plates,
one with a centre crack and one with a centre hole, are put together into
a structure so that the structure collapses if any of the two plates
collapses.

The zero order approximation (below called the zero approximation) should
be accurate if the absolute size of the fracture zone is not greater than
zero exactly. The load carrying capacity given by the actual approximation
is such that an additional increment in load will produce start of the
development of a fracture zone. Consequently, the zero approximation is:

o/fy =0 whena< 180° (3.5:1)

o,/fy = C, when a = 180° (3.5:2)

The angle o is de€i=~d -~ Fi~ 2 4 fay Tha wmdws oF sk ~-cotant C can be
[+}
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Fig 3.5 (2) Examplification to possibility of abrupt break-points in
ao /f vs. d/L . curve,
u t ch

obtained during an ordinary linear elastic analysis of the actual
specimen. Normally 0 1is defined with reference to the stress in such a

u
point in the specimen that C becomes equal to 1.0,
0

The first order approximation (below called the first approximation)

should be accurate if the size of the fracture zone is infinitesimal in
comparison to the size of the specimen:

o /f, = Cy (dra ) (1Ae) when o< 180° (3.5:3)
(C1C2/2) ’ o
o/fe = Co(1+ —) when o = 180 (3.5:4)
d/lch

For<x=0°, (3.5:3) is known from linear elastic fracture mechanics and for
0°<q<180°, a justification may be found in Section 3.4.5. The funtion A(x)
is given in Fig 3.4 (9). C a’is a constant for each group of specimens and
fora=0 , C d’may a]soobe expected to be independent of the shape of the
Ovs., w curve. For«x=0 , computational methods for calculation of C_ are
known from linear elastic fracture mechanics and for 0°<x<180°, theld
calculation 0f 7 9~ v Bodafle dfenans 4 dm Comddan 2 4.5, The actual
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0
approximation for ot=180 may require an explanation,

Please see Fig 3.5 (3) where stress distributions close to the edge of a
specimen are shown. For a=180°, the linear elastic stress distribution
close to the edge of a specimen may be written a_+a _(r/d)+a_(r/d} +... and
currently only the first two terms in this series shall be taken into
account, Thus, if the stress at the edge is f then the linear elastic
stress distribution close to the edge is d(r)=ft(1-C2(r/d)), where C2 is a
constant, It is now assumed that the load carrying capacity is goverened
by the true stresses along a length which is proportional to {ch: clléh'
According to the principle of Saint-Venant the stress acting across the
length C_£ can be replaced by an statically equivalent stress
distributign without any influence on the far-away stresses and
consequently without any influence on the load carrying capacity. An
approximately statically equivalent stress distribution can be obtained if
the Tinear elastic stresses, d(r), are increased by Aft. The condition
that the resuitant of the stresses should be equal gives:

2
Co (Can_,)
£.C0, -f —2_1c¢h

_F £t ch (3.5:5)
t“1¢ch 't 2 d

+ AftC1Rch = Cftgch
The right hand part of this equation represents the resultant of the true
stresses and the constant of proportionality, C, is dependent on the
choice of Cl. Khen X%Hao, »f  should approach zero and in order to fulfil
this condition C1 is chosen so that C_=C. For finite d/l,C this choice
represents an approximation. Having made the above approximations, eq (3.

5:4) is obtained by replacing f in eq (3.5:2) with ft+Aft, where Aft is
obtained from eq (3.5:5) with C=C1.

The choice C=C_ means that the mean stress across the region C iah is
equal to f . This can be compared to the theoretical stress distribution
close to the tip of a fracture zone, eq (3.2:3), and suggests that

Clééh is the length of the fracture zone in large specimens at the

instant of instability and that the stress across a fracture zone is
constant (=ft) at the instant of instability of the 1arge specimens. These
two suggestions, applicable to the specimens with &=180 , may be useful
during verifiction of the actual approximation by means of finite element
calculations with account taken to the development of a fracture zone of

finite size.
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Fig 3.5 (3) Stress distributions close to the edge of a specimen.

The second order approximation (below called the second approximation)
should be accurate if d/L is such that the size of the fracture zone at
the instant of 1nstabilit§ has approached close to the constant size
reached when the size of the specimen, d, is increased towards infinity.
Thus the size of the fracture zone may be non-zero and also finite in
comparison to d, but should be close to its asymptotical absolute size.
The assumption of existance of an asymptotical size at the instant of
instability is supported by results of numerical calculations and may also

be supported by the principle of autonomy for the behaviour of fracture
regions in large specimens. For d>0°, in general this size may not be
expected to equal to the size of the fully developed fracture zone.
Although the fracture region is allowed to have a size, the region is not
allowed to fill up sobmuch of the specimen that the shape of the linear
elastic stress distribution in the far-away stress field is altered during
the development of the fracture zone. This condition is propably not very
important as it is beleived to be less restrictive than that of an almost
constant size of the fracture zone. The choice of approximation is:

ou/fe = Cia(@/a .y + €)M hen o < 180° (3.5:6)
(C1C2/2)
o/ fy = Gl + /1., #+ (T T, ) when o = 180° (3.5:7)

To obtain eq (3.5:6) the true stresses acting across the fracture zone and
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its vicinity are replaced by an approximately statically equivalent stress
_distribution. Such a stress distribution, see Fig 3.5 (4), is assumed to
be possible to obtain with a sufficient accuracy if the linear elastic
stresses are moved alﬁch, where a_ is a constant. This may be temporarily
regarded as an increase in the depth of the crack or corner from a to
a+a_4{ ., However, this would mean that the geometrical shape of the
speci;en would be changed. In order to avoid this and in order to obtain
the influence of size, the total size of the specimen is changed
proportionally, i.e. d is changed into d(a+a {c )/a=d+C205hh. By mak{ng
this change in eq (3.5:3), eq-(3.5:6) is obtained. The constant CZm may be
obtained by means of a numerical calculation of Gu/f for some such large
d/2 that the size of the fracture zone at instability has closely
reaghed its asymptotical value. While C a-may be expecged to be
independent of the shape of the 0 vs. w curve whenx=0 , Czq‘may be
expected to be dependent on the shape of this curve for all «.

Forcz=0? Alx) is equal to 1/2, and in this case, where the relative
influence of absolute size, d, on 0 /f is concerned, eq {3.5:6) is in
agreement with a size effect law prgsented by Bazant (1984). This size
effect law has been deduced by means of dimensional analysis and
consideration of energy release rate. According to the present study, the
actual law is valid only for large brittle specimens with an initial
crack, but has been applied also to specimens without initial cracks and
to specimens with such small d/f that one may hardly expect the size of
the fracture zone at instabi]itycto have reached close to its asymptotical
size. An interesting application of the size effect law during a
statistical study of test results regarding the size effect in shear
failure of longitudinally reinforced concrete beams has been presented by
Bazant and Kim (1984) and the law has also been applied during a study of
the strength of unreinforced concrete pipes. From a general point of view,
if Clocand Czq‘are determined from experimental test results and used as
general curve fitting parameters, provided that the variation in d/£ s
limited, it is probable that eq (3.5:6) with A {«)=1/2 may be app]iedcalso
to specimens without initial cracks and to specimens with small d/f .
This is because the general properties of eq {3.5:6) are consistentcwith
hypotheses I and IV, discussed in Section 3.5.2. Recently, Bazant {1985)
has generalized the size effect law by means of series expansion. In this
generalized law an arbitrary large number of empirical constants may be
included. However, as compared to the present study, the asymptotical
relation obtained €~= 4 -mohorm whes SYes wbde coeeenTio-d T3y s valid
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)
only ifa=0 , i.e. for specimens with an initial crack, the length of this
initial crack being proportional to the size of the specimen.

Forc(=0°, eq (3.5:6) is qualitatively similar also to the corresponding
relation produced by an inherent flaw model recently studied by Aronsson
(1984) during applications of fracture mechanics models during tensile
strength analyses of laminates with cracks. By the justification of eq (3.
5:6), forC¥=00 this relation may also seem similar to the rather well-
known effective crack length approach, sometimes used during linear
elastic fracture mechanics analysis in order to improve the results of
this theory. However, the constant C a:may have different values for
different materials (dependent of the shape of the 0 vs. w curve) and may
have different values also for specimens with different geometrical
shapes. Where the shape of the specimen is concerned, if a suitable choice
of effective crack length is made, then the effective crack length
approach and eq (3.5:6) should give the same result for all specimens
which are such that the linear elastic stress intensity factor is
proportional to the square root of the length of the crack, the size of
the specimen kept constant.

;
4

A ~(1-al X))
| \ U" (r‘01| h)

E \4’ Cc

]

L CI=Y

Fig 3.5 (4) Stress distributions at the tip of a corner or a crack.

The second approximation forcrc=1800 is a modification of the first
approximation. In the first approximation no attention is paid to the
increase in gradients in the far-away stresses due to the increase in load
during the development of the fracture zone. To compensate for this, first
the global size of the spec1men is increased from d to d+Ad and then the
first approxii "’ ’ T b et oorfee #e 2 =t -uld be such that
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the gradients in the far-away stresses at the global size d+Ad equals the
linear elastic gradients at size d. The simplest way to obtain such a
modification in an approximate manner may be by means of:

(d + ad)/d = (f, + af,)/f, (3.5:8)

where Af is calculated by means of eq (5.3:5). Application of eq (3.5:4)
then gives eq (3.5:7).

A convenient feature of the second approximation forc£=180° is that no new
constant is introduced. (C_C_/2) may be regarded as one constant, but is
written as C_C /2 in order to facilitate a physical interpretation. C2 is
governed by the geometrical shape of the specimen. Thus, for example, for
a slender beam with depth d and loaded in bending C2=2. C1 is an
approximate measure of the size of the fracture zone in large specimens at
the instant of instability and this size may be expected to be governed by
the properties of the material. According to finite element results
presented in Section 4.2 and shown in Fig 4.2 (21), for the bi-linear
shape of the 0'vs. w curve shown in Fig 3.2 (3) c¢) the depth of the
fracture zone at instability seems to be about 0.25,2&h for large
specimens., Thus, for this shape of the 0 vs. w curve, a rough estimation of
C. would be 0.25 while an adjustement between eq (3.5:7) (or eq (3.5:4))
and the finite element results regarding Oh/f for large d/l,ch gives
(0102/2)=0.27, i.e. C_=0,27. Taking into account the general
approximations involved in finite element analysis, the actual deviation
in C_ is very small and, at those values of a/k for which there is
theoretical justification for believing that eqc(3.5:7) is accurate, the
corresponding deviation in U’u/ft is neglible.

Finally, different approximations of the strength function may be
developed for the large d/f . The approximations presented above may be
regarded as a result of weighings between striving after reasonable
justifications and simple relations which may be useful in order to avoid
extensive finite element calculations. For application of the second
approximation, two finite element calculations have to be carried out: for
a%Oo and 1800, one linear elastic calculation and one fictitious crack
calculation, and for 0°<a§180° two fictitious crack calculations. If the
strength at several large d/f is to be studied without the use of
approximate analytical relatigns, the computational work may become very
large, partly be o N hTh T e memeee T e ired during
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fictitious crack analysis of specimens with large d/th. Of course, it is
also often more convenient to deal with an analytical expression than to
deal with numerical results. On the other hand, as the relations are
approximate for finite d/lch, care must be taken so that applications with
too small d/{Ch are avoided.

3.5.4 Comparisons to numerical results

The hypotheses in Section 3.5.2 are such that it is of no advantage to
carry out numerical comparisons. The hypotheses are either true or false,
and so far they have not been found to contradict rumerical results
obtained during fictitious crack analyses.

In Fig 3.5 (5) the approximaie relations from Section 3.5.3 are compared
to finite element results. The finite element result shown in Fig 3.5 (5)
2) is valid for the bi-linear shape of the -w curve shown in Fig

3,2 (3) c) and is taken from Section 4.2, Fig 4.2 (1). The finite element
result shown in Fig 3.5 (5) b) is valid for the straight 1ine shape of the
0-w curve shown in Fig 3.2 (3) b) and is taken from Section 4.3, Fig 4.3
(5). The constant C_ =0,352 is obtained from the linear elastic stress
intensity factor, shown in Fig 4.3 (2). The approximate relations are such
that they should be more accurate the greater d/{ch and w/{ch are. Because
of this, constants (C1C2/2)=0.27 and C2a=2.2, used in the second
approximation, are determined from the values of Gu/f for the largest
available d/!;Ch and N/Zch: 6.4 and 19.5, respectively. For these values of
d/£C and W/ £ , the numerical results regarding the size of the fracture
zone at failure, Fig 4.2 (21) and Fig 5.3 (5) e), suggest that this size
has approached an almost constant value. However, due to coarse element
meshes in comparison to {; for these large values of d/{Ch and w/{th, the
actual values of constants (C.C /2) and CZmnmy not be very accurate. In
addition, if the constants are determined from a known value of Uu/ft for
large d/X or W/ £ , even a small error in Gu/f will result in a great
change in the value of the constants. On the other hand, this sensitivity
also means that Gu/f , as obtained by means of the second approximation,
is correspondingly insensitive to an error in the constants.

It is unfortunate that finite element results are not available for such
intervals of d/4 and N/Xth, where the size of the fracture zone at
fai]ure .is CO’AALM»L diimlmn  cawnldabdam af A oand W Un-.-n.n--.' -if the SeCOnd
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Fig 3.5 (5) Comparisons between approximate relations and numerical
results, "A" = fictitious crack analysis by means of the
finite element method. "0", *1" and "2" = zero, first and
second approximate relations, respectively.

order approximation constants are determined from the finite element
results of O'U/ft at d/xch=3.2 and N/th=9.8 respectively, then, for
d/(bh=6.4 and |r.l/,z,C =19,5, the second approximation gives load carrying
capacities that deviate 0.1% and 0.2% respectively from the finite element
results. If the second order approximation constants are determined from
Oh/f at d/Lch=1.6 and w/{th=4.9, then, for-d/lch=6.4 and w/tch=19.5, the
second approximation gives load carrying capacities that deviate 0.2% and
1.0% respectively from the finite element results. This deviations are so
small that they might just as well be caused by the general approximations
involved in finite element analysis as by the non-constant size of the
fracture zone.

0 0 (o]
For 0 <0180 , an application (=90 ) of the second approximation may be
found in Section 4 7 tonnother with a romaricon tn rnrrncnnnd'ing results
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obtained by means finite element calculations. However, this application
concerns an orthotropic material and is therefore not treated in this
Section.

For smaller values of d/{  and W/A h than those presently used during the
determination of (C_C_/2) and Cza’ the size of the fracture zone is no
longer constant but starts to decrease more and more. In this case one
may, in general, not expect the second approximation nor the zero and
first approximations, to be accurate. In spite of this, the second
approximation may occasionally also be found to be useful and accurate for
fairly small d/lch. This is because the general properties of the actual
expressions are in agreement with hypotheses I, III and IV and partly in
agreement with hypothesis II. By the partly agreement with hypothesis I1
it is meant that the actual expressions produce a finite strength for

d/JLC =0, but the numerical Va]ue of this finite strength may not be in
agreement with hypothesis II.

In Section 4.2, Fig 4.2 (2), numerical results regarding f_are also shown
for a case of development of internal stresses within the beam before the
external Toad is applied. In such cases the present approximations are not
applicable due to the non-proportional type of loading. In Fig 3.5 (5) b)
it can be noticed that the first approximation, i.e. Tinear elastic
fracture mechanics, does not under-estimate Gﬁ/ft' This is in accordance
with hypothesis IV,

As indicated by Fig 5.3 (5) a), in this case of loading the deviation
between the second approximation and the numerical result is also small
for those small d//ECh at which the size of the fracture zone is not
constant: at d/JlC =0,05 the deviation is 7.0%, at d/th=0.1 3.6%, at
d/lch=0.2 1.7% and for larger d/,@.Ch continuously smaller. Thus, for this
case, - a beam in bending analysed on the assumption of the bi-linear
shdpe of the 0-w curve -, the fictitious crack result obtained during
finite element calculations can within engineering accuracy be summarized
by eq (3.5:7) if d/xcﬁao.l. In this case, O;affsMu/(bd /6), C°=1 and
(0102/2)=0.27. C2=0.27 corresponds to the bi-linear shape of the 0-w
curve and C1=2 corresponds to bending. For a typical concrete lch=400 mm
and for such a concrete d/£ch=0.1 corresponds to d=40 mm.

For a beam proportionally loaded by a bending moment, M, and a tensile
fOrCe, N, C . . A s 240 3T JENF 1T MA L CMANY ad _')/(1+Nd/(6M)).
0
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Numerical calculations have not been carried out for this type of loading
and accordingly the accuracy of eq (3.5:7) for this type of loading is not
known. Experimental results may be found in literature. However, if
agreement between the experimental results and eq (3.5:7) is found, this
does not necessarily mean that eq (3.5:7) accurately reproduces the
results that may be obtained during applied numerical calculations.

3.5.5 Survey of the hypotheses regarding O /ft vs, d/£ h
u c

For the general case, the hypotheses I-IV in Section 3.5.2 may be
summarized by:

d(cu/ft) N -cu/f"t

3.5:10
0= @,y - /T, ( ) a)

1im (cu/ft) = (°u/ft)p1asticity b)
d(kch+0
tim (o /) = (o /fe)prittie ©
d/JLCh e

For the restricted cases dealt with in Section 3.5.3, the results of the
hypotheses are compiled in Fig 3.3 (6). The function A(x) may be found in
Fig 3.4 (9). ’

A general result proposed by eq (3.5:10) and also illustated in Fig 3.5
(6) is that the strength function forms a transition between the theory of
brittle materials and the theory of plasticity and that this transition is
governed by the fracture mechanics properties of the material and the size
of the specimen or structure.

Fig 3.5 (6) also shows an illustration of the extended possibility that
the fictitious crack model, and similar models, brings about. While, in
principle, it is possible to treat all combinations of d/f  and o by
means of this type of model, the applicability of the conventional models
becomes more limited.
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Fig 3.5 (6) Properties of the strength function O'/ft=f(d/}{ h)
u c
at different d//(ch and o,
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3.6 Method of finite element calculations (FCM and LEFM)

3.6.1 Introduction. Computer programs. LEFM,

The major part of Section 3.6 concerns the currently used method of finite
element calculation during fictitious crack analyses. Alternative methods
are only touched upon. A few experiences regarding methods of linear
elastic fracture mechanics analyses by means of the finite element method
are discussed in the last part of this introduction. '

The finite element method and the access to computers have been decisive
for the development and application of the fictitious crack model.
Furthermore, where this particular report is concerned, a great part of
the work has involved computer aided finite element analysis. However, as
the currently used methods are rather trivial and as the purpose of the
analyses has not been evaluation or development of finite element methods,
the discussion of the actual methods of calculation will be made
comparatively brief. General description of the finite element method may
be found in, e.g.,{(Zienkiewicz, 1977) and (Cook, 1974).

It is appropiate to mention that different kinds of methods might be
utilized during numerical fictitious crack analyses: the finite element
method, the boundary element method, the finite difference method and, if
only special problems are to be studied, other less general methods.
However, it seems that the finite element method is the most flexible and
well-known method, and in addition the major part of available computer
programs is based on this method. These matters have made it natural to
use the finite element method.

Most of the present calculations have been carried out with the help of a
small non-commercial special-purpose program. An important part (please
see Section 3.6.3) of the input data for this program is obtained by means
of a generai-purpose program for linear elastic analyses, called GENFEM-3
(Wennerstrom, Glemberg and Petersson, H, 1979). An easy-to-use program
developed for linear elastic analysis of plates, called SERFEM {Backlund
and Petersson, H, 1979), has been used during some of the analyses
presented and has also been used during verification analyses.

In the first part of the present work, fictitious crack analyses were
carried out with the help of a general-purpose program for Tinear elastic
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analyses, called EUFEMI (Hernelind and Pdrletun, 1976). Those analyses are
not included in this report. This is not due to some weakness in that
particular program, but due to an unsuitable approach to the modelling of
the fracture zone (please see Section 3.6.2) applied during those
analyses, During some numerical tests, a program for computer aided
learning of the finite element method, called CALFEM (Peterson, A and
Petersson, H, 1981) was helpful. During some verification analyses, a
special-purpose program developed by Petersson, P E (1981) was helpful.
This program is developed for fictitious crack analyses of notched three
point bend beams and is essentially based on the finite element method.

Some of the figures in this report have been drawn with the help of
computer and a program called CAMFEM (Dahlblom and Peterson, A, 1982).

In addition to the numerical results cbtained by means of the finite
element method, some other numerical results can be found in this report.
Most of those calculations have been carried out with the help of computer
and small special-purpose programs. The methods of those different small
calculations will not be dealt with in this section, but are briefly
described in the sections where the relevant results are presented.

During linear elastic fracture mechanics analyses, the calculation of the
stress intensity factor.may be carried out be means of substitution of
stress, strain or displacement into the analytical expression for the
performance close to the tip of the crack, or by means cf calculation of
the J-integral, or by means of calculation of the energy release rate
during crack extension. Furthermore, the region close to the tip may be
modelled by means of special crack tip elements, distorted iso-parametric
elements or conventional plate elements without a singular stress field.
During application of the'energy release rate technique, either the nodes
along the crack propagation path may be opened or the geometry of the
elements close to the tip may be altered. During application of the
substitution technique, the stress or displacement in different points in
the vicinity of the tip may be utilized. In addition to the above
mentioned rather well-known approaches, it should be possible to apply the
substitution technique by means of calculation of the strain energy in the
elements close to the tip. Thus, a large number of possibilities are
available for calculation of the linear elastic stress intensity factor.

In order to find a suitable method for the actual applied analyses and in
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order to obtain some experience, some of the above mentioned possibilities
were numerically tested by means of calculation of the stress intensity
factor in the square-shaped centre cracked plate in tension. The test
analyses were not very comprehensive, but from the tested possibilities the
energy release rate technique with the opening of nodes was the most
accurate. The substitution based on strain energy was the next most
accurate. The substitutions based on displacement or stress gave scattered
results and the accuracy seems to be significantly dependent on the choice
of finite element, the choice of component of displacement or stress énd
the choice of reference point.where the displacement or stress is calcula-
ted. The displacement substitution technique gave a better impression than
the stress substitution technique. Some different elements were also
tested, and where the energy release rate technique with node opening is
concerned, the best result was obtained by means of the element of Turner,
Clough et al. (please see Section 3.6.2). The other elements tested were
the 8-node iso-parametric element, the conventional 4-node plane stress
element, the quadrilaterial 4-node element {please see Section3.6.2) and
the quarter-point distorted 8-node iso-parametric element. The elements
are, in a decreasing scale, listed according to the accuracy they gave in
the actual test example during application of the energy release rate
technique, However, the difference in accuracy of the different elements
does not seem to be drastic if, as in the actual test example, rather
coarse element meshes with an equal total number of degrees of freedom are
compared. In addition, a ranking of element types can probably not be made
unique due to different orders of convergence rate of different elements.

However, the choice of a suitable method for calculation of the stress
intensity factor is not only a question of accuracy. The energy release
technique with node opening requires at least two finite element
calculations, or, if the computer time is to be reduced, finite element
anaiyses of at least two loading cases. Furthermore, during analyses of
mixed-mode fracture, it is difficult to separate the energy release into
K_and K__, However, if the analyses, as in the actual cases, concern
mode-1 fracture along a known path and if the stress intensity is to be
obtained versus crack depth and not only for one crack depth, then the
mentioned draw-backs are of no importance.

As a result of the above experiences, the choice made was to apply the
energy release rate technique with opening of nodes and use the element of
Turner, Clough et al.. In addition. this choice makes it possible to
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utilize the same special-purpose program and the same substructure
elements (please see Section 3.6.3) as used during the fictitious crack
analyses. As another result of the actual small study, the question was
raised why the possibility of energy substitution does not seem to have
gained any interest during studies and discussions of stress intensity
calculation, By means of integration, the strain energy in regions in the
close vicinity of the crack tip may be obtained from eq (3.4:1). A
possibility to improve the results of the substitution techniques, may be
by determining a correction factor corresponding to the actual finite
element and the actual substitution technique.

Where the application of the energy release rate technique with node
opening is concerned, a particular guestion regards the exact location of
the crack tip. The natural choice, used in all present analyses, is to
assume that the change in potential energy during a node opening corre-
sponds to the rate when the tip of the crack is located in the midpoint in
between the two nodes. An alternative, if the potential energy is
calculated for several pdsitiqns of the first closed node, is to establish
an interpolation formula, e.g. based on cubic splines, for the potential
energy. Values of the stress intensity may then be calculated for arbitrary
positions of the tip by means of derivation. During application of the
energy release rate technique, it is essential for the finite element mesh
along the crack propagation path to be uniform. The actual technique may
alternatively be described as the technique based on calculation of the
change in compliance during crack extension. During application of the
energy release rate technique with node opening, if 6 or 8 node elements
are used, then two nodes are opened at each incremental crack extension.

3.6.2 Modelling of the material inside and outside the fracture region

The material outside the fracture zone is assumed to be linear elastic and
has been modelled by means of 4-node plane stress elements of rectangular
and quadrilateral shape, The rectangular element used is the element
presented by Turner, Clough et al. in 1956. The shape function of this
element may be found in, e.g., (Cook, 1974), The element has an internal
fifth node and has incompatible deformation modes. From numerical tests it
is known that this element usually gives more accurate results than the
common 4-node rectangular plane stress element with compatible deformation
modes. It may be nf narticular interest that the utilized rectangular
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element has the ability to exactly reproduce pure bending without shear:
_please see Section 3.2.4 and eq (3.2:3). The utilized quadrilateral
element consists of four constant strain triangular elements. In this
element, and also in the rectangular element, the internal fifth node is
eliminated by means of static condensation.

High order elements have not been utilized. This has partly to do with the
presently adopted simple approach to the modelling of the fracture zone
and has partly to do with the possibility of an irregular disp]acemenf
distribution close to the fracture zone, which may not fit the smooth
displacement distribution of the high order polynomid shape functions.
Where the modelling of cracks and fracture zones in concrete and similar
materials are concerned, two possibilities have been debated for more than
a decade: the discrete method and the smeared method. With regard to this
debate, it may be of importance to distinguish between the material model
and the method of numerical calculation. The ficitious crack model is a
material model and this material model clearly belongs to the discrete
models. Currently the discrete modelling is also applied during numerical
calculations. However, it is not known whether a smeared numerical
modelling of the discrete fracture zone may make the numerical
calculations more effective and flexible,

The smeared method in the sense of a material model with a descending
branch in the stress vs. strain curve without attention being paid to the
strain localization during fracture, does not seem to have been applied in
recent years. This is probably due to the inhreasing awareness of the
phenomena of strain instability and strain localization and the knowledge
of the unfortunate influence of the size of the finite elements if that
approach is used. It has also become increasingly well-known that the
stress in the tip of a crack becomes infinite if the softening of the
material is not taken into account, and consequently that it is not
meaningful to apply a tensile strength criterion for crack growth if the
fracture softening properties of the material is not considered in some
way. A recent intentional numerical illustration of the inobjectivety of
results obtained from a strength criterion without paying attention to
localized softening has been presented by Rots, Nauta, Kusters and
Blaauwendraad (1985).

In Fig 3.6 (1) different possibilities for the finite element modelling of
a fracture zone with a known propaaatinn path are shown. The approach
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denoted I a) is used during the present analyses and has also been applied
during previous fictitious crack analyses carried out at the Division of
Building Materials. This approach with internodal springs makes the
incremental calculations simple (please see Section 3.6.3). A rather
similar, but more modulated, modelling is denoted I b). This type of
approach, although additionally modulated, has been used by (Ingraffea and
Gerstle, 1984) and (Ingraffea, Gerstle, Gergely and Saouma, 1984). The
interface element used in these references has three nodes on each side of
the fracture zone and the analyses have also concerned cases where the
fracture path is not known in advance. In order to avoid updating of the
topology, the alternative I c¢) may be used. This type of approach has been
used by Gyl1toft (1983) during a study of cyclic loading. The discrete
fracture zone may also be numerically modelled as a smeared fracture
within a finite element: alternative II. This alternative has been used by
Nilsson and Oldenburg (1982), Jiang (1983), Bazant and Oh (1983), Glemberg
(1984), Rots, Nauta, Kusters and Biaauwendraad (1985) and others (please
see iast reference). During application of this alternative, the absolute
size of the finite element is taken into account in the imagined
descending part of the stress vs. strain curve of the material within the
finite element. This is carried out in different ways in the above
mentioned references. In alternative III a stress vs. strain curve with a
descending branch is not calculated. Instead the existance of a discrete
crack within the element is taken directly into account: see Grootenboer
(1979). Grootenboer did not apply the fictitious crack model but, from the
point of view of numerical calculation, applied fairly similar models. The
applied analyses in the above mentioned references corresponding to
alternatives II and II1 have not been restricted to the cases where the
crack path is known in advance, but have concerned more general cases
where the path is unknown,

While Fig 3.6 (1) shows the possibilities for analyses of cracks with a
known path, Fig 3.6 (2) shows the corresponding possibiiities for analyses
of cracks with an unknown path. Regardless of whether alternative I, II or
I11 is used, such analyses may be carried out with or without updating of
the geometry of the finite element mesh., A test calculation during
application of alternative I without updating of the mesh may be found in
(Mcdeer, 1979) and has also been discussed by Hillerborg (1982).
Applications of alternative I with updating of the mesh may be found in
previously mentioned references, presented by Ingraffea et al..
Alternatives TT and ITT have heen annlied without undating, please see the
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Fig 3.6 (2) Alternatives for finite element modelling of
fracture with unknown crack path.

references above. In principle it should also be possible to apply these
two alternatives with updating, but no such applications are known. Due to
the lack of numerical experience, the writer cannot compare the advantages
and disadvantages of the different alternatives.

Where a]ternativp TT withnut undatina Af +ha mach (Ein 2T R /2)) is
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concerned, recent interesting results have been presented by Rots et al.
(1985), On the whole these authors seem to have a positive opinion
regarding the possibility of modelling discrete cracks with the smeared
approach. However, on the basis of numerical results, it is stated that no
objectivity is found regarding to the orientation of the finite element
mesh: both crack path and load carrying capacity seem to be dependent on
the mesh orientation. The crack is found to prefer to follow a straight
path parallel to the element boundaries and it seems that the orientation
of the fracture zone within the elements may prove to contradict the crack
path direction. An explanation for the inobjectivity, proposed by the
authors, is that the diagonal distance between the Gauss-points is greater
than the straight distance. The actual results suggest that it might be
meaningful to test alternative II with updating of the mesh, Fig 3.6 (2).
It might also be that it would be meaningful to utilize analytical
relations regarding the strésses in the vicinity of a fracture zone tip.
For discrete crack representation and mode-1 loading, such a relation may
be found in Section 3.2.4. A matter of importance on principle is that
during applications of alternative II it seems to be (tacitly) assumed
that the fracture zone propagates to the most strained point in the
vicinity of the tip and consequently not always according to the direction
of the principle stresses in the tip and its vicinity.

Fig 3.6 {1) and 3.6 (2) are only intended for showing basic alternatives.
Thus, for instance, in the above mentioned references not only are 4-node
elments used but also 3, 6 and 8-node elements. Grootenboer (1979) used
the mixed displacement-stress finite element formulation instead of the
conventional disp]acement formulation.

Going back to Fig 3.6 (1) and the method used during the present
calculations, i.e. I a), the stiffness of the springs are set equal to
b(ax/2+ax/2)do/dw, where b is the width of the specimen and do/dw the slope
of the U-w curve. The adopted criterion for node opening is:
Po/(b(Ax/2+Ax/2))=ft. Po is the nodal force. An alternative to this
criterion is: Gmea =ft, where Umean is obtained from the mean value of the
stresses in the corner of the elements that meet in the actual node. This
alternative has been used by Modeer (1979) and was also used in the first
part of this present study. However, this alternative did not always give
good results and has not been used during any of the analyses presented in
this report. The drawbacks of the criterion based on & are that the
stress in the ~----- -F oo oTemmmt de demonneed -“mgggy reliable and
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that the force ¢ eanb(Ax/2+Ax/2) is, in general, not in equilibrium with
the nodal force, P In spite of this, the criterium based on 0’ ean may be
successfully used dur1ng some analyses. One reason for this is that o mean
is a mean value, and the accuracy of a mean value is in general better
than the accuracy of the individual terms.

During the shear- failure analyses, Section 4.7 and Chapter 5, it has been
necessary to make a few modifications of the above described method. These
modifications are described in Section 4.7 and Chapter 5. A method used
during an analyses of a stactically indeterminate beam, i.e. the cross
section of a pipe, by means of fracture hinge bending moment vs, rotation
relations is described in Section 4.6.

3.6.3 Non-linear structural behaviour

The global response of a specimen in which softening takes place is non-
linear, During finite element analyses, non-linear behaviour is linearized
in one way or another. A frequently used approach is to apply the load or
the imposed displacement in small increments. and update the properties of
the material after each increment. Another frequently used approach is to
apply the load in larger increments, but carry out equilibrium iterations
after each increment. If softening is involved, these incremental
approaches means that the (tangential) stiffness of the material will
become negative. If this is to be avoided, one possiblity may be to carry
out “"total" or "direct" iterations based on the segmential stiffness of
the material.

Within these three approaches, the linearization of the non-linear
response is carried out during the numerical calculation. An alternative
to this is to linearize the properties of the material into linear pieces
before the finite element calculation is started,.This is feasible if the
material is expected to behave in a non-linear manner only in a rather
small number of points within the specimen and/or if the non-linear
properties of the material may be linearized into a rather small number of
linear pieces. During the present analyses and also during previous
fictitious crack analyses carried out at the Divisions of Building
Materials, this approach with a linearization of the properties of the
material has been used. The approach has the advantage of being simple and
seems to be numeri~=211v eta2hln TF frartura talkac nlara alang 3 path with
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n nodes and the 0-w curve is linearized into m pieces, then the total
number of linear calculations becomes n{m+1).

Within the actual approach the choice of approximations, i.e. the choice of
finite element mesh and the choice of linearizations, is made before the
start of the finite element calculation. The subsequent step-wise linear
finite element calculation is "exact", provided that the numbers have a
sufficient number of digits. The possibility of carrying out simple and
"exact" calculations is convenient for the analysis of the rather
complicated structural behaviour during fracture, typically involving
global softening, simultaneous decreases in external load and displacement
(quasi-static structural behaviour is assumed), and during short periods
of. the collapse and very small increments in the external deflection
drastic changes in the load carrying capacity and the development of the
fracture zone. ’

If n{m+l) is not very great, then the calculations can be carried out with
the help of a linear e]aétic finite element program together with
calculations by hand. The procedure is then to carry out the first linear
finite element calculation, evaluate and accumulate the results, prepare
the input data for the next linear finite element calculation, and so on.
This procedure only requires access to a standard linear elastic finite
element program, However, the program must allow a negative stiffness in
the fracture zone modelling springs and the algorithm for solution of the
system of equations must be capable of treating a stiffness matrix with a
negative determinant. The often used direct Gaussian elimation is capable
of solving stich equatibns.

The above computer aided hand-calculation procedure was applied during the
first part of the present étudy, but it was discovered that this approach
is not very convenient if several calculations are to be carried out.
Therefore a simple non-commercial special-purpose program was developed.
This program essentially only represents an automatization cf the hand-
calculation procedure, Thus the program consists of three parts: one part
for the (step-wise) linear elastic calculations, one part for the
evaluation and accumulation, and one part for the preparation of input
data to the next linear increment. Such an automatization reduces
calculations by hand, but the computer time and/or the required computer
storage may still become significant. However, if the crack path is known
or assumed in =2dwvanca  +than tha danraac nf fraadnm nutcide the path may be
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eliminated by means of static condensation before the step-wise linear
_calculation is started. This is because the topology and the material
properties only change along the path. During the present analyses the
possibility of static condensation is utilized and consequently the crack
path is assumed in advance {(although a few different alternative paths
have been considered in some cases). The static condensation is carried
out by means of the previously mentioned program GENFEM-3, and in Fig 3.6
(3) the different steps of the calculations are shown. As shown in this
figure, the reduced system of equations may be filed, forming a kind of
substructure library. Due to limited core memory it is usually not
possible to carrry out the condensation in one step, but instead the final
substructure elements are put together from sub-substructure elements.

= Lin. FEM colculation

; |

I
| Eveluction Accumuiation —-L———{EL ,
I
|

I |

L1 Update input l

Fig 3.6 (3) Flowchart showing the method used for finite element
calculation during fictitious crack analysis.

The method used for treatment of the non-linear structural behaviour is
rather trivial and involves few difficulties that may be of interest in
principle. One thing that might be expected to cause difficulties is that
the value of the “~*-~-—d=~=* -& &b- ~T-b-7 -i2&8e--- —-+-< rchanges from
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positive to negative and consequently passes zero. However, as the
stiffness is changed incrementally, the probability of the determinant
becoming exactly zero is very small. Although not exactly zero, a value
close to zero may give a poor solution to the system of equations, in
particular if the numerical precision is small. All applied calculations
presented in Chapters 4 and 5, have been carried out in “double precision"
(about 17 digits of accuracy) and any difficulties caused by a value of
the determinrant close the zero have not been observed so far. To check
whether the solution to the system of equations is correct, the
incremental work within the finite elements is calculated and compared to

the incremental work carried out by the external load.

Another matter that may be of some interest in principle, is the method
for the choice of sign of the incremental external load. During each of
the linear firite element cdlculations, the incremental deflection that
corresponds to unit external load is calculated and then the actual sign
of the increment is determined. Knowing the sign, the size is calculated
as the smallest increment which produce opening of a new node or change in
the stiffness of a spring. If the calculations are carried out more or
less by hand, then it is usually easy to determine the sign by intuition.
But during computerized calculations it is necessary to have some clearly
defined criterion. This is, in particular, necessary if the finite element
mesh is coarse or unsuitable in some other way. In such cases, the
structural behaviour may become jumpy and complicated., The used criterion
is that the sign, in a generalized sense, of the change of the global
tangential stiffness must equal the sign of the change of the stiffness of
the material. The phrase "in a generalized sense" is just to indicate that
the sign of the second derivate cannot be used. This is due to the
possibility of simultaneous decrease in both load and deflection during
quasi-static crack growth; The actual criterion may be more clearly
defined by means of the sign of vector rotations:
sgn(S,)sgn(e - (S, E. xE )) = sgn(e - (M __xM.)) (3.6:1)

i z i-14-1 i z i-1 i
The vectors are illustrated in Fig 3.6 (4). sgn(Si) is the sign of the
actual increment and is to be determined. e =(0, 0, 1) and
Ei = (Ad,, 1, 0) where Aéi is the response of the structure when a unit
load is applied after the change in the stiffness properties of a spring
from ﬁi-l to ﬁi' E'-l is the unit load response of the previous step and
S, 1 represer’ ' : Pt e oE otk meofe- “-cpement, The
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criterion represented by eq (3.6:1) is easily programmed and has proved to

be useful.

During some of the applied analyses, the influence of internal initial
stresses within the structure, caused by shrinkage or pre-stressing of
reinforcement, has been studied. From the computational point of view,
this is similar to a case of non-proportional loading. Thus the
accumulated stresses across the fracture path are not zero when the first
external Toad is applied, but are according to the actual initial ‘

stresses.

AP 0

10

I

—M; = (Awj,AT;,0)

\ _ Ad w
Si-1 Eix

Fig 3.6 (4) Vectors in eq (3.6:1).

3.6.4 Convergence

To illustrate the order of convergence rate; the load acting on the
specimen shown in Fig 3,2 (7) is calculated during different refinements
of the finite element mesh. In Section 3.2.4 this specimen was numerically
studied in order to verify theoretical relations regarding the performance
close to the tip of the fracture zone. The specimen is un-notched and at
the actual instant the tip is located at x/d=0.2, i.e. the nodal force in
this point is equal to ftbe.

In general, if the stress within a finite element is represented by a
polynomical expansion of order p, one may expect the error in the
calculated stress to be of the order O(Axp+ }, where Ax is a measure of
the size of the element. In the presently used method of calculation, the
stress across the fracture zone path is represented by parts in which the
stress is assumed to be constant: please see Fig 3.2 (8) and Fig 3.6 (1) I
o T " stress to be

a). Consequently
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of the order 0(Ax). The accuracy during calculation of the stress in the
tip of the crack is the primariTy determining factor for the accuracy in
the calculated external load. Accordingly the error in the load may be
expected to be of the order 0(Ax), i.e. the convergence rate should be of
the order one, Thus, if P is the calculated load and P 1is the exact load,
then ¢

P-P

€ - Cax+ ... - . (3.6:2)

Pe

C is a constant of proportionality and CAx is the dominating term in the
series expansion, Subsequently only this dominating term is taken into
account, (3.6:2) means that the error in P should be reduced to 1/2 for a
halving of the mesh spacing.

In order to verify (3.6:2), P is calculated by means of five different
element meshes: d/ax=5, 10, 20, 40 and 80 and accordingly with 1, 2, 4, 8
and 16 springs in the fracture zone. The same type of plane stress element
and the same computer program as used in Section 3.2.4 is used. The above
values of d/Ax represent the size of the elements in the region around the
fracture zone while, for d/Ax greater than 10, the mesh is coarser in the
other parts of the beam. The computationai results are shown in Fig 3.6
(5). These results suggest an almost exact linear relation between the
load and the mesh spacing, and are accordingly in very good agreement

with (3.6:2).

This agreement enables an estimation of the exact load, P , by extension
of the straight line fo Ax=0. Such an extension gives Pé=0.1825 MN. The
results alsc suggest that modelling of the fracture zone with only one
spring gives a result within engineering accuracy. It can also be noticed
that any finite size of the elements give an overestimation of the load.
An overestimation is to be expected since the peak stress at the tip of
the fracture zone is smeared out when, as in the present case, the stress
across the fracture path is represented by parts in which the stress is
constant. A very important result is, of course, that the load converges
towards a certain value when Ax is decreased. However, in view of the
discussions in Sections 3.2.4 and 3.3, the existance of a limit value may
not be very surprising.

Knowledge of the order of convergence gives the possiblity of obtaining an
accurate estir-+*-- - " f--— Lb- oNeos -8 D obdnde~d Jyping two finite
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Fig 3.6 (5) Influence of mesh refinement on accuracy: calculated
load, P, vs. size of finite elements, Ax. Specimen
according to Fig 3.2 (7). '

element analyses with different mesh spacing. If P is the value of P
corresponding to any certain mesh spacing and P_ is the value of P
obtained after halving the mesh spacing, then, according to (3.6:2):

P m2P P 3.6:3
8 ( )

0f course this relation does not eliminate, or reduce, the round-off
errors, only the discretization errors. On the other hand, the round-off
errors would normally be very small in comparison to the discretization
errors.

Application of (3.6:3) to the results of Fig 3.6 (5) give a notable
accuracy: a finis- -7owesd ssTelesies el o3l ool Lvelew dp the
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fracture zone together with a finite element calculation with only two
elements in the fracture zone gfves a more accurate result than a single
calculation with 16 elements in the fracture zone. The corresponding
deviations from the estimated exact P are about 0.1 % and 0.4 %,
respectively. €

Although the numerical results in Fig 3.6 (5) are in agreement with eq (3.
6:2), it is rather remarkable that the relation between the error and the
mesh spacing seems to be not only approximately linear but almost exactly
linear. Therefore, in order to verify that the interesting features of the
convergence suggested by Fig 3.6 (5) are not by pure chance, three
additional convergence analyses have been carried out. The results of the
above and the three additional analyses are shown in Fig 3.6 (6). The
analysis denoted a/d=0 and d/f =1 is according to the above, i.e.
according to Fig 3.6 (5) and;Fgg 3.2 (7). The analysis denoted a/d=0 and
d/lch=0.25 is according to Fig 3.2 (7), but G_=320 10 MN/m. The analysis
denoted a/d=0.1 and d/JlC =1 is according to Fig 3.2 (7), but the beam is
assumed to have a sharp notch of depth 0,1d. The analysis denoted a/d=0.1
and d/ {C =0,25 is according to Fig 3.2 (7), but 6 =320 10 MN/m and the
beam-is assumed to have a notch depth of 0.1d. The main features of
convergence suggested by the additional analyses are in agreement with the
result of the first analysis. However, when the fracture zone is modelled
with only one spring, then deviations from exactly linear relations can be
observed. The straight 1ines shown in Fig 3.6 (6) are drawn through the
two points that correspond to the two finest meshes. These two points are
also used during the calculation of Pe, carried out by means of eq (3.6:3),

Above, the load at a given location of the crack tip has been dealt with.
The cohvergence of the ultimate load carrying capacity may not be expected
to follow (3.6:2) as well és the load at a given location of the tip. This
is because the load is calculated only for the certain locations of the
tip that corresponds to the locations of the nodes. If the ultimate load
carrying capacity corresponds to a location of the tip in between two
nodes, then the ultimate load carrying capacity will be underestimated as
compared to the finite element result obtained if a node happens to be
located exactly on the location where the exact load reaches its maximum
value. On the other hand, according to the results in Fig 3.6 (6), the
finite element calculations overestimates the load at the points where the
load is calculated.
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Fig 3.6 (6) Accuracy versus finite element spacing. Comparisons to
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It would be good to have a simple general rule of thumb regarding the
required mesh spacing for a certain accuracy. However, as a number of
things generally influence the accuracy in the actual quantity to be
calculated, it is not very easy to formulate such a general rule. The best
way to obtain knowledge and experience is probably by means of test
calculations. Modeer (1979) suggested that the required mesh spacing
should be measured inAx/Z and proposed Ax/Z < 0.2. This proposal
probably concerned the calculation of ultimate load carrying capacity and
is probably based on the assumption that the number of springs in the
fracture zone should not be too few. This would mean that the length of
the fracture zone at failure is assumed to be proportional to lch' The
measure Ax/Zc has the advantage of making it possible to choose a mesh
vithout any test calculation and may give a reascnable first estimation of
required mesh spacing, but is not believed to give a very modulated
estimation. One may expect the greatest suitable allowed value of Ax//(ch
to be dependent on the shape of the 0-w curve and maybe also to some
extent be dependent on the geometry of the specimen. If the shape of the
O-w curve and the geometry of the specimen are kept constant and if the
analyses concern ultimate load carrying capacity, one may still expect the
accuracy at constant Ax/A i to vary with the only variable left: d/Xch.
With small d/£ the length of the fracture zone at failure as normalized
with respect to £ s smaller than with a large d/4 : please see, e.g.,
Fig 5.2 (21) and g.3 (5) e). Furthermore, where the unnotched specimens
are concerned, the fracture zone development has a greater influence on
the load carrying capacity of specimens with small d/kth than on the Toad
carrying capacity of specimen with large d/xch. Also, of course, if
Ax/Xth is constant, then d/Ax may become unrealistically small if d/kbh is
very small, For these reasons it is believed that larger Ax/)&Ch can be
used for large d/f = than for small d/f .

ch ch

During variation of only d/f , for the large and very large d/)E,ch a
constant value of Ax/Q should be a good measure of the required mesh
spacing. This means that extremely "small" elements may have to be used if
the fracture of a very large specimen or the fracture of a very brittle
material is to be analysed. However, during strength analysis of these
specimens with very large d/xch, the relations dealt with in Section 3.5
should be of assistance.
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4, STRENGTH AND FRACTURE ANALYSES OF SOME UNREINFORCED SPECIMENS
AND STRUCTURAL MEMBERS

4,1 Introduction. Survey of specimens studied

The basic aim of models regarding the mechanical behaviour of materials
and numerical methods of structural aralysis may be to facilitate applied
calculations of ultimate load carrying capacity. In this Chapter such
strength analyses of different unreinforced specimens and structural
members are presented. Although a common theme of the results concerns the
ultimate load carrying capacity, the purpose of most of the studies is,
from a few different points of .view, more comprehensive. Conseguently the
analyses presented are intended to contribute to the knowledge about
fracture, models of fracture and methods of analyses, rather than to form
a handbook regarding the strength of a few different specimens.

In order to facilitate reading, a survey of the specimens dealt with in
the different Sections is shown in Fig 4.1 (1), which also indicates

the models of fracture dealt with and the type of results obtained. The
studies presented have been chosen in order to elucidate a few different
aspects of strength analyses and in many cases comparisons are made to
experimental data from literature. Fig 4.1 (1) shows that different types
of models of fracture are dealt with, but it should be made clear that
greater parts of the contents, in one way or another, concern the
fictitious crack model. This model is emphasized because most of the other
models dealt with may be considered as différent special cases of the
fictitious crack model. To obtain more detailed information about the
contents, the reader is referred to the table of contents and to the
introduction of each Section.
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Fig 4.1 (1) Survey of specimens, models of fracture and type of results,
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dealt with in Chapter 4.
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4,2 Bending of rectangular cross section

4.2.1 Introduction. Previous fictitious crack analyses. Purpose of
present study.

Concrete structural members exposed to bending are usually reinforced. But
in spite of this, analyses of unreinforced concrete beams loaded in
bending have been the subject of a number of experimental and theoretjca]
investigations. One reason for this is that the bend test, being simple to
carry out, conveniently provides some information about a very important
property of concrete, namely its tensile strength. Another reason, perhaps
less important, is that the bend specimen is often suitable for
experimental and theoretical research concerning mechanical properties of
concrete and that the difficulties regarding studies of the geometrically
simple bend-specimen have become something of a challenge to researchers.
The flexural strength of unreinforced concrete is of direct practical
importance to some mass-produced concrete products, such as paving slabs,
sewage pipes and roofing tiles, and some of in-situ cast structures, such
as road slabs and airfield runways as well as structural members and
structural details which are unreinforced or only slightly reinforced
although loaded in bending. Where normally reinforced concrete beams are
concerned, the flexural strength of the concrete is used when calculating
the cracking load and deflection.

The flexural test is one of the two standard tension tests, but it is a
well~known fact that the flexural strength {n general does not equal the
true uniaxial tensile strength, and experimental results also suggest that
the flexural strength is not a constant but is dependent on the geometry
of the specimen. Experimental results concerning flexural strength have
been collected by Neville (1981) and by Bellander, Peterson and Samuelsson
(1980) and these references also provide general discussions of the
flexural test as well as additional references on the subject of flexural
strength.

The first analyses of the fictitious crack model published in English
concerned the flexural strength of unreinforced concrete (Hillerborg,
Modeer and Petersson, 1976). Computational results regarding the effect of
the beam depth on flexural strength were presented and these theoretical
results indicated that the flexural strength decreases with increased

depth of the bea— - -+ *%-* ~-= ~=2f - chesenoeo oo re a greater
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effect on the strength of deep beams than on the strength of small beams.
A comparison between the theoretical predictions and a large number of
experimental results showed good agreement. Similar analyses are presented
by Modeer (1979), which in particular indicated that the shape of the

0-w curve, at constant values of f , E and G_, significantly influences
the ratio between flexural strength and tensile strength. At the moment of
ultimate load, the fracture zone is only partly developed and accordingly
it was found that the slope of the first part of the g-w curve is
essential to the ultimate strength, while the shape of the last part of
the 0-w curve, corresponding to comparatively large values of w and post
ultimate load states of fracture of the beam, is often of no importance
regarding the ultimate flexural strength. In (Petersson and Gutafsson,
1980) some computational results concerning the influence of the choice of
the finite element mesh were presented. These results indicated that the
computational method seems to be objective in the sense that the
computational results are independent of the size of the finite elements
apart, of course, from the effect of normal discretization errors at
finite size of the elements. A model rather similar to the fictitious
crack model was used by Bazant and Oh (1983). Computational results
concerning the effect of beam depth on flexural strength were presented
and according to theoretical discussions and by comparison to previous
results obained by fictitious crack analysis, it was indicated that it
does not make much difference whether the fracture softening is assumed to
take place along a line of zero initial width or if it is assumed to take
place along a band with an initially non-zero constant width, provided
that the assumed strain softening properties of the material within the
band are related to the assumed absolute width of the band. The present
fictitious crack study of the flexural strength of an unreinforced three-
point berd beam without notch and with a rectangular cross-section may be
considered as one amplification to the previous analyses.

One' main purpose of the present study was to calculate flexural strengths
assuming the shape of the g-w curve in accordance with a proposal by
Peterssson (1981) based on experimental results obtained during stable
tensile tests (Section 4.2.2). Another purpose was to calculate the global
load-deflection respenses of three-point bend beams and then transform
these responses into fracture hinge bending nioment vs. fracture hinge
rotation relations (Section 4.2.3). Such relations may become useful
during structural analyses at a higher structural level than the current
"micro-level" *- ot sbe fosedims msenseeebb de o deeT4 ywith in a rather
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detailed manner by means of a two dimensional plane stress analysis,
taking into account a rather high number of degrees of freedom.

The present calculations were carried out with, and without consideration
of initial stresses, which stresses may reflect the effect of a non-
uniform distribution of shrinkage strains. In Section 4.2.4 two special
characteristics of the fracture hinge moment vs. rotation relations are
dealt with: the transfer of energy during the entire course of fracture
and collapse, and the shape of the moment vs. rotation relation during
advanced stages of collapse. In Section 4.2.5 comparisons to other methods
of analysis and to test results can be found together with remarks and
discussions: firstly with regard to flexural strength and then with regard
to bending moments vs. hinge rotation relations. With regard to flexural
strength, this last Section in particular includes a study of the effect
of scatter in strength. With regard to hinge rotations it is, more
briefly, dealt with a comparison to result obtained by linear elastic
fracture mechanics, and it is also briefly dealt with a method for
description of the stiffness and fracture properties of beams, and a
method for simple calculation of the upper and Tower bounds of fictitious
crack predictions of the strength of statically indeterminate beams is
exemplified,

4.,2.2 Ultimate bending moment capacity

A three-point bend beam with a Tength to debth ratio of 4 was studied.
Plane stress,v =0,2, was assumed and the bi-linear shape of the o-w curve,
Fig 3.2 (3) c), was adopted. The numerical approach is described in
Section 3.6. The symmetrical half of the beam was divided into 6 super-
elements, Fig 4.2 (1), each super-element being an assembly of 5 times 40
4-node rectangular non-conformal plane stress elements of the Turner and
Clough type and of equal size and shape. Statical condensation was
utilized and consequently only the degrees of freedom along the considered
fracture zone propagation path along the centre line of the beam were
involved in the incremental calculations. In accordance with the principle
of Saint-Venant, the current rather fine element mesh close to the
supports is not justified if only the ultimate strength and fracture hinge
moment vs, rotation relations are to be calculated, but it is desirable
when calculating of global stiffness and particularly if the point of
instability at d° ~ ’ ot oo T “rmined. (The



4 - SPECIMENS, page 6

same element mesh was used in a study of a notched beam.)

In some of the calculations initial stresses corresponding to a non-
uniform distribution of shrinkage strains were taken into account. In the
mid-section of the the beam, these initial stresses were assumed to be
parabolically distributed along the depth of the beam and the magnitude of
the initial stresses was assumed to be such that the stress in the upper
and lower edges of the beam was equal to the tensile strength of the
concrete, f , This assumption of magnitude and distribution is valid for
the fracture section, located at the centre of the beam, while the initial
stresses are smaller closer to the ends of the beam.
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Fig 4.2 (1) Geometry and finite element mesh of the beam studied.
Each of the six "super"-elements consists of 5 (horizontal
direction) times 40 (vertical direction) 4 node rectangular
elements of equal size and shape.

The flexural strengths were calculated at values of the ratio d/{Ch
ranging from 0,025 to 6.4, and the computational results are shown
numerically in Fig 4.2 (2) and graphically in 4.2 (3). The number of
finite elements required to model the grovth of the fracture zone
accurately, increases at increased size of the beam, i.e. at increased
value of the ratio d[[c , and the computed flexural strength at d/lch=6.4
is probably not very accurate as the depth of the fracture zone at
ultimate load at d/f =6.4 corresponded to the depth of only one finite
element, both where gero initial stress and initial stress were concerned.

The current si ' © 2 zone
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propagation path, d/f h=6.4 corresponds to Ax=0.16 kc , where Ax is the
distance between the nodes along the fracture path. This value of the
ratio Ax/}Z,Ch may be compared to the proposal made by Modeer (1979) with
respect to the required maximum distance between the nodes, namely

Ax<0.2 L, which may however be somewhat overgenerous. When d/f —co
respectiSely d/f — 0 the fictitious crack predictions of flexural
strength coincidg with those of the Tinear elastic brittle theory and the
ideal plastic theory respectively, regardless of whether initial stresses

are present or not.

The values of flexural strength are indicated in Fig 4.2 (2) and 4.2 (3)
as the ratio between the currently predicted ultimate Toad and the
ultimate load as predicted by the linear elastic brittle theory when the
initial stress is zero. The ultimate load according to the latter theory
coincides with the Toad at the instant when the stress in the Tower edge
of the beam equals f . For a slender beam in three-point bending this Toad
is equal to (4/4)f (bd /6). For a short beam this expression is only
approximate. A more accurate expression for the ultimate load of a beam in
three-point bending, as predicted by the linear e]ast;c brittle theory, is
provided by Timoshenko and Goodier (1951}): (4/1)ft(bd /6)/(1.0-0,1773d/L).
The currently presented values of flexural strength, obtained at £/d=4,
are normalized to this more accurate linear elastic brittle value of
flexural strength, In the case of three-point bending of a short beam,
this means that ff/f should be interpreted as (Pu£/4)(1.0—0,1773d/£)
/(ftbd /6) where Pu is the ultimate load. Norma]]y in the case of the
bending of a slender beam, ff/ft should preferably be interpretated as
Mu/(ftbd2/6) where Mu is the ultimate bending moment. Accordingly

ff/ft should approach 1.0 when d/[cﬁa @© .

At d/kc—»m , i.e. in the case of a linear elastic brittle behaviour of the
material, the formula of Timoshenko and Goodier yields
Pu=1.046 (4/4)f (bd /6) at d/{ =1/4, while the finite element results
yielded Pu=1.053 (4/L)ft(bd /6). This finite element value of Pu is
obtained by means of linear extrapolation: the bending stress is assumed
to be zero at the depth d/2 of the beam and the interelement nodal force
in the Tower edge of the beam is assumed to represent the mean stress
along the half of the depth of one element, i.e. the nodal force in the
lower edge of the beam divided by d/80 is assumed to represent the stress
at the depth d/160 of the beam, The 0.7 % difference in flexural strength
at d/f — o acce i ST T der

ch
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respectively according to the finite element results may be explained by
the approximations involved in finite element analysis and may
approximately be considered to be of negligible magnitude.

The main features of the currently obtained values of flexural strength
are in agreement with the results of previous fictitious crack analyses.

d/’zch Mu

f, (bd?/6)/ (1-0.1773d/2)

No init. stress, Init. stress,
0;/fy =0 o;/fy = 1.0

>0 2.867 2.867

0.025 2.157 2.087

0.050 1.982 1.858

0.10 1.794 1.585

0.20 1.601 1.271

0.40 1.419 0.935

0.80 1.263 0.666

1.60 1.148 0.409

3.20 1.079 0.181

6.40 1.040 0.074

+ @ 1.000 0.000

Fig 4.2 (2) Ultimate bending moment, M , at different values of
d/f and with and without consideration of initial stress
accgrding to Fig 4.2 (3). M as obtained in the present
finite element fictitious crack analyses of a three point
bend beam: d/{ =1/4 and 0-w curve according to Fig 3.2 (3)
Values at d/xéﬁ 0 resp->w are obtained analytically.

c).
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dMCCTIOM [ Mylibd?bl, in general

/f P ' =9 (R, 14)(1-018 dr}(bd26),
t di at three-point bending

A > 4

7 X

..{

“VA T T T T T TTTT] T T T ——r TR

0.01 0.1 1 10
Ratio beam depth to charocteristic length, d/lch

Fig 4.2 (3) Ratio flexural strength and tensile strength, ff/ft’
vs. ratio between beam depth and characteristic length
of material, d/& . Theoretical result of
fictitious crackcanalysis. Shape of the 0-w curve in
accordance with Fig 3.2 (3) c).
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4,2.3 Fracture hinge moment vs. rotation relations

During strength analyses of statically indeterminate beams as well as
during some other analyses, calculations are made easier if it is possible
to replace the two-dimensional plane stress analysis by the more simple
ordinary beam-theory type of analysis. In order to include consideration
of the fracture properties of the beam in such an analysis, one may model
the behaviour of the fracture section by a one degree of freedom moment
spring element. The non-linear properties of this spring should then be
determined in such a way that the external bending stiffness of the beam
is equal when analysed according to Fig 4.2 (4) a) respectively according
to Fig 4.2 (4) b). The spring in Fig 4.2 {4) b) should consequently
reproduce then bending capacity of the fracture section vs. the additional
rotation that arises due to fracture of the material, In the case of the
uniform bending moment a]ong/the beam, it is obvious that several fracture
zones will start to develop from the Tower edge of the beam before the
ultimate bending moment is reached. First after peak moment, one of the
fracture zones will dominate the fracture of the beam. In the current
study, however, only one fracture zone is considered and the present
fracture hinge moment vs, rotation relations are valid for the additional
deformations in a beam due to the development of one fracture zone. If the
growth of several fracture zones were considered, the ascending part of
the moment vs. deformation response of a section of a beam should normally
be descrided in the moment-curvature diagram. General separation of
deformation into curvature and rotation is illustated in Section 4.2.5.

The properties of the moment springs have not been obtained by analysis of
a beam in uniform bending, Fig 4.2 (4) a), but by load-deflection analysis
of a beam in three-point bending, Fig 4.2 (4) c). The load-deflection
responses, P vs, &, that formed the basis for the calculation of the
stiffness properties of the springs, M vs.8 , were obtained during the
plane stress finite element fictitious crack analysis described in Section
4,2.2. Knowing P vs. 6, M vs. 8 were obtained by the relations:

Py
M=
o = %(5_50) - %(5 - g) (4.2:1)

where k is the stiffnes of the specimen before the start of fracture zone
growth and thi ) T .2 (4) ¢). It may
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be noted that the rotation € only models, and should only model, the

. additional deflection due to the fracture zone propagation. Thus
additional deflections, i.e. deflections obtained during plane stress
analysis byt not during ordinary beam-theory analysis, due to local
deformations close to the supports, local deformations close to the point
of load application and shear deformations along the beam are not included
in the rotationeé.

The computational results are shown in Fig 4,2 (5) to Fig 4.2 (10). The
complete curves in these figures show in a dimensionless manner bending
moment vs. rotation, i.e. M/M vs.e /(f /E), at different values of the
ratio d/f . The dashed curveg show the depth of the fracture zone: a
denotes tﬁe distance from the lower edge of the beam to the point were the
stress is equal to f and d is the total depth of the beam. M 1is the
bending moment at the start of fracture zone grovth: °

Mo=1.046 ft(bd /6) in the case of three-point bending of a beam with a
length to depth ratio of 4. Fig 4.2 (5), 4.2 (7) and 4.2 (9) refer to the
case of zero initial stress and correspond to the ranges 0-0.8, 0-8.0
respectively 0-80 of the rotation e/(ft/E). Fig 4.2 (6), 4.2 (8) and 4.2
(10) refer similarly to the case of non-zero initial stress. The M/M vs,
8/(f /E) curves shown are as obtained from the numerical ca]cu]ationg and
consequently they are not ideally smooth non-linear curves but consist of
a large number (70) of linear pieces, reflecting the piece-wise linear
incremental finite element calculation of the load-deflection response of
the respective beam. In spite of the piece-wise linear type of calculation
the M vs.8 curves exhibit a very smooth over-all non-linear shape, with
the exception of the curves corresponding to high values of d/lch. The
calculations were stopped after 70 increments but the M vs.® curves may be
extended by extrapolation. This will be discussed in Section 4.2.4.

Fig 4.2 (5) to 4.2 (10) indicates that a decrease in d/};Ch does not only
produce an increase in the ultimate bending capacity but also a drastic
increase in the rotation capacity. The computational results also indicate
that initial stress has much more effect on the M vs.8 curves at high
values of d/XC than at Tow values of d/f . These two features of

the M vs.e curves may also be realized by considering the transfer of
energy during the course of fracture and collapse, see Section 4.2.4. It is
interesting to notice that a stable fracture requires that the applied ben-
ding moment has to be temporarily negative in the case where d/kch=6.4

and inititial st " iteresting,
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==: equal deflection

- Pl
M=
¥ | ¥ 0 = ;‘lz(s—s,h%(s-wk)
c)

Fig 4.2 (4) a) and b): Slender beam in pure bending and with a single
fracture zone modelled by, a), plane stress and
by, b) beam theory. Definition of M vs.e : the
properties of the moment spring, M vs.9 , is
such that M vs. #%s equal in a) and b).

¢): IMlustration of the method currently used to
obtain M vs.6 by means of plane stress
load-deflection analysis.

although not surprising, that the relative depth of the fracture zone, a/d,
at ultimate ioad is greater at lTow values of d/f than at high values

of d/,tc . Results regarding the depth of the fracture zone may also be
found by Fig 4.2 (21). This latter figure shows the length, s, of the zone
at different ¢
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The computational results indicate that Ae/A(a/d) is very small at the
beginning of the fracture and great during the advanced stages of the
collapse, and with respect to discussions of simultaneous growth of several
cracks it is of particular interest to note that the computational results
seem to suggest that de/d{a/d)—0 when a/d-»0. This condition suggests that
the change of the slope of the bending moment vs. curvature curve of, for
instance, a beam in uniform bending is finite even if the fracture zones in
the lower edge of the beam are very closely located at the start of fracture
of the material. The condition also suggests that the fracture zones in the
lower edge of the beam have to be infinitely closely located in order to
attain a non-zero change in the slope of the bending moment vs. curvature
curve at the start of fracture of the material. During very advanced stages
of the collapse of the beam, i.e. when a/d approaches 1.0, de/d(a/d) must
approach infinity as a/d cannot extend beyond 1.0.

In fig 4.2 (5) to 4.2 (10) the properties of the fracture hinge are shown as
M/Mo vs. e/(ft/E) at different d/Lch. In order to save space one may

prefer to relate M/Mo to 9/(ft/E)d/)_Ch at the different values of d/{C .

It may, however, be somewhat confusing to use the same variable, d/jf ,

in two places and the latter alternative does not illustrate the different
rotation capacity at different d/J(,Ch quite as clearly. It may be noted

that the size of the area under complete curves M/M vs.

8/(ft/E)d/Jz,Ch at different values of d/}(Ch is constgnt, provided that the
initial stress is zero, see Section 4.2.4.

4,2,4 Two characteristics of the fracture hinge M vs. 8 curves

In order to reduce the computational work, the incremental calculations of
the M vs. 8 relations presented in 4.2.3 were stopped before the bending
capacity of the fracture section reached zero and the beam as competely
broken into two pieces. The M vs., 6 curves may however be extrapolated and
in this Section two features of the M vs, 8 relations, which ought to
facilitate such extrapolations, will be dealt with. These two features
concern the area under the complete M vs. & curves and an estimation of the
shape of the curves during advanced stages of the collapse, respectively.

The beam being studied as a body in plane stress, an energy balance for
the beam during an infinitesimal increment of time, dt, yields:
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PS dt = [{t}t{w}IdA dt + f{c}t{é}dv dt + [o{UHU} dV dt (4.2:2)
A v v

where P is the load acting on the beam, S is the rate of deflection,
{t}t=(q_,6h ) is the stress (or traction) acting across the fracture zone,
{ﬁ} =(QL, Q”) is the rate of deformation within the fracture zone (in the
present case q'=6"=W“=Wn=O and w, is usually denoted simply by w),
{0]t=(6 0,1 ), {é}t=(é L€,y )and p is the density of the
materia?. A rep#esents the éreayof %%e fracture zone (in the present case
A=bd, In those parts of bd which are not fractured at the studied

instance of time, w, =0 and consequently those parts do not contribute to
the integral.) and V represents the volume of the specimen (in the present

case V = bd2).

Integration of the left side of eq (4.2:2) with respect to time from start
of loading, t=0, to complete fracture, t=t_, yields:

too too tm < tm 1 PZ t )
[ Pédt =f MEdt + [ pPdt = [ MEdt + 5 [y 17 f Mdo (4.2:3)
o] 0 o] o] o]

When t=t_, P (and M) has reached zero and apart from one point (with zero
area) in the upper edge of the beam, the beam is completely broken into
two pieces. In eq (4.2:3) the first equality is obtained by derivation and
by using the definitions of M and 8, eq (4.2:1). The second equality is
obtained by integration by parts, and finally it is utilized that P=0 at
t=0 and at t=t_. The last term represents a summation of M({6)de and this
sum is equal to the sum of M(t)6(t)dt if the function M(8) exists, i.e, if
only one M corresponds to eache.

Mathematically, the sum of M(6)d8 is not defined if the function M(8) does
not exist, but for conveniéncy the last integral in (4.2:3) may also be

used if more than one M corresponds to each 8 as long as it is evident

that the integral in such cases will be calculated as the sum of M(t)e(t)dt.

Integration of the three terms of the right side of eq (4.2:2) from
t=0 to t=t, is dealt with individually. In the present case Q“=O, which by
the definition of GF yields the first term:

o+

I 1ty A dt = 6. bd (4.2:4)

(=]
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For the second term, the assumed elasticity of the material gives:

ad

. t . 1t 1t )
J { {o}{e}dV dt = 5 {{o} {e}dV|t=tm - {{c} {eddv],,  (4.2:5)

(=]

In the case of no initial stress, the sum of {d}t&} dV is of course zero
at t=0. As no external forces act on either of the two halves of the beam,
considered individually, either at t=0 or at t=t_ and as further on no
plastic deformations are assumed to occur outside the fracture-surfabe,
each half of the beam will resume its original undeformed shape after
comg]ete collapse. Thus, in the case of no initial stress, the sum of
{o}"{e} dV is zero also at t=t,.

When calculating the integral (4.2:5) in the case of initial stress, it
is convenient to utilize that the change in the strain energy within the
two elastic halves of the beam from t=0 to t=t_ is equal to minus the
work required to resume the original state of stress and strain within
the two elastic halves of the beam. Furthermore, the original state of
stress and strain is resumed if the stresses acting on the boundaries of
each of the two halves of the beam at t=0 are applied to the two halves
at t=t_. Additionally, inspection of the integral (4.2:5) shows

that the value may be written as xlbdzd,/E, where Ui is a measure

of the magnitude of the initial stress }at presently 0 is defined as the
value of the initial stress in the lower edge of the m}d-section of the
beam) and Xl is a dimensionless number that’depends on the geometrical
shape of the beam and the distribution of the initial stresses within the
beam. As to variations in the geometrical shape of the beam, ¥ is
independent of b and in variations of £ and d the principle of Saint-
Venant may be utilized if the beam has a reasonable sltenderness. The
stresses applied to the boundaries of the halve of the beam at t=t are
statically equivalent to zero force and zero moment and thus only the
vicinity of the fracture section is affected. Consequently the value of
the integral (4.2:5) is independent of £ (if large) and as the volume of
the material in the vicinity of the fracture section is proportional to
d, led/e at variations of the geometrical shape of the beam. This means
that (4.2:5) may be writen as ybd 0 /E, where ¥ is a dimensionless number
which depends on the shape of the distribution of the internal initial
stresses within the beam.

The value of y a “tial stress
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acting across the fracture section was obtained by a single conventional
linear elastic analysis of the symmetrical quarter-part of the beam,
loaded as indicated in Fig 4.2 (1i). In accordance with the discussion
above, the value of ¥ was obtained from the finite element result by means
of the relation:
bd? o’ d/2,
y —p— = -4 b£ 7 o, (y)u,(y)dy (4.2:6)

The calculation yielded ¥ = - 0.075. With the help of a standard finite
element program, values of y corresponding to other types of distribution
of initial stress may be obtained by means of the same simple method.

| W W W W
y OX(Y)
di-—~—-ﬂ-— d/2

= ” 1/2=2d m

' 2
Fig 4.2.(11) External load, 0 (y) =0 (6(y/d) - 1/2),
X i
applied to a quarter-part of the beam in order to

ﬁr

/
0, (d/2)=0;

calculate total release of strain energy during fracture.

The last term in eq (4.2:3) represents the change in kinetic energy. In
the present type of incremental quasi-static analysis which is carried out
in such a way that the equilibrium is always maintained, this term is
equal to zero. This means that 5 has to be small and may additionally
requice, particularly if a slender beam is analysed or if d/}&Ch is high,
that & is temporarily assigned negative values in order to avoid
development of inertia forces and thus maintain the static equilibrium
during the entire course of collapse of the beam.

2
For a slender beam M = ft bd /6 and for this case eq (4.2.2) to eq (4.2:
0
6) finally yields:

2

mM ° = 6 + j'i .28
LW, e g, o) e

where ¥ = -0.075 in the case of parabolic distribution of the initial
stress.

The present st and £/d=4, in
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2
which case M = f bd /(6(1-0.1773/4)) and at this value of Mo eq (4.2:2)
to eq (4.2:63 yields:

2 M 0 5.73 9,2 (4.2:8)
L d(T) =g 573 (=)
g Mo ft JLch ft

where ¥ has the same value as in (4.2:7). (4.2:8) may become useful if one
wants to control possible extrapolations of the curves in Fig 4.2 (5) to
4.2 (10), If the M vs. 8 curves of these figures are to be used for
analyses of slender beams, in which case M = f bd /6, one may possib]y
consider multiplying the values of 8/(f /53 indicated in the figures by
1.046 in order to assure that eq (4.2:7) is fulfilled. This means that the
rotation capacity becomes somewhat better for a slender beam, coresponding
to the somewhat smaller bending moment capacity of the slender beam.

At zero initial stress, eq (4.2:8) indicates that the area under the
normalized M vs. 6 curve is reciprocally proportional to d/Lch. Regarding
the influence of initial stress, (4.2:8) indicates that the M vs 6 curve
is much more affected at high values of d/{ than at low values of d/f .
This agrees with the numerical results of Sgction 4,2.3 and is basically
due to the fact that the release of initial strain energy is proportional
to the volume of the beam, i.e. proportional to d at equal geometrical
shape of the beams, while the total energy required to atain total
collapse is proportional to the area of the fracture surface, i.e.
proportional to d?. At Og/ft=1.0 and d/ﬁth=0.025 the release of initial
strain energy only represents 0.2 % of the total work of fracture, while
at 0 /f =1.0 and d/L =6.4 the release of initial strain-energy represents
48 %1of the total woﬁk of fracture: see Fig 4.2 (12). At Ui/ft=1'0 and
d/f =13.3 the area under the M vs. 8 curve becomes zero and at higher
va]ﬁes of d/)lch the total external work required to attain complete
collapse becomes negative. In such cases either the external action, P,
has to be such that energy is extracted from the beam during collapse or
alternatively the beam will behave in an unstable manner in which case a
part of the initial strain energy will be transformed into kinetic energy.
If d/£ch is increased indefinitely, the area under the normalized M vs.®
curve approaches the finite value -0'43(0}/ft) . If d/L s decreased
towards zero, which at constant d corresponds to an ideal plastic fracture
behaviour of the material, eq (4.2:8) indicates that initial stress does
not affect the area under the M vs, 6 curve.

It is of some in’ C o T "7 7" and (4.2:8) are
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independent of the shape of the 0-w curve, And it is also of interest to
note that the ratio Ui/ft is in square in these relations. This means that
the total area under M vs. 8 curves are indpendent of the sign of the
initial stress, although the shape of the M vs. 6 curves may be expected
to be significantly affected. As to the intermediate range 0 <0 /f < 1
the computational results obtained by (Hillerborg, Modeer and Pe%ersson,
1976) for Ui/ft= 0, 0.5 and 1.0 suggest that the influence of Ui/f on the
ultimate bending moment capacity may be approximately proportional to

0%/f . This possible approximate relation together with the observation
that the area under the M vs. 8 curve is affected in proportion to Ui/ft
in square may enable rcugh estimations of M vs. 6 curves in the
intermediate range 0 < Ui/ft < 1.

2
Y b’ Of/E

Gg bd 0;/f, =
759, ‘ . +1.00

o

50% -
+075

25% -
+050
+0.25

: I
5 10 d/lch

Fig 4.2 (12) Contribution from the release of strain-energy,
de%faE, to the total required work of fracture,
G bd, vs. ratio d/4 at different magnitudes
of the parabo]ica11§ distributed initial internal stress.
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We now turn to an estimation of the stiffness properties of the fracture
hinge at advanced stages of collapse. During advanced stages of collapse
an open crack developes in the lower edge of the beam, and if the
remaining stress-transferring part of the fracture is small in comparison
to the depth of the beam one may assume that the distribution of

stress, strain and absolute deformation in the vicinity of the fracture
zone is governed only by the properties of the material and is thus
independent of the absolute length and depth of the beam and also
independent of the type of beam and the type of load acting on the beém,
provided that the different possible loads are statically equivalent and
act on the beam at locations far away from the fracture zone. Thus the
bending moment, M, is governed only by the properties of the material at
each (large) value of the rotation, . But as M is proprotional to

d , this Teads to a proportionality between M/M and

1/d at equal material properties and at equal ?1arge) rotation,® .
Furtermore, M/M has a specific value in every combination of d/£Ch and
8/(f /E) which means that a change in d is equivalent to a change in
1/th. Accordingly, at advanced stages of collapse:

=

1
= flo/(f,/E)) (4.2:9)
o (d/zch)z t

=

where f, at a defined shape of the 0-w curve, is only a function of

8/(f /E). The function, f, may be of a different type at a different shape
of the 0-w curve. (4.2:9) is believed to be increasingly accurate at
increasing 6, and at the limit an exact relation, provided that the loads
acting on the beam are located far away from the fracture zone. In the
case of three-point bending, the local action of the point-load introduces
a disturbance in the stresses in the vicinity of the fracture zone. Such
local disturbance means that the function f may become somewhat dependent
of the type of load that causes the bending of the beam. The influence of
the stresses caused by the local action of the point-load are, however,
probably negligible in comparison to the stresses caused by the bending,
especially if the beam is slender. Similarly, the release of possible
initial stresses in the vicinity of the fracture zone may have some effect
on stresses and deformations even in the very last stage of the collapse.
Consequently, in the cases of three-point bending and initial stress, the
function f(8/(f /E)) may not be exactly the same as when the loads are
located far away from the fracture section. However, the effect of the
local disturbance is probably small, which means that the M/M vs.
9/(ft/E) curves ° o oo T v031d coincide
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at large values of e/(ft/E)'

Good accuracy in (4.2:9) requires that a open crack has developed in the
lower edge of the beam and secondly that the remaining stress-transferring
part of the fracture section is small in comparison to the depth of the
beam. At the ends of the M/M vs, 6/(f /E) curves in Fig 4.2 (9) and Fig
4,2 (10), with the exceptionoof the cuEves corresponding to

d/lth=0.025, the first requirement is fulfilled while the second requi-
rement is poorly fulfilled: at di/ft=0 and d/xbh=0.05 the ratio between the
remaining stress-transferring part of the fracture section and the depth
of the beam is 1.0; at 61/ft_0 and d/& =6.4 the ratio is 0.55; at

0‘/f =1,0 and d/l =0.05 the ratio is 1 0; at 6 /f =1.0 and d/L -6 4 the
rat1o is 0.53. But if we temporarily assume that the requ1rements are
fulfilled to such an extent that the accuracy in (4.2:9) is satisfactory,
then this relation enables significant extensions of the M/M vs, g /(f /E)
curves in Fig 4,2 (9) and Fig 4.2 (10) even if eq (4.2:9) dogs not provide
any information about the function f(e/(ft/E))' Taking Fig 4.2 (9) as an
example: at d/tch=0.025 M/Mo=0.626 at e/(ft/E)=121 which for d/&ch=0.05
and 9/(ft/E)=121 means that M/Mo=0.626/4=0.157; at d/lch=0.05 M/Mo=0.469
at 9/(ft/E)=73.9 which for d/tch=0.1 and 9/(ft/E)=73.9 means that

M/M =0,469/4=0.117; and so on. The procedure may then be repeated until
theocurves are all extended to 6/(f /E)=121. The same approach may be
applied to Fig 4.2 (10). The simple and convenient type of extrapolation
is believed to be of sufficient accuracy where many types of practical
utilization of the M/Mo vS. 9/(ft/E) curves are concerned,

(4.2:9) is a simple and, if @ is large enough, probably an exact relation.
An equally attractive relation with respect to the type of function f(6/
(f_/E)) has not been found. Approximate estimations may, however, be
obtained by considering the change in the distribution of stresses and
deformations in the vicinity of the fracture zone at an increased fracture
hinge rotation, © . By means of the ordinary beam theory and considering
energy release rate (Gustafsson, 1977) indicated that the bending moment,
M, decreases at increased 6 but never reaches zero exactly, no matter how
large the rotation, 6, is. This suggests that f(6/(f /E)) should be such
that the value zero is approached asymptotically. (Petersson, 1981)
studied lToad vs. deflection, P vs. §, of a three-point bend beam at
advanced stages of collapse, assuming that the unfractured parts of the
beam are entirely stiff and that the collapse takes place as a rotation
around a hinge and that the
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boundaries of the fracture zone are kept straight. This assumption led to
the relation P~1/§ , which should be improved if one obtains a relations
between M and @ at the same assumption (M~1/6 ) and in addition takes into
account the additional deflection due to elastic deformations of the
unfractured part of the beam: P~1/{&-P/K) . (Petersson, 1981) and
(Petersson, 1982) studied the relevance of the relation

P~1/5 by means of experimental investigations and found that the relation
seemed to be a good approximation. However, due to the method used during
the interpretation of the experimental results, the relevance of the
relation M~1/0 was tested, not the relevance of the relation P~1/§ .
These experimental results therefore suggest that the relation M~1/0 may
be a good approximation. During a theoretically study of the double
torsion specimen, {Hillerborg, 1983) obtained approximate M vs.®
relations by means of simplifying assumptions concerning stresses and
deformations in the vicinity of the fracture section: At a constant
distance, £ /2, from the centre-line of the beam plane cross sections were
assumed to ?emain plane, while within the region of the length % the
shear rigidity of the material was assumed to be zero and accordingly this
part of the beam acts as if it consisted of a number of horizontal
independent parallel bars. Regardless of the choice of the value of the
length 1 , these assumptions suggest that the shape of the distribution of
the deformations and stresses at the fracture section remains unchanged
from the moment when an open crack developes in the lower edge of the beam
and only becomes more and more concentrated towards the upper edge of the
beam when the rotation 6 increases. This means that M~1/92, If the length
20 is equal to zero (and in addition the pafts of the beam outside the
fracture section are assumed to be ideally stiff) then the assumptions of
Hillerborg coincide with those of Petersson. The assumptions of Hillerborg
may be improved if the length £ is not assigned a constant value, but is
being related to the depth of the remaining stress-transferring part of
the fracture section: preferably £ should be assumed to decrease when the
depth of the stress-transferring pgrt decreases during the increase in
rotation, 8. This later assumption suggests that the shape of stress
distribution does not remain constant and in particular that the
compressive stress in the upper edge of the beam does not remain contant at
advanced stages of collapse but becomes larger and larger as the rotation
is increased. An exact relation between M and @ corresponding to some
assumed relation between Zb and the depth of the remaining part of the
fracture section has not been developed, but the findings referred to
above together w'* °~ ° o I t that a
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n
relation of the type M~1/6 may be a reasonable conjecture., If adopting
this type of relation, eq (4.2:9) yields:

1 C (4.2:10)
d/2c)7 (o (£,/E))"

MZ_
M

In the constant shape of the 0-w curve C and n should be constants, and
the value of these two constants may be determined with the help of eq (4.
2:6) and a known value of M/Mo, (M/Mo) , at some (large) value,
(9/(ft/E))o, of the rotation e/(ft/E). (4.2:6) and (4.2:10) yields:

(/M) (o (£,/E))

n=1+
73 ) (eh/d(ft/E))o (4.2.11)
T3 4 5.73v(30) - g dlgyg)
d/‘bch in OM; tE

C = (/a2 /M) (or (£,/E))T (4.2.12)

With the help of these expressions and the numerical results of 4.2.3, n
and C can be calculated. Ideally n and C should be independent of d/JLch
and 0}/ft’ but as indicated in Fig 4.2 (13) a) n and C do not remain
constant. This may have a different explanation. One possible explanation
is that the current values of (8/f /E)) , (which values were put equal to
the value of the rotation at the end of each respective curve in Fig 4.2
(9) and 4.2 (10)), are too small to ensure an accuracy of eq (4.2:9). An
other possible explanation is that the proportionality between M and 1/8
does not apply. It is interesting to note that n, although not being
exactly constant, is almost constant and close to 2.0. The variation in C
must be compared to the very large variation in (d/LCh) .

The results in Fig 4.2 (13) a) jndicate that a good accuracy of the
proportionality M/Mo~ 1/(d/&ch) requires larger values of (9/(ft/E%)

than the current ones, and that a proportionality between M and 1/86 ,
2.05ns2.1, may be a good approximation at large values of 8. A few other
relations between M and € have been tried, but these have not been found
as accurate as M l/en. Eq (4.2:10) together with the values of n and C
shown in Fig 4.2 (13) a) may of course be used in order to attain
approximate extensions of the M/Mo vS. B/(ft/E) curves in Section

4,2.3.
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oi/ft—0.0 01/ft‘1'0

d/zch n c n c

0.025 1.98 5.3 2.00 6.0
0.050 2.04 7.7 2.05 8.0
0.10 2.06 8.5 2.06 8.9
0.20 2.06 8.8 2.07 10.0
0.40 2.09 10.5 2.1 13.5
0.80 2.08 1.3 2.13 17.7
1.6 2.1 14.2 2.18 28.8
3.2 2.10 17.1 2.18 42.1
6.4 2.08 20.7 2.21 71.8

Fig 4.2 (13) a) Coefficient n and C in eq (4.2:10) corresponding to
the curves shown in Fig 4.2 (9) and (Fig 4.2 (10) and
calculated by means of eq (4.2.11) and eq (4.2:12).

Where the numerical results in Fig 4.2 (13) a) and eq:s (4.2:9) and (4.2:10)
are concerned, it may be of interest to make a comparison to an anlytical
relation between M/Mo and e/(ft/E) valid at the extreme limit d/J(,c — 0 and
6/(ft/E)—>m. If, 1), d, GF and ft are assigned fixed values and, 2), E»w,
then the fracture develops as a rotation around a hinge in the upper edge
of the fracture section and the boundaries of fracture zone remain plane
during the fracture. If further on, 3) w < 6d, where w is the width of
the fracture zone corresponding to zero gtress, then an gpen crack has
developed at the edge of the fracture section. In these conditions and if
the shape of the 0-w curve is known, the bending moment, M, may be
calculated for any value of 6, Expressed in the dimensionless variables
M/M , d/{f . and 6/(f /E) one obtains:

0 ch t

If 1) d/sLch + 0
2) O/ (fy/E) + =
3) O/ (f/E)(d/ag,) 2 o

then
Moo 1 2 C 2:13
Mo W)™ (or(e /e (4.2:13)
where a = 3.60

n=2.00

C = (74/75)/(1/(6(1- 1773/4))) = 5.7
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The numerical values of o and C are dependent on the shape of the g-w

curve, and the present values are valid for the bi-linear shape shown in

Fig 3.2 (3) c¢). In the case of a non-zero constant value of d/lCh and
9/(ft/E))+:n, it is very probable that the ratio between the size of the
fracture zone and the size of the ligament grows without 1imit

and that the function f(e/(ft/E)) approaches a proportionality to

1/(e/f /E)) , but never quite reaches it. In theory, when d/£ -»o and
EV(ft/Eyeao it is quite possible that a limit for the functign f(e/(ft/E))
does not exist. However, in the last two cases, i.e. d/£ch = non-zero constant
and d/éLH?oo, there is no definite proof.

Standing at the end of a M vs, 8 curve of Fig 4.2 (9) or Fig 4.2 (10), we
have now armed ourselve with some different possibilities, i.e. eq (4.2:8)
and eq (4.2:9) and eq (4.2:10) together with Fig 4.2 (13) a), which
hopefully enables us to calculate M for the very large 6. But the most
suitable method of extrapolation is partly dependenet on its purpose,
which is why the extension of the curves in Fig 4.2 (9) and Fig 4.2 (19)
is left to the interested reader. In most practical applications the
values of M at very larges values of 8 are not believed to be very
important. HoWever, some of the relations dealt with in this Section are

ci/ft=0 Ui/ft:1'0
d/JLCh A B C D A B C D
.025 121. .626 152.  229. 124. .614 153, 229,
.050 73.9 .469 81.8 115, 73.7 .480 80.2 114,
.10 38.4 .459 40.7 57.3 39.2 .467 39.6 56.9
.20 20.7 .430 20.3 28.7 21.6 .439 19.3 28.2
.40 1.6 .387 10.2 14.3 13.0 .381 9.42 13.9
.80 6.76 .332 5.08 7.16 8.50 .290 4.55 6.73
1.6 4,23 ,265 2.57 3.58 5.87 .236 1.98 3.i5
3.2 2.73 ,202 1.29 1.79 4.41 .162 .754 1.36
6.4 1.77  .154 .642  .895 3.56 .106 .154 466
(of (F£/E))o
A= (0/(f/E), B = (W), C = SN )d(o/ (Fy/E))
D = J(M/M,)d(e/(,/E))
o]

Fig 4.2 (13) b) Values of rotation, (9/(ft/E)) , and moment,
0
(M/M ) , at the ends of the curves in Fig 4.2 (9)
0’0
and Fig 4.2 (10), and the area under the curves from zero

Lo fatfe srAN e d L mme An tafXala..
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of some interest in principle, not only where extrapolations are
concerned. Accurate estimations of M for large © are of particular
interest for evaluation of experimental results concerning determination
of the fracture energy, G_, by means of bending tests of notched beams.
The purpose of the present study has not been to investigate this matter,
i.e. the influence of the dead-weight on evaluation of G_, but for the
convenience of anyone who is interested in this problem and in the
development of a function f(e/(ft/E)) for large 0/(f /E), Fig 4,2 (13) b)
shows the present values of (8/(f /E)) , (M/M ) and the area under the
curves from zero to (e/(ft/E)-)o and from zero to infinity.

4,2.5 Remarks and comparisons

Firstly in this Section remarks and comparisons are made with regard to the
ultimate flexural strength, compare with Section 4,2.2, After that, a few
remarks and comparisons are made with regard to the study of fracture
hinges, compare with Sections 4.2.3 and 4.2.4.

A number of experimental investigations regarding the flexural strength of
unreinforced concrete beams are reported in literatsure: please see the
references in Section 4.2.1 and also {(Bonzel, 1965) and (Ivanyi, 1976).
Bonsel and Ivanyi summarize experimental knowledge in a rather thorough
manner by discussing a number of experimental results and provide a number
of references on the subject of flexural strength. A recent, though
essentially theoretical, study has beeen presented by (Konig and Jahn,
1983). Interesting results regarding the flexural strength of model
concrete mixes (mortar) has been presented by (Saabnis and Mirza, 1979).

In the quantitative sense the test results obtained during different
experimental investigations can hardly be expected to be entirely
unanimous. In spite of this there seems to be an almost complete
experimental agreement with respect to some more or less unexpected general
features of the flexural strength:

1) the flexural strength does not equal the tensile strength;

2) the flexural strength increases at decreased depth of the beam;

3) the flexural strength is less at four-point bending than at
three-point bending;

4) the flexural ctrnonath dnacenacne at dnrraacad Tannth of +he heam,
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These features are all in disagreement with the commonly adopted theory of
deterministic linear elastic brittle behaviour of concrete in tension. In
order to explain these more or less unexpected features a number of
explanations have been put forward. But with reference to eight different
experimental investigations carried out from 1922 to 1955. Ivanyi stated in
1976 "....feststellen, dass in Balken-versuchen erzielte Zugfestigkeiten
sowohl von der Art der Belastung - eine oder zwei Einzallasten - als auch
von den Abmessungen dess Prufkorpes abhangig sind; inbesondnere fiel eine
starke Abhdngigkeit von der Balkenhohe auf. Eine schlussige Erlduterung
dieses Phanomens is aus der Litterature bis heute nicht bekannt."

The disagreement between the traditional theory and test results might to
some extent be explained by such things as different maturity of the
concrete in different parts of the specimen due to water separation and the
unavoidable temperature gradients at hardening, non-uniform shrinkage
during possible drying of the specimen, lack of large aggregate particles
close to the edges of the specimen and so on. But if we assume that the
concrete may be considered as an isotropic stochastically homogenous
material and that no macroscopically non-uniform initial stresses are
present within the specimen, then the deviation between the traditional
theory and the test results may be caused by:

non-linear stress-strain response of the material;

the existence of a non-brittle tensile fracture softening;

scatter in the strength properties;

different rates of deformation of the material in different geometry
of the specimen and different types of loading.

W N =
— e

A non-linear stress-strain response can explain a difference between ff
and f , but cannot explain any influence on f_ of beam depth or type of
loading. The existence of non-brittle tensile softening, as taken into
account in the present fictitious crack calculations, provides an
explanation to differences between ff and ft and the influence of beam
depth on f . Scatter in strength can, in a qualitative sense,
theoretically explain both the difference between f and f , the influence
of beam depth and the influence of the type of loading. Different rates of
deformation of the material may to some extent influence recorded ratios
between f_ and f .

f t

In the calcule+innn in Cankinn 4 D % Aanl +ha nan _hrittla softening



4 - SPECIMENS, page 33

behaviour of the material was considered., Here the effect of the other
three possible reasons for deviations from the conventional theory shall
also be discussed. Before this, however, one should be reminded that the
softening of the material was only taken into account in the cross section
that was exposed to the greatest bending moment. Consideration of
simultaneous growth of several fracture zones may have some effect on
predicted flexural strength, but this effect on the predicted ultimate
strength is believed to be small,

Consideration of a non-linear.0 -¢£ curve most likely influences the
predicted values of f_, but it is difficult to estimate as to how and to
which extent. If non-linearities were to be taken into account, but not
scatter, then it is very probable that the calculated values of f_/f

would increase at high values of d/f , while f _/f ~at low values of d/l,ch
would be less infuenced. This may be realized by considerating the
limiting cases d/zbﬁvw , corresponding to the lower Timit of f /ft, and
d/Lc—e 0, corresponding to the upper Timit of f_/f . In this second case
non-linearities of the 0-€ curve do not influence ff/ft’ whereas in the
first case f_/f is easy to calculate at any assumption with respect to
the shape of the 0-€ curve. Fair assumptions with respect to the shape of
the 0-€ curve indicate that the predicted values of f /ft may be increased
by about 10-50 % at d/f — =, However, this does not appear to be in
agreement with experimeﬁta] results. In the theoretical study by (Konig
and Jahn, 1983) it is, with reference to tests by Heilmann in 1976, stated
that the 1imit value for the flexural strength of very deep beams is only
7-9 % higher than the tensile strength. This'disagreement for the very
large beams might be explained by scatter in the strength of the material
and by scatter in the stiffness properties of the material. As a scatter
in strength means that the weakest desicive part is weaker in large beams
than in small beams, the non-linear part of the 0-£ curve close to peak
stress is activated in a smaller number of points in the large beam than
in the small beam. Consequently it may be reasonable to expect that the
representative mean 0-€ curve is less non-linear in large beams than in
smail beams. Where intermediate values of d/{ _ are concerned, a non-
linear shape of the 0-¢ curve should have a bgneficial effect on the
stress distribution above the fracture zone, but probably a bad effect on
the ability of the fracture zone to transfer stresses. Qualitatively, a
decreased value of the tangential stiffness of the unfractured material in
the vicinity of the fracture zone might be looked upon as a decrease in
%h (a decrease = FY =+ Tancd 9F dho doncanddal cddffnncs dquring loading
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can be assumed to be equal to the tangential stiffnes during unloading.
This would mean that the contribution from the fracture zone to the total
bending moment capacity would become less if a non-linear 0U'-£€ curve is
taken into account. This matter suggests a decrease in predicted values of
ff in non-linear 0'-£ relations. It may thus be concluded that the shape of
the 0'-€ curve most probably influences predicted values of ff, but it is
not known whether the magnitude of this influence is significant or
negligible and it is nor yet known whether a non-linear modelling of the
0-t£ response would yield an increase or decrease in predicted values of

f . '

f

In order to estimate how scatter in strength may influence predictions of
ff/f one may first consider a single fracture section and then different
locations of the fracture section. We assume that the strength of
different small parts of the fracture section is according to some
probability density function with a certain mean value. Furthermore, it is
assumed that the strength of adjoining small parts of the fracture section
are independent of each other. On an assumption of ideal brittle fracture
behaviour of the material, the strength of the fracture section is
governed by the weakest small part of the fracture section. This is not
the case if the tensile fracture softening properties of the material are
taken into account. Instead, in this case a large number of the small
parts of the fracture zone - weak parts and strong parts, and more or less
fractured parts - all influence the bending moment capacity and each
contributes to resisting the external bending moment. If the breadth to
depth ratio of the beam is not exceptionally great, it may thus be
reasonable to assume that the different parts of the section co-operate in
the same manner as a number of parallel bars. This would mean that the
flexural strength of the studied fracture section is governed by a
summation, or integration, of the strength of the different small parts.
In mean, a sum is not influenced by scatter. Thus if we test a number of
specified fracture sections the mean flexural strength obtained would be
independent of the magnitude of the scatter in strength between different
individual small parts of the fracture section.

During bending or pulling of a specimen, fracture is not bound to take
place at some certain pre-specified section, but instead the fracture
section will be Tocated where the resistance is least in comparison to the
external action. In contradiction to the study of the strength of a
certain sectic~ *h~ ~tnnnmabh af o enncimen de cancanuent]y not governed
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by a sum of the strength of different possible fracture sections but by
the weakest link, This means that the mean strength of specimens is not
only dependent on the mean strength of the different sections, but also
clearly dependent on the scatter in strength between different sections.

To sum up the theoretical and somewhat simplified discussion above: the
strength of each section is governed by some kind of mean value of the
strength properties of the material and mean values are independent of
scatter; the strength of the total specimen is governed by an extreme
value of the strength of the different sections and extreme values are
dependent on scatter. In order to enable numerical calculations on the
basis of this qualitative discussion to be carried out the following
assumptions are made: the ratio f /ft of each particular section is in
accordance with the fictitious crack prediction; the scatter in strength
between different sections is described by the Weibull density function;
the magnitude of the scatter in strength (the coefficient of variation)
between different sections is independent of the. size and shape of the
sections. The Weibull density function is chosen because it makes
calculations simple and because this function appears to describe scatter
in strength of most engineering materials in rather a realistic manner.
The assumption of constant coefficient of variation independent of the
depth and width of the cross section can be discussed, but makes
calculations more simple and clear. Similarly, the initial assumption of
zero correlation in strength between adjoining small parts of the fracture
section can be discussed, but also this assumption makes the calculations
more simple and clear, The concept of the "weakest 1ink" and the Weibull
density function have been dealt with previously (Section 3.4.4), and
integration yields the following relations:

During constant bending moment along the bend specimen

e (ff) (EE)1/m
Z ?; section e, (4.2:14) a)
.f.‘
t
During three-point bending
f . 1/m 1/in
L t 4.2:14
- = (ft)section(k_f) (m+1) ( ) b)
f

ot
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During four-point, third-point bending

-+
-+

fe 1/m 3(me1) 1/m
= ( ( SAULADE
?_ section’i, m+3 (4.2.14) ¢)

1

—+ 1

t
F% is the predicted mean flexural strength of a specimen of length Zf, f
is the mean uniaxial tensile strength of a specimen of length Xt'
(ff/f )section is the ratio between the flexural strength and tensile
strength as predicted by fictitious crack caiculations in which scatter is
not taken into account, see Section 4.2.2. m is the parameter in the
Weibull density function that defines the magnitude of the scatter. As the
Weibull density function is adopted, the scatter in strength between
different sections is equal to the recorded scatter in strength between
different specimens provided that the scatter is expressed as the corre-
sponding coefficient of variation. Values of m corresponding to different
values of the coefficient of variation may be found in Fig 3.4 (5).

At zero scatter m—wand then eq (4.2:14) indicates that f_/f is equal to
(f_/f )section, i.e. equal to the fictious crack predictions of Section 4.
2.2. It is, however, believed that more realistic predictions ought to be
obtained if non-zero scatter is assumed - some comparisons will be dealt
with subsequently. The sensitivity to the magnitude of the scatter is
illustrated in Fig 4.2 (14), but in the subsequent comparisons we shall
throughout assume that the coefficient of variation in strength is either
0 %, corresponding to m—>w, or 8.7 %, corresponding to m=14, In eq (4.2:
14), the relation corresponding to uniformly distributed load along the
beam has not be included since this relation proved to be lengthy. The
relation may be found by comparison to eq (4.6:11). See also Fig 4.6 (5),
where numerical values may be found. Eq (4.2:14) requires that the bend
and tensile specimens respectively have cross sections of constant depth
and width along the specimen, but it is probably not very complicated to
derive similar relations in the case of varying width and depth of the

cross section along the specimen.

The rate of deformation during flexural and tensile testing is likely to
have som influence on the recorded values of strength, Thus, for instance,
at a constant rate of deflection of a beam in bending the rate of
deformation within the material is increased at an increased depth of the
beam, provided that the length of the beam is kept constant. This would
theoretically ’ ' oo B T =* ~*rength of deep
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fflﬁ
¢ /) section i
A '
14 L =10
13
1.2
A;—l—JT;; lfllt = 10
11 - ——
———— g5 =50
10 ==
091 T = i =50
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0.7 -
0 5 10 15 20 Coeff of var, s (%)
| .
[ T T T T [ i | bl
® 80 40 20 14 10 8 6 Weibull-parameter, m

Fig 4.2 (14) Theoretical prediction, eq (4.2:14), regarding influence of
scatter in strength on the ratio between mean flexural
strength, f_, of a specimen of length 1_and mean unaxial
tensile strength, F;, of a specimen of 1ength{£.

(f /f) . = ratio between flexural strength and tensile
f' t'section | R
strength of individual cross sections = fictitious crack

prediction of F}/f; at zero scatter in strength,

beams. The frequently referred to results of McNeely and Lash in 1963 do
not, however, suggest any clear influence of the rate of loading on
-flexural strenth if the stress rate is within the approximate range 1
MPa/min to 10 MPa/min, which range probably cover most short time static
tests of strength, As to very substantial variations in the rate, the
experimental results seem to suggest that a ten times increase in the rate
gives in mean an approximate 10 % increase in the flexural strength.
(Other investigators have found both smaller and greater influence of the
rate of loading.) But as static short time flexural and tensile tests are
normaliy carried out in such a way that failure takes place after
approximately the same time independent of the geometry of the specimen
and the type of load, it appears to be a fair approximation to negiect the
possible influence nf different ratec of deformation on recorded relations
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between flexural and tensile strength and on relations between flexural
strengths of different types of specimens.

To sum up this discussion on how properties of concrete, not taken into
account in the fictitious crack calculation in Section 4.2.2, may
influence the predictions of flexural strength: modelling of the
simultaneous growth of several cracks is not believed to have any major
influence on the prediction of ultimate strength; consideration of a non-
linear d-¢ curve (and also a more modulated non-linear shape of the g-w
curve) is 1ikely to influence the predictions, but it is not known in
which way nor whether the influence is significant or negligible, the
influence of scatter is taken into account by means of eq (4.2:14); the
influence of rate of loading is estimated to be negligible regarding
normal short time static tests.

So far we have concentrated on theoretical predictions by using the
fictitious crack model, but in order to make comparisons, different
theoretical models are put together in Fig 4.2 (15). The models in this
figure might be looked upon as different special cases of the type of
model represented by eq (4.2:14), and the six different models represent
the six possible combinations with regard to the type of assumption
concerning fracture toughness (the value of Ech: zero, infinite or more
realistic) and scatter (the value of m: infinite or more realistic). With
the exception of the "plastic stochastic" model, the models of the figure
are all well- known or have been discussed above or in previous Sections.
The plastic stochastic model is analogous to eq (4.2:14), but each
cross-section of the specimen is assumed to be able to behave in an ideal
plastic manner.

The models in Fig 4.2 (15) basically represent different assumptions with
regard to the stress-deformation behaviour of concrete in tension, and
judging by the basic assumptions it appears quite clear that the
fictitious crack model, taking scatter into account, ought to produce
better and more realistic predictions than any of the other models.

Judging from comparisons between predictions and tests, one may
immediately conclude that the traditionl deterministic linear elastic
brittle model and the two plastic models are clearly inaccurate in both
the qualitative 2md ~uantitativa conca
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Fig 4.2 (15) (Part 1 of 2) Summing up of theoretical models, which
predict ratio between mean flexural strength, F , and
mean uniaxial tensile strength, ?t’ of concrete and

similar materiale.
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The Weibull-model and the fictitious crack model, scatter taken into
account, expose similarities regarding the prediction of flexural
strength: the predicted relative influence of the type of load and the
length of the beam are quite the same and both models predict a decrease
in strenght at increased depth of the beam. One basic difference between
the models concerns the predicted influence of the width of the beam:
according to the Weibull-model an increase in the width of the beam has
quite the same effect as an increase in the depth, while according to the
present fictitious crack prediction the width of the beam is of no
importance. Any experimental numerical values regarding possible influence
of the width of the beam, other variables kept constant, is not known to
the writer. However, after a discussion about a number of tests carried
out in different laboratories (Bonzel, 1965) concludes: "Zusammenfassend
kann aus den besherigen Versuchen gefolgt werden, dass im Bereich ublicher
Abmessungen grossere Balken geringere Biegezugfestigkeiten ergeben als
kleinere. Jedoch beeinflusst die Balkenbreite die Biegezugfestigkeiten

nahezu nicht."

Also (Ivanyi 1976) went through test results available in literature and
stated at a discussion of the Weibull-model that this model is "offen-
sichtlich falsch" as the model predicts the same influence of the width,
length and depth of the beam. During flexural tests of beams with
rectangular cross section and made of china it was found that the strength
became significantly greater if the cross section was placed lying
(width>depth) instead of standing. This is in disagreement with the
Weibull-model, which predicts equal strength for each case, but in
agreement with the fictitious crack prediction. The difference in strength
may however also be caused by possible anisotropy of the china. Another
qualitative difference between the models concerns the strength of
extremely deep beams: According to the Weibull-model the flexural strength
approaches zero, while according to the ficitious crack model the strength
approaches a non-zero value which at approximately equal length of the
flexural and tensile specimens respectively is of about the same magnitude
as the uniaxial tensile strength. Also with regard to this qualitative
difference between the models it is found that the Weibull-model is in
disagreement with test results, while the fictitious crack prediction may be
correct: With reference to the test carried out by Heilmann in 1976, Konig
and Jahn (1983) state that the Timit flexural strength for very large beams
is from 1.07 to 1.09 times the uniaxial tensile strength, and not zero. We
may therefore da 1s, that the
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Weibull-model does not predict flexural strength correctly. Numerical,
guantitative comparisons between tests and predictions support this
conclusion, see Fig 4.2 (16).

In some Weibull-type analyses weak parts of the material are not assumed
to be distributed over the volume of the specimen, but only over the
surfaces. But by the same type of discussion as described above, one may
conclude that this alternative type of Weibull-analysis does not predict
flexural strength correctly either.

It is unfortunately often difficult to carry out accurate numerical
comparisons to tests reported in literature as the required information
about basic material properties and about the manner in which the tests
were carried out is often not available in detail. In spite of this, some
comparisons will be made. (Petersson, 1981) determined flexural strength,
uniaxial tensile strength, fracture energy, G_, and modulus of elasticity,
E, for different qualities of concrete. During the flexural tests three-
point bending was applied and the specimens had the dimensions tfbfdf =
200 x 50 x 50 mm , where £¥ was the free distance between the supports.
The tensile specimens had a cross section of bd =50 x 50 mm and the
loaded part of the specimens had a nominal 1en5th of 80 mm. During the
tensile tests a certain type of grip with wedge-shaped rubber inserts was
used and it was reported that these inserts were deformed during loading
in such a manner that the loaded part of the specimen might in reality
have had a length of 120 mm. As to the current theoretical predictions it
is assumed that the Toaded part of the tensile specimen had a length of
100 mm. In Fig 4.2 (16) the experimental results of Petersson are
indicated by dots and the current theoretical results by curves. As to the
theoretical results in which scatter is taken into account, the parameter
m is put equal to 14. In none of the theoretical results is any influence
of the limited length to depth ratio of the specimens taken into account:
As to the Weibuli-prediction influence of shear stresses are not taken
into account and the bending stresses are assumed to vary linearly along
the depth of the beam, and where to fictitious crack predictions are
concerned it is assumed that the results in Fig 4.2 (3) may be
interpretated as M /(f bd /6) in spite of the limited length to depth
ratio of the three-point bend specimen, In the deterministic fictitious
crack prediction one may easily take into account the influence of the
limited Tength to depth ratio with the help of Fig 4.2 (3). This is,
however, not d - itent approach at
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Fig 4.2 (16) Ratio flexural strength to uniaxial tensile strength,
f /f , Vs. ratio d/l . d=constant=50 mm. Experi-
menta] results accord1ng to (Petersson, 1981) and predic-
tions according to three theoretical models of fracture.

The dots represent mean values.

the different theoretical predictions. Fig 4.2 (16) indicates that the
influence of the material property I seems to be satisfactorily
described by the fictitious crack mo§e1 and that the absolute values of
the ratio between flexural strength and tensile strength are accurately
predicted when a reasonable magnitude of scater in strength is taken into
““luence of £
ch

e [P Y S - P I

account. Of cours:
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and the prediction of the ratio between flexural strength and tensile
strength is in disagreement with the experimental results. The theoretical
predictions of the ordinary deterministic linear elastic brittle model and
the plastic models are not indicated in Fig 4.2 (16), but are very much in
disagreement with the experimental results.

The influence of lch on the ratio ff/ft indicated in Fig 4.2 (16) may be
of practical importance, in particular in comparisons between low, normal
and high strength types of concrete. In high strength types of concrete
one may expect that the crack will pass through the aggregate particles
instead of around them. This may cause a decrease in G_ which together
with an increase in f will probably result in a more brittle behaviour (a
decreased ,Qh=EG /f ) of the high strength types of concrete and thereby
a decrease in the ratio between flexural and tensile strength. The
experimental results obtained by (Petersson, 1981) indicate that an
improvement in the strength of the concrete (the water-cement-ratio varied
from 0.7 to 0.3) from ft=2.4 MPa to ft=4'5 MPa gave a decrease in ih from
510 mm to 280 mm and a decrease in ff/ft from about 2.24 to about 1.94.
Decrease in ratio f_/f during improvement of the quality of the concrete
is also reported by Neville (1981). A diagram by Neville showing f wvs. f
yields: ff/ft=2'00 at f =1,0 MPa; ff/ft=1.77 at ft=2.0 MPa; and ff/ft=l.65
at f =4,0 MPa. More careful work during mixing and casting of high
strength concrete may also influence ff by decreased scatter in strength:
if the flexural and tensile specimens are of equal length, according to
Fig 4.2 (14) a decreased scatter produces a decrease in ff/ft'

In addition to the comparison in Fig 4.2 (16), in Fig 4.2 (17) (three pages)
different test results from literature are compared to the theoretical re-
sults obtained by means of the fictitious crack model, taking the influence
of scatter into account by means of eq (4.2:14), assuming a 8.7 % scatter

in strength corresponding to m=14. The latter figure concerns the relative
influence of depth of the beam, length of the beam and type of loading.
While information required to enable comparisons with regard to absolute
values of flexural stength is not available to the writer, the current theo-
retical curves are based on certain assumptions regarding the uniaxial ten-
sile strength and other parameters. The assumptions made in order to enable
theoretical calculations are given in the figure-text. Fig 4.2 (17) indi-
cates that eq (4.2:14) seems to predict the relative influence of the dif-
ferent variables in a good or reasonable manner. The ability of eq (4.2:14)
to predict the = - ! S - f flexural
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strength is illustrated by Fig 4.2 (16). Where Fig 4.2 (17) is concerned,
it may be noted that better agreements between tests and theory are
possible if other values of £ and m are adopted. Thus, for instance, if
a larger scatter in strength %han 8.7 % (m=14) is relevant for the
concrete used by Wright (Fig 4.2 (17) a), b), ¢), and d)) then eq (4.2:14)
is in better agreement with the tests than as indicated by the figure.

Naturally, the test results shown in Fig 4.2 (17) do not represent all the
tests reported in literature, but are believed to be typical. The only
test results which clearly deviate from other test results are those in
Fig 4.2 (17) f) obtained by Nielsen in 1953: at beam depths of 100, 150
and 200 mm, length and width kept constant, an almost constant flexural
strength was obtained: 47.6, 47.0 and 47.3 kp/cm?, (Current theoretical
prediction: 50, 47 and 45 kp/cm?). These uncommon test results may be
incidental or have a simple explanation, which is unknown to the writer,

The influence of the length .of the beam is not very clearly indicated by
the test results in Fig 4,2 (17) and consequently some additional infor-
mation may be appropriate: in 1928 Gonnerman and Shuman found that an
increase in Tength from 350 mm to 1550 mm resulted in an approximate 10 %
decrease in strength during three-point bending but no systematic change
during four-point bending (theoretically at m=14: a 10 % decrease); in 1932
Kellerman found that an increase in length from 460 mm to 690 mm resulted,
in mean, in a 5 % decrease in flexural strength both during three- and
four-point bending (theoretical at m=14: a 3 % decrease); in 1953 Johnsson
found thats an almost four fold increase 1n(1ength resulted in a 6 %
decrease in flexural stength (theoretically at m=14: a 9 % decrease).

Naturally, the theoretical model represented by eq (4.2:14) is an
idealization and simplification of reality. On the other hand, the model is
based on basic material properties, the model is simple and furthermore
there is no other theoretical model known to the writer at present which
seems to be able to predict flexural strength of unreinforced concrete and
similar materials as qualitatively correct and numerically accurate. In
spite of this, one may of course not expect the model to produce exact
predictions of flexural strength. Where the different models in Fig 4.2
(15) are concerned the current study also suggests, not very surprisingly,
that the model which is based on the most realistic basic assumption with
regard to the stress vs. deformation properties of concrete in tension also
gives the best r
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Fig 4.2 (17) a)-h)

(Three pages). Flexural strength of concrete, mortar

and plaster: Test results compared to theoretical

results obtained by means of eq (4.2:14) and Fig 4.2

(3).

o (test) and T (eq (4.2:14)) indicates three-point
bending.

¢ (test) and F (eq (4.2:14)) indicates four-point
bending.

Figures a)-d): tests by Wright, 1952 (Bonzel, 1965};

e) Linder and Sprague, 1955 (Ivanyi, 1976); f)

Nielsen, 1953 (Bonzel, 1965); g) (Sabnis and Mirza,

1979); h) Berenbaum and Brodie, 1959 (Ivanyi, 1976),

Assumptions regarding theoretical calculations:

{Ch=400 mm (concrete), 100 mm (mortar) and 50 mm

(plaster); m=14 (concrete, mortar, plaster). (Chosen
assumed values of ft (with reference to I =100 mm):
figures a)-d) 2.09 MPa; e) 3.51 MPa (at

8f/df=5>; f) 3.57 MPa; g) 3.70 MPa; h) 3.13 MPa.
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With regard to the study of the influence of initial stresses presented in
Section 4.2.2, only a brief comment will be made in adition to those in
Section 4.2.4. The computational results are valid for one certain
assumption of the distribution and magnitude of initial stresses, while
the real non-uniform distribution of shrinkage strains, assumed to cause
the initial stresses, varies with time. Interaction with creep as well as
increase in the true tensile strength during limited drying may even yield
a higher flexural strength after drying than before the drying started.
The assumed distribution and magnitude of the initial stresses are, ‘
however, not entirely unrealistic and initial stresses rather similar to
those assumed are likely to occur at some instant during the course of
drying. As to loading sustained during drying one may thus assume that the
calculated values of flexural strength may in approximation form an upper
1imit of the load carrying capacity.

The bending moment vs. fracture hinge rotation relations in Section 4.2.3
enable at first hand fictitious crack analyses of statically indeter-
minate beams. An example of such an analysis is given in Section 4.6.5,
see Fig 4.6 (10). This example is rather special as it concerns a curved
beam when normal forces act across one of the fracture sections simul -
taneously to the bending moment. But in spite of this, the computational
method described in Section 4.6.5 should be possible to apply also to the
more simple case of a straight statically indeterminate beam in which the

normal force is zero.

In general, numerical ultimate load analyses of statically indeterminate
beams require information about the behaviour of the fracture hinge at
unloading, i.e. at decreased rotation. In Section 4.2.3 only the behaviour
at loading, i.e., at increased rotation, is dealt with., However, a simple
assumption with regard to the unloading behaviour of fracture hinges and
the corresponding unloading behaviour of fracture zones is dealt with in
Section 4.6.5, see Fig 4.6 (12) and Fig 4.6 (13).

The M vs. curves in Section 4.2.3 describe the bending moment vs.
additional deformation during the growth of one single crack, and in such
a case it is natural to relate the moment to rotation, not to curvature.
If the growth of several fracture zones is taken into account, the
deformation should preferably be described by a bending moment vs.
curvature diagram as long as the moment is increasing at increased

deformation and " when the moment
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is decreasing during increased deformation., When the bending moment
capacity in a section starts to decrease, the curvature becomes localized
and it is hardly possible to describe a decreasing moment at increasing
deformation as moment vs. curvature (unless the curvature softening is
assumed to take place along some certain defined length of the beam). The
"curvature localization" in ordinary plane-cross-sections-remain-plan beam
analysis is analogous to the phenomenon of strain localization in a bar in
tension. The analogous description of the strength and stiffness
properties of a section of a beam is shown in Fig 4,2 (18).

Due to the method of analysis applied in Section 4.2.3, in which the
growth of only one fracture zone was considered, both ascending and
descending parts of the moment curves are included in Fig 4.2 (5) to 4.2
(10}, In order to transform the ascending parts of these moment vs.
rotation curves into moment verus curvature in a simple approximate
manner, it is necessary to make an assumption regarding the distance
between the fracture zones. This distance should preferably not be assumed
to be a constant, but related to the depth of the fracture zones. A
reasonable assumption with respect to this spacing between the cracks
together with an assumption regarding the unloading properties of the
fracture zones should enable the estimation of the moment verus curvature
relations for the ascending parts of the moment curves. Such estimations,
being left to the interested reader to carry out, may be of significant
importance regarding predictions of deflection but probably of less
importance where predictins of ultimate strength are concerned.

The ultimate load of statically indeterminate beams is governed by the
strength of the fracture hinges and the ratios between the stiffness of
the fracture hinges and the stiffness of the parts of the beam outside the
fracture hinges. The dependence of stiffness properties makes it, in
general, necessary to carry out a calculation of ultimate load in a
numerical manner with the help of a computer program. It should, however,
be possible to calculate upper and lower bounds of the ultimate load of
statically indeterminate beams by more simple means. To illustrate this,
the statically indeterminate beam shown in Fig 4.2 (19) is taken as an
example, and it is assumed that the properties of the beam are described
in the manner shown in Fig 4.2 (18). To simplify the calculations and
facilitate the use of ordinary hand-books in structural mechanics, it is
furthermore assumed that the moment vs. curvature relation may be
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Fig 4.2 (18) Principle for description of strength and deformation
properties of a section of a beam.

represented by a straight line. Simple considerations of equilibrium
indicate that the load is proportional to a weighted sum of the absolute
values of the bending moments in the fracture hinges: P=3(|MA|+3|MJ)
/(24) for the beam in Fig 4.2 (19).

If the beam is very slender, the deformations of the fracture hinges
(before their complete collapse) are very small in comparison to the
deformations of the unfractured elastic parts of the beam. Thus there is no
beneficial influence of the rotation capacity of the hinges. This means
that the statically indeterminate very slender beam will behave in a
brittle manner and that the bending moment distribution along the beam is
the same as if the fracture hinges had zero rotation capacity. Accordingly,
the ratio between the bending moments in the fracture hinges is constant
during the course of loading and in accordance with the ordinary linear
elastic bending moment distribution. For the studied beam: IMA!/IMB]=

6/7. Thus P =3 M (6/7+3)/(22)=81/14 (M /L). By knowing of f ,

d/Jlc and the size of the cross sectiog, M may be obtainedtwith the help
of Fig 4.2 (3). The timiting case of extreme slenderness, corresponding to a
brittle global behaviour of the beam, forms a lower limit for the ultimate
load of the statically indeterminate beam.

On the other hand, the parts of the beam between the fracture hinges may
be considered as being indefinitely stiff. This means that the ratios
between the rotations of the fracture hinges is constant during the entire
course of loading and collapse. Accordingly, when the rotations in any one
of the hinges h other hinges



4 - SPECIMENS, page 52

P
* large —«— |/d —s small
—w———}d
A x B 81 (M L
___(_!)_<_ Ry < 84 (.h_‘!)
* b 1\ 1% \1

Lo
VK TE

Fig 4.2 (19) An example and illustration of the calculation of upper
and lower bounds of the uitimate load carrying capacity
of statically indeterminate beams. M is the ultimate
bending capacity of the fracture hinges A and B.

are also very small. Provided that the (descending) slope of the M vs.
curve is finite, this means that the bending moment in the different
fracture hinges reaches the maximum value, M , at the same time. This
corresponds to an upper limit of the u]timatg load of the statically
indeterminate beam. For the beam in Fig 4.2 (19) one obtains:

P =3M /(1+3)/(24)=84/14 (M /f). Here P is the ultimate load in the
tﬁeorgtical l1imit of extre;e stiffnessuof the beam, while M , i.e. the
ultimate moment capacity of a section of the beam, has the game value as
in the above discussion regarding the opposite Timit of extreme
slenderness of the beam.

Calculations of upper and lower bounds by means of the method exemplified
above are simple to carry out and may be used for approximate estimations
and during control of results obtained numerically with the help of a
computer program with due consideration to the slenderness of the beam and
to the bending moment vs. rotation curve. As compared to the general upper
and lower bound hypotheses discussed in Section 3.5.2, the present upper
and lower bounds give a more precise result but require knowledge of the
actual ultimate load carrying capacity of the sections of the beam,

In the example in Fig 4.2 (19), the difference between the upper and lower
bounds is small, and in such a casae a good estimation of the ultimate

load may be obtained merely buy knowledge of M and without consideration

of the M vs. @ curve of the fracture hinges. Ig other cases the difference
is greater, Taking the beam in Fig 4.2 (19) as an example: a point load at
x=4/2 gives (16/3)(M /4 )<P <(18/3)(M /&); a point load at x=4/3 gives
(54/10)(M /z)spl§(7s710)(M:/z); and uniformly distributed load gives 8(M /0)

u
IS (QE)us(5+ Vv rds a curved
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beam, is dealt with in Section 4.6.5.

If the moment vs. rotation curve includes an ascending part, then one has
to take into account the numerical values of the ratios beween the
rotations of the hinges in order to accurately calculate the ultimate load
corresponding to the theoretical limit of extreme stiffness of the
unfractured parts of the beam. Additionally, if the M vs. 8 curve includes
an ascending part of extraordinary shape, it is possible to find types of
beams for which the 1imit of extreme stiffness does not corrspond to an
upper timit of the ultimate load.

It may also be noted that the locations of the fracture hinges is not
always the same in two extreme limits. The case of a uniformly distributed
load acting on the beam shown in Fig 4.2 (19) may serve as an example.

The influence of scatter in strength on the ultimate load of statically
indeterminate beams may be a subject for future studies.

It has not been possible to carry out any direct comparison of the M vs. &
curves in Section 4.2,3 with experimental results. The lack of
experimental results in available literature may be explained by
difficulties in possible efforts to attain stable collapse of an unnotched
unreinforced concrete beam. In addition, it is possible that fracture of
unreinforced and un-notched concrete beams has not previously been
described in terms of bending moment vs. rotation.

It has also proved somewhat difficult to carry out informative comparisons
between the current M vs. @ curves and similar curves obtained by means of
other theoretical models. The descending part of the M vs. & curves is not
possible to obtain during theoretical calculations based on a conventional
linear or non-linar stress-strain descriptions of the material (unless the
curvature localization is assumed to take place along some certain non-
zero defined length). The ideal plastic models predict a trivial M vs.
curve: a constant value of M independent of how much © grows. Linear
elastic fracture mechanics and other traditional fracture mechanics models
are not directly applicable as there is not notch or initial crack in the
studied type of beam.

In spite of this, if one assumes that an inital crack in the Tower edge of
the beam exists rves by means
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of the linear elastic fracture mechanics. The results of such
calculations are shown in Fig 4.2 (20) a) and b), where a comparison is
also made with the result of the fictitious crack calculations. The
fictitious crack results are according to Section 4.2.3 and have therefore
been obtained without the assumption of the existence of an initial crack.
a/d indicates the relative depth of the assumed pre-existing crack and it
is quite obvious that the first part of the curves, as obtained by linear
elastic fracture mechanics, is very dependent on the depth of the assumed
pre-existing crack. If the depth is put equal to zero then M/M becomes
infinitely large before fracture starts to develop. The ]1nearoe1astic
fracture mechanics result shown in Fig 4.2 (20) a) and b) have been obtained
by means of finite element analysis of the beam shown in Fig 4.2 (1).
Stress intensity factors (obtained from the rate of energy release) and
defiections were determined by step-wise uncoupling of the nodes along the
crack propagation path, In Fig 4.2 (20) a) and b), it might be of interest
to note that the M/Mo vS. Q/(ft/E) curves as obtained by the two
theoretical models do not approach each other in a continious asymptotical
manner, but crosses each other instead. This is to be expected as the area
under the complete curves should become the same in fictitous crack
analysis and in linear elastic fracture mechanics analysis (if the depth
of the assumed crack is zero), compare Section 4.2.4 and eq (4.2:8).

It is possible to choose the depth of the assumed pre-existing crack in
the linear elastic fracture mechanics analysis in such a way that the
calculated ultimate bending moment coincides with the ultimate moment as
obtained by fictitious crack analyses. In general, however, this proper
choice is dependent on both the properties of the material and the depth
of the beam, see Fig 4,2 (20) c). This figure has been obtained with the
help of Fig 4.2 (2) and a polynomical series expression for the linear
elastic stress intensity factor, K, which may be found in (Hayes, 1975).
This expression was used instead of the values of K currently obtained by
means of finite element analysis as the polynomical series is believed to
be more accurate for small relative depths of the crack. For large values
of d/£,h, d/,eCh 2> 3.2, the figure indicates that the relevant choice of
the depth of the pre-existing crack approaches a constant fraction of

EG /f and is thus dependent only on the properties of the material and
1n§ependent of the size of the beam. The constant fraction of EG /f
obtained for large values of d/¢ is very close to 1/4 and is rgco;nized
as the parameter a , critical crack length, used in linear elastic

~1 according to

fracture mecha °
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the linear elastic fracture mechanics at the crack length a 1is equal to
the ultimate load according to the ordinary theory of 11nea? elastic
brittleness at crack length zero. According to Hayes (1975), the stress
intensity factor for a surface crack in a half- sgace semi-infinite plate
is Gvﬁ' 1. IZV__, and thus a —1/ (1. 12VF_ (K /f ~

1/4(EG /f ) 1/4(EG _/f 2) 1 /4, if G =G_. The approximation

1/(1.1%Wf )2=1/4 correspondghto 0.7 %cdesiation in ultimate load. The
deviation between the current asymptotical value and the approximate
theoretical value, 1/4, is very small and may be due to the approximations
involved in the different numerical calculations. As to calculation of
ultimate strength, the result shown in Figure c) means that linear elastic
fracture mechanics may be used if d/f 3.2 and the depth of the assumed
crack is made to equal 1 /4. If d/4 N is even greater, let us say if
d/){,ch > 20 (compare a]socFig 4,2 (2)), then Mu/Moxl.OO and for this case
thus the ordinary linear elastic brittle theory may be used as an
alternative if only the ultimate strength is to be calculated. As to the
calculation of M vs. 8 curves at d/zchz,3.2, Fig 4.2 (20) suggests that

approximately the same result wili be obtained during fictitous crack
analysis and linear elastic fracture mechanics analysis, provided that a
pre-existing crack of depth L /4 is assumed in the last type of analysis.
This matter may be useful when analysing very large structures as
fictitious crack analyses require a large number of finite elements in
such cases. During increasing d/)Z,Ch the Mvs. 8 curves as obtained by the
two methods of analyses should approach each other gradually. In “normal”
or small values of d/f,ch one may not expect the two methods of analyses to
yield the same M vs. 9 curves even if the depth of the assumed pre-
existing crack is chosen in accordance with Fig 4.2 (20) c), see Fig a)
and b},

Finally, in conjuction to the above discussion of the initial crack depths
necessary to assume during linear elastic fracture mechanics analysis,
computational results regarding the length of the fracture zone, s, are
shown in Fig 4.2 (21). The fracture zone lengths were obtained during the
fictitious crack analysis described in Sections 4.2.2 and 4.2,3. The two
congruent full curves indicate the length (and the depth) of the fracture
zone at the instant of ultimate load. The two dashed curves indicate the
length of the fracture zone at the instant when the stress across the
fracture zone in its lower edge is equal to f /3 (compare the actual bi-
linear shape of the 0-w rurve. Fia 3.7 (3) c)). The two point-dashed

curves indicate int when the
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Fig 4.2 (20)

Fracture hinge rotation of rectangular cross sections.
Comparison between linear elastic fracture mechanics
(LEFM) and fictitious crack model (FCM).

a) Bending moment, M/M , vs. fracture hinge rotation,
e/(ft/E), accordingoto LEFM at different depths, a,
of assumed pre-existing crack and according to FCM at
zero depth of initial crack. d/JLch = 1.6

b) Same as a), but d/4 h = 0.1
(

c) Depth, a, of pre-existing crack necessary to assume dur-
ing LEFM-analysis in order to obtain the same ultimate
flexural strength as in the FCM-analysis of the ini-
tially uncracked beam, It is assumed that GC=GF.
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stress in the lower edge of the fracture zone has decreased to zero. It
can be noticed that the length of the fracture zone at peak load seem to
approach a constant value during increase in d/ . The asymptotical
constant length happens to be almost exactly L /4, However, the actual
constant length is dependent of the shape of tﬁe 0-w curve and it is only
an incidential occurance that this length happens to be equal to the
relevant asymptotical depth of the initial crack, necessary to assume
during linear elastic fracture mechanics analysis, Fig 4.2 (20) c). In Fig
4,2 (21) it can also be seen that only the first linear part of the actual
bi-linear 0-w curve is activated at the instant of ultimate load. For the
case of non-zero initial stress, the length of the fully developed
fracture, if expressed as s/d, expose a drastic increase from s/d=~0.3 to
s/d =~ 0.8 when d/lth is decreased from about 0.8 to about 0.2. As a general
result for concrete beams - concrete having values of £ in the order of
400 mm - Fig 4.2 (21) suggests that the lengths of the fﬁacture zone are
significant: for small beams s/d is large, and for large beams s is large.
As compared to épecimens with a sharp initial crack, e.g. according to
Sections 4,3 and 4.4, it is by principle interesting to notice that the
length of the fracture zone at peak load does not approach the length of
the fully developed fracture zone when d/!,Ch is increased towards very
large values.



.01

Fig 4.2 (21) Length (and depth), s/lth, of fracture zone vs. d/4 .
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0',/ft indicates magnitude of initial internal stress.
i

s/d indicates relative depth in beam.

- Llength at instant of ultimate load.

— — — —— Length when stress=ft/3 across lower edge
of fracture zone,

. — - — Length when stress=0 across lower edge
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4.3 MWedge-force loaded cracked plate

4.3.1 Introduction. Geometry of specimen

About a decade ago Kesler, Naus and Lott (1971) and Naus {1971) presented
an extensive experimental investigation concerning the applicability of
linear elastic fracture mechanics to cement pastes, mortars and concretes.
The test results, as presented in these references, very clearly suggest
that linear elastic fracture mechanics is not applicable to the
investigated types of materials. In particular it was found that K is
very dependent on the depth of the crack and is therefore not a ma%eria]
property constant, The results and conclusions of Kesler, Naus and Lott
have frequently been referred to in subsequent literature on fracture
mechanics analyses of concrete and similar materials.

However, in 1980 Saouma, Ingraffea and Catalano (1980) presented a re-
evaluation of the test results of Kesler et al. and reported that two
serious errors had ben committed in the original calculation of K from
the experimentally obtained values of ultimate load. The re-eva]ugtion was
carried out with the help of a finite element method, and at the re-
evaluation it was found that K did not depend on the depth of the

crack but had an almost constaﬁt value for each type of material, taking
into account a normal and reasonable magnitude of scatter in test results.
Saouma et al came to the conclusion that a K approach to cracking in
concrete structures is valid and that the cause of the delay in integration
of linear elastic fracture mechanics concepts into numerical codes for the
study of concrete cracking has now been overcome.

The study presented in this Section has two purposes:

1. Verification of the linear elastic fracture mechanics analysis of
"Saouma et al.

2., By fictitious crack analysis and by comparisons between the
fictitous crack analysis, the linear elastic fracture mechanics
analyses and the test results, try to determine whether the
tests of Kesler et al. may provide information or any conclusions
regarding to the applicability of the two current theoretical mo-
dels of fracture.
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+
8= 51 mm
P H= 305 mm
457 mm
—k H
b w=¢ 610 mm
762 mm
Pa 914 mm
k——9~4—————4 % 0
§ - + D'{ 32 mm

Fig 4.3 (1) Geometry of specimen, No tests for D=0, Present analyses
only for H/W=0.5.

The type of specimen used by Kesler et al. was the rectangular plate
specimen with a flaw (an initial crack) along its plane of symmetry and a
loading hole located at the centre of the specimen, see Fig 4.4 (1).
Plates of different geometrical shapes and different depths of the initial
crack were used:

H »~ const = 12 in (=305 mm);

R

R

B~ const = 2 in (= 51 mm);

D~ const = 1.25 in (= 32 mm);

W =18, 24, 30 and 36 in (457, 610, 762 and 914 mm);
0. '

A

R

1 < 2a/W < 0.6.
total of about 160 specimens were tested. The number of materials tested
were eight: 2 pastes, 2 mortars and 4 concretes.

The present investigation only concerns one of the specimen shapes, that of
W=24 in (610 mm). This size and shape were used during all the tests on one
of the mortars. In order to enable verification of the results of the LEFM
analysis, a specimen without the loading hole, i.e. D=0, is also studied.

The notation for specimen geometry adopted in this Section, 4.3, is partly
in disagreement with the notations used in other parts of the report, but
have been chosen instead in accordance with the main references of this
Section, The fictitious crack analyses were first performed on the
assumption of a single straight line relation between stress and

widening w of th I " wnalyses were
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carried out on the assumption of the bi-linear shape of the o-w relation.
Saouma et al. have presented the computational results from their inte-
resting re-evaluation also in (Saouma, Ingraffea and Catalano, 1982)?
Some of the results presented in Section 4.3.3 are also shown in

(Hillerborg, 1982).

4,3.2 Determination of K

If D=0 and if H and W are very large, i.e. if a/H-0 and a/W -0, then
according to Westergaard:

o P Vo
BVW  \r2a/W

(4.3:1)

With reference to studies by Westergaard, Irwin and Gallagher, Kesler et
al used a modification of eq (4.3:1) which takes into account an influence
of finite width, W, of the specimen:

p V2~ (4.3:2)

) B W Vsin(wZa/w)

It can be noticed that eq (4.3:1) and, for 2a/W<0.5, also eq (4.3:2) pre-

dicts that K/P will decrease at increased length of the crack. >{K/P)/d>a<0
means that a crack is predicted to grow in a stable manner and accordingly
the ultimate failure load should not be corresponded to the initial length

K

of the crack during the calculation of K . During the calculation of K ,
the ultimate failure load should correspond instead to the crack length
where 3(K/P)/>a=0. This was pointed out by Saouma et al. and was reported
to be one of the errors committed in the original evaluation of KC.

Eq (4.3:2) does not take into account the influence of finite height, H,
and presence of the hole, In 1971 Newman published an analytical solution
for K in which finite values of both W and H, but not the presence of any
hole, are taken into account. He presented his results in tabular form,

but the results of Newman used in the present subsequent comparisons are
taken from a diagram shown by (Saouma, Ingraffea and Catalano, 1980). The
solution of Newman was most probably not availabe to Kesler et al. in 1971,

%) Please alsp =~*9~~ =~-mmd Tiboentien sed ddieanon ~--lyses refered
to in the er
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In order to take both finite width, finite height and the hole into
consideration (and also in order to demonstrate the usefulness of modern
finite element methods) Saouma et al. calculated K by means of the finite
element method. The difference between the results obtained during these
calculations and the results of eq (4.3:2) is great, in particularly for
the larger values of 2a/W, and this difference was reported to be the

second error in the original evaluation of K ,
c

In the finite element analysis of Saouma et al., the symmetrical quahter
part of the specimen was divided into a mesh of 45 8-node square elements
54 6-node linear strain triangular elements, the triangular elements being
located along the crack propagation path. The total number of degrees of
freedom was about 600. In order to model the crack tip singularity, the
four triangular elements around the crack tip were distorted by placing
the side nodes of the elements on the quarter-points along the side. K was
obtained by the displacements substitutation technique: calculated nodal
displacements are substituted into an analytical expression for the
displacements close to the tip of crack.

During the present finite element analysis, K is obtained by the energy
release rate technique. Calculations are carried out with and without
consideration to the centre hole of specimen, the purpose of the latter
analysis being to control the results by comparison to the solution of
Newman, Substructure technique makes it feasible to devide the quarter
part of the specimen into a uniform and fine element mesh: in the case of
no hole 18 x 36 = 648 4-node square elements of the type of Turner and
Clough; in the case of consideration of the hole 18 x 36 - 4 = 644 square
elements and, around the hole, 7 quadrilateral 4-node elements. The
quadrilateral element is an assembly of four constant strain triangular
elements. The total number of degrees of freedom is about 1400 before the
static condensations and 148 after elimination of degrees of freedom
outside the crack propagation path. No special crack tip element is used
and consequently the same element mesh was used for all different lengths
of the crack. The energy release rate is obtained by step-wise uncoupling
of the nodes along the crack path, and it is assumed that the difference
in strain energy at locations a respectively a + Aa of the crack tip
equals the rate of the strain energy release at the location a +Aa/Z of
crack tip. In this way K (= VEG 1in the present case of plane stress) is
obtained for 34 discrete values of 2a/W. A continuous numerical relation
between K and 2a ' *- *“%-- -ttofeod b moees o8 -obde ==09-5 qnterpolation,
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In Fig 4.3 (2) the relations between K/(P/(B W)) and 2a/W as obtained by
the different methods of analyses are shown. The solution of Newman and
the present analysis, the centre hole not considered, agrees very well. Eq
(4,2:2), used by Kesler et al., deviates considerably from the finite
element solutions and also from the solution of Newman. Compared to the
solution of Newman, the results of Saouma et al. suggest that the presence
of a hole decrease K while the present results suggests that the presence
of a hole increases K. At 2a/W=0.1 the results of Saouma et al. suggest a
16 % lower value of K than the present results, and at 2a/W=0.5 the
results of Saouma et al. suggest a 7 % lower value than the present
results. The deviation between the finite element solutions is, however,
rather uniform and small in comparison to the deviation from eq (4.3:2).

It is interesting to note the present results reveal a maximum for K (at
2a/W=0,1045). K versus 2a/W has to have a maximum in the case of a centre
hole because K=0 when 2a/W=D/W (=1.25/24=0.052083). It is also interesting
that 0.1045« 0.1042, i.e. (2a/W)maxa;ZD/w.

The good agreement between the solution of Newman and the present results,
the centre hole not considered, suggests that the present results should
be satisfactorily accurate also in the case of the presence of a hole. In
comparison to the displacement substitution technique, the currently used
energy release rate technique has both advantages and disadvantages. As to
the present type of analysis, the energy release technique has been
estimated to be more advantageous (Section 3.6.1).

By general estimations one may expect the presence of a hole to increase
K, but as the results of Saouma et al. suggest the opposite, some
additional calculations were carried out in order to check the present
results., These additional analyses were carried out only for 2a/W=0.2 and
0.5, with aid of a standard plane stress finite element program and with
coarser element meshes: 12 x 24 (mesh B) respectively 9 x 18 (mesh C)
square elements of equal size and of the same type as used in the more
accurate and complete analysis (mesh A, 18 x 36 elements). In meshes B and
C the presence of the hole was modelled simply by omitting one corner
element. For mesh C, this means that the size of the hole was
substantially exaggerated. Values of K are directly obtained only for
discrete values of 2a/W and for meshes B and C the values of K at 2a/W=0.2
and 0.5 were obtained by simple straight line interpolation. The
computational ) :shes the
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KIHPHBVW)
T T T T T
3 | p—
5 L _
Piate without hole: Eql4.3:1)
& Solution of Newman
1+ v FEM, present analysis ]
Plate with hole, D/W = 1.25/24:
L o FEM, Saouma et al _
O FEM, present analysis
| 1 | | |

0.1 0.2 0.3 0.4

Fig 4.3 (2) Stress intensity factor, K, for the specimen shown in

Fig 4.3 (1) according to different analyses. H/W=0.5.

0.5
2a/W
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2a/W=0.20 2a/W=0.50
Specimen Specimen  Specimen Specimen
without with without with
hole hole hole hole
Eq (4.2:1) 1.78 - 1.13 -
Eq (4.2:2) 1.85 - 1.41 -
Newman 2.42 - 3.45 -
Saouma et al - 2.29 - 3.3
Present, mesh C 2.40  2.62" 3.38  3.66
Present, mesh B 2.43 2.55 3.40 3.57
Present, mesh A 2.42 2.59 3.4 3.63

*Size of hole exaggerated

Fig 4.3 (3) Dimensionless stress intensity factors, K/(P/(BVﬁ)), for the
specimen shown in Fig 4.2 (1). Underlined values are estima-
ted to be the most accurate ones. H/W=0.5

presence of a hole increases K, and judging by Fig 4.3 (2) and Fig 4.3 (3)
one might estimate the maximum error in K in the range 0.1<2a/W<0.5, as
obtained in the present mesh A arnalysis, to be of the magnitude 1 %. It is
rather remarkable how well the energy release rate technique predicts K also
in the case of the coarse meshes, taking in to account that the stress field
around the crack tip is not modelled by som special type of element. For
mesh C and 2a/W=0.2, the value of K is based on calculated potential energy
when only one, two and three nodes are in between the crack tip and the load.
In spite of this very coarse mesh, the computed value of K deviates, or
happens to deviate, less than 1 % from the solution of Newman.

In order to facilitate numerical comparisons in possible future K-analyses
of the current specimen, the present results (mesh A) have been tabulated in
Fig 4.3 (4) for some different values of 2a/W in the range 0,05 to 0.99. The
values of K for 2a/W 0.80, and in particular the value for 2a/W=0.99, are
not believed to be very accurate. When plotting the values of Fig 4.3 (4) in
a diagram, it is interesting to see that the values of K for the cases D/W=0
respectively D/W=1.25/24 do not approach each other in proportion to the
distance between the hole and the tip of the crack. Instead the presence of
a hole has an approximate constant magnitude of influence on K for a large
range of variation in 2a/W. For the current type of specimen, this may be

explained by - T - resence of a hole.
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2a/W K/ (P/(B\W)) 2a/W K/ (P/(BYW))
D/W=0 | D/W=1.25/24 D/W=0 D/W=1.25/24
1) .05 3.744 - .45 3.138 3.343
2) .0508 - -0.0006 .50 3.411 3.632
.10 2.785 3.009 .55 3.735 3.975
3) .1045 - 3.026 .60 4.119 4,383
.15 2.496 2.675 .65 4,570 4.864
.20 2.419 2.588 .70 5.085 5.416
4) .2038 - 2.588 .75 5.645 6.016
5) .2051 | 2.419 - .80 6.199 6.610
.25 2.457 2.625 .85 6.678 7.114
.30 2.563 2.736 .90 7.040 7.464
.35 2.716 2.896 .95 7.456 7.807
.40 2.908 3.099 .99 11.015 11.213

1) K not defined when D/W=1.25/24=.,05083

2) K should theoretically equal zero when D/W=1.25/24
3) Maximum point when D/W=1.25/24
4)
5)

Minimum point when D/W=1.25/24
Minimum point when D/W=0

Fig 4.3 (4) Values of the stress intensity factor for the specimen shown
in Fig 4.3 (1) as obtained in the present analysis. H/W=0.5

4.3.3 Fictitious crack analysis. Comparisons with tests. Conclusions

The finite element mesh used during the fictitious drack calculations is
the same as used during the determination of K, see 4.3.2., The geometry of
the specimen analysed is shown in fig 4.3 (1): H/W=0.5 and D/W=1.25/24. To
obtain a general impression of the results of the FCM versus LEFM during
analysis of the specimen of Kesler et al., some fictitious crack
calculations were first carried out on the simple assumption of a single
straight line relation between 0 and w. The results of these calculations
are shown in Fig 4.3 (5) a) to e).

A basic requirement for the applicability of linear elastic fracture
mechanics is that the size of the fracture zone is small in comparison to
the depth of the --*-% -=2 «- *b- ~d-- =8 wbn -o-odeee 7= Tig 4,3 (5) b)
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Fig 4.3 (5) Fictitious crack analysis of the specimen used by Kesler et al.
a) Geometry.
) Length of fracture zone of failure.
) K'/K versus notch depth.
) KE/KE versus w/(Ch. Upper and right side axes and
values in brackets correspond to the actual size of the
specimen: W = 24 in = 610 mm. Full curves are valid for
the straight line g-w relation, Dashed curve (---) in
Fig ¢) and mark "+" in Fig b), d) and e) are valid for

s s s 10 ),
o~ 10 ™)
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sllch. Aallch — slicy when fully developed fracture zone
s/lch when P=R,
1.0 +
] 1 __ Ak
-4 + -8—
05 I
n 2a/W =113
Aallgp
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Fig 4.3 (5) e) Normalized length of fracture zone, s/} ,
at failure and when fully developed respectively,
Vs, M/X,C . “"Effective" addition to crack length,
ba » VS. W .
/Lch /Xth

the normalized depth of the fracture zone, s/a, is shown versus N/Xth. The
absolute values of s on the right hand side of the diagram and the
absolute values of £ on the upper axis of the diagram correspond to W=
24 in= 610 mm and a=c4 in= 102 mm. s is defined as the distance from the tip
of the pre-fabricated notch to the point where 0=f , The results

shown in Figure b) suggest that one may expect s to be 70-130 mm for con-
cretes, 30-70 mm for mortars and about 5 mm or less for pastes. On some

of the specimens, Kesler et al. measured the strains at different loca-
tions along the crack propagation path and one of the specimens made of
mortar had the same dimensions as those for which Figure b) is valid, and
the measured strains suggest that the depth of the fracture zone was about
2.5 in {(about 60-65 mm) at 99 % of the ultimate load. For concretes and
mortars Figure b) suggests such magnitudes of s that one may hardly expect
linear elastic fracture mechanics to produce accurate results during
analysis of the current specimen. On the other hand, where paste is
concerned, f is of the order 10 mm and linear elastic fracture mechanics
may thereforg be successfully applied. If the tensile strength of the
material is assumed tn ha indafinitalv laras (which maanc that {hh=0) then
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the assumptions and results of the fictitious crack model coincides with
those of linear elastic fracture mechanics and accordingly the size of the
fracture zone is found to approach zero when { Eﬁ 0.

c

Figs 4.3 (5) c) and d) show a ratio K'/K versus 2a/W respectively W/{ b
The ratio Ké/Kc indicates the ratio bgtwgen the value of the critical ¢
stress intensity factor as evaluated by means of linear elastic fracture
mechanics and the "true" value of the critical stress intensity factor.
The "true" value is the value which, according to the fictitious crack
model, would have been obtained by means of Tinear elastic fracture
mechanics if the specimens were very large. This value of K is equal to
VEE%. The definitions of Ké and KC valid in Fig 4.3 (5) are thus:

<
"

P.(K/P) (4.3:3) (a)

K =\jE?F (4.3:3) (b)

K! may be called the apparent critical stress intensity factor. K/P is
taken from the finite element results of the writer, Section 4.2.2, and
P, the ultimate laod, was calculated by means of the fictitious crack
mgdel at different values of 2a/W and N/lch. With a given specimen size
and a given shape of the 0-w curve, the ratio K’ /K is governed by a and
{ ch’ Independent of 2a/W (D/W<2a/W<1.0), Kc/Kéal 0 if N/{ —>arand

K /K -0 if H/£ » 0. For the actual size of the specimen F1gure d),
be1ng valid for 2a/w 1/3, it is suggested that Kc/Kc is 0.6-0.8 vor
concretes, 0,8-0.9 for mortars and 0,98-1.00 for pastes. Figure c) shows
how the initial depth of the crack, a, is predicted to influence Ké/Kc'

Fig 4.3 (5) e) shows the ratio between the length of the fracture zone at
ultimate Toad and 4 vs. W/ , and the corresponding ratio with regard

to the length of the fracture zone at the instant when a non-force
transferring crack starts to grow from the tip of the inital notch. The
Figure also shows a ratioAa/k vs. N/{' . a+ha is the so called
"effective" length of the cracﬁ: A a has been determined in such a way that
the ultimate load at crack length a+tAa as obtained during the linear
elastic fracture mechanics analysis coincides with the ultimate load at
initial notch depth a as obtained during the fictitious crack analysis.

a+sa may also ar elastic
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brittle crack. For specimens with constant geometrical shape, constant
relative depth of the initial crack and made of materials with equal shape
of the 0'-w curve, ratios s/!ich and Aa/JZ,Ch may be expected to approach a
constant value at an increasing ratio between size of the specimen and
Lch. The currently used finite element mesh is too coarse close to the tip
of the crack to enable accurate calculations of s/{,C and Aa/,ﬂ,h at large
N/Lch, but the available results seem to suggest that s/Xth% 0.7 and
Aa/f = 0.5 when W/ 2 50 in the current geometry of the specimen and
whencthe 0-w curve hgs the single straight line shape. At lower values of
W/{ h? s/L and Aa/f  are not constant. It is interesting that the shape
of the 0-w curve seemg to have a strong influence on s/f and Aa/f .
Computational results obtained by Petersson (1981) for a notched thﬁee-
point bend beam and on the single straight line shape of the 0-w curve
seem to suggest that the length of the fracture zone at ultimate load
approaches 0.5-0.6 Lch when ratio absolute size to lth increases. s and
also Aa may be roughly estimated in different simple ways. A very simple
method, see (Knott, 1973), gives Aa = (K /f ) /(2%) =~ 0.16 L  and
s = (K /f) /it=0.32 % h* According to ﬁi]%erborg (1983) thgge estimations
must be regarded as lower limits. With the aid of the same type of
estimations as discussed by Knott and by Hillerborg and with the aid of
comparison to the Dugdale model, the rough estimations s = 0. 61 ch and

% 0.4 1 ch may be obtained for specimens where size >> a >> Z and for a
stra1ght 11ne relation between 0 and w. For large specimens w1thout an
initial crack, i.e. when size >> {th > a=0, Aa= 0.25 XE independently
of the shape of the 0-w curve: see Section 4.2.5 and Fig 4.2 (20) c). The
concept of effective crack lengths may be useful for linear elastic
fracture mechanics analysis of very large specimens, the exact choice of
Aa being of much less importance in the case size > a >> [  (in which case
(a+pa)/a->1.0) than in the case size >> ) > a=0 (in which case
(a+ha)/a—» o). ch

The complete curves shown in Fig 4.3 (5) are valid for the straight line
relation between 0 and w. Similar analyses were, for a much smaller range
of variation in { , carried out on the assumption of the bi-linear
concrete-imitating shape of the 0-w curve, shown in Fig 3.2 (3) c). The
purpose of these analyses was primarily to enable evaluation of one of the
specific test series of Kesler et al. The marked curve in Fig 4.3 (5) c¢)
and the "+" in b) and d) and e) shows results from these analyses.

During evaluation of K (=\/EG } bv means of the fictitious crack model an
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estimation of the tensile strength of the material has to be available.
(During linear elastic fracture mechanics evaluations, the tensile
strength is tacitly assumed to be infinitely large). The mortar in the
test series M-0-AD-C, a series which is currently being studed, hade a
splitting tensile strength of 441 psi (=3.04 MPa) and a modulus of rupture
of 653 psi(=4.51 MPa). The modulus of rupture is known to be larger than
the tensile strength, see Section 4.2, and in the present evaluation the
uniaxial tensile strength is assumed to be equal to the splitting tensile
strength. Accordingly it is assumed that ft=3.04 MPa.

The notation "M-0-AD-C" means "mortar-0 in {size of coarse aggregate) -
air dry (type of curing) - circular centre loading hole". By relative
weights, the mortar mix was 1.0:0.6:3.0 (cement:water:river sand). The
graduation of the sand was: 0 % sieve size #4, 10.2 % #8, 24.1 % #16,
42,9 % #30, 83.7 % # 50, 98.4 % # 100. The specimens were covered by
plastic sheeting one day and one night, and were then demoulded and placed
in an air dry laboratory environment until they were tested at an age of
14 days. The rate of loading was 500 1b (2.2 KN) per minute.

In Fig 4.3 (6) the test results of Kesler et al. regarding ultimate load
are shown together with values of the critical stress intensity factor as
evaluated by different methods. It is clear that K as evaluated by eq (4.
3:2), used by Kesler et al., showed a dependency o% a. As pointed out by
Saouma et al., this dependency may be explained by the inaccuracies of eq
(4.7:2). The more accurate linear elastic fracture mechanics evaluations
do not expose any influence of the geometrical variable a on the material
property parameter K ., From the current test results regarding the
relative influence of a on the ultimate load, one should therefore not
conclude that linear elastic fracture is not applicable. This does not
exclude the possibility of applicability of the fictitious crack model -
neither this model expose any influence of a on K , The scatter in K , if
K 'is evaluated by linear elastic fracture mechan?cs or by the ficti%ous
c?ack model, is small. This suggests that Kesler et al. carried out the

tests in a careful manner.

If one makes the probable assumption that the fictitious crack evaluation,
taking into account the bi-linear shape of the U-w curve, represents the
best of the present evaluations, then Fig 4.3 (6) indicates that the
straight 1ine 0-w assumption gives a 14 % under-estimation of K and that
the linear el -~ ~ bootos mmlesddas dbaesd g the ﬁriters
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Test results Kc (MPavm') acc. to diff. methods of evaluation.
2a/W P./B Lin, e]gst. fract. mech. Fict. crack, f =3.04 MPa
(f, »
(MN/m t
/m 1) 2) 3) 2 5)

.209 .250 .58 .73 .83 9 1.01
.249 .228 .49 .69 .77 .84 .96
.291 .227 .46 .72 .79 .88 1.03
.332 .199 .39 .67 .72 .81 .94
.374 .205 .39 .74 .78 .90 1.06
417 .188 .35 .72 .77 .90 1.05
.459 A7 .31 .70 .74 .96 1.02
.500 .165 .30 71 .77 .93 1.09

Mean value .408 .708 7 .882 1.018

Coeff. of var. 24 % 3% 4 % 4 % 5%

1) K acc to eq (4.3:2). 9(K/P)/3a<0 ignored.

2) K acc to FEM-results of Saouma et al.

3) K acc to FEM-results of the writer.

4) Valid when the 0-w relation has the single straight 1ine shape.
5) Valid when the 0-w relation has the bi-linear shape.

Fig 4.3 (6) Critical stress intensity factor, K , for mortar as
evaluated from ultimate loads by megns of different methods
of evaluation. Test results from (Naus, 1971). Test series
M-0-AD-C. Geometry acc. to Fig 4.3 (1): H/W=0.5, For 1), 2}
and 3) KC=VEE;; for 4) and 5) Kc is an abbreviation of VEE;.

determination of K) gives a 24 % under-estimation of K ., In comparison to
the linear elastic fracture mechanics evaluation of K of the writer, the
evaluation of Saouma et al, gives a 8 % underestimatign while eq (4.3:2)
gives a 47 % underestimation. It may be concluded that Fig 4.3 (6)
satisfactorily illustrates the importance of the two main aspects of
theoretical strength analyses, namely the modelling of the behaviour of
the material and the method of numerical calculations.

k= (= \/EF) = 1,018 MPa\m and f,=3.04 MPa means that Lch=EGF/ft=112 .
Modeer (1979) determined, by direct experimental methods, GF, E and ft for
mortar and found G =60 N/m, E=29000 MPa and f =3.5 MPa, which means that

k =(= \/E—GF) = 1.3 lfwa\/ﬁ and that L =EG_/f = 140 mm. The mix, age and
curing of the mortar tested hv Madeer was hnwever nnt rennrted and
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therefore this mortar might not be of the same quality as the mortar used
by Kesler et al.

In Fig 4.3 (7) the test values of ultimate load are shown vs. a together
with the theoretical results according to linear elastic fracture
mechanics (Kc=0.77 MPaym) and according to the fictitious crack model (ft=
3.04 MPa and 2 =110 mm, bi-linear 0-w curve). The value of K and L
respectively has been chosen .by means of the method of the 1east squares
to give the best fit to the experimental results of P . The least square
fits P gives slightly, and almost negligible, differgnt values of K
respecgively ﬂt than the corresponding values of these parameters ag
shown in Fig 4.3 (5) and obtained as mean values of K , Fig 4.3 (7) shows
that the two models of fracture both predict the relative influence of a
on P in a satisfactory manner, In Fig 4.3 (7) the writers determination
of Kuhas been used. The results of the fictitious crack model happens to
produce an almost straight Tine in Fig 4.3 (7). This is coincidential and
the almost straight line is a curve which is based on values of P /B for
five different values of a in the range 60 mm - 150 mm. v

In a total of 9 tests Kesler.et al. meausured the strain across the crack
at some different locations along the crack propagation path. 6 of these
tests belonged to the test series M-0-AD-C, which is why the specimen with
the specific geometrical shape H/W=0.5, and D/W=1.25/24 was chosen to be
dealt with in the currently presented study. However the gauge length of
the strain measurement devise is not known. This makes theoretical
comparisons somewhat difficult. In spite of this, the measurements of
strain are revealing and show, for loads close to the ultimate load, that
the strain at the tip of the notch is very great and that the depth of the
fracture zone, i.e, the depth of the zone where the strain is greater than
any reasonable estimation of the limiting strain, is of the magnitude 2-3 in
(50-75 mm). Due to strain localization, the measured post limit strains
are probably very dependent on the length of the gauge, but in spite of
this, it may be of some interest to notice that the reported values of the
strain at the notch, at loads close to the ultimate load, is of the
magnitude ten times any reasonable estimation of the limiting strain.

Kesler et al. estimated the limiting strain of the mortar tested to be
150 . If adopting this assumption, one may determine the length of the
fracture zone with the aid of the meaured strains. The strains were not
measured conti oo T " ™ ’3) the length of
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Fig 4.3 (7) Ultimate load versus depth of notch. Comparison between
theoretical results and test results from (Naus, 1971),
test series mortar M-0-AD-C.

Fictitous crack model, f =3,04 MPa,J&h=110 mm
— — — — Linear elastic mechanics, Kc=0.77 MPa

the fracture zone at 97-99 % of the ultimate load is shown versus the
depth of the notch of each respectively specimen. This Figure also shows
the corresponding theoretical prediction of the fictitious crack model

(4 =110 mm, f =3,04 MPa, bi-linear 0-w curve). The theoretical curve is
valid for P=100 % of P , The values of f and I have not been chosen in
order to fit the test #esults shown in Fig 4.3 %8), but have been
determined in the manner previouslv described from reported splitting
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simm)
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X
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X
25
T T T T T = 20/W
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T
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Fig 4.3 (8) Length of fracture zone, s, in mortar (tests series
M-0-AD-C) at, or close to, ultimate load versus depth
of notch,
X From test results of (Naus, 1971), P=(97%-99%)P .
Theoretical result, fictitious crack model, ft=
3.04 MPa, £ =110 mm, P=P .
ch u

tensile strength, and ultimate failure loads respectively. The theoretical
predictions are in agreement with the test results both regarding absolute
values of the length of the fracture zone and regarding influence of length
of the notch on the length of the fracture zone. For a=64 mm, 114 mm and 152
mm Fig 4.3 (9) shows the lTocation of the tip of the fracture zone, a+ a,
during increase in load, P. The theoretical predictions also agree well with
the test results in this case.

Any comparison, regarding the strains close to the tip of the crack, between
the test results and the predictions of the linear elastic fracture mecha-
nics model has not been found worthwhile carrying out. Linear elastic frac-
ture mechanics predict the strains in the vicinity of the fracture zone to
be proportional to K, but a non-zero K means that the stress approaches
infinity in the actual vicinity of the tip of the crack. This is obviously
unrealistic. In general, linear elastic fracture mechanics may be success-
fully applied during calculation of the ultimate load of large specimens
with deep pre-existing cracks, but this theory is not suitable for any rea-

- LRI o

listic studies 2 tip of a crack.
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a+Aalin)
0 2 A 6 8
03 . 1 1 1 1 1 1 L 1 1
PIB ] e 1500
(MN/m) 3 = i
0.2 * ——t—— [
3 o - 1000
; / - g
01 b [ P/B
T + + - (Ib/in)
Ol—r—r—r—v—[—l*1—r—-r-—7ﬁ*r T 7 'Ar r 111 rrr . 0
0 50 100 150 200 250
a+Aalmm)

Fig 4.3 (9) Location of tip of fracture zone, a+s, vs. load, P/B,
for three of the specimens in test series M-0-AD-AC, mortar.
+ From test results of (Naus, 1971).
— — — Ultimate loads in accordance with the tests.

Theoretical results, fictitious crack model,
f =3.04 MPa, =110 mm.
¢ a lch mm

Finally some concluding remarks should be made with reference to the main
purposes, see 4,3.1, of the study presented in Section 4.3:

1) The determination of the stress intensity factor, K, of Saouma et al.
seem to under-estimate K by about 10 % as compared to the present
determination. The underestimation is, however, not very large
and approximately uniform in the present interesting range of 2a/W,
from 0.2 to 0,5,

2) Both linear elastic fracture mechanics and the fictitious crack model
predict approximately the same relative influence of the depth of the
notch, a, on the ultimate Toad, Pu’ as obtained during the tests
(series M-0AD-C).
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The fictitious créck evaluation (bi-linear -w curve) of the test
results (mortar, M-0-AD-C) gave K =(VE§;=)1.02 MPavm, while

the linear elastic fracture mechanics evaluation (K according to the
results of the writer) gave KC=0.77 MPaym.

By the re-evaluation, carried out by Saouma et al., of the test
results of Kesler et al. one may hardly conclude that linear elastic
fracture mechanics is generally applicable to concrete. In particular,
one may hardly expect this theory to produce accurate results during
the analysis of the currently studied specimen when made of concrete
or mortar, but probably if it is made of paste. To obtain accurate
results for mortars and concretes, the specimens have to be very large
and much larger than the present size (W=0.6 m): according to the
present calculations, approximate requirements of minimum size appear
to be W>3 m and W>10 m, respectively.

Experimental results regarding the absolute length of the fracture
zone, its dependence on the depth of the notch and its dependence on
the load agrees well, or at least reasonably well, with theoretical
results obtained during the fictitious crack analysis.

The agreements with respect to influence of depth of notch on ultimate
load and with respect to absolute length of fracture zone suggest that
the fictitious crack model may be applied during studies of the
fracture performance of the actual specimen.

Finally, the literature refered to in the introduction must be supplemented
with more recent references. Ingraffea and Gerstle (1984) have extended the
analysis of Saouma, Ingraffea and Catalano (1980 and 1982) and studied the
actual specimen also by means of non-linear fracture mechanics (a ficti-
tious crack model). Findings made by Ingraffea and Gerstle are consistent
with the present study. Also Bazant and Oh (1983) have carried out a study
of the actual specimen by means of a non-linear fracture mechanics model.
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4.4 Prestressed DCB-specimen with a groove

4.4,1 Introduction. Geometry of specimen

The study presented in this Section is of a similar type to that presented
in Section 4.3: It concerns LEFM and FCM analyses of a fracture mechanics
test specimen with a pre-fabricated crack, and from the study it is
indicated that the modelling of the fracture behaviour of the material is
of significant importance and that the computational method of K-value
determination is of great significance if LEFM is to be applied. The
differences in principle between the currently studied specimen and that
of Section 4.3 is that the current specimen is pre-stressed before
external load is applied and that the specimen has a groove along the
crack propagation path. The specimen, a large double cantilever beam, has
been developed at the Laboratoire Central des Ponts et Chaussees, Paris,
and has been used during tests on concrete: (Sok, 1978), (Sok, Baron and
Francois, 1979) and (Sok, Benkirane, Baron and Francois, 1981}.
Subsequently, ("Test to ...", 1982}, the specimen has been proposed as a
RILEM recommendation for use during tests of Kc of concretes.

The geometry of the specimen considered in the present theoretical
analyses is shown in Fig 4.4 (1). During some of the tests, specimens of
greater length, 3.5 m, and other locations of the pre-stressed steel
cables were used. The specimen is large, the weight of the specimen shown
in fig 4.4 (1) is probably about 1500 kg and from the dimensions one might
at first sight expect linear elastic fracture mechanics to be applicable.

The total prestressing force in the cables was assigned different values
from 0 tons to 212 tons (2.08 MN). It can be noticed that the prestress is
applied eccentrically. The centre of gravity of the symmetrical upper half
of the cross section is located 244.2 mm from the upper edge, while the
centre of gravity of the three steel cables is located 329.3 mm from the
upper edge., Therefore the eccentricity is 85.1 mm. The intertia factor of
the cross section of each of the two cantilevers is 0.00240 m , which is
equal to 0.578 b(d/2) /12.

A specimen similar to that in Fig 4.4 (1) is shown in Fig 4.4 (2). This
type of specimens has been used during fracture mechanics investigations
of cement composites carried out at the University of I1linois in Chicaco
Circle: (Visalvanic and Naaman. 1980). {Wechatarana-and Shah, 1980),
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Fig 4.4 (1) Current studied prestressed DCB-specimen with a narrower
central section. Geometry in accordanc with (Sok, Baron and
Francois, 1979). Measures in mm.
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Fig 4.4 (2) DCB-specimen with contoured depth used in tests carried out
at University of I1linois at Chicago Circle. Geometry accor-
ding to (Visalvanich and Naaman, 1981)., Measures in mm.
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(Visalvanich and Naaman, 1981), (Wecharatana and Shah, 1982) and (Wechara-
tana and Shah, 1983)}. The specimen shown in Fig 4.4 (2} is not prestressed,
but has a tapered shape instead and is much smaller than the specimens used
at the Laboratoire Central. The purpose of the prestress and the contoured
shape respectively, is most probably, to avoid bending fracture
perpendicular to the desired crack propagation path (compare Section 3.2.4).
The groove facilitates crack growth along the desired path, but is estimated
to make the length of the fracture zone greater and thereby reduce the
possibility for successful application of linear elastic fracture mechanics.

4,4,2 LEFM analysis

In a specimen with a groove along the crack propagation path, the state of
strain and stress will be three dimensional. This matter has sometimes, or
perhaps always, been tacitly ignored during LEFM analyses of specimens
with grooves and thus the ordinary LEFM methods, strictly valid only for
plane structues, have been utilized. This will be done also in the present
study. It is thereby assumed that the out-of-plane shear strains, sz and
Y _, are zero, This assumption may be looked upon as a complete shear
rigidity of the mateiral when exposed to out-of-plane shear stresses and
means that such stresses are prohibited from contributing to the release
in strain energy when the crack propagates. In the present finite element
calculations, plane stress (v=0.2) finite elements are used. In such
elements 0;=(;z=(§z=z;z=§yz=0 and a difference in thickness between two
elements is, with” respect” to the stiffness properties of the elements,
equivalent to a difference in the modulus of elasticity.

When adopting the assumption of plane stress in the sense described above,
the influence of a groove may conveniently be studied by means of the
well-known relation:

2
K = EG (4.4:1)
where
6213y (4.4:2)
t aa

U is the sum of the potential energy of the external loads and the strain
energy within the specimen. Therefore, if the displacements of the
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external loads are tehporari]y fixed, then dU/da is equal to the rate of
strain energy release. In the case of a single temporarily constant
external load, P, and zero intial stress:

U _ -P° ac(a) (4.4:3)
3a

1<)
N

3

where c(a) is the compliance of specimen. 1/c(a) is by definition equal to
the stiffness of the specimen k(a).

Eq (4.4:1) may be derived, see for example (Owen and Fawkes, 1982), from
the distribution of stresses and displacements in the actual vicinity of
the tip of a crack and these stresses and displacements, being governed by
K alone, are, for each constant K, not influenced by changes in the
thickness of the specimen “"far away" from the tip of the crack.
Consequently, if the groove has a finite width, i.e. not an arbitrary small
non-zero width, and if the state of plane stress in the sense described
above is assumed, then eq (4.4:1) is also valid for specimens with a
groove along the crack propagation path. If the finite width of the groove
is very small (and ify and ¥ are made equal to zero), then the
influence of the groove on d9U/3a is negligible and accordingly K~ 1/\ft.
Thus, for instance, at constant b, a reduction in t/b from unity to 1/4
will theoretically produce a reduction in the load carrying capacity of
only 50 %. The width of the groove of the specimen shown in fig 4.4 (1) is
not small, and therefore the grocve also influences dU/da to some extent.

In literature eq (4.4:1) is often written as X= \EG. For the current study
it is, however, of importance to note that eq (4.4:1) gives:

K =;tVEE. (4.4:4)

The proper sign of K is usually very simple to determine from the type of
load acting on the structure, From the distribution of stresses and
displacements close to the tip of a crack, it can be seen that G cannot
attain a negative value (provided that E>0).

In the specimen studied, initial stresses are present. The stresses are
caused by prestressing the sieel cables. When calculating K vs. crack

length, a, for arbitrary combinations of the magnitude of prestress and
external load; it is convenient to separate the action of the prestress
and the external lcad and to consider the prestress as an external load
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acting on both the concrete and on the cables, but in opposite directions.
Such separation, see Fig 4.4 (3), is possible because stress intensity
factors may be added.

In Fig 4.4 (3) and also in other parts of this Section, the notation F is
used for the prestressing force and the notation P is used for the
external load. These notations are reversed in comparison to the valid
I1S0-standard, but are used in order to conform to the main references of
this Section and to the corresponding proposal for a RILEM recommendation.

The separation of the stress intensity factors gives:
K=K +K 4.4:5
P F ( )

K_is the stress intensity factor at load P, at crack length a and at zero
force in the cables when P=0. [t is obvious that KP>0 and eq:s (4.4:2),
(4.4:3) and (4.4:4) give:

3(E cpp)
Ky = —F cPp (4.4:6)

Py %a

The modulus of elasticity, E, in eq (4.4:4) refers to the material in the
actual vicinity of the tip of the crack. Thus E denotes the modulus of

c
elasticity of the concrete. ¢__ is equal to 1/kPP, kPP being defined in
Fig 4.4 (3). a(EccPP)/aa is not only dependent on Ec’ but is also
dependent on Es’ the modulus of elasticity of the steel in the cables.

K_is the stress intensity factor at the total force F in the cables, at
crack length a and at zero external load. F, the total force in the cables
when P=0, is dependent on a. Equilibrium and compatibility give:

kFF(aO)+ESAS/L kFF(a)

P 3 e Y Y W

Fla) = Fol (4.4:7)

where FO is the total prestressing force, i.e. the tqta] force when a=aO
(=0.54 m) and P=0, k__(a) is defined by Fig 4.4 (3) c). A 1is the total
cross section area of the cables and £ is the length of thg cables: see
Fig 4.4 (1). It is informative to look upon F(a) as an external load that
acts on the concrete: k fa) ic the <tiffness af the rancrete specimen
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Fig 4.4 (3) Separation of action of pre-stress, F, and external load, P.
Fo is the pre-stress when a=ao (=0.540 m) K, KF and
K are stress intensity factors. F/é FF (=1/cFF,
and P/é PP (=1l/c__}. The deformat1ons shown are

exaggerated and based only on general estimations.

(the stiffness of the steel cables not being taken into account) and when
calculating dU/a by means of eq (4.4:3) F(a), not Fo, may be kept
constant. It is obvious that KF<0, and eq:s (4.4:2), (4.4:3), (4.4:4) and
(4.4:7) give:

o F keplag) + EsAs/l)( kep(a) 3(E.cpp) (4.4:8)
Foer krr(ag) kepla) + EAG/a" — a

When calculating K_ and K it has tacitly been assumed that the crack
surfaces are allowed to overlap each other without any resistance, see Fig
4 (3) c). In reality crack surfaces cannot overlap each other, but a
compressiv force will develop across the crack instead. If theoretical
results indicate K<0 it is obvious that such a compressive force will
develop, but it is also theoretically possible that such a force will
develop when K>0, although in this Tatter case such a force will not
develop close to the tip of the crack. From the point of view of the
laboratory tests, closing of the crack and active resistance to
overlapping may influence the behaviour of the specimen at unloading, i.e.
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Fig 4.4 (4) Plan and cross section of finite element mesh.

when A £<0. This is indicated in test results by (Chhuy, Benkirane, Baron
and Francois, 1981) as a type of break-point in recorded unloading
branches of the P vs. & curve. In the present study the behaviour of the
specimen at unloading, i.e. when A §<0, will not be dealt with and the
influence of resistance to possible overlapping will not be considered in
the analysis. Theoretically, resistance to overlapping will also develop
when the prestress, F , is applied at P=0 and a=a , but in practice it is
quite possible that this resistance will not deve?op due to the short
length (20 mm) and the non-zero width of the notch.

The finite element mesh used during the numerical calculations is
illustrated in Fig 4.4 (4). The number of degrees of freedom left after
statical condensation is 82, and the same type of rectangular plane stress
4-node element as used in Section 4.3 is utilized. The three steel cables
within the symmetrical half of the specimen are modelled by one bar
element placed close to the centre of gravity of the three cables. Fwould
have been more accurate to place the bar exactly at the centre of gravity,
and if this had been made then a somewhat greater influence of the
prestress on the stress intensity factor would have been obtained. One may
expect K_ to be approximately proportional to the distance between the
centre of gravity of the three cables and the centre of gravity of the
symmetrical half of the specimen, and accordingly one may estimate that
the computational results will underestimate the influence of F on K,
i.e., underestimate K_, by approximately 8 %. Ratio ES/E is madg equal

to 5.25, This assumption is based on the value of E reported by (Sok and

12=45.8
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Baron, 1979):EC=40.00'0 MPa. k(a) is calculated as
(k(a-pa/2) + k(a+ha/2))/2 and c(a)/Ba as (-c(a-ha/2) + c(a+ha/2))/ha
where Aa is the distance between the nodes along the crack propagation

path.

The computational results regarding K are shown in Fig 4.4 (6) as K/(P-Po)
vs. a, where P is given in Fig 4.4 (7). P is a "zero-stress-intensity-
load" which is defined by means of eq (4.4:5) as the external load, P,
which gives a zero stress intensity factor. Thus

P
K
K= (P-F (=)
” 4.4:9
oF " [P-P,) ( )
where by the definition of P :
[¢]
S . et
(P-P,) P Fs Kp/P » S

K/(P~PO) and (P /F ) are given in the figures, P is the external load and
0

F is the total force in the cables when a=a =0.540 m and P=0.

s s

In (Sok, 1978) and (Sok and Baron, 1979) the following relation was used:

2
K = P — a E )
tb(d/2)§/12 (4.4:11)

where £ = 1 + 1.32(22) + 0.532(9—4-2)2
For the size of the specimen shown in fig 4.4 (1), eq (4.4:11) is shown in
Fig 4.4 (6). According to {Visalvanich and Naaman, 1981), eq (4.4:11) was
derived by Wiederhern, Shorb and Moses in 1968, The equation does no take
the influence of prestress into account and is, at zero prestress, only
approximately valid for the current shape of the specimen, Originally eq
(4.4:11) was most probably derived for specimens where (£-a)>>d/2 and
where the width of the groove is very small in comparison to d/2. At zero
prestress and a<l.4 m eq (4.4.11) gives about 16-18 % lower values of K
than the present finite element results. When a » 1.5 m, i.e. when
(1-a) £1.5(d/2), the increased flexibility due to proximity to the end of
the specimen becomes of great importance. As indicated by the finite
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element results, this increase in flexibility produces a drastic increase
in the stress intensity. )

The error in K when evaluated from ultimate load without considering the
influence of pﬁestress is dependent on the properties of the material, i.e.
the true value of K , and the magnitude of the prestress, F . If linear
elastic fracture meghanics are applicable and the true va]ug of K is 2.0
MPa\fm, then according to the present finite element results, an eSa]uation
of KC from ultimate load without considerating the influence of prestress
would give a 60 % over-estimation at F =0,48 MN, 130 % over-estimation at
Fo=1.06 MN and a 250 % overestimatsionoat Fo=2.12 MN. The corresponding
errors in evaluated values of G are of course greater. The magnitudes of
deviation are such that they ma§ hardly be considered acceptable. thus, -
even if the fracture behaviour of concrete was in accordance with the
concepts of linear elastic fracture mechanics -, values of K as evaluated
from experimental results without consideration of the inf]ugnce of
prestress would hardly be considered accurate.

In (Chhuy, Benkirane, Baron and Francois, 1981) the following relation was
used during the evaluation of G (and K ):
c c

ac

- 4 2 pp .
G = og(P-P)) 53 (4.4:12)

This relation is in agreement with the current study, eq (4.4:9),
provided, however, that Po is obtained in accordance with the definition
of P0 as given above. Po is the external load that corresponds to zero
stress intensity, and, in particular, it may be noted that &£=0, §being
defined by Fig 4.4 (3) and eq (4.4:19), does not mean that K=0. In the
RILEM proposal 1982, it was proposed that the steel cables should be
placed centric in order to avoid any influence of the prestress on K.
This simplifies the evaluation of experimental results.

For the purpose of comparison, Fig:s 4.4 (6) and 4.4 (7) show K/(P-Po) and
PO/Fo for the Timiting type of specimen shown in Fig 4.4 (5). In the case
of plane stress in the sense described above, the stress intensity factor
for this specimen is:
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Cross section assumed to be rigid,
eq.(5.4:13), or flexable, eq. (5.4:16)

Centre of gravity
Cable

a d/i2 <<a<<i
l dl2 <<d<<l|

Fig 4.4 (5) Pre-stressed DCB-specimen for which the stress intensity
factor may be obtained by means of the ordinary beam

theory.
K = (P-F (EE)) K ' (4.4:13)
o'F, TP-F,) o
e
where — = -
Fo a
. K a
and P-p —_—

Eq (4.4:13) is shown for e=0.0851 m, t=0.1 m and [=00240 m4. The equation
may be derived by means of eq:s (4.4:2)-(4.4:5) and the ordinary beam
theory, taking into account only the curvature of the cantilevers and nct
their shear deformations. The omittance of shear deformations means that
the equation does not predict any influence of the shear force on K, Thus
K is predicted to equal zero when the bending moment at the tip of the
crack is zero: P a=(F /2)e. Eq (4.4:13) is believed to approach an exact
equality when the unequalities indicated in Fig 4.4 (5) are increased.
{>>a means that the force in the cables is constant during crack growth,
i,e. F(a)=F , and that the cables do not give any significant
contributionoto the stiffness of the cantilevers. On the assumption that
the inertia factor, I, is reasonable in comparison to A (E /E )e , let us
say if I > 50 A (E /E e , eq (4.4:13) may be roughly egti;atgd to be
accurate withins"e:giﬁeering accuracy" when:
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8(ds2) Saln-1.8(ds2) (4.4:14)

Eq (4.4:13) is not sufficiently accurate to enable verification of the
finite element results and does not exclude the possibility of gross
errors where the finite element results of P /F are concerned. However,
simple and more accurate results than those gf gq (4.4:13) may be obtained
by means of the assumption:

2 2 3 .
CPP =’3’EC—I(a +‘3’(d/2)) (4°4‘15)

This useful assumption is essentially based on finite element analyses of
cantilever beams, not rigidly clamped to an ideally rigid half-space but
clamped in the way the cantilevers of a DCB-specimen are clamped. The
assumption does not represent an exact equality but is believed to
represent a good combination of accuracy an simplicity. (a+2/3(d/2) may be
looked upon as an equivalent length of the cantilever when loaded by the
external force P: Comparison can be made to a study of a cantilever clamped
to an elastic half-space included in (Petersson, H., 1974). By means of
derivation, eq (4.4.15) may be compared to the g-factor of eq (4.4:11):
ECI/Z acPP/aa =-(a+2/3(d/2)) = a (1+1.33(d/2)/a+0.44((d/2)/a) ).

In eq (4.4:15), the cubic term, a3, corresponds to the curvature of the
cantilever; the quadratic term, a , corresponds to the rotation at the
clamp due to its flexibility; the linear term, a, corresponds to the shear
deformation along the cantilever; the constant term corresponds to the
shear deformation at the clamp due to its flexibility and to the local
deformations at the point where the load is applied. The identification of
the different terms enables the calculation of CFF and CPF'
Eq (4.4:15) together with the identification of the different terms and
together with eq:s (4.4:2)-4.4:5) gives:

=

K= (P - FO(T:%))-('FT_KTO‘)

=

0

- e .
where ¢ = 2(ave/3(d/z (4.4:16)

0

K _ a+2/3(d/2)

PPy Er

and
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0.50 1.00 1.50 2.00 2.32

Fig 4.4 (6) Stress intensity factor, K/(P-P ), vs. crack length, a,
0
for the specimen shown in Fig 4.4 (1).

Eq (4.4:16) is shown in Fig:s 4.4 (6) and 4.4 (7) for e=0.0851 m, t=0.1 m,
d/2=0.55 m and I=0.00240 m . The deviation between the finite element
results and eq (4.4:16) may be explained by the approximation of eq (4.4:
15), the general approximations involved in finite element analyses, the
variation of I along the cantilever, the influence of the stiffness of the
steel cables on the total stiffness and the simplified finite element
modelling of the shape of cross section. For reasons previously described
it is probable that the finite element resuits under-estimate P /F by
about 8 %. By means of rough estimations, eq (4.4:16) is estimagedoto be
accurate within "engineering accuracy"” when:

0.8(ds2) $a $e - 1.8(d/2) (4.4:17)
The type of results shown in Fig:s 4.4 (6) and 4.4 (7) may be utilized

when evaluating K from experimental results only if linear elastic
C
fracture mechanics are applicable. Thus, for instance, eq:s (4.4:14) and

a(m)
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Fig 4.4 (7) Ratio P /F vs. crack length, a, for the specimen
0 9
shown in Fig 4.4 (1). P0 is the external Tload that
produces zero stress intensity at prestress FO.

(4.4:17) are sufficient approximate requirements only if the material
tested behaves in an ideal linear elastic brittle manner. To ensure
applicability of LEFM when a material with some finite tensile strength is
tested, the specimen should not be too small. For a specimen with a
groove, the size requirement may be expressed by :

472 > Ab/t) (K /7, )° (4.4:18)

Where A is a coefficient which depends on the length of the crack, the
desired degree of accuracy, the actual geometrical shape of the DCB-
specimen and the magnitude of the prestress. It is interesting to know
that a groove along the crack propagation path has a -strong and very
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unfortunate 1nf1uencé on the required size. The proportionality between
the size requirement and ratio (b/t) is a result of eq:s (4.4:1) and (4.4:
2), and is theoretically strictly valid only if the width of the groove is
small. In order to obtain very rough estimations of the required size one
may make A equal to 3. This rough estimation may be assumed to be valid if
(d/2)<a<{-(d/2). The estimation is arrived at from experience of
fictitious crack analyses and by means of the results presented in Section
4,4.3 and by means of comparison to ASTM standards. Fictitious crack
analyses do however additionally suggest that the actual stress-elongation
properties of the material at fracture, i.e. the shape of the 0-w curve,
has a significant influence on the load carrying capacity. This means that
it is difficult to define an exact size requirement, corresponding to some
certain degree of accuracy, only in terms of the single material preperty
parameter (K /f ) (=2,h), while the actual shape of the stress-elongation
curve should preferably be taken into account. Oniy if the specimen is
extremely large, the shape of the O-w curve is of no importance. A% 3
means that the large DCB specimen shown in Fig 4.4 (1) and used during the
tests is much too small to ensure applicability of linear elastic fracture
mechanics during tests of ordinary conrete qualities. For A=3, { =400 mm,
b=0.3 m and t=0.1 m, the size requirement suggest d/2=3.6 m and £ =16.4 m.
Such a specimen, with a concrete volume of about 30 m , is of course not
very suitable for use during laboratory tests of materials properties. Eq
(4.4:18) may be compared to the size reguirement of the ASTM standards
during testing of K of metals by means of compact tension specimen: a>2.5
(Kc/ft) . The CT spgcimen of the ASTM standards has no groove along the
crack propagation path, and may be described as a short DCB specimen where
axzd/2~XL/2.

During the tests carried out at the Laboratoire Central, load, P, vs.
displacement, &, was recorded. The displacement & is defined by means of
Fig 4.4 (3):

= 8p tot = Spr(ag) = 8p + spp = Spplag) (4.4:19)
If adopting the same assumptions as required for validity of eq (4.4:16),
it is possible to relate forces and displacements of the two loading
systems acting on the specimen by means of an analytical compliance

matrix:
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FLI %(a * %(d/z))3 ;g(az * %ﬁ(d/z) Pl= ‘SP;tot
¢ (4.4:20)
2,
;g(a2 ¥ ig(d/z)) La' %(d/Z)) + 1{% Fy 8 tot

This matrix enables a linear elastic fracture mechanics prediction of load
vs. displacement:

K \tT + F/2 e
p-_¢ 0
(a + 2/3(d/2))

5 = gl—l— {%’-(a v 572003 - Sa%al « Bare) - 2as2))

Fe 4a } (4.4:21)
Eq (4.4:21) emanates from eq (4.4:15) and is therefore not an exact
relation, but is believed to produce fairly accurate results for the range
of crack depths, a, indicated by eq (4.4:17)., For zero prestress, F =0,
and e=0,0851 m, d/2=0.55 m, a =0.54 m, t=0.1 m and [=0.00240 m , eq (4.4:
21) is shown in Fig 4.4 (8) ag P/K vs. &/(K /E ). This Figure also shows
load vs. displacement for the spec%men in Fig 4.4 (1) as obtained by the
finite element analysis. For a<1.4 m the agreement between the two
methods of analysis is fairly good.

During the finite element analysis only the two diagonal terms of the
compliance matrix, neccessary when calculating Kp and KF, were determined,
while the off-diagonal term, CP , was not determined. However, if it is
assumed that a finite element analysis would yield ¢ =

e/(ZECX)(a +4a/3(d/2)), then the finite element prediction of load vs.
displacement would be:

K
_ c
= owmery R/ o)
(4.4:22)
8§ = Pc¢ppla) - o e( 2 _ 4a(d 2 0
PP ?Ec_Ia ao+‘3' /)'T(d/z))

where K/(P-P ) is given in Fig 4.4 (6), (P /F ) is given in Fig 4.4 (7)

0 o
and cPP(a) (=4/P when F0=O) may be obtained from Fig 4.4 (8). For F0=0.48
MN, eq (4.4:22) is shown in Section 4.4.3, Fig 4.4 (10) b). Where the
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Fig 4.4 (8) Linear elastic fracture mechanics prediction of load
vs., displacement of the specimen shown in Fig 4.4 (1).

specimen in Fig 4.4 (1) is concerned, eq (4.4:22) is believed to give
fairly accurate results when a$ 1.3 m, but poor results when a>1.6 m.

In Fig 4.4 (8) load vs. displacement as obtained during finite element
analysis, is also shown beyond the point where 36/9P=0., This part of the
curve is purely theoretical and, due to instability, can not be obtained
during ordinary tests.

When F =0 one may expect G (=K 2/E) times the total fracture area to equal
the arga under the complete P 55. & curve. This seems to be in agreement
with the finite element results shown in Fig 4.4 (8). When F >0 one may
expect the area under the total P vs. § curve to decrease inoproportion to
Fo, and is therefore not equal to Gc(or GF) times the total fracture area.
This is because the non-zero strain energy within the specimen at the
instant when the external load, P, is applied does not equal the strain
energy within-the specimen after complete fracture: Comparison can be made
to Section 4.2.4, where the influence of initial shrinkage stresses on the
load displaceme
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4,4,3 Fictitious crack analysis. Comparisons to tests. Conclusions

The finite element mesh used during the FCM analysis is the same as used
during the LEFM analysis, see Fig 4.4 (4). Computational results are
choosen to be presented for the prestress F =0.48 MN, while test results
regarding load vs. displacement, Toad vs. c?ack length and experimental
observations of the fracture zone are available for this particular
magnitude of prestress.

Although the same finite element mesh (i.e. the same substructure element)
apart from the modelling of the fracture zone, is utilized for the FCM
calculations as for the LEFM calculations, the numerical methods of
analysis are basically different. The FCM calculations are carried out in
the tangential stiffness incremental manner and the prestress is taken
into account as an initial stress field that acts within the specimen. The
LEFM analysis, on the other hand, was carried out in a total (or direct)
incremental manner and the prestress was treated as a separate external
loading system acting on both the concrete and the steel cables, but in
opposite directions. The latter type of approach provides more general
results, and is possible because stress intensity factors may be added.
Results obtained from FCM analyses are dependent on the loading history
and are non-linear. By non-linear it is then meant that it is, in general,
not possible to determine the behaviour when several loading systems acts
simultaneously by means of a linear combination of the behaviour obtained
during separate analyses of different loading systems.

The water-to-cement ratio of the concrete tested by (Sok, Baron and
Francois, 1979) was 0.48 and the maximum particle size was 12 mm. The
specimen may have been tested in a dry environment and the concrete may
have been exposed to shrinkage and creep. In the theoretical analysis,
possible influences of these possible phenomena are not taken into
accounot. Theoretically, one may expect the crack to grow exactly along
the line of symmetry of the specimen. In reality the crack does not grow
along a straight line but also passes through parts of the specimen where
the thickness is substantially more than 100 mm: See a figure shown by
(Sok, 1978). The influence of this type of behaviour is difficult to model
properly in theoretical analyses, but may be taken approximately into
account by means of a somewhat increased value of the tensile strength,
ft, and a corresponding proportional increase of the fracture energy GF.
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Material 1: E = 4.0 x 10* MPa Material 2: E = 40000 MPa
K.= 20 MPaVm K= 4.52 MPaVm'

Fig 4.4 (9) Material property assumptions used during calculations.
For the FCM analyses, "Material 1" corresponds te L =
c
0.25 m while "Material 2" corresponds to 1 h = 1,275 m.
c

Computational results of the fictitious crack model are obtained from two
assumptions of the proprties of the material, and the corresponding
results of the linear elastic fracture mechanics obtained from the
corresponding assumptions of the properties of the material are also
shown. The assumed material properties are shown in Fig 4.4 (9). The
difference between the two assumptions concerns the slope of the last
parts of the 0-w curve: E, f and the slope of the first part of the 0-w
curve are kept constant. The assumed material properties have not been
chosen primarily to correspond exactly to the experimental results, but
have been chosen instead to illustrate the possibilities of carrying out
analyses by means of the FCM, to illustrate the influence of the slope of
the last part of the 0-w curve and to illustrate the difference between
the results of the FCM and the LEFM. When making a judgement of the
concrete mix and taking into account that the crack in reality temporarily
grows through parts of the specimen where the thickness is greater than 100
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FIG 4.4 (10)
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Load vs. displacement. a) FCM results compared to test.

b) LEFM results compared to test. The test results are from
(Sok, Baron and Francois, 1979) and are shown in a simpli-
fied manner. The material property assumptions "Material

1" and "Material 2" are defined in Fig 4.4 (9).
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mm, it seems reasonable to believe that the true properties of the
material are somewhere in between the two assumptions adopted during the
theoretical calculations.

Fig 4.4 (10) shows load vs. displacement as obtained during the
theoretical calculations and as obtained in the test of (Sok, Baron and
Francois, 1979). fhe test results are, however, only shown in a simplified
manner: the unloading-loading cycles are omitted. The Figure suggests that
it seems possible to obtain good correlation between the test and the FCM
results if the properties of the material are chosen in a proper manner.
It does not seem possible to attain such a correlation by means of LEFM.
The Figure also suggests that the last part of 0-w curve has a great
influence on the ductility of the specimen, but only a very slight
influence on the ultimate load. This observation is valid for the actual
size of the specimen, but is not of a general nature. If the specimen had
been extremely large, then "Material 2" would have produced a much larger
ultimate load than “Material 1".

In (Sok, 1978) test results are presented regarding load vs. crack length.
These test results were obtained by means of the type of specimen shown in
Fig 4.4 (1), but the total length of the specimen used during the tests
was longer: not 2.5 m but 3.5 m. The length of the initial crack, a , was
as shown in Fig 4.4 (1), i.e. 0.54 m. In spite of the difference 1notota1
length of the specimens, the test results are shown in Fig 4.4 (11)
together with the present theoretical results, strictly valid for the
total length 2.5 m of the specimen only. In the Figure, the crack length,
a, is, where the LEFM results are concerned, defined as the distance from
the point of load application to the tip of the crack. For the FCM
results, the crack length is defined as the distance from the point of
load application to the point where 0=f , During tests it is not very easy
to accurately observe and clearly define the location of the tip of the
crack. For the test results in Fig 4.4 (11), the crack length seems to
have been determined as the distance from the point of load application to
the tip of the crack as observed by using a magnifying glass.

Fig 4.4 (10) and Fig 4.4 (11) indicate that a proper modelling of the

fracture behaviour of the material is important in theoretical analyses,
or - vice versa - that the fracture mechanics properties of the material
strongly influence the behaviour of the current specimen. These Figures
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Fig 4.4 (11) Load vs. crack length, Test results according to
(Sok, 1978). The material property assumptions "Mate-
rial 1" and "Material 2" are defined in Fig 4.4 (9).

also suggest that it may be possible to analyse the behaviour of the
specimen accurately by means of the FCM, but not by means of the LEFM,

For the straight line assumption of the 0-w curve, the FCM results shown
in Fig 4.4 (11) happen to follow the LEFM results fairly well when (a-a )>
25 cm. This is because the straight 1ine 0-w curve predicts, during the0
currently studied conditions, an almost constant shape of the fracture
zone once the zone is fully developed and starts to move along the crack
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prepagation path. Forlthe straight 1ine assumption of the 0-w curve, a
non-stress transferring open crack starts to develop when (a-a )= 20 cm.
For the present bi-linear shape of the 0-w curve, a non-stressotransfering
open crack starts to develop first when {(a-a )~ 160 c¢m. In the latter
case, the fracture zone is fully developed ag a very late stage of the
collapse and, since the size of the fracture zone is large in comparison
to the distance to the boundaries of the specimen, the shape of the
fracture zone does not remain constant when it subsequently moves along
the crack propagation path.

For the test specimen DCB2 (the load displacement response being shown in
Fig 4.4 (10)), Sok, Baron and Francois (1979) have presented interesting
experimental observations regarding the depth of the fracture zone and the
acoustic emission during crack propagation. In Fig 4.4 (12) ¢) and d)
these experimental observations are shown for & = 560 um. Corresponding
theoretical result regarding stresses across the fracture zone is shown in
Fig 4.4 (12) a), and in Fig 4.4 (12) b) corresponding theoretical results
regarding width and length of the fracture zone are shown. The theoretical
results are valid for the instant when the calcuiated displacemet is

560 pm and the assumed properties of the material are according to
"Material 2", Fig 4.4 (9). When & = 560 pm, the load is very close to the
ultimate load, Fig 4.4 (10). The almost constant stress in the range 0-45
cm of (a-ao) is of course due to the assumed very small slope in the Tast
part of the 0-w curve. An estimation of the fracture phenomena taking
place along the fracture zone and causing softening of the material is
shown in Fig 4.4 (12) e).

The real length and width of the fracture zone and the real stresses
across the fracture zone may not be exactly as indicated in Fig 4.4 (12)
a) and b). In spite of this, Fig 4.4 (12) is believed to give a rather
accurate and interesting illustration of the characteristics of a fracture
zone and its gradual development into an open crack.

One particular comment, which is believed to be of negligible practical
importance, should be made with regard to Fig 4.4 (12) a) and b). The
histogram of Fig a) shows stresses calculated as the force across the
nartly opened nodes divided by the sum of half the area of the neighbouring
elements and the points in Fig b) show the crack opening displacement at
the nodal points. A comparison to Fig 4.4 (4), where the element mesh is
illustrated, shows that the location of the points in Fig b) do not
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Fig 4.4 (12) Characteristics of fracture zone in specimen shown in Fig 4.4 (1)
when & = 560 ym and P = 0,99 Pu. Compare Fig 4.4 (10). Material
property assumption “Material 2" is defined in Fig 4.4 (9).

Test results are from (Sok, Baron and Francois, 1979).
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coincide with the location of the nodes. This is because tig 4.4 (1Z) 1s
valid for § = 560 ym while computational results, due to the incremental
type of analysis, are not available for & = 560 um but for &= 534 um (P=
0.556 MN, (a-ao)=54.9 cm) and & = 574 pm (P=,0559 MN, (a—ao)=58.5 cm). Fig
4.4 (12) a) and b), being valid for & = 560 um, show the distribution of
stresses and width of the fracture zone as obtained when & = 574 um
resectively, but the stresses and deformations have been moved along the
crack propagation path in such a way that (a-a }=56.9 cm, corresponding to
a linear interpolation between & = 534 um and &= 574 um. For (a-a }<0 the
stress is of course zero and the load corresponding to & = 560 um ?s .0558
MN.

The type of specimen shown in Fig 4.4 (1)}, a large prestressed DCB
specimen with a groove, has enabled interesting experimental observations
of the type shown in Fig 4.4 (12) c) and d}. But, in the opinion of the
writer, the specimen is not suitable for tests of fracture mechanics
parameters of concretes. Due to the prestress and the size of the
specimen, the specimen is probably not very convenient to handle during
manufacturing, curing, testing and disposal. In spite of the size, the
specimen is too small to enable an reliable determination of LEFM material
property parameters. When determining the FCM parameter G_ the specimen
must behave in a stable manner from the start of loading until complete
collapse. The specimen does not appear to meet this requirement for all
types of concrete and in particular not if the prestress is greater than
0.48 MN, The excentric prestress influences the load carrying capacity and
the total area under a stable load-displacement cuve, and therefore must
be taken into account during evaluation of Kc or GF. This complicates the
evaluation of experimental results. The groove along the crack makes it
more difficult to meet the size requirement of LEFM. On the other hand, a
groove may make it easier to study the gradual development of a fracture
zone. While the crack can hardly be expected to grow exactly along the
theoretical crack propagation path, it will, due to the groove, grow
through parts of the specimen where the thickness is more than 100 mm. To
sum up, the writer has not found that the specimen shown in Fig 4.4 (1} is
suitable for the determination of fracture mechanics parameters of
concretes,

Finally the findings of Section 4.4 should be summarized as follows:
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1) The LEFM analysis indicates that the prestress influences K and the
influence is of such a magnitude that it should not be ighored.

2) A groove along the crack propagation path has a strong and unfortunate
influence on the size requirement for the applicability of LEFM. This
matter is of importance also for studies of the specimen shown in
Fig 4.4 (2).

3) The finite element method enables more reliable and accurate
calculations of K than other more or less approximate analytical

methods.

The actual behaviour of the current concrete specimen does not seem
possible to reproduce by means of LEFM analysis. By means of the FCM,
it seems possible to analyse the global behaviour of the specimen as
well as length, growth and properties of the fracture zone.

F=
~—

Where the FCM analyses of the current specimen are concerned, the slope
of the first part of the 0-w curve is decisive to the ultimate load
while the slope of the last part of the 0-w curve has a strong influence
on the ductility of the specimen.

5

Tests on the specimen shown in Fig 4.4 (1) have provided interesting
experimental observations, but the specimen is not, in the opinion of
the writer, suitable for tests of fracture mechanics parameters of

()]
~—

concretes.



4 - SPECIMENS, page 104

4.5 Some analyses concerning determination of tensile fracture

properties of concrete

4.5.1 Introduction

In Section 4.5 some theoretical studies concerning experimental
determination of tensile fracture properties of concrete and similar
materials have been collected. The studes are essentially based on the
fictitous crack model. Sections 4.5.2 and 4.5.3 deal with the influence of
internal initial stresses on the apparent material properties of a

uniform prismatic tensile specimen: the influence on ultimate strength and
the influence on apparent stress vs. strain behaviour respectively.
Section 4.5.4 deals with the significance of the non-uniform tensile
stresses within a specimen used by Petersson (1981) during a series of
stable tensile tests, carried out in order to evaluate the shape of the
g-w curve of concrete. In Section 4.5.5 there is a discussion regarding
possible methods by which the O-w curve of materials may be evaluated from
recorded load vs. displacement diagrams of specimens where the stress
across the fracture section is non-uniform. Two numerical examples in the
latter Section concerns the same specimen as dealt with in Section 4.5.4,

4,5.2 Prismatic specimen: influence of initial stress on tensile failure
load

A uniform prismatic specimen, see Fig 4.5 (1), exposed to a tensile load
is studed by means of the fictitious crack model. Initial internal
stresses, which for instance, may be caused by drying shrinkage, are
assumed to be present within the specimen. These initial streses have a
two-dimensional distribution, and the distribution and magnitude are such
that the stresses across the mid-section may be represented by a parabola
where o=f at the edge, see Fig 4.5 (1). During the tensile loading, the
fracture of the specimen is assumed to take place as a development and
growth of a fracture zone across the mid-section of the specimen, while
other parts of the specimen are assumed to behave in a linear elastic
manner even if the tensile stress in some of these other parts of the
specimen temporarily may exceed ft' During the finite alement analysis,
the symmetrical quarter part of the specimen is divided into a mesh with
20 4-node plane stress (V=0.2) elements along the depth, d/2, and 30
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elements along the length, 2d.

The elements close to the fracture propagation path were assigned a
quadratic shape, while the elements close to the end of the specimen were
assigned a rectangular shape with the side length ratio 1:5. The ultimate
tensile load of the specimen was calculated for the straight line and the
bi-Tinear shape of the 0-w curve respectively, see Fig 3.2 {3), for some
different values of d/ibh. The result is shown in Fig 4.5 (2).

The results of Fig 4.5 (2) show that the ultimate failure load gradually
transforms at increased ratio size of the specimen to characteristic
length of the material from the prediction of the theory of unlimited
plasticity, i.e. no influence of the initial internal stress, to the
precition of the theory of brittle fracture, i.e. zero load carrying
capacity at the current magnitude of initial stress. This general feature
of the computational results is believed to be obtained also if a non-
linear stress strain relation is assumed. For a constant value of d/f ,
Fig 4.5 (2) also shown that the bi-linear shape of the 0-w curve suggggts
a somewhat stronger influence of the initial stress than the single
straight line shape of the g-w curve. When only the first part of the bi-
linear 0-w curve has been activated at the instant of ultimate load, the
prediction of Pu of the two shapes of theg-w curve coincide if the slope
of the first part of the curve is the same. This means that d/f of the
bi-linear shape of ¢-w curve corresponds to 5/3(d/£bh) of the s?ng]e
straight line shape of the O-w curve. In a logaritmic diagram of the type
of Fig 4.5 (2), this simply means a transfer of the curve along the x-
axis. However, if the second part of the bi-linear curve is activated at
the instant of ultimate load, which was the case for d/X,Ch=1.44 and
d/th=1.60, such a transfer is not applicable.

The computational results suggests that one should use small specimens in
order to reduce the influence of undesired initial stresses, If the
initial stresses are caused by drying shrinkage or variations in
temperature, a small specimen is also preferable due to the better
possiblities of attaining uniform moisture and temperature conditions
within the specimen. On the other hand, one may expect a greater scatter
in experimental results if too small specimens are used and, furthermore,
the mean behaviour of very small specimens, if for instance they are made
of concrete with a coarse aggregate, may not be representative for the
material. The computational resuits also suggest that the possible
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Fig 4.5 (2) Influence of initial stress on tensile strength: theoretical
ratio between the apparent tensile strength, P /bd, and the
true tensile strength, f , vs. ratio d/f . Geometry of
specimen and initial stress acc., to Fig 2.5 (1).

(SL) = straight line, (C) = bi-linear (concrete).
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influence of the size of the cross section on ultimate load must not
necessarily be explained by scatter in strength, i.e, by means of the
Weibull-theory or similar theories, but may be explained by undesired
initial stresses (or undesired excentric loading). Fig 4.5 (2) may be used
for approximate estimations of the influence of shrinkage also where other
specimens than the current prismatic specimen is concerned: see for
instance Section 4.6.6 where the bending failure of concrete pipes is
discussed. For specimens made of cement paste, - cement paste having a Lch
of about 10 mm -, it appears that experimental results may be very
sensitive to shrinkage unless the thickness of the specimen is very small,
about 1 mm or less.

4,5.3 Prismatic specimen: influence of initial internal stress on
recorded stress-strain behaviour

During the calculations of ultimate load presented in 4.5.2, the load vs.
the total elongation of the specimen was also obtained. At zero initial
stress, the pre-ultimate load-displacement response is linear in direct
accordance with the stress-strain porperties of the material. However,
when initial stress are present, the load-displacement response, and
thereby the apparent stress strain properties, become non-linear in spite
of the actual linear stress-strain properties of the material. This is due
to additional deformations during growth of the fracture zone before
ultimate load. In the analysis only the growth of one fracture zone is
taken into account and the computational results presented are valid on
the assumption that the elongation, i.e. the apparent strain, is measured
along the length d of the specimen: see Fig 4.5 (1). This assumption is
approximately equivalent to the asumption that the distance between
fracture zones is d. It should be noticed that the assumed gauge length,
d, is made proportional to the size of the specimen. If the gauge length
was kept constant with increased size of the specimen, then a greater
influence of the size of the specimen on the non-linearity of the apparent
stress-strain properties would have been obtained during the theoretical
analysis.

The computational results are shown in Fig 4.5 (3) as the normalized
stress, /0 , vs. the normalized strain, ¢/(¢d /E) for d/f =0.1, 0.36 and
1.6. The stgess,ﬂ', is calculated as P/bd anduthe Figure gnows that the
apparent stress-strain properties become clearly non-linear if initial
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stresses are present, in particular if ratio d/.Z,Ch is large. The real
stress-strain behaviour of concrete and similar materials may not be
linear all the way up to tensile failure, but the present results suggest
that the recorded non-linearity of the material may be greatly exaggerated
due to initial stresses whithin the specimen. Such initial stresses are in
practice very difficult, and probably impossible, to avoid completely. It
is somewhat unfortunate that the apparent non-linearity may be very
smooth, see Fig 4.5 (3), and thus difficult to distinguish from a possible
true non-linearity of the material. The present results are valid for a
certain parabolic distribution of initial stresses, but it is believed
that any types of initial stresses (or any type of undesired excentric
loading) produce an apparent exaggeration of the non-linearity of the
stress-strain properties of the material. Also initial stresses on the
micro-level within the material are likely to produce an exaggeration of
the non-linearity. Within concrete such micro-level initial stresses may
occur due to chemical shrinkage of the paste when hardening and due to
uniform drying whithin the specimen resulting in shrinkage of the paste,
but not the aggregate. However, non-l1inearity due to initial stresses at
the micro-level should not be considered as apparent when a specimen or a
structural member is analysed at the macro-level. Fig 4.5 (3) suggests
that tests of the stress-strain behaviour of concrete and similar
materials should be carried out in a careful manner - in particular if the
specimen is large and/or made of a brittle material, and that stress-
strain curves of concrete in tension reported in literature are likely to
- more or less -~ exaggerate the true non-linearity of the pre-failure
stress-strain properties of the material.

From the results in this Section together with considerations of influence
of scatter in strength, it seems to be probable that significantly dif-
ferent 0-£ curves of concrete in tension may be recorded for the same
quality of concrete. If, 1), the test is carried out in careful manner
where undesired initial stresses and undesired excentric load are avoided;
2), the cross section area of the prismatic specimen is small; 3), the
length of the prismatic specimen is very great; and 4), the strain is
measured along & short part of the specimen outside the part which
subsequently proves to include the fracture section, then it is probable
that an almost linear tensile stress vs. strain behaviour of the concrete
can be recorded. If these conditions are reversed, then it is probable
that a pronounced non-linear tensile stress vs. strain behaviour of the
same quality of concrete can be recorded.
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Fig 4.5 (3) Theoretical apparent stress-strain properties of a material
with a Tinear stress-strain relation. Initial stress,
gauge length and geometry of specimen acc. to Fig 4.5 (1).
Bi-linear g-w curve acc. to Fig 3.2 (3) c).

4,5.4 Influence of non-uniform stress during a stable tensile
test of concrete

(Petersson, 1981) used the specimen shown in Fig 4.5 (4) during stable
tensile tests of concrete carried out in order to determine the shape of
the 0-w curve of concrete. The test results were evaluated on the
assummption that the tensile stresses across the fracture section were
uniform, However, (Petersson, H., 1982) pointed out that the stresses
across the fracture section are not uniform, at least not in the pre-
fracture elastic range, and suggested that this matter ought to be
investigated with regard to the type and magnitude of the possible error
in the 0-w curve when evaluated in the simplified manner without
considerating the non-uniform tensile stresses. Such' an investigation
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seems justified and.desirable because the results of stable tensile tests
of concrete carried out by Petersson and others form a very essential
part of the experimental "proof" for validity of the fictitious crack
model and the existence of a descending branch in the tensile stress-
deformation response of concrete.

In order to come to an understanding regarding the type and the magnitude
of the possible error, a model-material is assigned certain known
properties. For these properties the load-displacement behaviour of the
specimen is obtained by means of the theoretical analysis, taking into
account the actual shape of the non-uniform stresses, From the load-
displacement behaviour obtained, a U-w curve is then evaluated on the
assumption of uniform stresses across the fracture section. The difference
between the input and the output 0-w curves gives a measure of the error
introduced by the simplified evaluation of the experimental results.

At this point it is necessary tc give a more detailed description of the
assumption of uniform stresses across the fracture section. In the present
adopted sense, this assumption is equivalent to complete shear rigidity of
the material in a very thin band along the section of symmetry and
fracture, This is in turn equivalent to the assumption that the two cross
sections on each side of the fracture section and indefinitely close to
the fracture section remain plane during the entire course of loading and
fracture., This means that the shape of the stress field in the unfractured
parts of the specimen is forced to be constant and equal to the shape
before start of fracture, whereas the stresses across the fracture section
are forced to be uniform. The stiffness of the specimen before start of
fracture is not affected.

The finite element model of the specimen is shown in fig 4.5 (5) a)
together with the properties of the model material, Fig 4.5 {5) b). In
order to model the boundary conditions at the ends of the specimen
accurately, the influence and properties of the glue at the end of the
steel plates is taken into account. The thickness and the properties of
the glue are, however, only roughly estimated. The modulus of elasticity,
E=30000 MPa, and the tensile strength, ft=4.63 MPa, is taken from an
experimental load vs. displacement curve as presented by Petersson. This
experimental curve, also utilized in Section 4.5.5, represents a mean
curve (three tests) for a concrete with a water-to-cement ratio of 0.5, a
maximum aggregate particle size of 8 mm, an aggregate content of 1755
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kg/m3 and tested at the age of 28 days. The constant slope of the O-w
curve, d0/dw=-135400 MPa/m, corresponds to the steepest part of the 0-w
curve as obtained in the test. The steepest part is chosen because the
effect of the non-uniform stresses becomes greater at decreased { , i.e.
when the slope of the g-w curve is steep in comparison to the s]opg of the
0-¢ curve, The properties of the model material correspond to £Ch=0,111 m
and G_=79,2 N/m. The Poissons ratio is made equal to zero for the
concrete, the glue and the steel.

The computational results, see Fig 4.5 (6) a), b), c¢) and d}, show that
the stresses across the fracture section are definitely non-uniform at the
instant of start of fracture zone development and that the fracture zone
starts to develop long before the ultimate Toad is reached. These findings
are clearly in disagreement with the assummptions utilized by Petersson.
However, once the front of the fracture zone has grown through the entire
cross section, the stresses become almost entirely uniform, According to
the computational results, this instant of complete development of the
fracture zone coincides exactly with the instant of maximum load, but if a
finer element mesh was used one should find that the fracture zone is
completely developed, not exactly at, but immediately after, ultimate
load.

The non-uniform stress field appears to have only a small influence on the
load-displacement behaviour. This influence is noticeable only before
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Fig 4.5 (5) "a) Finite element model of specimen shown in Fig 4.5 (4).
b) Properties of a model material.
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ultimate load and during the very last stage of the collapse when the Toad
is extremely close to zero and an open crack, i.e. a not stress-
transferring crack, starts to grow through the fracture section. Also the
difference between the true 0-w curve of the current model-material and
the 0-w curve as obtained during the simplified evauation is small. While
the true tensile strength of the material is 4.63 MPa, the simplified
evaluation of the simulated experimental result gives f =4.67 MPa and
while the true fracture energy of the material is 79.2 N/m, the simplified
evaluation of the simulated experimental result gives G =77.1 N/m. The
present simplified evaluation of the 0-w curve and GF is carried out in
accordance with the method used by Petersson: the unloading behaviour of
the unfractured material is represented by a straight line from the point
of ultimate load and parallel to the initial slope of the load-

displacement curve.

In connection with the computational results in Fig 4.5 (6) it is also
interesting to note that the area under the complete load vs. displacement
curve divided by the area of the fracture section is equal to 79.1 N/m

and therefore not equal to the true fracture energy of the model material,
79.2 N/m. This is because the area under a load vs. displacement curve may
be expected to equal the work carried out by the external loads only if
the external Toads acts on the points where the displacement is measured.
The total work carried out by the external loads divided by the area of
the fracture section is equal to 79.2 N/m. This work, carried out by the
external loads, is obtained as the sum of the areas under the load vs.
displacement curves of the different loads, the displacements being
obtained at the respective point of loading. The difference between 79.1
and 79,2 N/m reflects the influence of the simplified experimental method
of measurement of displacement. This influence seems to be of negligible
magnitude.

In addition to the theoretical results valid for the theoretical model
material of Fig 4.5 (5) b), Fig 4.5 (6) a) and b) show also the
experimental load displacement curve for one of the concretes tested by
(Petersson, 1981). This experimental curve was used during the choice (see
above) of the properties of the model material, i.e. E, ft and the
constant d0/dw of the model material is taken from this experimental
curve, However, it must be noticed that the differences between the
experimental curve and the curves valid for the theoretical model material
should not be utilized for estimations of the magnitude of the
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approximation involved in the simplified method of evaluation of the g-w
curve. The actual model material is assigned a constant d0/dw and a
constant d0/d€, while the real concrete exhibits a non-linear performance.

Judging from the results of Fig 4.5 (6), it may be concluded that the
assumption of uniform stress across the fracture section, tacitly adopted
by Petersson in evaluation of 0 -w curves and values of GF and ft,

involves only a small approximation.

However, if the actual material has a steeper slope in the 0'-w curve than
the model material of Fig 4.5 (5) b), or in more general terms, if the
value of d(-d0/dw)/E (where d is a measure of the size of the specimen) is
high, then the conclusion above may not be valid. Thus, for instance, an
extremely steep slope in the first part of the 0-w curve may give a
significant under-estimation of the tensile strength of the material and
the first steep part of the 0-w may therefore not be detected during the
test. This is illustrated by the computational results shown in Fig 4.5
(7) b). These computational results are valid for a model material defined
by Fig 4.5 (7) a). For this model material f =5,63 MPa and

dG/dw=-2710000 MPa/m in the range 0=5,63 MPa to 0=4,63 MPa, but for the
rest is similar to the model material in Fig 4,5 (5) b) and Fig 4.6. While
the true tensile strength of the model material in Fig 4.5 (7) is

5.63 MPa, the simplified evaluation of the simulated experimental results
gives ft=4.78 MPa and while the true value of GF is 80.2 N/m, the
simplified evaluation gives G _=76.9 N/m. Consequently the influence on f_
is significant, while the influence on GF is rather small, ’

If a specimen where the stresses across the fracture section may be non-
uniform is used in the tensile strength test, knowledge about the stress-
deformation properties of the material must be available otherwise the
test may provide very little information about the tensile strength of the
material tested. If only the recorded ultimate load is known, and nothing
is known about the stress-deformation properties, only a Tower Timit value
of the true tensile strength may be evaluated. This value may be evaluated
by means of the theory of unlimited plasticity. If in addition the shape
of the stress-strain behaviour is known, an upper 1limit value of the true
tensile strength may also be evaluated. This value may be evaluated by
means of the theory of ideal brittieness. On the assumption of a linear
elastic stress-strain behaviour, this means, with reference to the

specimen in Fig 4.5 (4), that the true value of f 1is between 1.00 O
+ u,mean
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and 1.41 ¢ , Where O is the recorded ultimate load divided by
the area og’@ﬁgnfracture gégg?gn. The factor 1.41 is obtained from the
finite element results in Fig 4.5 (6): In the linear elastic range, the
ratio mean stress, to stress at the edge of the fracture section, to
stress in the centre of the fracture section is 1.00:1.41:0,84.
Consequently, if the 0-¢ curve is known tc be a straight 1ine, and nothing
is known about the O-w curve, and if a test gives O =4,.63 MPa then
all that can be said about ft is that it is in betwgéﬂeﬁTGB MPa and

6.51 MPa.

As the accuracy of the evaluation of stable tensile tests may thus be
strongly dependent on the ratio d{-d0/dw)/E if the stresses across the
fracture section are non-uniform {see also Fig 4.5 (2)) and as the value
of d0/dw is obtained during the test, an undesirable uncertainty factor is
involved. In order to avoid this one should try to strive for the use of
specimens where the stresses are as uniform as possible. At completely
uniform stress, the results of an evaluation should be independent of the
ratio d(-d0/dw)/E. This ratio is proportional to d/{ A and comparison can
be made to hypotheses II and III in Section 3.5.2. Iﬁ cases of non-uniform
stresses, no matter whether these are caused by the geometry of the
specimen, excentric loading or internal initial stresses, the dependence
of the ratio d{-d0/dw)/E suggests that particular care should be taken if
large specimens made of a brittle material are tested. While, from the
beginning, iarge specimens made of brittle materials are difficult to test
in a stable manner, it is unfortunate that increased uniformity of the
stress across the fracture zone makes it more difficult to carry out

a stable test. This is because the stability of a uniform specimen is
governed by the steepest part of the 0-w curve, while in the case of non-
uniform stresses several parts of the 0-w curve are active at the same
time. Modern advanced types of fast and sensitive "closed Toop" tensile
testing equipment may, however, significantly reduce the difficulties in
stable tensile testing. In Section 4.5.5 a few possibilities of evaluating
the 0~-w curve from tests cn specimens where the stresses are non-uniform

are discussed.

Recently, (Glemberg, 1984) presented research which included an
interesting finite element study of the specimen shown in Fig 4.5 (4). The
purpose of this study was to verify a finite element method and therefore
not the same as purpose of the present study. Glemberg applied a certain
smeared modelling of the tensile fracture and demonstrated that the finite
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element method used by Glemberg is objective in the sense that the area
under the calculated load vs. displacement curve divided bynthe area of
the fracture section seems to approach the input value of G_ when the
number of finite element is increased. From an exact theoretical point of
view, one might, however, question whether it is desirable to approach
such a Timit value of the area under the calculated load vs. displacement
curve. But this matter is not believed to be of any practical importance
where the study and conclusion of Glemberg are concerned. For the model
material in Fig 4.5 (5) b) it appears from the present computational
results that the area under the load vs. displacement curve should
approach a value about 0,2% below GF times the area of the fracture
section. The cause of the difference has been dealt with above. The
presently utilized finite element method is such that G_ times the area of
the fracture section may be expected to equal the work carried out by the
external loads, regardless of the number of elements.

4.5.5 Discussion on indirect evaluation of the 0-w curve

From the results in Section 4,5.4, one rather obvious possibility of
determining the 0-w curve is to choose the curve in such a way that the
experimentally recorded load vs. displacement curve conincides with the
theoretical load vs. displacement curve. By means of the finite element
method, the theoretical load vs. displacement curve may be calculated even
if the stress across the fracture zone is non-uniform. This opens up the
possiblity of using the specimen in Fig 4.5 (4) even if the ratio
d(-do/dw)/E is large and may also enable the use of other types of
specimens, for instance the notched three point bend beam, when
determinating the 0-w curves. The 0-w curve which, in one sense or
another, produces the best fit between the experimental load vs.
displacement curve and the corresponding theoretical load vs. displacement
curve may be found by means of “trial and error" or by means of some
systematic method which may be coded into a computer.

Regardless of the numerical method of the curve-fitting, it is not
believed to be possible to evaluate both an unique 0-¢ curve, including an
unique unloading brach, and an unique 0-w curve only from the recorded
load vs. displacement curve of one type and size of a specimen. Thus the
shape of the 0-£ curve must be determined in separate tests or by means of
simultaneous measurements of load vs. deformation along at least two
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different parts of the specimen. Theoretically it may be possible to
determine both the 0-€ curve and the g-w curve from one measurement if the
unloading branch of the 0-¢ curve is known. As to the present numerical
examples, it is assumed that the shape of the 0-¢ curve may be represented
by a straight 1ine both at loading and at unloading.

The present numerical examples concern the specimen shown in Fig 4.5 (4)
and the experimental load vs. displacement curve shown in Fig 4.5 (6) a)
and b) is used as a starting point. The finite element mesh in Fig 4.5 (5)
a) is used when calculating the theoretical load vs. displacement curve.

When a specimen of the type showing Fig 4.5 (4) is used, there is a close
connection between the load vs. displacement curve and the 0-w curve. This
makes it easy to obtain a fair fit between the load vs. displacement
curves by means of "trial and error": see Fig 4.5 (8). In one of the
tables in Fig 4.5 (8) c), the 0-w curve obtainad is described in a general
form in terms of f and GF. The adopted value of GF, 189.0 N/m, is,
however, uncertain as the last part of the experimental load vs.
displacment curve is unknown. For the same reason, the shape of the 0-w
curve for w>150 pm and 07ft<0.054 only represents a guess. The plateau in
the first part of the J-w curve is interesting, but the size of this
plateau is of course dependent on the assumption regarding the shape of

the 0-¢ curve,

Close to ultimate load, the curve fitting would have been better if d0/dw
were assigned a value greater than zero in a small first part of the 0-w
curve, For a homogenous material the 0-w curve is, however, not activated
before ultimate stress, i.e, strain localization does not occur before
ultimate stress, and a d0/dw>0 in the first part of the g-w curve is in
conflict with the basic fictitious crack model separation of the 0-¢ curve
and the 0-w curve. However, as mentioned in Section 3.2.2, when the actual
scatter in strength of a material is not explicitly taken into account in
an analysis, it might be that more realistic results can be obtained if
d0/dw is assigned a value greater than zero in the very first part of the

0-w curve.

We turn to another and more well defined method of evaluation of E, f and
the 0-w curve. It is assumed that the 0-¢ curve is a straight 1ine where E
and f are unknown and it is further assumed that the 0-w curve consists
of n Tinear pieces where the siope and the length of each piece are
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Theoretical
Test of a concrete {Petersson, 1981}

50. 100. 150.
ELONGATION (10~ 8m)

Theoretical

1 1 1 ! 1 1 i 1 1 1 i

5. 10.
ELONGATION (10~ 8m)

5 (8) a) Loads vs. displacement of specimen shown in Fig 4.5 (4).
Test resu]t compared to theoretical result valid for
material properties found by "trial and error".

b) Enlarged detail of fig a).
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0 (MPa) .
A 0 |_w__|dO/dw 0] w d0/dw
51 fy  |[Ge/fy [f#IGg | (MPa)|(um) | (MPa/m)
1000 | 0.000 463 | 00
0.000 0.
4 - 1000 | 0.056 463 | 23
-1.078 -122000.
0545, 0563 210 | 230
-0.386 - 43800.
3. 0151 1.35 070 | 550
-0.042 - 4830.
0.054| 368 0.25 | 1500
-0.015 -167.
2- 0000 7.35 0.00 | 300.0
f, =4.63 MPa
;] E =30000 MPa
G = 189.0 N/m
50 100 150

wlum)
Fig 4.5 (8) c) O-w curve, E and f as obtained at a "trial and

error” fitting of load vs. displacement.

unknown. n+2 points are taken from the experimental load vs. displacement
curve. The n+2=7 points chosen for the present numerical example are given
in the table included in Fig 4.5 (9) a). The first point is the origin of
the Toad vs. displacement curve and the second point is the point were the
load vs. displacement curve starts to deviate from a straight line. The
last n points are chosen more or less at random along the rest of the
curve, The two first points may be used for the evaluation of E, The
second point is in addition used for determination of the stress at which
a fracture zone starts to develop, i.e. ft. This second point is very
difficult to define accurately and it is accordingly difficult to obtain
an accurate value of f by mean of this method. The n last points are used
for step-wise evaluation of the slope and the length of the n linear
pieces of the 0-w curve.

By means of a single linear elastic finite element analysis, E and f are
evaluated first, In the present example E=30 000 MPa and f =4,77 MPa are

obtained. By.heans of iterations the slope of the first linear part of the
U-w curve, (dUde)1, is the evaluated. These iterations are carried out in
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such a way that the theoretical load displacement response will pass
through, or very close to, the third point, 3, chosen from the experimental
load vs. displacement curve. In more general terms, the purpose of the
iterations is to find and to solve an equation with regard to d0/dw:

Pe,is2(do/dW) = P 4p (4.5:1)

Pe,i+2 is the experimentally obtained load at displacement 51+ , where i+2
is the number of the point chosen from the load vs. displacement curve. On
the left hand side of the equation the corresponding theoretical load is
found. Eq (4.5.1) may be solved in different manners. Presently, a first
value of P i+ is calculated for a more or less random value of dU/dw.
The result Of the calculations indicates whether d0/dw should be increased
or decreased. By means of a second value of Pt 142 and by means of linear
interpolation, a third value of d0/dw is calculated. By means of a third
value of P | and by means of parabolic interpolation a fourth value,

y]+
and in the present analysis the final value, of dO/dw is calculated.

Knowing the d0/dw of the first part of the 0-w curve, a fourth calculation
is carried out in order to determine the length of this first part. The
length is given by the width of the fracture zone where w has its largest
value at the displacement § .

i+2

The first part of the §-w may now be fixed as the P vs. & curve always
will pass through (P3, &.), regardless of the shape of the rest of the
0-w curve, The same method as described above may then be used for
evaluating the second, and the subsequent, linear parts of the O-w curve.

If n+2 points chosen on the experiental P vs. & curve altogether 4n+l
finite element calculations have to be carried out and a 0'-w curve
consisting of n linear pieces is obtained together with E and f . In spite
of the number of calculations, it has been found that the evaluation is
rather simple to carry out. If a number of evaluations are to be carried
out, it should be possible, and may be convenient, to develop a computer
program which automatically performs the evaluations.

The results obtained in the applied numerical example are shown in Fig 4.5
(9). In Fig 4.5 (9) a) the points chosen on the experimental P vs. & curve
are shown numerically together with the corresponding results obtained
during the iterations. The example shows that the 0-w curve obtained is
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such that the theoretical load vs. displacement curve passes very close to
the given points. In between these points, however, the load vs.
displacement curves deviates substantially and the first part of the O-w
has an undulating and not very realistic shape where the stress also
temporarily exceeds f . A cause of the undulating shape close to peak
stress may be the assumption of a linear 0-£ curve. For §>20 ym, Fig 4.5
(10) a) shows that the theoretical P vs. § curve changes its direction
very rapidly into a new direction once the curve has passed through a
given point. By increasing the value of n the theoretical Toad vs.
displacement curve may be forced to pass through an arbitrary large number
of given points. In such a case, however, one may suspect that the 0-w
curve may become of a similar undulating type as high degree polynomials
which are forced to pass through a large number of given points.

The discussed step-wise method of calculation of the 0-w curve is general
in the sense that it may be applied to the evaluation of other types of
properties of materials. A convenient feature of the method is that the
material property curve is evaluated and fixed step-wise. This enables the
use of very simple numerical methods during the iterations. A disadvantage
of the method is that only a very small part of the experimental
information is utilized during the evaluation. Because of this
disadvantage, it is probable that the same basic method of evaluation will
turn out to be more sucessfull if each interval of the material property
curve is determined in such a way that the deviaton between the response
curves is minimized (for instance in the sense of least squares) along the
entire corresponding interval of the response diagram.

In the method of evaluation dealt with above, the U-w curve is evaluated
and fixed in an incremental manner. An alternative method, the non-linear
least square optimization of several parameters, is basically different:
all parts of the material property curve are evaluated simultaneously and
the parameters defining the material property curve are therefore not
evaluated one at a time. In this alternativ method the U-w curve is first
described in terms of some function with m degrees of freedom, i.e. m
parameters Cl’ C2 coe C”. Putting ¢ = {E, ft’cl’ C2 cee Cm} , the optimum
of ¢ may be determined by means of minimizing a least square function

Q(c):

0@ = §als) (Py(8,0) - P (6))% ds (4.5:2)
o
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- Given Cale
i Omean Omean
= .00 .000 000

345 3400 3400
533 4.500 4498
712 4.630 4.632
27.02 2.100 2.101
60.00 0.700 0702
20000 | 0000 0.000

Theoretical

50. 100. 150.
ELONGATION (107 8m °

Theoretical

1 1 1
5. 10.
ELONGATION (10™6m

Fig 4.5 (9) a) Load vs. displacement of specimen shown in Fig 4.5 (4).

Test result compared to theoretical result valid for mater-
ial properties found by step-wise iterations to given points.
b) Enlarged detail of fig a).
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0{(MPa)
0 w d0/dw
> (MPal |{um) | (MPa/m)
177 | 00
- 385000
4 420 | 15
+ 475000
490 | 29
- 127600
3 2.06 | 25.2
-39200
0699 | 599
~5000
5 0.000 | 199.6
fy=4.77 MPa
. E =30000 MPa
GE=187.5 N/m
c) 50 100 150

wlum)
Fig 4.5 (9) c¢) 0-w curve, E and f as obtained by step-wise iterations
to given points on the load vs. displacement curve.

Pe(é) is the experimental load vs. displacement curve and P (&£,C) is the
corresponding theoretical curve.oc(6), orax (6, P), is a weight function
which makes it possible to reduce the influence of experimental errors. In
order to find the global minimum of Q and the corresponding optimum of C
without having to try too many ¢, an efficient and reliable numerical
algorithm should be available. Such algorithms, or computer programs, are
believed to be available in most large computers. (Lin and Sackman, 1975)
and (Distefono, 1970), see also previous and later papers published by
these authors, have applied least square optimization to the
identification of linear and non-linear viscoelastic materials,
thermorheological materials and subsurface hydrological systems. The type
of evaluation represented by eq (4.5:2) has not been tested by any
numerical example during evaluation of any O-w curve. However, on a
proposal of Wickstrom (1979), some test calculations have been carried out
with regard to evaluation of non-linear thermal properties of concrete,
and it was found that the method appears to be useful and meaningful for
determination of material properties which are difficult to measure
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directly. In general, however, it is necessary that a one-~to-one relation
exists between the unknown material property curve and the ﬁeasured
response curve, and it is desirable that the specimen is such that the
recorded response is clearly sensitive to the properties of the material.
If the actual method is applied to very complex material properties,
described by a large number of curves and parameters, then possible small
sensitivity to the material properties, possible great sensitivity to
experimental errors and possible lack of a one-to-one relation may reduce
the meaningfulness of the actual method where determination of materials
properties are concerned. In such cases the parameter values obtained may
not always give an accurate description of the real material properties,
and might even become only mathematical best-fit values without any
realistic physical correspondance. Consequently, as simple and downright
experimental test methods as possible are believed to be preferable also
when recorded test results are to be treated by means of a non-linear
least square optimization method.
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4,6 Strength analyses of concrete pipes

4.6.1 Introduction

This Section deals with analyses of bending strength and crushing strength
of unreinforced concrete pipes. The methods of analyses and the
computational results are, however, essentially theoretical and
consequently not related to any specific material., Accordingly most of the
theoretical results may, as a matter of principle and more or less
successfully, be applied to strength analyses of pipes made of other
materials than concrete. However, the present application concerns
concrete.

Unreinforced concrete pipes are fabricated in series, the output
production represents a visible part of the total consumption of concrete
and the costs caused by pipe failures are probably not to be considered as
negligible. (The cost of repairs to sewage and water supply pipelines in
England and Wales was estimated by Brennan (1978) at about £40 m per annum
at 1975 prices.) In spite of this, basic analyses of the fracture
behaviour of unreinforced concrete pipes appear rather scarce and strength
design seem to have been based essentially on previous practical
experiences and experimental investigations. Theoretical stength analysis
of unreinforced concrete pipes based on basic assumptions with respect to
the behaviour of the material have with few, if any, exceptions been
limited to analysis on the assumption that concrete is an homogenous
linear elastic brittle material. This assumption is rather convenient as
to numerical calculations and might seem natural as failure mostly takes
place as tensile fracture of the material and as, by tradition, concrete
in tension is assumed to behave in a linear elastic brittle manner.
However, results of this conventional theory have proved to contradict
experimental results. To these contradictions, a number of phenomenological
explanations have been proposed: increase in strength due to use of
powerful vibrating equipment, decrease in strength due to different kinds
of parasitical stresses within the pipes, varying strength due to
development of stable harmonic waves during the vibration, different
strength in different directions due to orthotropic properties of the
material, experimental errors, systematic variability in geometry of pipes
and in properties of the material, etc. These different explanations
probably have, - more or less -, relevance to the real strength and
fracture behaviour of unreinforced concrete pipes. However, according to
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results presented in this Section, it seems that the basic assumption of
linear elastic brittle behaviour of the material should be questioned
before great efforts are made to develop and examine the different rather
special supplementary possible explantions to the different deviations
between practical experiences and the conventional theory.

Experimental investigations as well as design regulations have previously
been concentrated on "crushing" (or "ring") failures, Fig 4.6 (1) a).
Crushing is, however, only one of the possible types of failure and
Brennan (1978) found that “bending" failures, Fig 4.6 (1) b), are more
common than crushing failure in pipes of diameter less or equal to 300 mm.
Experience has also proved that the "bending strength” is considerably
less than the "crushing strength". Furthermore, for practical reasons of
construction, it is desirable to use longer pipes and to lessen the
requirements of the underground preparation. Because of these reasons, the
importance of considering bending action has been increasingly realized in

recent years.

The present investigation deals with crushing failure and bending failure.
Theoretical relationships between failure load and basic material

property parameters are established by means of four basically different
assumptions with regard to tensile fracture behaviour of concrete: linear
elastic brittle (Section 4.6.2), ideal plastic (Section 4.6.3), stochastic
linear elastic brittle (Weibull-model, Section 4.6.4) and linear elastic
fracture softening (fictitious crack model, Section 4.6.5). Sections 4.6.
6, 4.6.7 and 4.6,8 deal with some special topics: influence of initial
stresses, effect of limitation in concrete compressive strength, and the
effect of non-zero breadth of line load of crushing-loading. Experimental
comparisons and some concluding remarks are found in Section 4.6.9.
Formulas similar to those in Section 4.6.2, regarding fracture Tload
calculations by assuming the linear elastic brittle behaviour of the
material, may be found elsewhere, i.a. in (Wastlund and Eggwertz, 1949)
and (Pettersson and Plem, 1975), but are reproduced in order to facilitate

comparisons.

The four different models of the behaviour of material are illustrated in
Fig 4.6 (2). The models are similar with regard to pre-fracture behaviour
and to criterion of fracture: before fracture the concrete is assumed to
behave in a linear elastic manner and fracture (or yielding) is assumed to
arise when the first principle stress reaches the uniaxial tensile
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Fig 4.6 (1) a) Geometry of cross-section of pipe., Deflected form after
crushing failure caused by line-load P/{ is indicated
by the dotted figure.

b) Three point bending of a pipe.

strength of the concrete. Where the post-fracture behaviour of the mate-
rial is concerned, the models are basically different, the behaviour being
illustrated in Fig 4.6 (2) and briefly described in the introduction in
the corresponding Sections. The models require knowledge of very few
material property parameters in order to enable calculation of ultimate
load: The first two models require knowledge of the uniaxial tensile
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strength, ft' The Weibull-model requires knowledge of f and a measure of
scatter in strength, m. The fictitious crack model requires knowledge of
ft and the characteristic length, L b
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Geometrical parameters are defined in Fig 4.6 (1). The shape of cross
sections of pipes is usually described by either of the following
alternative ratios: t/d_, d /d and r/t. Mapping between these ratios may
be carried out by means1of }1904.6 (3). During general discussions of
concrete pipes ratio t/d_ is usually preferred, but this ratio has a
tendency to yield lengthy analytical strength-formulas. In the present
study ratio d /d is adopted during definition of the shape of a cross-
section, Ratio r/t is sometimes more convenient to use during theoretical
analyses of crushing.
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r/t di/do t/di

1 +d,/d 1 + t/d.
r/t = r/t = o - 1

2“'ai;ao] 2 t;ax
d./d = 2/t -1 d,/d - !
L] 2r/t + 1 i’To T+2 t7a1
t/d - 1 t- di/do -
/d; = TIETT ?_d”Td_] - = t/d;

Fig 4.6 (3) Transformations between different descriptions of shape
of section of a pipe.

The terms "bending strength" and "crushing strength" (or "ring strength")
are often used in descriptions and discussions about the strength of
conrete pipes and before proceeding these terms ougth to be defined.
Bending strength and crushing strength should not be considered material
properties, but as an alternative descripton of the load carrying capacity
of a pipe of a defined size and shape and at loading corresponding to
bending faiiure and crushing failure, according to Fig 4.6 (1). In this
case the notation ff will be used for bending strength and the notation
fcr for crushing strength, ff is defined by

3 P
foo=MoL W os 1 d (- (dd)h (4.6:1)
— 0 i’ To
W 32

M is the bending moment at ultimate failure and W is the elastic flexural
u

resistance of the cross section, (If the material behaves in a linear
elastic brittle manner, then, according to the engineering beam theory, f
coincides with the material property parameter ft.) The crushing strength,
f , is defined by:

cr

6 (p/e), (1 + dy/d))
T

d < 2 4,6:2
o (1 =4dyd) ( )

for =

(P/L)} is the line load at ultimate failure, (If the material behaves in a
linear elastic brittle manner then, according to the beam theory of curved
beams, f coincides with ft if the pipe is very thin-walled.)

cr

The current §tudy was initiated by a few fictitious crack analyses of the
crushing failure. and has been encouraaed by the buildina contractor
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Skanska, as represented by civ. ing. Christer Isgren, who also proposed
the analysis of bending failure and has contributed va]uab]é information
about design practice, manufacturing and practical experiences. The
contents of Section 4,6 are fairly similar to those presented in Swedish
in (Gustafsson, 1983). However, in this Section numerical results and
methods of calculation are presented in a somewhat more detailed manner
and the number of comparisons to experimental results reported in
literature is significantly increased. Results from experimental tests
carried out in cooperation with Skanska have been reported in short test-
reports, put at the disposal of the actual building contractor. Of the
experimental results obtained, those of interest for the current study are
reproduced in Section 4.6.9. While only bending and crushing failures are
being studied in this Section, it is appropiate to mention that other types
of failures may sometimes become important, e.g. local punching failures
at pipe connections, occurring as a result cf heavy loads concentrated

on a small region, and inclined tensile cracking through the cross-section,
occuring as a result of combined action of shear force and bending moment.
It is also appropiate to add that sufficient strength is only one of the
requirements of a high quality sewage pipe. From the technical point of
view, such a pipe should also be suitable for rational manufacturing and
placing and fulfil demands made on tightness, stiffness and durability.

4,6.2 Linear elastic brittle model

The behaviour of concrete assumed in the linear elastic brittle model is il-
lustrated in Fig 4.6 (2) a): before fracture a linear elastic behaviour is
assumed, a fracture arises when the stress reaches f and takes place as

a8 sudden drip in stress from f to zero. This fracture behaviour applies

to each individual point of the material but, in currently investigated pipe
geometries and types of loading, one may assume that fracture in one point,
i.e. in the point exposed to the highest stress, immediately yields a
fracture of the entire pipe. Thus the material strength concept of the
linear elastic brittle model coincides with the structural stength concept
of the same model, (This is not always the case: Where the crushing strength
of certain pipes with a "foot" are concerned, Ingwersen (1982) has
demonstrated that the structural strength concept predicts a Tower ultimate
load than the material strength concept. In general terms, the structural
strength concept always predicts an ultimate failure load which is less or
equal to the ultimata Tnad ac nradirtad hv tha matarial ctrangth concept.)



4 - SPECIMENS, page 134

According to the current model and assuming that the slenderness of the
pipe is such that plane cross-sections remain plane during bending, the
bending strength f_, normalized with regard to the uniaxial tensile

strength, ft, becomes unity:

Tr
f

= 1.0 (4.6:3)

t

The assumption of plane cross-section, i.e. the assumption of validity of
the beam theory, is an approximation which simplifies numerical
calculations very substantially. Isgren and Paimgren (1982) carried out 3D
linear elastic finite element analyses of a concrete pipe with

di/j,xO.ZO and found that the distribution of bending stresses at mid-span
of the pipe were almost 1inear through the depth of the pipe. (The pipe
was uniformly loaded along its length and supported at its ends.)

As to crushing strength, formulas of the theory of curved beams,
(Petersson and Plem, 1975), give:

f
cro :
= = f(di/do) (4.6:4)
t
where f(di/do) =
3d;/d (1+d/d ) (-(1+d;/d ) an(d./d )-2(1-d,/d )
(1-d,/d ) (1-d;/d)24d;/d 1(1+d;/d ) an(d;/d )+2(1-d;/d )}

This expression is exact within the assumed theory, but is not very con-
venient to use. (Some numerical values of f(d /d ) can be found in

Fig 4.6 (4).) An approximate simplification of (2.6:4) is found in (Wdstlund
and Eggwertz, 1949):

f., 3d,/d,
o t+2d./d_ (4.6.5)

A further simplification often used is:

?Eﬁ 1.0 (4.6:6)
t
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d;/dg {4.6:4) (4.6:5) (4.6:6) -
1.0 1.000 1.000 1.000
0.9 0.965 0.964 1.000
0.8 0.926 0.923 1,000
0.7 0.883 0.875 1.000
0.6 0.834 0.818 1.000
0.5 0.777 0.750 1.000

Fig 4.6 (4) Numerical values of f /f according to the
cr
"exact" formula (4.6:4) and according to the
approximate formulas (4.6:5) and (4.6:6).

(4.6:4), (4.6:5) and (4.6:6) are compared in Fig 4.6 (4). The comparison
indicates that the deviation in (4.6:6) from the "exact" expression (4.6:4)
is on the border of what could be called "engineering accuracy" for common
values of d /d . Eq (4.6:4) is exact only in terms of the beam

theory, whi}e ghe true value of f /f on the current assumption of
fracture behaviour of the materia%rand obtained by means of the plane
stress theory instead of the beam theory, is probably somewhat higher than
predicted by (4.6:4). In order to estimate a more accurate value than (4.
6:4), comparison to the stresses in a short straight three point bend
beam, (Timoshenko and Goodier, 1951), may be meaningful. A more accurate
value may of course also be numerically obtained by means of plane stress
or plane strain finite element analysis. The exact plane stress linear
elastic brittle solution is believed to be nearest to eq (4.6:4) and in
between eq (4.6:4) and eq (4.6:6). For common values of d_/d the
deviation between the beam theory and the plane stress théor? is therefore
estimated to be rather small, and subsequent comparisons to test results
are carried out for both eq (4.6:4) and eq (4.6:6).

4,6.3 Ideal plastic model

The basic assumption of this model is that the stress, after the fracture

criterion, 0=f , has been reached, is kept equal to f independent of how

large the strain or deformations may become, Fig 4.6 (2) b). As to bending
strength, equilibrium between external bending moment and internal bending
stresses yield:
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2
fe  401-(dy/d))) (4.6:7)
4
fy (1-(d;/d)%)

Where crushing strength is concerned, consideration of equilibrium between
external load and internal stresses caused by bending moments and normal

forces yield:

fcr 6 (1+d1/do) (4.6:8)
f ™

t di/do
The ideal plastic model predicts considerably higher failure loads than
the linear elastic brittle model, especially at crushing. When d /d =0,8,
i
for instance, the ideal plastic model predicts a 2.4 times higher bending
strength and a 4.6 times higher crushing strength.

In the above application of the ideal plastic model no limitation is
introduced to the compressive strength of the material. The effect of
limited compressive strength may, however, be of importance as the
compressive stress theoretically becomes infinitely high in the edges of
the fracture surfaces. Therefore, influence of limited compressive strength
will be dealt with in Section 4.6.7.

4.6.4 Stochastic linear elastic brittle model (Weibull-model)

The basic assumption of the Weibull-model is similar to at of the linear
elastic brittle model, but the tensile strength is not assumed to be
equal at all points of the material, Fig 4.6 (2) c). Instead the tensile
strength at different points is described by means of a probabalistic
density function, the density function of Weibull, and defined by the
median of the tensile strength, ?’, and a measure of scatter, m. The
density function of Weibull and the Weibull-method of stength analyses
are dealt with in Section 3.4.4. In this Section formulas regarding
bending and crushing strength of pipes obtained by means of the basic
relations in 3.4.4 are presented. During the calculations, the stress
distibutions within the pipes were obtained in accordance with the theory
of straight and curved beams respectively.

A special feature of the current model. as compared to the other models,
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is that the strength predictions do not yield a single deterministic
value, but instead a probability density function. The coef%icient of
variation of this density function is directly defined by the parameter m,
and used as input in the analyses. To further characterize the density
function some kind of mean value should be defined, and one may use the
median or the arithmetic mean as such a characterictis value. During
Weibull-analyses the median is usually used as this value often enables
analytical calculations. However, in the case of proportional loading
(i.e. when the stress in different parts of the structure are proportional
to each other all the time, which, at zero initial stress, is the case if
the external loads are proportional to each other) one may alternatively use
arithmetic means as the ratio between the mean and median has a certain
value for each m independent of the type of (proportional) load and
independent of the geometry of the structure, see Section 3.4.4, Presently
the strenght will be characterized by arithmetic means, and with respect
to ratios between strength in different types of {proportional) load and
in different types of geometry of the structure it does not matter whether
means or medians are used. Thus, for instance, F—/F = ?f/F;. Numerically
obtained relations between m and coefficient of variation, between ratio
mean/median and m respectively are shown in Fig 3.4 (5) and 3.4 (6).

The scatter in strength means that the strength of the pipes in bending is
not only governed by the maximum bending moment along the pipe, but is
dependent on the entire bending moment distribution. Accordingly the
predicted bending strength depends on the type of loading: the predicted
bending strength at three point bending should for instance be higher than
at uniformly distributed lToad along the pipe. Denoting predicted mean
value of bending strength by ?}, the volume of concrete in the pipe by V ,
and the mean value of the tensile strength by f , f having reference to
tensile tests of specimens of volume V , then, by means of eq:s (3.4:9)
and (3.4:10) the following result is ogtained:

1/m

4n|qru
< IO<

(ad
o

1/m
{m(di/do,m) h2<m)} (4.6:9)

where
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(1-(d3/d)%) (m2) 2" (@ 1)°
(1-(d;/d )™?) (m 1)

when m = 2,4,6...

h,(d;/d_,m)= ’ (4.6:10)
(1-(d;/d)%) w (me2) (m 1)
5 > when m = 1,3,5...
(1-(d,/d )™y om (m-1 yy
i’ "o 2
and
1.0 at constant bending moment along pipe
1 at three point bending, load at /2
h,(m)= (4.6:11)
2 3(m1)
3 at four point bending, loads at %/3
m+
at uniformly distributed load along pipe:
m m i .
2m+1
2 (me1-r) 1 - 1 1+ (m-r+1) ]
(2m+1)TE‘{(m+r) } (m+1) { 21 TE (mere)
r= . i= r=

The derivation on the formulas above is not presented in detail as the
calculations are rather lenghty and do not comprise any fundamental
difficulties. In the derivation one may utilize substitution of variables,
Standard Mathematical Tables (Beyer, 1976) and, where the analysis of uni-
formly Toaded pipes is concerned, repeated integration by parts. For conve-
nience, some numerical values of h1 m and h2 " may be found in Fig 4.6 (5).

d1-/d0 m=5 m=7 m=10 m=14 m=20 m=28

1.0 1.426 1.317  1.233 1.175 1.129 1.097

0.9 1.497 1.381 1.292 1.228 1.178 1.141

0.8 1.565 1.440 1.341 1.270 1.210 1.165

0.7 1.629 1.492  1.381 1.299 1.231 1.180

0.6 1.685 1.534  1.411 1.320 1.245 1.189

0.5 1.732 1.567 1.433 1.335 1.255 1.196
Type of load m=5 m=7 m=10 m=14 m=20 m=28

U essmecem) 1,000 1.000  1.000  1.000  1.000 1,000
b 1,176 1.133 1,098 1.072  1.052 1,038

oo 1-2200 1.178 1,140 1,110 1.085 1,066
L 1,431 1,386 1,271 1.213  1.164  1.128

h 1
Fig 4.6 (5) Some numerical values of h11/m (upper table) and h2 /m (Tower
" 7)) and eq (4.6:11).
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Regarding crushing strength, it has not been thought possible to find any
closed analytical expression. Firstly the stress field within the pipe is
rather complex, secondly the volume of integration, i.e. the part of the
pipe where the stress is greater than zero, has not an uncomplicated
shape. Instead the crushing strength was obtained by means of numerical
calculations:

s 1/m

fEE = f(dy/d) XQ Lim (4.6:12)

t Vp

1/m
The function f(di/do) is defined in eq (4.6:4) and some values of ¥ at

different m and d _/d may be found in Fig 4.6 (6).
i" o

Y1/m
di/do m=5 m=7 m=10 m=14 m=20 m=28
1.0 2.767 2.298 - 1.934 1.687 1.501 1.377
0.9 2.801 2.327 1.95 1.701 1.511 1.384
0.8 2.840 2.362 1.978 1.718 1.522 1.392
0.7 2.888 2.404 2.009 1.738 1.537 1.402
0.6 2.948 2.458 2.047 1.764 1.555 1.416
0.5 3.030 2.530 2.097 1.798 1.578 1.433

1/m
Fig 4.6 (6) Numerically obtained values of the term ¥ / in
eq (4.6.12) at different values of d_/d and m.
i’ o

The most essential difference between the Weibull-model predictions of
strength as compared to prediction by the two previous models is naturally
that the strength is predicted to depend on the size of the pipe, not only
on its geometrical shape. From Figures 4.6 (5) and 4.6 (6) it is evident
that F-/?. and f /?' increase at increased scatter in strength, i.e. at
decreased m. Of ggurse this does not mean that scatter is desirable, only
that the ratio between median strength of pipes and median tensile
strength at uniform tensile stress increases at increased scatter.
Furthermore, a large scatter requires a larger safety-factor. From Figures
4.6 (5) and 4.6 (6) it is a]sg_evideEF that both ?} and ?;r increase at
decreasing ratio d /d , that f_and f is of about the same magnitude and
that ?; is predicted to be noticeab]ycgependent on the type of load.
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4,6.5 Linear elastic fracture softening model (fictitious crack model)

The fictitious crack model has been described in Section 3.2.2. In the
current analyses of concrete pipes the bi-linear concrete-imitating shape,
see Fig 3.2 (3) c¢), of the stress-elongation curve of the fracture zone is
adopted. Furthermore, the stress vs. strain relation is assumed to be
linear elastic. In contradiction to the calculations previously dealt with
during the study of pipes, the calculations may now not be simplified by
the aid of the conventional plane-cross-sections-remain-plane assumption,
and thus the beam theory may not be used by itself. Instead the numerical
calculations are simplified by the assumption of plane stress (0=0.2) and
carried out by means of the finite element method. In the case of crushing
failure analysis, a combination of plane stress theory and beam theory is
used in order to reduce the numerical work. Although there is more
computational work in the fictitious crack analysis than in the other
types of analysis, the resuits, once obtained, are no more complicated to
use than those from the other models.

The bending failure analyses of pipes is carried out in a similar manner
to the bending failure analyses of beams with rectangular cross-section,
see 4,2, However, in the analyses of pipes the width is not assumed to be
uniform along the depth of the pipes but is assigned variations in the
manner exemplified in Fig 4.6 (7). The type of loading studied is shown in
Fig 4.6 (1) b). Regarding short deep pipes, it is probably that the
ultimate bending moment, as predicted during the current type of analysis,
is to some extent dependent on the type of ioading causing the bending of
the pipe. But if the slenderness of the pipe is such that the risk of
bending failure becomes of practical importance then presumably, the
influence of the type of load on the ultimate bending moment is predicted
to be of minor importance. In the current analyses pipes of the
slenderness ratio L/d = 4,0 is assumed, d /d is varied from 0.400 to
0.909 and the size of the pipes, as norna11zed with respect to the
characteristic length of the material, varies from d1,/)c,Ch = 0.0625 to 0.8.
The symmetrical half of the pipe is devided into 40 finite elements along
its depth and 30 elements along its length, the element mesh along the
length of the pipe being finer close to the fracture zone propagation path
than close to the supports of the pipe. The type of element used is the
rectangular 4-node non-conformal plate element of Turner and Clough.

The ultimate bt~ '"-- ~-womtn mn shdedocd de dbhe dnceamanta] finite element
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=\
—
a) b) c)

Fig 4.6 (7) a) Cross-section of pipe. b) "Equivalent” cross-section
of beam. ¢) Cross-section of finite element mesh. Width
of element are such that shaded areas are of equal size.
The size of fracture elements corresponding to the nodal
points were made equal to mean of the cross-section areas

of the adjoining plate elements.

analyses are presented numerically in Fig 4.6 (8). The value of ff/f at

the Timit di/Lcﬁ+ 0 is obtained by means of eq (4.6:7). The value of ff/ft
at the 1imit d /f = o is obtained from the pre-fracture stress in the

Tower edge of %hecpipe as calculated in the current finite element analyses.
If incremental finite element analyses were carried out at the limit

d /} — 0 the same results as those in (4.6:7) should be obtained. In

t%e %1m1t di/L Eacn, (4.6.3) predicts f /f =1.00 and the deviation

as compared to the results of Fig 4.6 (8) is a result of limited slenderness
of the pipe and the deviation is obtained due to different types of simpli-
fications utilized during the numerical calculations: beam theory and plane
stress analysis by means of finite elements respectively. The latter is
probably more accurate than the beam theory. The values of f /f at

di/,Q,C = 8.0 are not believed to be very accurate due to the present

choice of finite element mesh.

The results in Fig 4.6 (8) are in agreement with the general hypotheses in
Section 3.5.3: The currently predicted ultimate strengths are in between
those of the linear elastic brittle model, eq (4.6:3), and those of the
ideal plastic model, eq (4.6:7), and the strength is predicted to decrease
with increasing size of the pipes, the decrease not being faster than as
stated by hypothesis IV, The decrease in strength during increase in size
is somewhat supricinalsu unifarm +alina tha rathar larna wvarjations in the
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di/2ep | 43/dy=

0.9091  0.8333  0.6667  0.5556  0.4000
-0 2.190 2.361 2.769 3.057 3.448
0.0625 | 1.604 1.657 1.773 1.840 1.894
0.125 1.479 1,525 1.622 1.675 1.703
0.250 1.358 1.399 1.482 1.520 1.520
0.50 1.254 1.292 1.359 1.378 1.342
1.00 1.179 1.211 1.252 1.243 1.205
2.00 1.131 1.150 1.156 1.138 1.118
4.00 1.093 1.102 1.085 1.070 1,062
8.00 1.063 1.053 1.036 1,041 1.053
b 1.033 1.023 1.019 1.024 1.035

Fig 4.6 (8) Bending strength, ff/ft’ of concrete pipes of different
shape, d /d and size, d /1 W as calculated by
i’ o ic
means of the fictitious crack model.

width of the cross section along the depth of the pipes into account and
bearing in mind that the depth of the fracture zone at ultimate load is
dependent on the size of the pipe.

Practical utilization of Fig 4.6 (8) may perhaps not be very convenient as
it is usually necessary to carry out interpolations with regard to both
di/)l,C and di/do' During designing d, is normally chosen in advance and

the wall-thickness, t, has to be calculated. In Fig 4.6 (9) ff/ft vs. t

for some different common values of d. is shown. The absolute values of t
and d in this Figure are valid when ich—380 mm, where the value of L ch

may be considered to be typical of a normal concrete used in pipe
manufacturing. Fig 4.6 (9) may of course also be used for other values of

{  than 380 mm provided that the values of t and d, are altered in such a
mgnner that the ratios t/{ and d_/}LCh are kept co;stant, Numerical inter-
polation in Fig 4.6 (8) may be carried out by using differnt methods. The
curves in Fig 4,6 (9) were obtained from Fig 4.6 (8) in the following manner:
First cubic spline functions without end restrictions were developed for the
discrete values of d1_/Jt,Ch with d /d as variable, then linear

interpolations were carried out with ln(di/lch) as the variable.

We now turn to the analyses of the crushing strength., If a high degree of
accuracy is required even when d_/d is small, i.e. when the pipe is
thick-walled, the cross section éf %he pipe should be modelled as a plate,
Fig 4.6 (10)“a). However, while the growth of two fracture zones has to be
considered and ‘ent values of
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shapes and sizes of the pipes, this type of modelling would lead to a
substantial amount of numerical work. As an alternative app;oach, a
quarter of the cross-section was modelled by one curved beam element and
two moment springs, Fig 4.6 (10) b). This approach drastically reduces the
number of degrees of freedom involved in the analyses and is made possible
by the fracture hinge moment rotation relations from Section 4.2.3,

General expressions of the linear elastic stiffness properties of curved
beams are provided by Martin (1966). Where the curved beam element in Fig
4.6 (10) b) is concerned, numerical evaluation of these analytical

expressions yields:

£, [2(1-d.7d )]

P,| = += 9 k u

Q1 12 (1‘+d1./d0'5‘ = V1 (4.6:13)
! ol

p 1

2 up

Q, v

M o2

2 2
where k = Et and
kyq = Kop = kgq = kg = kyg = -ky, = 42.875 030 900 349
k., = k,o ==k, , = -k = 39.371 154 112 581

K3 = Kag = kg = ~kpg = 9.484 516 680 684 (d.+t)/2
Kpg =Kys = ~kyp= kg - 12.988 393 468 453 (d +t)/2
kg = ke - 5.458 802 035 264 ((d,+t)/2)°
~Kag = 1.954 925 247 496 ((d +t)/2)?

A similar numerical stiffness matrix as that in eq (4.6:13) is provided by
Martin, but was not found to be sufficiently accurate. Naturally, the high
degree of accuracy does not correspond to the accuracy to which properties
of materials is known, but is desirable within the numerical calculations
since the global incremental stiffness shows very large variations during
fracture (i.e. variations from positive to negative values) and since a
high accuracy makes it meaningful to check the equilibrium after each
increment in external load. The boundary conditions, i.e. the conditions
of symmetry, are introduced by omitting the rows and columns corresponding
to u1 and u2 and accordingly the 6 by 6 matrix is reduced to a 4 by 4

matrix.
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lch =380 mm ¢
----------- ©* ¥
ff =MUIW
T 3 4
‘It W‘:ﬁ dO (1'(d|/d°) )
ft
1.6+
dl =70 mm
15
di =100
14
d; =150
T ;=225
1.3
di= 400
1.2~ di= 600
/ d;=1000
Wi —
1.0 T T T T T T T T T T T T T T T
50 100 150

Wall -thickness, t(mm)

Fig 4.6 {9) Bending strength, ff/ft’ of concrete pipes vs.
wall-thickness, t, for different inner diameters, d_,
as obtained by the fictitious crack analysis. The d}agram
“is valid for { =380 mm.
ch
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Fig 4.6 (10) Symmetrical quarter of cross-section of a pipe modelled
as a plate, a), as a curved beam, b), respectively.

The hinge moment-rotation relations in Section 4.2.3 are valid for
straight beams and at zero net compressive force across the section of
fracture zone growth, Regarding the analyses of crushing strength this
means that these moment-rotation relations apply strictly only in the
limit di/do—al.O, while when di/d0< 1.0 curvature of the beam has an
influence on the stress distribution in the fracture sections and,
furthermore, non-zero net compressive forces arise in two of the four
fracture zones. In order to compensate ultimate crushing strengths
calculated at di/d0<1.0 for these two approximations, knowledge of the
fictitous crack predictions of fcr/ft at the limits t/ﬂ,;foo and t/lc—e 0
both at analysis with and without considerating the curvature of the beam
is utilized. Curvature of the beam taken into account, f r/f is provided
y (4.6:4) respectively (4.6:8) at the limits t/x%h»zn respectively -0,
Curvature of the beam not taken into account, i.e. the two approximations
not compensated for, i.e. for di/do=1'0’ (4.6:4) gives fcr/ft=1'0 for

the limit t/ﬂcha(x and (4.6:8) gives fcr/ft=12/ﬁ for the Timit

t/4 — 0. Knowing the influence of curvature in the limits of t/[Ch

the approximations during calculation of fcr/f are compensated

for by interpolation in such a manner, that A/B=C/D: see Fig 4.6 (11). To
exemplify the magnitude of this compensation: at t/l —0 40 f /f is
increased by 0 %, 2 ¥ and 7 % at d_/d =1.0, 0.8 and 0 6, and at tAé —0.10
by 0%, 6 % and 20 % at the same va]ugs of d /d .

As discussed above, the special cases t/f —w and t/fcﬁao should not
require incremental numerical calculations in order to determine the
fictitious crac! which does not
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require numerical calculations is that of an arbitrary fixed non-zero
value of t/,tch and di/dda 1.0. In this case the stiffness of the curved
beam element approaches zero and accordingly the magnitude of rotation of
the moment-springs is negligible in comparison to the magnitude of
deformation of the—bepding—mement—aistribution—along the curved beam
element independent—of—the—tsmat—rotations—ef—the—moment—springs and

accordingly the ratio M_/M_ is bound to be constant during the entire
course of fracture. Ratio M”/Ml is governed by the linear elastic

z
properties of the curved beam element and is equal to 2/(f-2). Knowing
MZ/MI’ an equation of equilibrium yields:
f M .
Lro_ U when d./d_ - 1.00 (4.6:14)
f M e
M is the ultimate bending capacity and M is the bending moment at the

t (o]
u 0
start of fracture zone development. The ratio M /M depends on t/4 h and
0 o
may be obtained from Section 4.2.2 or 4.2.3.

The 1imit d_/d - 1.0 is a geometrical limit, but may alternatively be
looked upon1asoa lower 1imit of the stiffness of the beam element. The
opposite limit, that of an infinitely stiff beam element, corresponds to
the geometrically completely absurd case d /d —» -1.0. This case is of
course impossible in reality, but is of 1n%ergst as a theoretical limit.
If the beam is infinitely stiff then 91=92 and accordingly MZ/M1=1.0,
which yields:

f M
<r . %2 U hen d./d -+ -1.00
™ M T 0

t 0

In (4.6:15) the influence of normal force across the fracture hinges is

(4.6:15)

not taken into account nor is the influence of deviation between

the stress distribution of a straight and a curved beam taken into
account. However, if these two approximations, previously dealt with, are
adopted, then, for any non-zero constant value of t/Lch, (4.6:14) forms a
lower limit of fcr/ft while (4.6:15) forms an upper limit of fcr/f . An
example of fcr/ft VS, di/do at a constant value of t/)l,c and before and
after compensation for the two approximations may be found in Fig 4.6
(11). The limits of f /f given by eq {4.6:14) and eq (4.6:15) may be
useful when checking ﬁzmerica] calculations and making approximate
estimations. As a matter of principle it may be noted that the
distribution of bending moments within the structure is independent of the

properties of *~° ~ t ' o T ~ "'e structures is
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fcr ! ft

6.0

5.0 -
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Fig 4.6 (11) Example (di/do=0'647’ t/Lch=0.2), which illustrates
method used to compensate for approximations during
calculation of f /f . x = value when influence of
curvature of beaﬁg is not considered, o = value when
curvature is taken into account, A/B=C/D.

very small (progressive collapse), while the distribution of the
displacements of the structure (the kinematical fracture behaviour) is
independent of the properties of the fracture hinges when the stiffness of
the structure is very great. The matter of upper and lower boundaries of
strength during fictitious crack analyses of statically indeterminate
beams is also dealt with in Section 4.2.5.

Before proceeding to the numerical results of f /ft at different
cr
intermediate valiec nf +/0 and A /A i a at waluse in hatween the
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extreme limits dealt with above, a few things concerning the computational
method should be discussed. The fracture hinge moment-rotation springs are
on the whole non-linear, but as a result of the method used during
determination of their properties, Section 4.2.3, defined by a large
number of piece by piece linear relations and accordingly in the
incremental sense are exactly linear. In order to carry out the numerical
calculations a small special-purpose finite element program was developed.
The incrementally linear type of stiffness properties facilitates the
development of such a program, the size of each increment in external load
and deflection being defined by the incremental global stiffness and by
the 1imits of the linear pieces of the moment-rotation relations. In this
type of direct incremental analysis equilibrium is always maintained
exactly (within the limits of the numerical precision, i.e. the number of
digits, chosen to be used for the calculations), while other types of non-
linear analysis may yield numerical errors due to too large increments or
due to too few iterations.

The adopted method of numerical calculation is thus comparatively simple
and reliable, but three interesting difficulties did, however, arise
during the calculations. Two of these have been briefly discussed in
Section 4.3 and have to do with the determination of the correct sign of
the external deflection increment and with possible numerical errors in
the size of the increment when the incremental stiffness of the structure
is close to zero. The third difficuity is due to structural interaction
between the two fracture softening hinges. This interaction seems to be
rather complicated and may cause sudden and temporary negative rotations
(unloading) in any of the fracture hinges during the course of structural
breakdown. The pessibility of the occurrence of this type of behaviour may
be exemplified in a simple manner by considerating the limiting case d_/d —»
1.0. In this case M_/M_ is constant during the course of collapse and te
accordingly 6_ has to start to decrease {unloading) when 92 increases
beyond the point of ultimate bending capacity (softening).

In the currently presented analyses the moment vs. rotation behaviour at
unloading was assumed in accordance with Fig 4.6 (12), which also shows
the corresponding assumption regarding the unloading behaviour of the
fracture zone and the elastic surroundings of the fracture zone. Fig 4.6
(12) apparently illustrates different stiffness in an infinitely small
negative increment during rotation and in an infinitely small positive
increment durinn~ rotatinn enennctiualu Tha foedamantal d3fficylty of such
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Moment, M d 0]
A A A

Hinge rotation, © W £

Fig 4.5 (12) Assumed behaviour of fracture hinges at unloading, i.e.
decreasing 8, (two examples), and the corresponding be-
haviour within the fracture zone (0-w diagram) an in
the surroundings of the fracture zone (g-¢ diagram).
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Fig 4.6 (13) Greatly enlarged details of Fig 4.6 (12) illustrating
assumed behaviour of material of transition from loading
to unloading,  is very small but greater than zero.
a) Transition at the ascending branch of the M-#6 curve.
b) Transition at the descending branch of the M-g curve
and immediately after an incremental change in stiffness.

an assumption is, however, that the derivate aM/a8 would not exist. Fig 4.
6 (13) a) shows an enlargement of Fig 4.6 (12) and illustrates more
closely the assimad hahaviaur of trancition from Inadina to unloading:
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derivate 3dM/36 is assumed to be equal at an infinitely small positive
respectively negative increment, but the derivates (3M/a®), and (3aM/ae)_,
which indicate the slope of the M-8 curve after a very “small® positive
respectively negative incremental rotation, are not equal. In applied
numerical calculations the “small" increment is set equal to zero and the
assumption in Fig 4.6 (13) may thus perhaps be considered as a theoretical
subtlety, but is of practical importance as it makes calculations possible
and as futhermore it means that (aM/38),, and not (3M/38)_ nor any other
value, is decisive with respect to occurance of start of unloading. The
principle in Fig 4.6 (13) a) is adopted consistently and Fig 4.6 (13) b)
shows an additonal example with respect to the assumed behaviour of the
material during transition from loading to unloading: in this example
transition from loading to unloading occurs at the descending branch of
the M-8 curve and immediately after (and as a result of) an incremental
change in stiffness of the same hinge that subsequently exhibits
unloading. Regarding return from the unloading branch to the loading
branch, no special assumption has to be made as this transition does not

involve any change in sign of rotation.

During the applied calculations, possible transition from loading to
unloading was dealt with in the following manner: if at any instant an
incremental rotation turns negative (this can only happen immediately
after an incremental change in stiffness of either of the two fracture
hinges) then the absolute size of the increment in external displacement
is set equal to a “small" value and then a new increment is made with the
stiffness of the spring that exhibit unloading set equal to (3M/3e) . The
"small" increment is in reality set equal to zero, simply by not adding
the increment in load and deflection etc. to the previously accumulated
values. Although the size of the increment in practice may be set equal to
zero, the corresponding calculation has to be carried through as
information concerning the incremental global stiffness is required in
order to determine the sign of subsequent increments (eq (3.6:1)) and as,
of course, the transition from Toading to unloading may not be precasted
but is detected first when the current incremental calculation is carried
out. The present computational approach has not yet been found to fail to
work in a satisfactory manner during any applied calculation. A basic
requirement of the approach to work is that if @ starts to decrease when
the stiffness of the corresponding fracture hinge is (aM/aB)+ then © must
also decrease when the stiffness is (3M/36)_, all other properties of the
structure are "nnt somcdned R bunabhacde amanatdnn faam copsideration of
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this basic requirement but not proved to be true, is that the current

opposite case, (aM/38) > (3M/38) , which seems unrealistic for concrete and
A _

most other engineering materials, situations may occur during which the

computational approach will always work if (aM/a92+g(aM/a9) . In the

computational increments may turn out to become an infinite series of
altering positive and negative “small" increments. Such oscillatory
behaviour may thus occur if, for instance, the apparently simple
assumption of equal M-8 curve at loading and unloading is adopted, as in
the last part of the M-6 curve, normally (aM/aG)+>(aM/39)_(both derivates
being less than zero).

The interation between the two fracture hinges is illustrated in Fig 4.6
(14), which shows an example of the global load vs. deflection response
and the moment-rotation responses at some different corresponding points
of "time" during the course of crushing fracture of a concrete pipe as
obtained in a computational analysis. The example is valid when
t/ich=0.025 and di/d0=0.9807 These values are unrealistic for normal
concrete pipes, but are chosen in order to provide an illustrated example.
The non-linear scale of the rotation axes in the Figure should be

observed.

In addition to interaction between the two fracture hinges, Fig 4.6 (14)
also illustrates that an almost linear load vs. deflection response up to
ultimate load does not prove that the material may approximately be
regarded to behave in a linear elastic brittle manner. If the material
actually did behave in a linear elastic brittle manner then the ultimate
load, 0 /f , would be 1.0, i.e. less than half of the current

ultimate load, 2.15. In more general terms this exemplifies that the local
behaviour of the material within a small part of a structure may have great
influence on the ultimate load carrying capacity of the entire structure,
even if the Tocal behaviour has very 1ittle influence on the global
stiffness.

Regarding the calculation of crushing strength of concrete pipes, the
modelling and the consideration of the unloading behaviour of the fracture
hinges proved to be of minor practical importance as the fracture hinges
in concrete pipes of normal geometry proved not to unload (but soften)
before 9Q_/dv =0 and as this first maximum point also proved to represent
the global maximum point of the load vs. deflection response of concrete
pipes of normal aerametrv. Tn snite nf this. the studv af the unloading-
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Load, 0/f; 34
‘ ) o B (20210 (+diidy)
2.0 T do  (-dildF
2

——————

104 '~
-8
\\ 1?
""“"*-——-—-___________
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5000 Vo
Deflection, —=—
(tftlE)
—M2/M0 3, —M1 /MO 7|B
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0.011 10 10 100. 500. 0 .011 10 10 100. 500
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Fig 4.6 (14) Example (t/L h=0.025, d1/d0=0.980) of computational results
regarding crushing collapse behaviour of a pipe: load vs. de-
flection and bending moment in fracture hinges vs. rotation.
‘Numbers 1-10 indicate simultaneous events. Notations acc, to
Fia 4.6 (10Y. Nan-linpar ccale nf the rotation-axes (~0 : ).
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softening iteraction between the fracture hinges has been estimated to be
of some interest, partly because it might be of some interest to be able
to study not only the ultimate load but also the post ultimate behaviour
of the structure, and partly because the method of analysis might be of
some interest where other types of structures are concerned, for instance
different types of statically non-determinate beams with or without

reinforcement.

t/SLch di/do:

-»1.0 0.9990 0.8947 0.7778 0.6471 0.5000
-0 Not def. 3.822 4.044 4,365 4.862 5.730
0.025 2,115 2.252 2.548 3.006 3.425 4.012
0.050 1.944  2.070 2.250 2.562 2.995 3.549
0.100 1.759  1.873 1.979 2.159 2.477 2,989
0.200 1.570  1%872 1.727 1.821 1.992 2,342
0.800 1.239  1.318 1.315 1.318 1.333 1.382
1.600 1.126  1.198 1.181 1.163 1.145 1.137
3.200 1.058 1.126 1.101 1.071 1.037 0.999
-+ o 1.000 1.000 0.963 0.917 0.858 0.777

Fig 4.6 (15) Crushing strength, f /ft, of concrete pipes at
cr
different t/4 (size) and di/do (shape) as
c
calculated by means of the fictitious crack model.

The crushing strength, f /f , of unreinforced concrete pipes at different
values of t/{ch and di/do as obtained by means of the fictitious crack
description of the behaviour of the material is presented in Fig 4.6 (15).
fcr/ft at intermediate values of t/)lc and d,/do have been obtained by
means of the incremental calculations, while f /f at the extreme 1imits
has been obtained in accordance with (4.5:4), %2.6:8) and (4.6:14)., Compen-
sation (illustrated in Fig 4.6 (11)), for the approximations during the
calculations are included in Fig 4.6 (15). f /f in the 1imit point
t/lcﬁa 0, di/dda 1.0 is not defined while fci£3.82 when t/&cﬁa 0 and di/d
is fixed to some constant value very close to 1.0 and while fcr/ft=3'0
when di/do—al.O and t/}&ch is fixed to some constant value very close to

zero.

Fig 4.6 (15) indicates that the crushing strength decreases at increased
size of the pipe, and that, for normal values of t/f , the crushing
strength increases at decreasing d_/d (which resu]tccontradicts the
conventional theory). The computat}ongl results suggest also that the
crushing strengt "7 7 tensile strength
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A d; =70 mm P/ len=380mm

- 6 (Pllly (1+di/do)
—~____—d;=100 =T d,  (d P

T T T T T T T B T T T T T I i Lot
50 100 150

Wall-thickness, t (mm)
Fig 4.6 (16) Crush1ng strength, f /f , vs. wall-thickness, t, for con-

cr
crete p1pes of different inner diameter, d}, as obtained
by ~ - : 1id for )( —380 mm.
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and also considerably higher than the bending strength, Figs 4.6 (8) and 4.6
(9). '

With regard to influence of material properties, f is predicted to
increase about 50 % if the tensile strength is doubled at constant E and
G.. f is predicted to increase about 15 % if the modulus of elasticity
or thgrfracture energy is doubled at constant f ., These values only being
examples of typical approximate values with practically common values of
t/4  and d /d .

ch i o

In Fig 4.6 (16) the results from Fig 4.6 (15) are presented as f /f s,
t for some different values of di' Fig 4.6 (16) is valid for LChSEBO mm ,
but may also be used for other values of kth if the absolute values of t
and di are altered so that t/JZ,C and d1,/}l,C are kept constant. The results
from Fig 4.6 (15) were transformed to Fig 4.6 {16) by means of the same
method of interpolation as that used in connection with the bending
strength analysis, Figs 4.6 (8) and 4.6 (9). The values of f /f at

d /d-a 1.0 were, however, not utilized when the spline- funct1ons were
estab11shed as the change in crushing strength is very rapid when d_/d is
very close to 1.0, When interpreting Fig 4.6 (16) it may be noticed thgt a
variation of t at a constant value of d means that both the size and
shape of the pipe are varied. !

4.6.6 Influence of initial internal stress

In this case initial streses mean macroscopical non-uniform stresses
within a structure at zero external load. Such initial, or internal,
stresses are very likely to develop in concrete pipes, and these stresses
are also very likely, more or less, to influence the bending strength and
the crushing strength, But it is a difficult task to investigate initial
stresses within concrete pipes, and accordingly little is known about the
magnitude and the distribution of the initial stresses as well as little
is known about their influence on load carrying capacity. Specifically
where concrete pipes are concerned, it may be that initial internal
stresses are of importance before the pipes are placed in the ground, i.e.
during handling -~ ' ~*~ """ o 4o mosofbYo oE--S8fee-b osjations din
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moisture conditions and temperature, while the magnitude of the initial
stresses may be less after some time in the ground.

The present study regarding the influence of initial stresses is based on
a single assumption regarding magnitude and distribution of the stresses,
while no special investigation has been made regarding why and how the
initial stresses may develop. The current assumption is shown in Fig 4.6
(17): the distribution through the thickness of the wall of the pipe is
parabolic and the sign and magnitude are such that the stresses at the
surfaces of the pipe equal the uniaxial tensile strength of the concrete.
Although this assumption only represents an example of possible initial
stresses, the assumption should not be entirely unrealistic and should
accordingly and in a reasonable manner form a base for illustration and
discussion of the influence of initial stress on strength, as predicted by
the different theoretical models of the fracture properties of concrete.

Fig 4.6 (17) Assumed distribution and magnitude of initial
stresses within a pipe.

Starting with the linear elastic brittle model, this model predicts that
the bending strength as well as the crushing strength is zero at the
current magnitude of initial stress.

Regarding the ideal plastic model, one of the theorems of the theory of
ideal plastic materials states that initial stresses or strains have no
influence on ul 1gly eq (4.6:7)
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and (4.6:8) are predicted to be valid independent of the magnitude and
distribution of possible initial stresses. )

Numerical predictions of the influence of initial stress according to the
Weibull-model have not been obtained as such predictions requires rather
extensive numerical work. The principles of a method of analysis is,
however, described in Section 3.4.4, eq (3.4:12). The rather extensive
numerical work required for Weibull-model analysis, taking into account
initial stress, is not primarely due to the more complex stress-field but
instead due to the simultaneous action of two non-proportional loads.
Generally speaking this makes it necessary to apply incremental methods of
calculation when median or mean values of strength are to be determined.
Although no applied numerical analysis has been caried out, it is supposed
that the Weibull-model would yield a prediction of the influence of initial
stress which does not deviate very much from the prediction of the linear
elastic brittle model. But the accuracy of such an assumption is of course
dependent on the value of m. If the scatter is zero then m-e, and in this

limiting case the models coincide.

We now turn to the influence of initial stress when estimated by means of
the fictitious crack model. Calculations of crushing strengths, taking into
account initial stress, were carried out in the same manner as for zero
initial stress, see Section 4.6.5, but the fracture hinge moment-rotation

relations used were naturally not the same. The moment-rotation relations
currently used were those presented in Section 4.2,3 and obtained during
consideration of initial stress. The results of the calculations are shown
in Fig 4.6 (18) as f /f for different values of t/{ and d /d .

cr t ch i o

In the previously presented values of f /ft at zero initial stress,
compensation for certain approx1mat1ons were included, and in the currently
presented values of crushing strength the same relative amount of compen-
sation is included for each individual combination of 1:/)&,Ch and di/do'

If, for instanace, a value of f /f was increased by 3 % at zero initial
stress then the corresponding vgque obtained during consideration of inital
stress was also increasesd by 3 %. The currently adopted method of
percentage compensation simplifies the calculations and facilitates
comparisons, but it may of course be questioned whether or not the amount
of compensation should be determined by means of interpolation between

the extreme limits t/f — o and t/L-a 0, i.e. by means of the same principle
as used in Secti-- " 7 7 TF - Aemies 4 Ak fn fosmdRda £a- the reader to



4 - SPECIMENS, page 158

di/do

t/e h

¢ - 1.0 0.9990 0.8947 0.7778 0.6471 0.5000
-0 Not def. 3.822 4,044 4,365 4,862 5.730
0.025 2.047 2.181 2.490 2.922 3.320 3.885
0.050 1.822 1.940 2.140 2.446 2.832 3.339
0.100 1.555 1.655 1.777 1.964 2.252 2.683
0.200 1.246 1.327 1.393 1.496 1.701 1.987
0.400 0.917 0.976 1.023 1.115 1.248 1.385
0.800 0.653 0.639 0.644 0.654 0.674 0.730
1.600 0.401 0.427 0.444 0.467 0.481 0.492
3.200 0.178 0.204 0.243 0.239 0.236 0.229
- 0.000 0.000 0.000 0.000 0.000 0.000

Fig 4.6 (18) Crushing strength, fcr/ft’ of concrete pipes
of different t/JZ,Ch (size) and di/do (shape) as
caiculated by means of the fictitious crack model,
taking into account initial stresses within the pipe
in accordance with Fig 4.6 (17).

apply the method used in Section 4.6.5.

The results in Fig 4.6 (18) obtained by the method of interpolation used
in Section 4.6.5 were transformed into crushing strength, f /f , vs,
wall-thickness, t, at £ =380 mm and at different values ofcg_. The the
relative influence of tﬁe initial stress was obtained by comp;rison to the
results shown in Fig 4.6 (16). These calculations, see Fig 4.6 (19),
turned out to indicate that the fictitious crack model does not predict
any drastic decrease in crushing strength due to presently assumed initial
stress in pipes of common size and shape. Fig 4.6 (19) also indicates that
the relative decrease in crushing strength due to initial stresses clearly
increases at increasing wall-thickness, t. The relative influence of
initial stresses do not vary very much at variations of the inner diameter
of the pipes. It appears, however, that thick-walled pipes are in
particular sensitive to initial stress if the inner diameter is more than
400 mm.

The fictitious crack prediction of the influence of initial stress on the
bending strength may be approximately estimated by means of the results in
Section 4,5,2, More accurate estimations might be obtained by 3D finite
element analysis or by means of some type of modified 2D analysis. To
obtain an estim )y means of the
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Decrease in crushing strength,%
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50 100 150

Wall-thickness, t{mm)

Fig 4.6 (19) Fictitious crack model prediction of the decrease
in crushing strength of concrete pipes due to initial
stresses in accordance with Fig 4.6 (17). The number
at the end of each respective curve denotes the inner
diameter of the pipe, d,, (mm). The current values
of t and di are valid for kch=380 mm.

results in Section 4.5.2 (Figs 4.5 (1) and 4.5 (2)), one can imagine that
the pipe is divided into a large number of strips along its length, the
thickness of each strip being equal to the wall-thickness of the pipe. If
the ratio di/d0 of the pipe is not very much less than 1.0, then the

strips are near “had carrying
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capacity of each of the strips is reduced due to the initial stress in
accordance with Fig 5.5 (2). An approximate estimation is then that the
bending capacity of the concrete pipe is reduced to the same extent.
During such an estimation, the thickness of the pipe, t, is made equal to
the thickness, d, of the prismatic specimen. This type of estimation, see
Fig 4.6 (20), indicates that the fictitious crack model predicts a rather
limited influence of the currently assumed initial stresses on the
ultimate bending capacity of pipes with a common wall-thickness.
Furthermore the estimation suggests that the relative decrease in bending
capacity due to initial stress is independent of the diameter of the pipe,
and that the relative decrease increases with increased wall-thickness.

A comparison between Figs 4.6 (20) and 4.6 (19) indicates that the initial
stresses are predicted to have less influence on the bending strength than
on the crushing strength. The current estimation is approximate not only
by geometrical reasons, but also because the initial stresses do not only
reduce the ultimate load carrying capacity of the prismatic specimen in
Fig 4.5 (1) but they have also influence on the apparent 0-¢ curve, Fig 4.
5 (3), and on an apparent O-w curve.

To sum up, in the studied magnitude and distribution of initial stresses
the linear elastic brittle model predicts a 100 % decrease in both bending
strength and crushing strength. The ideal plastic model predicts a 0 %
decrease in both bending strength and crushing strength. The fictitious
crack model predicts a 3-25 % decrease in bending strength and crushing
strength for common shapes and sizes of concrete pipes, the decrease being
greater for thick-walled pipes than for thin-walled pipes and somewhat
‘greater with respect to crushing than with respect to bending. Any
numerical estimation using the Weibull-model has not been obtained, but it
may be guessed that a Weibull-model prediction would not Qeviate very much
from the prediction of the linear elastic brittle model and accordingly

predict a very great influence of initial stress on strength,

4.6,7 Influence of limited compressive strength

The compressive strength of concrete is to the order ten times the tensile
strength, and it is not probable that the limited compressive strength in
reality has any major influence on the load carrying capacity of
unreinforced concrete pipes when exposed to the currently studied types of
loading. Regar it is possible
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Decrease inbending strength, %
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Fig 4.6 (20) Approximate estimation of fictitious crack model prediction
of decrease in bending strength of concrete pipe due to
initial stresses in accordance with Fig 4.6 (17),
The current values of t are valid when Zth = 380 mm.

that the ideal plastic model model predicts substantially lower ultimate
loads if a reasonable limitation of the compressive strength is taken into
account, When predicting the ultimate load by means of the other three
models being studied at present, the influence of a reasonable limitation
in compressive strength is probably slight and substantially less than the
influence according to the ideal plastic model. Consequently it seems fair
to limit a study regarding the influence of limited compressive strenght to
analysis by means of the ideal plastic model.

When the ideal plastic model is adopted, the equations of equilibrium
provide sufficient information to enable prediction of bending strength
and crushing strength, But, due to the extensive analytical expressions
required for definition of area and centre of gravity of a segment of a
circle with a centre hole, it has not been thought possible to obtain any
explicit analytical expression for the bending strength, f /f , vs. the
ratio between compressive strength and tensile strength, f /f , for
different shapes of the cross section of the pipe, d,/do. Instead the
bending strength may be obtained by means of numerical integration. Such
numerical calculations gave the following result:
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fe 4(1-(dy/d)?)

= re(f /f., d./d ) (4.6:18)
t (1'(di/do)a ) f''¢ 't i 70

—

—]

where values of the function rf(fc/ft, di/do) may be found in Fig 4.6
(21). When fc/f-acothen r - 1.0, and accordingly rf may be interpretated
as a reduction-factor (compare eq (4.6:7)) which quantifies the influence
of Timited compressive strength on the bending strength. Regarding common
values of di/do’ Fig 4.6 (21) indicates that the ideal plastic model
predicts about 10 % lower bending strength when a reasonable limitation of
the compressive strength is taken into account.

dsd, | TS s
8 10 12 14 16

- 1.0 0.980 0.987 0.990 0.993 0.994
0.9 0.939 0.948 0.955 0.961 0.965
0.8 0.902 0.915 0.925 0.932 0.938
0.7 0.875 0.891 0.903 0.912 0.920
0.6 0.853 0.872 0.885 0.896 0.904
0.5 0.836 0.857 0.873 0.885 0.8%

Fig 4.6 (21) Numerical values of the function rf(f /ft, d /d ) in
c i'o
eq (4.6:18), i.e. the influence of limitation in compressive
strength on bending strength.

With respect to the prediction of crushing strength by means of the ideal
plastic model, taking into account limited compressive strength, an
explicit analytical expression may be obtained by means of the eguations
of equilibrium:

fCr _ 6 (1+di/do)
f T

—— r(£/f;.d;/d,) (4.6:19)
¢ di/do crt e i’ "o

The function r (f /f , d. /d ) represents the reduction (compare
i
eq (4.6:8)) in crushing strength due to limited compressive strength,

“d./d
Tep = z?tif7§~; (\/A2+2fc/ft - A) (4.6:20)
L]

d,/d
1 0
(1+F /)

where A = 1 4 ————
. (1-di/do)
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The reduction in predicted crushing strength is of the same magnitude as
the reduction in predicted bending strength. When f /f =12 \for instance,
rcr is equal to 0.923, 0.904 and 0.866 for d /d equal to 1.0, 20 .8 and 0.6
respectively. Eq (4.6:20) is not very conven1ent to use when A >>2f /f .
but in such cases the approximate relation rcr¢$
((di/do)/(l-di/do))((fc/f )/A) may be used. This approximate relation is
obtained by means of a Taylor-series expansion and is accurate to within
0.1 % when A /(f /f )>500. r —(f /f )/(1+(f /f )) when d /d — 1.0.

c t cr c t c t i o

Eq (4.6:18) and eq (4.6:19) represent the bending and crushing strength
when the material behaves in an ideal plastic manner both in tension and
in compression (and consequently not the strength if the material behaves
in a plastic manner on the tensile side and a linear elastic brittle
manner on the compressive side.)

4,6.8 Influence of non-zero breadth of line load

The crushing strength, fcr’ of a concrete pipe is defined by eq (4.6:2).
In this eq, (P/L) is the ultimate Tine load along the pipe. In the
crushing strengthupredictions dealt with in previous Sections, the load
(P/4) has been assumed to be a true 1ine load, according to Fig 4.6 (1)
a) and according to the adopted definition of crushing strength. In
practice, the so-called "line loads" always have some non-zero breadth
both when testing and, of course even more so, when the pipe has been
placed in the ground.

The influence of this non-zero breadth is sometimes disregarded during the
evaluation of experimental results but may be of significant importance
and should, in general, always be taken into account although only some
rather approximate considerations may be required if the breadth of the
“line-load" is small in comparison to the size of the pipe. In this case
formulas which enable consideration of non-zero breadth are provided only
with regard to the two "extreme" models of fracture, i.e. the model of
ideal plasticity and the model of linear elastic brittleness,
respectively. But, as is evident from the formulas below, these two
"extreme" models predict almost the same, and rather small, influence of
non-zero breadth if the pipe has a normal shape and if the breadth of the
“line-load" is reasonable. It may therefore be fair to use any of these

' ‘e influence of

models, or some
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non-zero breadth also when the fictitious crack model is used during
interpretation of experimental results. During the evaluation of test
results in Section 4.6.9, this approach is adopted also where the Weibull
model is concerned.

On the other hand, during design calculations the breadth of load (P/4) is
often assumed to be large and corresponding to d=600 or<x=450, see Fig 5.6
(22). In such cases it may be questioned whether the plastic or brittle
models yield sufficient accuracy with regard to the influence of non-zero
breadth of the load if design calculations are intended to be carried out
by means of, e.g., the fictitious crack model. The accuracy, is, however,
believed to be substantially improved if the principle of interpolation
illustrated in fig 4.6 (11) is used. If, in order to simplify such
interpolations, the arithmetric mean between the influence according to
the brittie and plastic model is used throughout, then, according to upper
and Tower bound estimations, it is probable that the accuracy will be
within about £5 % for(X=450 and if the pipe has a.normal size and shape.

The linear elastic formulas provided by Wastlund and Eggwertz (1949) yield

the following relation between the ultimate line Toad (P/f) and the
u

ultimate load, (P/L) b 40’ at non-zero breadth, b, of the load:
u,

(n—2a+3sin(2a)—4acosza)
8cosa

(P72)y, = (P/2) pug (4.6:23)
2d;/d,

b/zy . — 0
(1+di/do)

where o = arccos( = arccos(a—

This relation is valid for a linear elastic brittle material and is
grafically illustrated by the full curves in Fig 4.6 (22).

Analysis by means of the ideal plastic model yields:

(P/2)y = (P/2) ppy (1 - %ff) (4.6:24)

The ideal plastic model therefore predicts a very simple relation between
(P/L) and (P/L) : the relation is linear with respect to the

norma%ized breadgﬁ of the load, b/d_, and independent of the shape of the
pipe, di/do.”However, if the breadth, b, is normalized with respect to r,

and thus not wi ~ I " " ‘on becomes more
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complicated while the linear elastic relation becomes more simple. (4.6:
24) is grafically illustrated by the dashed straight line in Fig 4.6 (21).
In neither of the two formulas above is any limitation in compressive
strength taken into account.

(P/l)“ b
(P/”U, b%0 1i"_—'{‘/“;)“)
1.0
b/2_ b 2dj/d
. A PO A d T I

N dlI do  COse =2 == (i iy

0.9 N
N XEEE;
\\
0.8 AN
RN
N RS
07 n \
N\ “ di/d, =
06 N 04
\

0.5- elastic brittle 06

— — — ideql plastic 08
0.4+ 1.0
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Fig 4.6 (22)

Ratio between ultimate line load, (P/L)u, and
ultimate "1ine load", (P/4) , of non-zero
breadth, b, vs. b/di accord?ﬁg to eq (4.6:23)
(elastic brittle model, full lines) respectively
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4.6,9 Comparisons and remarks

In this Section the different fracture models shall be compared. First
some general comparisons are made with respect to predicted influence of
different variables on bending and crushing strength. The precision of the
models is then compared by means of experimental results. The comparisons
are accompanied with a few remarks.

Four basically different models have been dealt with in Sections 4.6.2-4,
6.5. Two of these basically different fracture models may each be divided
into two models. During engineering applications of the linear elastic
brittle model, the influence of the value of the ratio d /d is often
ignored when calculating the crushing strength, i.e. eq }4.%:6) is used
instead of eq (4.6:4). In this case use of eq (4.6:6) shall be called the
engineering linear elastic brittle method, while eq (4.6:4) is simply
referred to as the linear elastic brittle model. Within the concept of
beam-theory, the latter model may be considered exact if the material
behaves in a Tinear elastic brittle manner. In predictions of bending
strength the same equation, eq (4.6:3), is used in both models. The ideal
plastic model may also be divided into two models: in Section 4.6.3 the
compressive strength of the material is assumed to be unlimited and in
Section 4.6.7 Timitation in compressive strength is taken into account.
Consequently altogether six different models are available and these models
are collected in Fig 4.6 (23).

Name of model Notation Material property Strength prediction

paraneters. - Bending, f, Crushing, f_

Linear elastic

brittle 1 f 4.6:3 4.6:4
Engineering 1i-

near elastic

brittle 2 ft 4.6:3 4.6:6
Ideal plastic 3 . 4.6:7 4.6:8
Iqeql plastic, fc

Timited 4 fis fc/ft(=12) 4.6:18 4,6:21
Weibull 5 ?t’ m (=14) 4.6:9 4.6:12
Fictitious crack 6 fis Lep (;;?0 4.6 (9) 4.6 (16)

Fig 4.6 (23)" Summing up of fracture models. The numerical values of mate-
= 1l e dii mmmamma bmmn da hmanbAares ana nr-f\d -in the Current
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None of the models is empirical, they all predict ultimate Toad carrying
capacities from basic material property parameters, and the number of
material property parameters involved in each model is very limited. The
material property parameters are listed in Fig 4.6 (23), and it is
interesting to note that all the models predict both the bending strength
and crushing strength to be directly proportional to the uniaxial tensile
strength of the concrete, if the "secondary" material property parameters
(fc/ft, m and lch (=EG /fi)) are constant, This direct proportionality
does not only mean that the tensile strength of the concrete is of major
importance, but it also somewhat paradoxically suggests a conclusion of
practical importance: The ratio between the crushing and/or bending
strength of any two pipes of equal and/or different size and geometrical
shape is predicted to be independent of the tensile strength of the
concrete, provided, of course, that the pipes are made of the same
concrete. (For different qualities of concrete, the "secondary" material
property parameters may have different values.) This feature of the
material property parameter ft does not apply to either f /f , m or XE .
Accordingly, one has, for instance, to estimate the value of Xch’ but not
the value of f , in order to obtain a fictitious crack prediction of the
ratio between the crushing strength and bending strength of a pipe.

The material property parameters of the Weibull-model indicated in Fig 4.6
(23) require a special -comment: the Weibull-model does not state that ?t
is a true material property parameter, but one also has to consider V ,
the volume of the uniaxial tensile test specimen coresponding to the °
current value of f . In spite of this, since Ft’ Vo and m are not
independent of each other, only two material property parameters are
required. Accordingly, maybe it would be more correct to define the
material parameters of the Weibull-modeé by Ftvo m and m instead of by F;
and m. Within the Weibull-model, f V may be considered to be a true
material property parameter, but thig parameter has a strange dimension
which is why Ft is chosenﬂfor use instead of T V0 m. But then, of course,
one has to remember that ft must always be related to some specified value
of V,

0

When comparing the different models there are four different groups of
“degrees of freedom" which may be studied with regard to predicted
influence on the strength of the pipes, namely the type of loading
(bending or crushing), geometrical shape of the pipe (ratios t/d, and
d-i //U, size of th~ rinmn and Finallu tha Ycarandary! matarial proE;erty
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parameters (fc/ft’ m and Lch). It is of course not possible to carry out
any complete comparisons with regard to all the variables involved and
presently only a few illustrative examples will be dealt with. In order
to simplify, first the "secondary" material property parameters f /f , m
(and Vo) and lc are assigned certain constant values, used throughoﬁt
this Section: fc/f =12.0, m=14.0, Vo=0.05*.05*.08 m and Zth=380 mm. The
reasons for these specific choices are stated below.

Although certain constant values are currently assigned to fc/ft’ m {and
V)and X, , it is of course desirable to estimate these parameters as
agcurate1§ as possible during practical utilization of the corresponding
models of strength prediction. So for instance, the predicted ratio
between the bending strength and the crushing strength, ff/fcr’ of common
types of pipes decreases slightly at increased f /f , increases at
increased m and decreases at increased 4 . Specifically with respect to
the fictitious crack model, the 1nf1uenc§ of £ on ratio f_/f means
that one may expect a decrease in the bending gtrength, if thecgrushing
strength is kept constanf but the maximum aggregate particle size of the
concrete is increased. The infuence of maximum particle size on ratio

f /f is probably not of an entirely negligible magnitude: The tests of
Petersson (1981), regarding & for different gualities of concrete,
together with Fig 4.6 {9) and Fig 4.6 (16) suggest that a change in
maximum particle size from 8 mm to 16 mm means a decrease in ff/fCr of
about 10 %.

The ratio f /f was made to equal 12,0 so that this value can be
considered %ypica] for a normal quality of concrete. The choice of m, m=
14, corresponds to an 8.7 % coefficient of yariation of the ultimate Toad
of different pipes cf equal geometry and of equal quality of the material.
This value, s=8.7 %, may be compared to the result of a maximum-likelihood
estimation of s with the help of 137 test results subsequently dealt with.
This estimation gave s=10.8 %, corresponding to m=11,2. But this value
does not only include scatter in strength of the pipes due to scatter in
strength within the material in a pipe, but also the scatter in the
recorded strengths due to unavoidable variation in support and loading
arrangements, errors in measuring of load and geometry and possible
differences in manufacturing and curing of the different but nominaliy
equal pipes. The current choice of L , 2 =380 mm, is believed to be
typical for most pipe-concretes and ﬁas, ﬁith the aid of experimental
results reported huv Dotarcenn (1QR1) dariuved fram the mix of the concrete
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used during manufacturing of pipes used in experimental tests carried out
in Staffanstorp by Isgren and the writer. The water-cement-}atio of this
concrete mix was 0.39-0.41, the maximum particle size was 12 mm, the
cement content was 325-375 kg/m , and Ikh was estimated for a 28 days old
concrete. The experimental results reported by Petersson also suggest that
the uniaxial tensile strength of such a concrete is about 4.1-4.5 MPa in
wet conditions and probably somewhat higher at moisture equilibrium with a
normal indoor climate. The uniaxial tensile test of Petersson was carried
out on prismatic specimens with an effective test-volume of about
.05%,05*,08 m , which is why this specific volume is used as a reference-
volume for mean tensile strength in calculations using the Weibull-model.
As the difference between I =380 mm and £ =400 mm is neglible where
calculated strengths are coﬁcerned, maybe ?t would have been more
appropiate to adopt the round value th=400 mm.

Fig 4.6 (24) illustrates how the different models predict the strength to
be influenced by the absolute size of the pipes, and this Figure also
illustrates the difference between predicted bending strength and crushing
strength respectively. Models 1-4 do not predict any variation in strength
in variation of the absolute size, while the Weibull-model and the
fictitious crack model both predict the strength to decrease at increased
size. The Weibull-model predicts the same influence of size on both
bending strength and crushing strength, while the fictitious crack model
predicts a stronger influence of the size on the crushing strength than on
the bending strength. Another difference between models 5 and 6, not
clearly indicated in Fig 4.6 (24), is that the Weibull-model predicts an
unlimited increase in strength when the size is decreased towards zero and
zero strength when the size is increased towards infinity, while the
fictitious crack model predicts a limited variation in strength: a
variation bounded by the strength predictions of models 1 and 3.

Regarding the comparison between bending strength and crushing strength,
Fig 4.6 (24) indicates that the three elastic brittle models, i.e. the two
deterministic linear elastic brittle models, 1 and 2, and the stochastic
model of Weibull, 5, all predict the same or almost the same strength at
bending and crushing respectively. The two ideal plastic models and the
fictitious crack model predict substantially lower bending strength than
crushing strength.

Practical experi wreinforced
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Fig 4.6 (26) Infiuence of inner diameter, d_, on bending strength, f /ft, and
i
crushing strength, fcr/ft, of pipes as predicted by models. See Fig 4.6 (23).

concrete pipes decreases at increased size and that the bending strength
is substantially less than the crushing strength. These two features are
both in accordance with the fictitious crack predictions. The ideal
plastic models and the Weibull-model respectively predict one of these
features each. The conventional linear elastic brittle models, 1 and 2, do
not predict any of these features.

It may also be of interest to consider how the different models predict
that the strength varies at variations of the shape of the cross-section
of the pipes, and an example of these variations can be found in Fig 4.6
(25). The Figure shows how the bending and crushing strengths are
predicted to vary at increased wall-thickness of the pipe, when the inner
diameter and the length of the pipe are kept constant. The two
deterministic Tinear elastic brittle models, 1 and 2, predict a minor, or
zero, influence of the wall-thickness. Regarding any normal variations of
the wall-thicknecs +ha Waihull_omndal alen nradirte a minar variation in
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strength., The ideal plastic models, 3 and 4, both predict a substantial
increanse in both bending and crushing strength at increased wall-
thickness. The fictitious crack model predicts a slight increase in
bending strength and a substantial decrease in crushing strength at
increased wall-thickness. It can be noticed that the latter model is the
only one that predicts a qualitatively different influence of wall-
thickness on the bending and crushing strength respectively. No
experimental results or practical experiences regardning variations of
strength at a varying wall-thickness and at a constant inner diameter is
known to the writer,

An additional illustration concerning the influence of varying shape of

the cross-section can be found in Fig 4.6 {26): in this Figure the inner

diameter, d , is varied while the wall~thickness, t, is kept constant at
i

50 mm.

Regarding variation in length of the pipe with constant size and shape of
the cross-section, all models, except the Weibull-model, predict constant
strength. The Weibull-model predicts that both the bending strength and
the crushing strength decrease 4.8 % at every doubling of the length (at
m=14), other variables kept constant. Where the actual strength of pipes
is concerned, it is very probable that the bending strength decreases
somewhat with increased length: Compare Section 4.2.5 and eq (4.2:14). But
whether the crushing strength is influenced by the length of the pipe to
the same (minor or possibly significant) extent is questionable.

The predictions of the different models with regard to the influence of
length on bending strength are valid only for pipes of such length to
depth ratio that the stress distribution in the fracture-section is not
significantly influenced by the finite length of the pipe. Regarding short
pipes, let us say if d /£ > 1/4, it is probable that not only the Weibull-
model but also the linear elastic brittle description of the behaviour of
the material, as well as the fictitious crack model, would predict
increased bending strength at decreased length.

In Figs 4.6 (24) to 4.6 (26) ff and f are normalized with regard to the
cr

uniaxial tensile strength, f , of the concrete. It is indicated that

models 1 and 2 predict f_and f to be almost equal to, or equal to, f .

. cr .
The plastic model of unlimited compressive strength, 3, predicts f_ and
f to be very murh hinharn +han § ahnut 2 R and 4 R timag h'igher‘ than
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ft respectively. Consideration of limited compressive strength, model 4,
yields somewhat decreased values of ratios f /f and f /f . The Weibull-
model predicts, - at the present choice of refe%ence vgqumg -, f and f -
to be of the same magnitude as f . The fictitious crack model predicts
that, for a normal size and shape of the unreinforced concrete pipe, ff
will be in magnitude 20 % higher than f and f will be in magnitude 100
% higher than f . Experimental exper1ences suggest that the real crushing
strength is much higher, and the real bending strength somewhat higher,
than the uniaxial tensile strength of the concrete, the uniaxial tensile
strength then being estimated from knowledge of the concrete mix.
Unfortunately it is difficult to obtain any reliable experimental values
of the uniaxial tensile strength of the concrete in pipes. During attempts
to drill and saw test specimens from pipes, it was found that the
specimens became exposed to significant damage. Where manufacturing of
special uniaxial test specimens is concerned, it has been said that it is
very difficult to reproduce the same type of vigorous vibration of the
fresh concrete as attained in the special equipment used during pipe
manufacturing. Concrete used for pipe manufacturing is usually very dry
and it has sometimes been argued that the vigorous vibration is a prime
cause of the high strength of concrete pipes, i.e. the high crushing
strength of concrete pipes.

For practical design applications, a value of the uniaxial tensile
strength is normally obtained in an indirect manner by means of
experimental results regarding the ultimate load of pipes in one, or
possibly several, combinations of size, shape and type of loading, and
then this (apparent) value is utilized for predicting the ultimate load in
other considered combinations of size, shape and type of loading. This
approach in principle requires that the quality of the concrete is kept
constant. Relative changes in the apparent tensile strength due to
considered changes in the quality of concrete, i.e. alternations in water-
to-cement ratio etc, may be estimated by experience or by means of
information provided by literature,

It is more convenient, and from the designers point of view also more
reliable, to obtain a value of the tensile strength by means of testing
pipes than by testing special uniaxial test specimens. Accordingly the
ability of the different models to correctly reproduce the influence of
size, shape and type of loading is of prime practical importance, while
their ability t¢ uniaxial
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tensile strength is of smaller practical importance. Naturally, however,
the ability to correctly reproduce the true tensile strength is of
interest during general comparisons between theoretical models with regard
to their general ability to realistically reproduce the real fracture
behaviour of a material.

In Fig 4.6 (27) test results have been collected in order to facilitate
comparisons with respect to the applicability of the different fracture
models, The Figure includes all tests, known to the writer at present,
where both crushing and bending tests have been made on pipes made from
the same quality of concrete. An estimation of the true uniaxial tensile
strength of the concrete is available only for the concrete used during
the test-series denoted “Staffanstorp". As previously mentioned the true
tensile strength of this concrete was estimated to be 4,1-4.5 MPa in wet
conditions, and probably somewhat higher at moisture equilibrium in a
normal indoor climate. The lack of knowledge of the true tensile strength
of the other concretes is unimportant where the subsequent comparison of
precision is concerned. -

The experimental tests on which Fig 4.6 (27) is based will be briefly
commented on before pfoceeding. The effective length of the pipes used in
the Staffanstorp tests was 1 m and three point bending was applied during
the bend tests. During the crushing tests true line loads were not
applied, but a standard loading arrangement, used by Skanska, was used
instead. The width of the "line loads"“ was 50 mm. The age of the pipes was
not equal, but all pipes were at least 4 weeks old. In spite of different
age, the strength of the concrete was assumed to be constant. The pipes
were tested in an in-door climate (in a concrete factory) and they were
stored in the actual climate for 8 or 9 days before testing. The type of
pipes tested had a somewhat varying wall-thickness along the length of the
pipe, and the wall-thickness used when calculating the strength was the
mean value of measured wall-thicknesses of the fracture surfaces., The
pipes were all made of the same quality of concrete (the concrete mix may
be found above) and manufactured at the same factory.

The test results of Nygdrds and Larkfeldt (1954) are different from the
other test results in the sense that they comprise a number of different
qualities of concrete. However, for each quality of concrete the same
number of tests were carried out for each of the two pipe geometries in-
vestigated. As the quality of the concrete varied, it is not meaningful
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Series  Type of Number Wall-thickness Inner diam. Mean strength Coeff.of
no. failure of tests t (mm) d; (mm) fcr resp. ff var.
(MPa)

Staffanstorp, 17 tests

1 Bend 4 34.6 100 7.38 6.4 %

2 Bend 4 31.3 150 6.75 11.2 %

3 Bend 1 33.8 225 6.56 - %

4 Crush 4 35.0 225 11.00 3.1 %

5 Crush 4 55.2 400 9.62 2.3 %
Nygdrds and Lirkfeldt (1954), 72 tests

1 Crush 36 33 300 7.4 -

2 Crush 36 22 150 8.3 -
Brennan (1978) make "A", 16 tests

1 Bend 4 30.0 225 5.33 24.8 4

2 Bend 4 42.2 300 5.44 5.5 %

3 Crush 4 30.0 225 9.18 12.9 %

4 Crush 4 42.2 300 8.16 8.3 %
Brennan (1978) make "B", 4 tests

1 Bend 2 50.6 300 4,07 8.4 %

Z Crush 2 50.6 300 5.62 7.1 %
Brennan (1678) make "C", 14 tests

1 Bend 7 50.5 300 5.99 12.9 ¢

2 Crush 7 50.5 300 9.74 5.0 %
Brennan (1978) make "D", 4 tests

1 Bend 2 33.8 300 7.44 14.5 %

2 Crush 2 33.8 300 11.93 3.0 %
Brennan (1978) make “"E", 4 tests

1 Bend 2 36.6 225 6.55 6.8 %

2 Crush 2 36.6 225 11.98 0.2 %
Brennan (1978) make "F", 2 tests

1 Bend 1 36.9 225 4,42 -

2 Crush 1 36.9 225 10.70 -
Brennan (1978) make "G", 4 tests

1 Bend 2 55.8 375 5.77 14.7 %

2 Crush 2 55.8 375 9.10 14.6 %

Fig 4.6 (27)

Experimental resuits
concrete pipes.

regarding strength of unreinforced
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to calculate any coefficient of variation, and consequently only the
relative difference between the two mean values of strength is of
interest. The length of the pipes is unknown, but is assumed to have been
0.5 m. The assumed length of the pipes is of significance only for the
Weibull-model calculations.

Brennan (1978) tested 7 different makes of concrete pipes, i.e. pipes made
of different qualities of concrete and/or manufactured at different
factories. Four-point-bending was used to determine the bending strength,
and the distances between the points of load application were about equal
to the effective test length of the pipes divided by three. The effective
test lengths at bending were 1.6 m (make A, d =255 mm), 2.2 m (A, d_ =300
mm), 2.2m (B), 1.5m (C and D), 1.4 m (E), 111 m (F) and 1.6 m (G). The
crushing tests were carried out on the same pipes as those previously
tested and broken in bending, which means that the length at crushing were
about half of the values above. In (Brennan, 1978) the crushing strengths
were calculated without consideration to the width of the "lTine-loads",
and during the calculations the fact that two closely located "1ine-loads"
were applied at the bottom side of the pipe (and consequently not a single
"line-load") was not considered. Unfortunately, the writer has not been
able to obtain information about the width of the "line loads" and about
the distance between the two closely located bottom-side loads. In order
to and in spite of this, attain some correction, the crushing strengths
reported by Brennan have been recalculated taking into account an assumed
width of 50 mm of the "line loads". This assumption is intended to cover
both the influence of width the "1ine loads" and the influence of the
distance between the two bottom-side "line loads". The choice of 50 mm was
made simply because this is believed to be a probable and reasonable value
and because this specific width of the loads was used during the tests
carried out in Staffanstorp. The wall-thickness of the pipes tested by
Brennan were not reported in an explicit manner, but have now been
calculated with the aid of the reported relation between ultimate load and
ultimate strength and the reported values of ultimate load and ultimate
strength, The length to depth ratio of the single pipe of the make "F" is
probably somewhat too small to yield any reliable value of the bending
strength when determined by means of four-point-bending. It may be noted
that the number of tests in some of the series is very limited: series
number 3 from the Staffanstorp tests and the series corresponding to makes
B, D, E, F and 6 of the Brennan tests.
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To sum-up the comments of the tests, it may be said that they all have
their drawbacks. The drawback of the tests made by Nygdrds and Lirkfeldt
is essentiallly that they do not comprise any tests of bending strength.
In spite of the drawbacks, it is believed that the test results collected
may provide some information regarding the acccuracy of the different
fracture models. However, it is not believed to be advisable to apply any
advanced statistical methods in order to investigate the test results of
Fig 4.6 (27), as in such analysis one may easily forget the drawbacks of
the different individual test series. It may also be noticed that the test
results in Fig 4.6 (27) do not comprise results from very large pipes,
while in practise unreinforced concrete pipes with an inner diameter of
1000 mm or more are manufactured (abroad). The bending strength of such
large pipes is, however, normally not very interesting and the crushing
strength in large variations in wall-thickness will be dealt with later on
in this Section by means of additional test results recently presented in

literature.

The mean strengths in Fig 4.6 (27) have been calculated as the mean of the
strengths of the individual pipes, and consequently not from mean values
of ultimate load and wall-thickness. The coefficients of variation in Fig
4.6 (27) represents the scatter in strength within each series and are
therefore essentially independent of the computational method used during
the transformation of ultimate load to ultimate strength. Accordingly
these coefficients are essentially dependent on the true scatter of
strength of the material, the ability of the factory to keep a constant
quality of their pipes and the precision at the testing of the pipes
respectively. If the coefficients in Fig 4.6 (27) are put together by
means of maximum likelihood estimation, taking into account the different
number of tests in each series, one obtains s=10.8 %. (s=6.7 % for the
pipes manufactured in Staffanstorp and s=12.0 % for the pipes tested by

Brennan.)

The experimentally obtained strengths in Fig 4.6 (27) may be transformed
into corresponding values of the uniaxial tensile strength of the
concrete, Fig 4.6 (28). The transformations are carried out by means of
the different fracture models. From a designers point of view, a good
model should primarily yield a approximately constant value of tensile
strengths within each group. From a more general point of view, a good
model should also yield tensile strengths which do not deviate from some
reasonable estimation of the true uniaxial tensile strength. The
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Tensile strength, ft (MPa), according to different models of fracture:
Series Elastic brittle Engineering Ideal plas- Ideal plas- Weibull Fict. crack

No. elastic tic tic (m=14) (gch=380mm)
brittle (f_. unlimi- (fc/ft=12)
t&d)
Staffanstorp, 17 tests
1 7.38 7.38 2.49 2.82 6.25 4.92
2 6.75 6.75 2.53 2.80 5.91 4,87
3 6.56 6.56 2.61 2.84 6.00 5.05
4 12.06 11.00 2.49 2.77 9.97 4,92
5 10.45 9.62 2.21 2.45 9.31 4.9
Nygdrds and Larkfeldt (1954), 72 tests
1 7.94 7.40 1.75 1.93 6.35 3.44
2 9.05 8.30 1.90 2.1 6.70 3.33
Brennan (1978), make "A", 16 tests
1 5.33 5.33 2.16 2.34 5.69 4,12
2 5.44 5.44 2.19 2.38 6.20 4,32
3 9.96 9.18 2.10 2.33 7.36 4,06
4 8.89 8.16 1.87 2.07 7.03 3.89
Brennan (1978), make "B", 4 tests
1 4,07 4,07 1.59 1.74 4.67 3.21
2 6.22 5.62 1.26 1.41 4,90 2.74
Brennan (1978), make "C", 14 tests
1 5.99 5.99 2.34 2.56 6.68 4,72
2 10.78 9.74 2.18 2.44 7.07 4.73
Brennan (1978), make "D", 4 tests
1 7.44 7.44 3.10 3.33 8.18 5.98
2 12.80 11.93 2.81 3.10 9.86 5.56
Brennan (1978), make "E", 4 tests
1 6.55 6.55 2.57 2.81 6.97 5.03
2 13.22 11.98 2.70 3.01 9.67 5.36
Brennan (1978), make "F", 2 tests
1 4.42 4,42 1.73 1.89 4.63 3.39
2 11.81 10.70 2.41 2.69 8.64 4,76
Brennan (1978), make "G", 4 tests
1 5.77 5.77 2.30 2.50 6.66 4.67
2 9.96 9.10 2.07 2.30 7.95 4,62

Fig 4.6 (28) Apparent tensile strengths as obtained by means of
" different models of fracture from the experimentaily
determined mean bendina and crushina strenaths Fig 4.6 (27).
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Staffanstorp tests and make A of the Brennan tests provide the best
general outline, and the tensile strengths obtained from these tests are

graphically shown in Fig 4.6 (29).

Fig 4.6 (30) shows the deviations in tensile strength between the
different series with in each group by the corresponding coefficent of
variation. Accordingly this Figure gives a illustration of the ability of
the different fracture models to correctly predict variations in ultimate
load capacity for variations in size, shape and type of loading.

For interpretation of Fig 4.6 (30) it is appropriate to include a remark
regarding influence of scatter. The coefficients of variation in Fig 4.6
(30) apply to deviation in apparent mean tensile strength between
different test series within a group, and therefore do not apply to
deviation in strength between different individual pipes. If systematic
experimental errors are avoided and if the number of tests within each
series were infinite, then these coefficients of variation would depend
only on the precision of the fracture model used, and an ideal exact model
would yield a zero coefficient of variation. For a limited number, n, of
tests within each series even a ideal exact model may be expected to yield
a non-zero value of the coefficient of variation, and the mean value for
such an ideal exact model would be s/\n, where s represents an estimation
of the coefficient of variation for the strength of the individual pipes
within each serie.

When interpreting Fig 4.6 (30), it is also of importance to notice

that the use of a computational model which accurately predicts the mean
influence of size and shape of the pipes, type of loading and properties
of the material does not decrease the scatter in strength between
individual nominally equal pipes. Naturally, this basic type of scatter in
strength is independent of the fracture model used and is only dependent
on the homogenity of the material and the ability to keep a constant
quality of the pipes during manufacturing. During determination of
appropriate safety factors one has to consider both the basic type of
scatter and the additional artificial scatter produced at the writing-
table and caused by the, more or less, poor reliability and precision of
the computational method used when predicting strength.

The Staffanstorp test and the make A test, Fig 4.6 (29), are in an almost
detailed manner in accordance with each other with regard to suggested
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Fig 4.6 (29) Apparent tensile strength of the concrete in group Staffan-
storp (5 series) and in group Brennan (1978), make "A" (4 series) accor-
ding to different fracture models. The dashed line represents an estima-
tion of the true uniaxial tensile strength.
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features of the different fracture models. The only essential difference
is that the Weibull-model appears somewhat better when evaluating the make
A tests. The better Weibull-model result of the make A tests are most
probably only apparent and due to the different volume of concrete in the
pipes at bending and crushing of the make A pipes, respectively. In both
test groups, both the ideal plastic model, taking into account limited
compressive strength, and the fictitious crack model yield very small
deviations in tensile strength between the different series. Furthermore
it is of interest to notice that the ideal plastic model yields a somewhat
lower value of f for one of the series in each of the two groups than for
the other series. These two series correspond to crushing of comparatively
large pipes, and the deviation in tensile strength is due to the inability
of the ideal plastic models to predict any influence of size, see Fig 4.6
(24) and (25). The fictitious crack the model, on the other hand, seems to
predict also this feature correctly. The approximate estimation, obtained
from knowledge of the concrete mix, of the true uniaxial tensile strength
of the concrete used during manufacturing of the Staffanstorp pipes, Fig
4.6 (29), indicates that the fictitious crack model is the only model that
yields a reasonable agreement between true tensile strength and the
strength of the pipes. The fictitious crack model seems to overestimate
the estimated true tensile strength by about 10 %. The two deterministic
linear elastic brittle models do not predict any constant value of the
tensile strength and the predictions are roughly about twice the estimated
true value. The two plastic models predict roughly about half the value of
the true value. The Weibull-model does not predict any constant value, but
the predictions on an average overestimate the approximate true value by
about 70 %.

While results of the Staffanstorp test and the make A test are discussed
above, the large number of tests in the Nygdrds-Larkfeldts group provide
additional information concerning the ability of the different models to
predict crushing strength with variation in geometry of the pipes. The
rather large number of tests in the make C group provide additional
information concerning the ability of the models to predict bending
strength from crushing strength and vice versa. The numbers of tests in
the other test groups are small, but the results of these other groups
seem to be in general agreement with the results of the more comprehensive
test groups.



Group’ | Number of Number of {Range of | Range of | Range of | Mean apparent tensile Rel. dev. (%) in tensile
tests with- |series t (mm) d; {mm)| type of strength, f, (MPa) strength between series
in serie loads

11213141516 1 12131 4516

‘taff. 4 5 35-55 100-400 | b.-cr 9.0/ 8.6{2.412.7|7.814.9 29 |24 6] 6 | 24| 1

lygér. 36 2 22-33 150-300 cr. 8.5/7.9;1.8{2.016.5|3.4 91 81 6] 6 41 2

ir. A, 4 4 30-42 225-300 | b.-cr. 7.407.002.1{2.3[6.6{4.1 32128 7{ 6 | 12| 4

ir. B 2 2 51 300 b.-cr. 5.2{4.9/1.4/1.614.813.0 30 | 23116 15 311

ir. C 7 2 51 300 b.-cr 8.4{7.9/2.312.516.914.7 40 | 34| 5 3 41 0

ir. D Z 2 34 300 b.-cr. 110.19.7{3.0{3.2/9.0{5.8 28 1331 7] 54 13]5

ir. E 2 2 37 225 b.-cr. 9.9{9.3/2.6/2.9;8.3}5.2 48 1411 3} 3| 231 4

ir. F 1 2 37 225 b.-cr. 8.117.6{2.1|2.316.6(4.1 46 | 42(23] 17 | 43}24

ir. G 2 2 56 375 b.-cr. 7.917.412.2(2.417.3(4.7 38132171 4 | 13} 1

ig 4.6 (30) Mean apparent tensile strength of the concrete in each test-group and relative deviation (coefficient
of variation) between the apparent tensile strengths of the different series within each group. Nota-

tions 1-6 according to Fig 4.6 (23).
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Recently an interesting thesis, (Fuchs,1982), on the crushing strength of
unreinforced concrete pipes became available. Fuchs carried out an
extensive statistical survey and indicated that the crushing strength
decreases at increased wall-thickness. The survey includes 2366 crushing
tests, collected in Germany. In the survey, the pipes were divided into 14
groups of different ranges of wall-thickness, from 30-39 mm to 160-169 mm,
see Fig 4.6 (31). According to private communication, the pipes were
manufactured in different factories and the quality of the concrete in the
different pipes may not quite equal. The diameters of the pipes is not
known, but as a rough approximation one might assume that the inner
diameter of the pipes is about proportional to the wall-thickness, and in
Fig 4.6 (31) theoretical results of the fictious crack analysis are shown
for t/di=l/7, lch=380 mm and f =4.5 MPa. The absolute value of f is
chosen by means of the method of least squares, applied in the range t=50-
169 mm. The choice of f is of no importance with regard to the relative
influence of wall-thickness (and inner diameter). The absolute values of
L and t/d  are of some, but rather little, importance. The important
agsumptions1for validity of the comparison in Fig 4.6 (31) is that ft=
const., £Ch=const. and t/d1=const.

The theoretical curve in Fig 4.6 (31) agrees very well with the test
results in the range t=50-169 mm. In the range t=30-49 mm the theoretical
curve overestimates the crushing strength by about 10%. This over-
estimation may have a number of different explanations. One possible
explanation is systematic difference in the concrete mixes: it is, for
instance, possible that the maximum aggregate particle size used

during manufacturing of pipes with a wall-thickness less than 50 mm is
smaller than when manufacturing pipes with wall-thicknesses greater than
50 mm. Another possible explanation is that the smaller pipes might have
been manufactured and tested somewhere else than the larger pipes. A third
possible explanation is that manufacturers are perhaps more careful and
use higher qualities of concrete when manufacturing large thick-walled
pipes than when manufacturing the small thin-walled pipes. Due to the
uncertainties involved, one should not make any far-reaching conclusions
with the aid of the comparison in Fig 4.6 (31). However, the actual survey
of test results do not seem to contradict the theoretical fictitious crack
analysis. The absolute value of the uniaxial tensile strength that
coincides best with the test results is of a probable and reasonable
magnitude, and the actual survey indicates a decrease in crushing strength
at increased wall-thickness, the rate of decrease also being of about the
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Fig 4.6 (31) Crushing strength of concrete pipes vs. wall-thickness,
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same magnitude as predicted by the fictious crack analysis.

In conjuction with Fig 4.6 (31) and the prediction of crushing strength,
it may be mentioned that a new standard is being developed in Denmark
(1985: has been developed) for the crushing strength of unreinforced
concrete pipes. The new standard may be described as being based on test
results (i.a. obtained in Denmark and not published), but may, according
to Ingwersen (1983)f}a1ternat1ve1y be described as being based on the
theoretical results shown in Fig 4.6 (15) (£Ch=380 mm) .

Fig 4.6 (28) to Fig 4.6 (31), not forgetting the assumed numerical values
of the material property parameters indicated in Fig 4.6 (23), may be
discussed and interpreted from a number of different points of view. In
this case, however, such discussions will not be continued. Instead some
general conclusions as suggested by the current study and regarding the
different fracture models and their applicability during the strength

analysis of unreinforced pipes will be summarized.

During the present comparisons to test results, the two deterministic
linear elastic brittle models have in a consistent manner exposed the worst
characteristics of the different fracture models studied. Therefore it may
be concluded that the two conventional models, both the "exact"” model and
the engineering model, do not seem suitable where predictions of crushing
strength and bending strength of unreinforced concrete pipes are concerned.
From the practical point of view, it is of special importance to notice
that these models should not be used during prediction of bending strength
from experimentally known values of crushing strength. When designing one
may possibly treat crushing and bending separately, using different
apparent values of the tensile strength of the material. This approach
yields a substantial improvement in accuracy, but requires experimental
information from both crushing tests and bending tests, and it seems that
even if this approach is adopted, the elastic brittle models still yield
poor strength predictions as compared to other fracture models. Although
the Tinear elastic brittle models do not seem to be appropiate for
prediction of uitimate strength, the linear elastic theory may be useful
for estimation of deformation and distribution of stresses within the pipe
at normal service magnitudes of load, provided that these loads are
substantially less than the ultimate load.

%) See also Ingwersen (1984).
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The Weibull-model, just 1ike the deterministic linear elastic brittle
models, is not capable of predicting the difference between strength
during bending and during crushing respectively. The essential nice
features of the Weibull-model are that it takes influence of scatter of
strength into account in a simple manner and that it predicts an influence
of absolute size. However, the general accuracy and precision of the
Weibull-model do not appear to be very good.

The ideal plastic models expose a surprisingly good precision, especially
when taking the unrealistic basic assumption with respect to the fracture
behaviour of the unreinforced concrete into consideration. Consideration
of Timitation in compressive strength yields a somewhat improved precision
and, of course, a somewhat more realistic correlation to the absolute
magnitude of the true uniaxial tensile strength. The considerable
deviation between true and apparent tensile strength suggests that the
real distribution of stresses within a concrete pipe is not in accordance
with the model. Another drawback of the plastic models is that they are
not able to predict any influence of size. A nice feature, besides the
surprisingly good precision, is that the plastic models enable
comparatively simple derivations of ultimate strength. This simplicity
might become handy if one also wants to derive the theoretical ultimate
load for more complicated failure modes than bending and crushing. The
simplest, but not necessarily simple, way to treat more complicated
failure modes is probably by the utilization of the kinematical theorem of
plasticity. Starting from a known value of tensile strength, this theorem
yields an upper boundary of the ultimate load both in comparison to an
exact plastic calculation and in comparison to a calculation based on a
more realistic basic assumption with regard to the fracture behaviour of
concrete,

The calculations based on the fictitious crack model expose a very good
precision and appear to be more reliable than any of the other
computational models currently dealt with. The very good precision and the
comparatively very good agreement between the estimatemd true tensile
strength and the apparent tensile strength suggests that this theoretical
model of fracture reproduces the true fracture behaviour in a more
realistic manner than any of the other models. It is not possible to
exactly predict failure loads, but when designing one has to use some
computationaf model and at a choice, at the current stage of knowledge,
between the six models currently deait with it appears quite clear that
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one ought to choose the fictitious crack calculations when predicting the
bendning strength and crushing strength of unreinforced conErete pipes.
However, it may be recalled that the available test results used in the
present comparisons all have their different draw-backs and that the
available bend tests cover only a rather limited range of variation in
size and shape of the pipes. Naturally, it is therefore very possible that
future studies may indicate that the present analysis ought to be refined
or made more realistic in other ways.

The present theoretical results obtained by means of fracture mechanics
are believed to be practically useful and it may be of some interest to
reflect on the efforts required if a corresponding study were to be
carried out by mere experimental and statistical means. During
experimental tests, experimenta] errors are added to the basic scatter,
and this rather substantial total scatter in experimental results suggests
that a large number of tests is required. Thus, for instance, if one
(only) wants to determine the mean value of the ratio f /f for a
specific geometry and size of a pipe made of a specific qugqity of
concrete, one has to carry out about 13(s/x) bend tests and the same
number of crushing tests in order to estimate the true mean ratio with an
accuracy of 100« % at a reliability of 99 %. This number of tests
corresponds to a 100s % coefficient of variation in the experimental
results and may be obtained from the Gauss approximation formulas for
several (in this case two) independent stochastic variables, see for
instance (Biom, 1970)}. (It is assumed that bending strength and crushing
strength are independent stochastic variables. This assumption should be
fair if the tests are carried out on different nominally equal pipes.) If
s=10.8 %, accordingly 15+15 tests only yield an accuracy of about *10 %
for an estimation of the mean value of ratio ff/fcr for the specific type
of pipe investigated. Consequently, if general, accurate and reliable
strength relations are to be obtained only by experimental means without
reflecting on the fracture behaviour of the material, then an enormous
number of testsare required. Taking the very high price of the moulds used
in concrete pipe manufacturing into account, it seems to be hardly
possible to develop general relations merely by experimental and
statistical means. This suggests a conclusion of the present study: It is
meaningful to apply fracture mechanics during strength analysis of
concrete, also from practical points of view.

In Section 4.2.5 a combination of the fictitious crack model and the
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Weibull model is applied to the flexural strength of statically
determinate beams with rectangular cross section. Any such combination has
not been applied during the present study of pipes, but it may be
appropiate to include a few remarks. Where design is concerned the study
of Section 4.2.5 suggests that one may reflect on multiplying the bending
stren?;g predictions of the fictitious crack calculations by the factor
(1/B) at an increase in length of the pipes by the factor B,. Thus, for
instance, when m=14 an increase in length from 1.5 m to 3.0 m would be
predicted to yield a 5 % reduction in the bending strength. Similarly, see
eq (4.2:14), one may reflect on possible scatter induced influence of type
of Toad on the ultimate bending capacity. When m=14 the ratios between
uitimate bending capacity at three-point bending, four-point third point
bending, uniformly distributed load along the pipe, and constant bending
moment along the pipe would be predicted to be 1.000:0.884:0.915:0.824.

A similar type of reasoning might apply to the crushing strength in
variation of the diameter of the pipes and in variation of the width of
the “lTine"-loads at crushing., But for small or normal diameters, the
lengths, as calculated by the assumption of a homogeneous medium of the
regions exposed to high stresses are small, and the regions where the
stress (or bending moment) raised to m 1ze§;g:'sma11er and of the same
magnitude of size as the local heterogeneities of the concrete. For such
small sizes of the highly stressed regions, calculation of the size of
these regions by assuming ideal homogeneous material are not valid and it
is not very probable that a further theoretical decrease in the size of
the highly stressed regions by a decrease in the diameter of the pipe
would yield an increase in ultimate global strength. In order to take this
feature into account when predicting the influence of scatter on mean
ultimate strength, the integration with regard to possible failure
mechanisms might preferably be carred out by assuming a finite thickness
of the volume of material corresponding to each possible failure
mechanism, i.e. each possible location of the fracture surfaces. Another
essential difference when considerating the influence of scatter on the
fictitious crack predictions of crushing strength, as compared to
prediction of bending strength, is that the crushing failure corresponds
to a statically indeterminate system, whereas the bending failure does
not. This means that the concept of the "weakest 1link" (the "weakest
fracture surface") does not apply in the case of crushing. If, in spite of
this, the actual type of combination between the fictitious crack model
and the Weibull model were to be applied during interpretation of crushing
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strength test results, it should be noticed that the width of the "line
loads" is normally not changed during testing of pipes with different
diameter.

From the point of view of design of an entire pipe-line, the
scatter-in-strength induced decrease in the mean bending strength of a
pipe at increased length of the pipe, may not be of great importance: The
probability of failure somewhere along a pipe-line is governed by the sum
of the lengths of the pipes, i.e. by the length of the entire pipe-line,
and not by the length of the individual pipes.

This Section, Section 4.6, has dealt with theoretical strength analyses of
pipes by means of models of the fracture behaviour of materials, and then
the theoretical results were applied to the analyses of pipes made of
unreinforced concrete. The models of fracture and the computational
results are, however, not related to any specific material and may, - more
or less successfully -, be applied to strength analyses of pipes made of
any material. Some exampies of such possible additional applications may
finally be listed:

1) The fictitious crack analysis and/or the Weibull analysis may
perhaps be meaningful for application in the analysis of pipes made

of cast iron.

N
~

Reinforced concrete pipes are often reinforced only in the

tangential direction and it therefore appears fair to believe that
the fictitious crack analysis may be meaningful for application in
the analyses of bending strength of such reinforced concrete pipes.

3) Due to the requirement of tightness (in order to avoid leakage of
subsoil water into the pipes) of sewage pipes, the cracking load is
of interest for the reinforced pipes, and this load might be studied
by means of the fictious crack analysis.

4) Plastic analysis, taking into account limited compressive strength,
may perhaps be applied in short time load analysis of pipes made of
plastics.

5) Features of the fictious crack analysis might be of interest for

long time load analysis of pipes made of plastics.
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6) Pipes made of clay seem to exhibit similar features with regard to
to strength relations as pipes made of unreinforced concrete (See
(Brennan, 1978)), and it is therefore probable that the fictitious
crack analysis is meaningful for application in strength analysis
of pipes made of clay.

As a postscript to this Section it may be added that theoretical fracture
mechanics analysis of concrete pipes has proved to be practically useful.
With the assistance of the fracture mechanics results Isgren, working at a
design-office, has designed new concrete pipes, developed a new loading
arrangement for factory-testing of pipes (bending instead of crushing) and
calculated economical optimum for the length of concrete pipes. As
previously mentioned, the theoretical results in Fig 4.6 (15) has been
utilized during the development of a crushing-strength design formula,
included in a new Danish design standard for concrete pipes. According to
private communication, during a present development of a new Swedish
design standard, it has been found that the fracture mechanics results are
applicable also to calculation of the cracking load of reinforced concrete
pipes. Bazant and Cao (1985) has utilized above calculated tensile
strengths during an evaluation by means of the size effect law of Bazant
(Section 3.5.3) of the strengths of the pipes in the corresponding tests
groups. During this application of the actual size effect law, an
additional empirical parameter, not discussed in Section 3.5.3, was
introduced so that both bending and crushing could be treated.
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4,7 Strength of wood beams jagged at support

4.7.1 Introduction

The fictitious crack model was originally developed for the analysis of
cement based materials, and the results in the previous parts of this
Chapter suggest that the model can be useful during analysis of such
materials. The purpose of the study in this Section is primarly to obtain
an understanding of the possibility for application of this model also
during the analysis of an other type of material. Primarily at this
purpose, the strength of wood beams, jagged at support according to Fig 4.
7 (1) is studied. In contrast to the analyses in the other parts of
Chapter 4., the present strength analysis concerns an orthotropic material,
crack growth from a corner and the development of a fracture zone in which
the stress is not perpendicular to the crack growth direction, The study
should not merely be of theoretical interest as the current type of
detailing is not unusual at wood construction.
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Fig 4.7 (1) Wood beam with a jag at support.
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From the point of view of fictitious crack analyses, a study of the
strength of a corner in an orthotropic material should not involve any
difficulties in principle. From the point of view of conventional methods
of strength analyses, a study of the strength on an internal corner
involves basic difficuities, The strain in the tip of the jag is infinite
and, if a conventional method of theoretical analysis is to be applied
during a strength analysis, it seems that restriction must be made to the
theory of unlimited plasticity. However, because of the brittle properties
of wood during fracture perpendicular to the grain, (See Fig 3.2 (4).),
one may hardly expect the theory of unlimited plasticity to give any
reasonable results. and if the contrary is true then this should be
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suggested by results obtained during fictitous crack analysis. The
conventional linear elastic fracture mechanics can not be used as the
singularity in the tip of a corner is weaker than the singularity in the
tip of a sharp crack (Fig 3.4 (9), isotropic material). By the definition
of the conventional stress intensity factor {(K~0(r)yr, r-0), the
conventional linear elastic fracture mechanics simply predicts that
internal corners cannot fracture (if K >0). Again due to the singularity,
the conventional Weibull theory (in which the property of a linear elastic
material is defined with reference to an infinitesimal volume) can not be
used unless an artificial assumption, governed by the geometry of the
corner and not by the actual properties of the material, is made with
respect to the stochastic properties of the material.

The method of analysis of corners in brittle specimens discussed in
Section 3.4.5 makes it possible to analyse the relative influences of size
and material properties on strength at different opening angles of a
correr, But, even if the specimen is very brittle, it is not believed to
be possible to calculate any absolute value of the strength (i.e. the
value of the constant C in eq (3.4:17)) without account taken to the
fracture properties of the material (i.e. the shape of the O-w curve) and
to the development of a fracture zone of non-zero size.

Any theoretical study of the current structural detail was not found in
the small amount of literature searched through. On the other hand, a
formula for the strength of the current structural detail, most probably
developed by means of experimental results, may be found in building codes
and elsewhere, see Section 4.7.4, The somewhat related problem of the
strength of tapered wood beams, i.e. wood beams with a gradually decreased
depth from midspan to support, has been treated in a theoretical manner by
means of the Weibull theory by Liu (1981). (See also discussion by
Guthowski (1982)).

Section 4,7.2 deals with calculation of the load of start of unstable
crack growth along the beam. Section 4.7.3 deals with mechanics at
ultimate failure of the jagged wood beams, and in Section 4.7.4 is found a
comparison to experimental results together with some concluding remarks.



4 - SPECIMENS, page 193
4,7.2 Fictitious crack anatysis of crack stability

Wood may ideally be assumed to be an orthotropic material with three
principal material axes in each point: parallel to grain, tangential to
the annual rings and perpendicular to the annual rings. The properties
parallell to the grain are very much different from the properties in the
other two directions, while differences between the tangential and radial
axes are less and further on very unpractical to take into account both in
design, construction and theoretical strength analyses. At theoretical
analyses the associated difficulties have mainly to do with the out-of-
plane variations of the tangential and radial directions. In the current
plane stress analysis the material is accordingly assumed to be orthotropic
with one principal axis parallel to the grain and equal properties in all
directions perpendicular to the grain.

In an experimental investigation (Valentin and Morlier, 1982)) of the
critical value of the J-integral, J , of wood (northern pine, Pinus
silvestris L) fracture along the grain perpendicular to the tangential
axis respectively perpendicular to the radial axis was considered
exclusively and it was concluded that the difference between these two
fracture directions was negligable. The at present only available values
of GF of wood (tall; "ordinary Swedish pine"; Pinus silvestris) were
obtained by Helmersson (1978) and in his investigation differences between
the two perpendicular-to-grain directions were not studied. Bodig and
Jayne (1982) have presented a literature-survey of fracture toughness
values, K , of some different kinds of wood. These values relate to linear
elastic fﬁacture mechanics and it may be noted that K , refering to mode 1
fracture along a principle direction of an orthotropic material, is not
only dependent on the perpendicular to crack-plane direction but also on
the crack growth direction, while G_ and J theoretically only depends on
the perpendicular-to-crack-plane direction?

According to Zienkiewics (1977), the stress vs, strain relation of the
assumed linear elastic ortotropic material in plane stress is:

sl 1[5 vE o] [

1-v v .
oy xVy \)XEy Ey 0 ey 4 (4.7:1)
Ty 0 0 G| | v,
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In this relation four parameters are independent: E , E , G and V . The
fifth parameter, Vv , is equal tov E /E due to syémetri in the gtress
vs. strain relation, which in turn isxa consequence of invariant energy
irrespective of the path taken to reach a given strain state.

The fracture currently studied is assumed to take place as a fracture zone
and crack growth in the y-direction along the grain of the beam, starting
from the corner of the jag. The fracture might perhaps essentially be
looked upon as a perpendicular-to-grain tensile fracture, but the forces
transferred across the fracture plane are not, due to the orthotropic kind
of material, perpendicular to the fracture plane. Thus a shear stress
component has to be taken into account in addition to the pure tension
stress. In order to achieve this with respect to criterion of start of
fracture zone development, a two-parameter criterion according to Fig 4.7
(2) was adopted. The two parameters corresponds to the tensile strength,
ft, perpendicular to the grain respectively shear strength, fs, parallel
to the grain. Once the currently assumed fracture criterion is reached in
some point along the fracture plane, a fracture zone is introduced in this
point. In lack of experimental investigations of the fracture softening
properties of wood, the fracture zone is assumed to be sufficiently
described by simple straight line relations between force transferred
across the fracture zone, VEEﬁITEE, and the deformation of the fracture
zone, V;E_;;;?I, Fig 4.7 (3). At zero deformation, the force transferred
is determined bx the fracture‘criterion, and the slope of the relations
between ngi_rz and wa-+wf is choosen to be independent of the value
of VOZ + T2 at start of fracture and further on choosen in such a way that
the area below the stress vs. deformation curve at zero shear is equal to
the fracture energy at pure perpendicular-to-grain tensile fracture, here

denoted G_.
F

The numerical values of the strength and deformation ratios used in the
analysis aimed to approximately reflect the properties of Pinus
silvestris, free of defects, with a moisture content of 12 % by weight
(roughly corresponding to about 60 % relative humidity in the air) and
tested at room-temperature (about ZOOC) at short time loading: E =460 MPa,
E =12000 MPa and vV =0.4 (Bergstrom et al., 1970), f =3.7 MPa andXG =
380 N/m (Helmerssoh, 1978), G=0.35VE E =822 MPa and f =\I0/2 f -5.55 Wpa.
X S t
The expression of moduli of rigidity, G, ought to be a reasonable
engineering Epproximation which, at the choosen value of Ex’ also may be
expressed as G ) T 7T, 1967) and
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Fig 4.7 (2) Fracture criterion. Fig 4.7 (3) Softening proper-
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pendidular to grain. zone perpendicular
T=shear stress along to grain.

grain.

G/Ey=0.050 (SBN-80, 1980). The value of fS is probably too low with
respect to Pinus silvestris at current conditons, but was used in order to
facilitate utilization of a computer program orginally developed in order
to analyse concrete., For the characteristic length of the material
perpendicular to the grain, the values above give ExGF/fz=12'1 mn.

During the numerical calculations it is not necessary to specify the
absolute values of the material property parameters, only dimensionless
ratios. This makes the results more general, In accordance with the
examples of absolute values given above, the following values of the
ratios required during the strength analysis were used, E /E =26.1, G/E
1.79, Y =0.40 and fs/f =1,58, while ratio d/(E GF/fi) wasyasé1gned
different values which are given below. (During deflection analysis also
ratio ft/EX must be specified.)

The value of G_, 360 N/m, reported by Helmersson and obtained as the total
work of fracture at three point bending is in fair agreement with the
values of J obtained by Valentin and Morlier. These later investigators
used DCB—spgcimens and obtained mean values of J from 285 (300) N/m to
348 (377) N/m dependent on the method used to evglute the experimental
results, The figures in brackets corresponds to fracture perpendicular to
the tangential ¢#-~~*3~~ ~F +ha 2nnual rinne  and autcido hrackets
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fracture perpendicular to the radial direction. Regarding coefficient of
variation at constant experimental conditions and constant method of
evaluation, the exerimental results suggests approximately 20 % for J and
approximately 10 % for GF. : ¢

The present numerical calculations regarding the fracture zone development
in wood were carried out with the help of the finite element method and in
essentially the same manner as the similar analyses of concrete. The beam
was divided into a mesh of rectangular 40-node plane stress elements, each
such element basically being an assembly of 4 triangular constant strain
elements. The number of 4-node elements along the depth of the beam was
16. The distance between the nodes along the fracture zone propagation
path was d/13.5 in the analysis of beams with«=0,25 and d/6.75 in the
analysis of beams witho=0.50. Prior to the incremental analysis of the
fracture zone development, all degrees of freedom except those along the
fracture zone path and those at the point of load application were
eliminated by means of condensation. The force transfer across the
fracture zone was, as in previous analyses of concrete, modelled by use of
single discrete springs between corresponding nodal points at opposite
sides of the fracture zone. The springs were placed, and kept, in the
direction of the force across the fracture zone at the instant at which
the fracture criterion is reached. Perpendicular to this direction of the
force across the fracture zone, the resistance to deformation of the

fracture zone was put equal to zero.

Altogether 16 beams were analysed. The geometry shape parameters and
were assigned the following values: (e,B) = (.25, .25), (.25, .50),

(.50, .50) and (.50, 1.00). For each geometrical shape of the beam, ratio
d/(E G /fz) are assigned four different values: 1.31, 2.61, 5.22 and 10.4
duriﬁg the analysis of beams with «=0.5 and 2.61, 5.22, 10.4 and 20.9
during the analysis of beams with «=0,25.

The calculations primarily aimed to determine the load at which the
fracture zone development becomes unstable during a monotonic increase in
the external load. However, before going on to those results, it may be of
interest to study results regarding load vs. depth of fracture zone. In
Fig 4.7 (4) a) load vs. depth of the fracture zone is shown for o=p=0.5
and the diffgrent values of d/(E GF/fz). The corresponding results
obtained for the other combinations of « and p are similar. The distance a
indicated in tha finura dc +ha dictanra hatuaan tha +in nf the corner and
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the nodal point where the fracture criterium is reached. V is the shear
force., The figure shows that the load carrying capacity is bredicted to
decrease almost drastically during increase in d/(E G /fz). The figure
also shows that the element mesh is coarse: For the higher values of

d/(E G /fz), the distance between the nodal points is large in comparison
to the depth of fracture zone, the fracture zone at peak load being
modelled by only one element for largest d/(E GF/fZ). This suggests that a
large number of elements may have to be used during finite element
analysis of wood beams with normal or large size. On the other hand, it
may not be necessary to carry out finite element calculations in order to
obtain the load carrying capacity for beams with a high value of the ratio
d/(EXGF/fi): See below and Section 3.5.3.

One interesting result indicated by Fig 4.7 (4) a) is that the depth of
the fracture zone at the instant of instability is constant, with the
exception only for the smallest d/(E G /fz). 0f course, the result that
this depth is exactly constant for d?(EXGF/fi)>2.61, is partly a result of
the coarse finite element mesh. In spite of this, with E 6_/f2=12.1 mm,
the computational results suggest that the depth of the ?racture zone of
instability is approximately constant and about 20 mm for beams with d
greater than 50 mm. The same approximate value, 20 mm, was obtained for
all studied combinations of o« and B, but for p=0.25 it seems that the beam
must be somewhat larger before the constant value of the critical fracture
zone depth is reached with the same accuracy. For other shapes of the g-w
curve than the presently assumed, one may expect to obtain other critical
lengths of the fracture zone, even if d/(ExGF/fi) is put equal to 12.1 mm.

We now turn to the load at instability, V . As the characteristic length

of wood perpendicular to the grain, EXGF/fZ, is small, the matters dealt
with in Section 3.4.5 may arouse the suspicion that the following

relation, valid for a very brittle isotropic beam with a 90-degree jag,
might be applicable also to the similar beam made of an ortotropic material.

~0.4555

f
~ (4.7:2)
f, bad 2
e ExGF/ft

-V

However, this relation requires that the size of the fracture zone is very
small in comparison to the size of the beam. In the present case, the size
of the fracture zone is not very small in comparison to the size of normal
beams, But the s®== =€ *h~ £onmbiimn mana ~t tha dnckant ~f neagk load seems
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{VIboed)

fi
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A d/(E, G/ 1) =
1.31
® = p=05
5.22
—0 10.4
a
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; : : B
- T T T T —g=- (0, MM
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Fig 4.7 (4) a) Load, V, vs. depth of fracture zone, a, at different
d/(EXGF/fz). Geometry acc. to Fig 4.7 (1) with ot=p=
0.5. Lower axis of abscissa valid when E GF/f§=12.1 mm.
X

to be approximately constant. This suggests (Section 3.5.3) that the
following relation might be a good approximation for beams of normal and
large sizes:

-0.4555

Ve d

~ const. + ————2
f . bad W7
b EXG'_Jft (4.7:3)

Introducing the constants C and e, this relation can be written:

-0.4555

ftbad (4.7:4)
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Ve/(fibad) acc. to FEM-calc.

Vf/(ftbad) acc. to eq (4.7:4)

2y -
4/ (E G/ F2) =
o B C e 1.31 | 2.61 | 5.22 | 10.4 | 20.9

.690 | .543 | .427 | .327
.690 | .543 | .414 | .309

.546 | .423 | .319 | .239
.546 | .423 | .319 | .237

777 | .624 | .485 | .373
.770 | .624 | .485 | .367

.605 | .474 | .357 | .274
.612 | .474 | .357 | .265

0.25 | 0.25 | 1.263 | 1.16 -

0.25 | 0.50 | 0.963 | 0.87 -

0.50 | 0.50 | 1.109 | 0.92

0.50 { 1.00 | 0.785 [ 0.42

Fig 4.7 (4) b) Load at instability, V_, acc. to FEM-calculations and
acc. to eq (4.7:4). Constants e and C in eq (4.7:4) deter-
mined from the FEM-results for d/(E GF/f€)=2'61 and 5.22.
X

As compared to eq (3.5:6), other notations of the two constants are used
in this Section, so that it is made clear that eq (3.5:6) is intended for
isotropic materials while it is not known whether the relation is valid
for the present orthotropic material. The dimensionless constants C and e
depends on the geometrical shape of the beam. C may be looked upon as a
measure of the strength of very large beams and is dependent of the
absolute size of the fracture zone, The constant e may be interpreted as a
measure of the influence of the finite relative size of the fracture zone.
The numerical values of C and e can be determined by means of fictitious
crack analyses carried out with the help of the finite element method for
two different values of d/(ExGF/fE).

Presently the values of C and e are determined from the calculated values
of V_/(f bad) for d/(E G /f2)=2.61 and 5.22. From the point of view that
eq (4.7:4) should be mérg accurate the greater d/(E G /fz) is, large
values of this ratio should be used when C and e are Eetermined. On the
other hand, the values of Vf/(f bad) presently obtained for the larger
values of ratio d/(ExGF/fi) may not be very accurate due to the coarse
finite element m - oot Tootes oo ke S-toopediate
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(V¢ /bad)
h
)
Ey/Ey = 26.]
071 GIEx =1.79
) =040
06 +

fg/ty =158

01 +
' ' ¢ . t + % .
10 20 30 L0 (EXGF’d’
. e B ———+—————+——+=d(mm]
100 200 300 400 500

Fig 4.7 (4) c) Theoretical prediction of the shear force, Vf, in jagged
wood beams at start of unstable fracture zone propagation.
Geometry acc. to Fig 4.7 {(1). Lower axis of abscissa valid
when E G _/f2=12.1 mm.
x F' t
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d/(EXGF/fE) have presently been utilized, In Fig 4,7 (4) b)“is found
Vf/(ftbdd) as obtained during the finite element calculations and also as
obtained by means of eq (4.7:4). The values of constants C and e can also
be found in this figure.

Due to the coarse finite element meshes for largest d/(E G /fz) and the
adopted method for calculation of the stress in the tip of the fracture
zone (Section 3.6), one may expect the finite element results to give
somewhat higher values of V_ for the largest d/(ExGF/fi) than eq (4.7:4).
Such somewhat higher values are also suggested by the numerical results.

Here it may also be of interest to make an estimation regarding the
accuracy of eq (4.7:2). Taking the case ®=B=0.5 (which gave e =0,92) as an
example and assuming that eq (4.7:3) is accurate, then eq (4.7:2) with
EXGF/f§=12.1 mm gives a 10 % overestimation of V_ for d=50 mm, a 5 %
overestimation for d=100 mm and a 3 % overestimation for d=200 mm.

As can be seen in Fig 4.7 (4) b), the values of the dimensionless constant
e decrease with increasing p, i.e. with increasing distance from the
fracture region to the point of load application. Keeping d constant, this
suggests that e is governed by the distance from the fracture zone to the
major disturbances in its vicinity. By disturbance is then meant loads and
boundaries that disappear from any finite vicinity of the fracture region,
or changes its shape within the vicinity, if the size of the specimen is
increased towards infinity. Naturally, the numerical value of e is
dependent of how the absolute size of the specimen is measured. Here the
absolute sizes of the specimens are compared by the depth of the beams.
This is convenient, but it may be that it would be more informative to
compare the absolute size of specimens with different shape by the
distance from the fracture region to the closest major disturbance, If
knowing the value of e, a generalized measure of the absolute size of
specimens with different shape would be d/e. This measure is independent
of how d is defined. The corresponding dimensionless generalized measure
of size would be (d/e)/(EXGF/fE).

The results regarding Vf/(f bad) vs. d/(E GF/fZ) are also shown in the
diagram of Fig 4.7 (4) c). The extrapolation in this figure into large
values of d/(E GF/fi) has been carried out by means of eq (4.7:4). The
figure shows that a decrease in cc or an increase in P gives a decrease in
vf. The influence af  an V <eems. however. rather small and appears, in
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particular, not to be linear. It is interesting that E , G_ and d has
influence on Vf, that this influence is greater than tﬁe influence of ft
and that f appears to have only a small influence on V_. A doubling of E
or GF or a halving of d increases V_with about 30 %, while a doubling ftX
increases V_ with only about 10 %. A further discussion of these

results can be found in subsequent Sections together with a comparison to

a few experimental results.

4.7.3 Mechanisms at ultimate failure

Vf, the shear force at start of unstable crack growth along the grain,
does not necessarily coincide with the ultimate shear force, Vu of the
beam. Firstly, a crack along the beam does not change the geometry of the
beam into a geometrically non-determinate system, which means that Vu may
be larger than Vf. Secondly, only one crack path, failure mode or failure
mechanism, is considered at determination of V_while other failure modes
may be more dangerous, which means that V may be less than V . It appears
thus appropriate to make some simple cons?derations of the mechanisms at
ultimate failure of jagged beams in order to determine when Vf coincides
with Vu. Apart from Vf, quantifying of loads corresponding to the
different possible failure mechanisms is carried out by means of
engineering beam theory and by means of the strength concept of linear
elastic brittle materials., These assumptions are convenient, commonly used
at design of wooden structures and, as to the assumed behaviour of the
material, theoretically on the safe side. However, it should be emphasized
that the assumptions may yield very approximate theoretical relationships,
only forming a basis for discussions of experimental results and more
refined types of theoretical analyses.

Possible failure mechanisms are choosen to be discussed with reference to

a symmetrical beam carrying a point load at mid-section. If the beam is
very slender, Fig 4.7 (5) a), it will of course fail in bending and not

due to shear, and in this case Vu/bd=1/3(d/£)ff, f being the flexural
strength, If the beam is made somewhat less slender, Fig 4.7 (5) b), then
1/3(d/1,)ff becomes greater than m(Vf/(bmd)) and a crack will thus propagate
in an unstable manner along the grain of the beam before the entire cross
section fails in bending. The unstable fracture zone propagation ideally
Jeaves a net cross section of size bxd and of bending capacity bod ff/ﬁ

to carry the be o ed because:
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1) The fracture zone is not an entirely open crack when its unstable
growth reaches the mid-section of the beam and thus the net cross
section, bxd, has support in bending capacity from the lower part
of the cross section, b(l-c)d.

2) Possible inclination or curvature of the grain may cause the net cross
section at mid span to become more or less than bxd.

3) The flexural strength of wood beams increase slightly at decreased
depth of the beam acc. to (Both and Reece, 1967) and (Kollmann, 1951),

However, if assuming "ideal" behaviour, which assumption in a mean sense
ought to be on the safe side, then the bending capacity of the beam, after
unstable fracture zone propagation, corresponds to the shear force

1/3 “—(d/&)ff. At the intermediate slenderness, Fig 4.7 (5) b), this shear
force is less than the shear force at start of unstable fracture zone
propagation and accordingly V /bd=«x(V _/(bad)). Finally, if the beam is
rather short and deep, Fig 4.7 (5) c), then 1/3 a.(d/JZ,)ff is greater than
a(Vf/(qu)) and thus Vu/bd=1/3(x (d/{)ff. Putting AE(ff/3)/(Vf/(bdd)), a
summing up yields:

_1... f if l < (E/d)
3(&/d) f @~ A
v
Yool a (V/bed) if as (wd) (1 (4.7:5)
bd A o
2
o f if (2/d) <a
3(2/d) f A

The reasoning above has reference to beams with significant jagging. In
the case of no or minor jagging, short deep beams should also be checked
regarding “ordinary" shear failure. This failure does not develop from the
jag but develops close to the horisontal centerline of the net beam, d,
according to either of the two types of fracture configurations at
ultimate load shown in Fig 4.7 (5) d). Using ordinary engineering beam
formulas, this requirement implies V /bd<2/3ccf . This simple inequality
is approximate and is probably consegvative at lgw ratios of slenderness
due to support in shear capacity from the end of the beam outside the
support and due to compressive stress across the shear fracture plane. If
an "ordinary" sk-~~= €=motiimn bor dounlanad dhan dha bhaaw o de theoretically
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o — 7 a
o
T -7 b

*ZVU

b—?_z .1;] Cc

Vu

__________ Beam shear fracture: d
_Primury bending fracture:a
Jag shear crack propagation: b
Secondary bending fracture: c

T
 m-l/d
" r P
d’ c b a

Fig 4.7 (5) Fracture zone configurations at ultimate load and
illustration on principle of relationship between
“ultimate Toad and slenderness.
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not abdle to carry any higher load and thus if either of the if-statements
of (4.7:6) are true then (4.7:6) will override (4.7:5): )

20, .
V/bd = —=f if (2/d) 3a
u 3 s S (4.7:6)
3
(Fe/3)/F, 7 2
or if Vg/bod .2
f -3

According to the above, a shgrt deep beam should behave with respect to
ultimate Toad as a beam without a jag and of depth Xd. If this is the

case, i.e, if the simple engineering formulas apply do bending capacity

and "ordinary" shear capacity, it does not appear very meaningful to use a
jagged beam at construction if the beam has a low slenderness ratio: in

the case of a three point bend beam if £/d < oA (assuming Vf/(bmd)s 2/3 fs).
The convenient concept to regard jagged beams of slenderness ratio less

than A as beams without jag and of depth «d may be useful at design as it
ought to be an approximamtion on the safe side.

It should be added that if unstable crack propagation from the jag is
prevented by a bolt through the depth of the beam or by some other
arrangement, or if the distance from jag to support is considerable, then,
in addition to the failure mechanisms of Fig 4,7 (5), consideration should
also be taken to possible bending failure at the corner of the jag.

In Fig 4.7 (6) is shown a numerical example of V /bd vs. £/d, obtained by
means of Fig 4.7 (4) c) and (4.7:5) and (4.7:6).uThe example shown, being
related to Section 4.7.4, is valid foro(=0.5, B=0.5 and some different
values of the beam size, d. The numerical values of the material property
parameters required in order to quantify (V _/(bad)) are assumed in
accordance with 4.7.2 (f =3.7 MPa and EXGF/f§=12.1 mm), and, in order to
exemplify bending capacity, the flexural strength, f , has been assumed to
be a constant and equal to 70 MPa. (According to Bergstrom et al.:

f =2/3 100 MPa at "normal" sizes &f pieces of Pinus Silvestris). The
“ordinary" shear failure, (4.7:6), is incorporated in the figure by means
of the previously adopted (conservative) assumption fs=5.85 MPa.
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V,/bd
2.0
=05
1.8 B =05
I i = 70 MPa
1.0 other prop. acc.to 4.7, 2.
0.8 d=100mm

06— d=200mm

| \ d=4£00 mm \

04— \

T T T T 1 I T (/d
10 20 30 40 50 60 70

Fig 4.7 (6) A numerical example of theoretical ultimate Toads,
V /bd, vs. slenderness, {/d, at different beam depths,
d. The flexural strength, ff, is assumed to be constant.

4,7.4 Comparisons. Concluding remarks

The study of Section 4.7.2 was carried out some years ago and the results
have been used during teaching in building materials in order to provide
an example of possible influence of absolute size on strength. In order to
study whethe; these purely theoretical results had some relevance to the
behaviour of re¢ -~ T oo "7 ing (1983)
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5d 50 mm
l:m r;;:-]} =} 200 mm
200mm
4[, 500 mm 45 mm
Fig 4.7 (7) Geometries of beams used in an experimental study
carried out by Carlsson, Shahabi and Sunding (1983).
Geometry Unstable crack Ultimate failure
propagation
a(Ve/bad) (MPa) Vy/bd fr
d 2/d Theoretical Experimental| (MPa) (MPa)
(mm) prediction results
50 10 0.98 0.89 0.98 118
1.11 1.49 179
(1.00) (1.24) (149)
100 5 0.75 0.67 2.33 140
0.78 2.33 140
(0.73) (2.33) (140)
200 2.5 0.56 0.56 3.28 98
0.61 3.4 102
(0.59) (3.35) (100) i
Fig 4.7 (8) Strength of specimen shown in Fig 4.6 (7): Load at start of

unstable crack propagation, o« (V/bad),

(theoretical prediction

and experimental results) and at ultimate failure (experimen-

tal results and corresponding apparent flexural strength).

Experimental res. acc. to (Carlsson, Shahabi and Sunding, 1983).

Values in brackets are mean values.

carried out a limited experimental investigation as a seminar in a course

of building materials. Their investigation primarely conserned the

influence of beam depth, d, on (Vf/bad).

Specimens of Pinus silvestris

with the geometries shown in Fig 4,7 (7) were used, and altogether 6 beams
were tested., The shear forces at unstable crack growth, Vf, and at

ultimate failure, V , were recorded.
u
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The beams all exhibited the failure mode shown in Fig 4.7 (5) c). Thus the
ultimate shear force, V , was greater than the shear force at the instant
of unstable crack growtg from the jag, V_. The experimentally recorded
values of V_and V are indicated in Fig 4.7 (8), and this figure also
indicates the theogetical preditions of V_, These shear forces are given
by the absolute values of the formal mean shear stress. The absolute
values of the material property parameters required to obtain the
theoretical predictions of strength expressed in absolute values of Vf
were chosen in accordance with Section 4.7.2 and before the experimental
tests were carried out: E G/f2=12,1 mm and f =3.7 MPa. Fig 4.7 (8) also
indicates the formal f]exﬁra] strength, f , as evaluated from the
experimentally recorded ultimate loads by menas of the expression
Vu/bd=(x (d/&)ff/3, eq (4.7:5),

As to (V_/bud), the agreement between the theoretical predictions and
the experimental results is remarkably very good both with respect to abso-
lute values and relative influence of beam depth. The agreement may of
course be coinsidential and, especially regarding the absolute values of
(Vf/qu), one may hardly expect the same very good agreement in
prospective future experimental investigations. However, the relative
influence of beam depth seems significant and apparently not of minor
practical importance: an increase in depth from 50 mm to 200 mm almost
halves (Vf/b«d). As to Vu/bd, the expefimenta] results yields high
values of the coresponding formal flexural strength, f , and f_ is, as
might be expected, greater for the small beams than for large beams. The
strong influence of slenderness, {/d, on Vubd may be of interest to

observe,

In the Swedish building Code (SBN-80, 1980), in British Standard Code of
Practice CP 112 (Booth and Reece, 1967) and in the timber construction
manual of the American Institute of Timber Construction (AITC, 1966) are
jags in wood beams of the type shown in Fig 4.7 (1) taken into account by
means of a shear reduction factor, o

2
V/bd =2 f (4.7:7)
u 3 s

The same formula is adopted also in (Larsen, 1967), (Kollmann 1951) and
(ASCE, 1975). In eq (4.7:7), f s normally reduced by some general safety
factor but is for the rest a material property parameter., Where the
geometry of the : beam, d,
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distance from jag to support, p, nor slenderness, L7d, is taken into
account. At variations of the depth of the jag, i.e. at variations of x,
other variables held constant, (4.7:7) corresponds to eq 4.7 (5) c). This
relation is valid for short deep beams which fail in the manner
illustrated in Fig 4.7 (5) c).

If the ultimate failure of jagged beams is pre-supposed to be governed by
shear force one might perhaps be declined to carry out experimental
investigations with respect to influence of jagging by use of short deep
beams, i.e. beams with low slenderness ratio. Thus the widely adopted
design formula (4.7:7) perhaps might be explained by experimental studies
in which short deept beams were used and only the depth of the jag varied.
According to the present hypothesis of failure mechanisms, it is however
not the shear force but the bending moment which is decisive to the
ultimate failure of short deep jagged beams, while the shear force governs
the ultimate fajlure of jagged beams of intermediate slenderness. (It is
here assumed that the beams are significantly jagged so that "ordinary"
shear failure, eq (4.7:6), does not become the determining factor.)

If the results of the present study are correct, then it may be concluded
that the widely adopted design formula (4.7:7)) does not seem to be very
good. It may be questioned whether not the influence of d, B and the
different types of failure mechanicms, and accordingly ratio £/d, should
be taken into account as these parameters seem to be of significant
importance. With respect to variations of o< at intermediate slenderness,
the present theoretical values of V /(bxd) exhibit some dependency, but
not as strong as predicted by eq (4.7:7). If the material property
parameters \[E G , f , f and f_are proportional to each other, then the
results of thé present study coincide with the design formula where the
relative influence of the quality of the wood is concerned. If these
material property parameters are not proportional, then the design formula
may be questioned also with respect to the predicted relative influence of
the quality of the wood, i.e. with respect to the relative influence of
f.

S

The only experimental results concerning jagged beams found in the
literature searched through were published by Kollmann (1951) and
obtained by Longland in the 1930s. These results are reproduced in in Fig
4,7 (9), are valid for Red tulip oak and were presented as relative
influence of xo a T s meMd eeeemees Y- sb- qntervall
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Fig 4.7 (9) Experimental results pub%ished in (Kollmann, 1951)
with a comparison to a &« -curve.

0.25<x<0.75, V is approximately proportional to a?, which might be
expected having in mind the low slenderness ratio, {/d~3, implying that
the ultimate failure might have been bending failures. At «=1.0, no jag,
and at «=0.875, minor jagging, V is greater than expected by the

o -relation. This is not in accogdance with the engineering formulas for
bending failure and ordinary shear failure dealt with in Section 4.7.3.

Before ariving to the final conlusion, it is appropiate to include a few
remarks with regard to application of linear elastic fracture mechanics to
wood. As wood is a brittle material during fracture along the grain and
as, accordingly, the absolute size of the process region {the length of
the fracture zone) is small, it might be argued that linear elastic
fracture mechanics is applicable and that fracture mechanics analysis with
account taken to the non-zero size of the fracture zone and to the
fracture properties of the material (the shape of the O-w curve) is not
meaningful, However, the basic requirement for successful aplication of
linear elastic is not that the absolute length of a fracture zone is
small, but that the length of the fracture zone is small in comparison to
the length of a pre-existing sharp crack. With the exception from test-
specimens, this means that the practical applicability of linear elastic
fracture mechanics may not be very great where wood is concerned. During
analysis of tﬂe development of a crack {e.g. a crack developing from a
nail or a shrini o D * “ch does not
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develop from a crack (e.g. fracture developing from a corner, a hole or a
notch with a smooth tip or shear fracture developing from the interior of
a beam) and during analysis of short pre-existing cracks, one may expect
fracture mechanics of the type represented by the fictitious crack model
to be more successful than the linear elastic fracture mechanics. On the
other hand, the brittleness of the actual material is believed to
facilitate generalization of numerical results obtained during fracture
analyses with account taken to the development of a fracture zone of non-
zero size. An example may be found above in this Section.

A convenient feature of fracture analysis of wood, as compared to
isotropic materials such as concrete, is that the path of fracture zone
development is often known in advance. However, where wood is concerned,
it is more seldom sufficient to know only the fracture properties

in pure tension but knowlegde may more often be required also with
regard to the properties in combined tension (or compression) and shear
in the fracture zone.

Where the presently studied beam is concerned, Fig 4.7 (1), prospective
future extended analysis of (V /(bxd)) maybe ought to be carried out in a
more modulated manner than as in Section 4.7.2 both with respect to
relations of material behaviour and with respect to the numerical
calculations. On the other hand, it is believed that also more crude
facture mechanics considerations would be valuable during design and
during interpretation of experimental results. Finally it may be concluded
that it appears possible and, making a judgement from a limited
experimental comparison, meaningful to utilize the fictitious crack model
in strength analyses of wood.
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5. SHEAR STRENGTH ANALYSIS OF LONGITUDINALLY REINFORCED CONCRETE
BEAMS )

5.1 Introduction

In this introduction, first a few general introductory remarks are made,
then distinctions are made between shear strength, shear in fracture zones
and shear fracture zones, and finally the subsequent sections in this
chapter are surveyed. In this conjuction a few remarks are made with
regard to existence of shear fracture zones and with regard to dowel

action analysis.

The shear strength of concrete beams and slabs has been the subject of
comprehensive research during at least 80 years. It attracted attention
among reseachers as early as in the first decade of this century and at
least 40 reports were published. Since then, thousands of tests have been
carried out and several hundred articles that present new experimental
and/or theoretical results have been published. This comprehensive
research has produced the empirical experience on which the current
building codes are based, but has not resulted in any generally accepted
approach on shear strength analysis.

The reasons for the great interest in shear strength analysis are probably
several: lack of knowledge; fear for the typically sudden and "brittle"
shear failure; the extensive number of structural members that in practice
are exposed to shear forces; and, if a general approach is developed by
means of which shear failures can be analysed in a very general and very
moduTated manner, then it is probabie that almost any type of failure in
reinforced concrete can be analysed. The uncertainty and the risk for
sudden and "brittle" failure seems to be in particular great where the
diagonal tension failure in the longitudinally reinforced beam, or slab,
is concerned. This may be due to lack of confidence in the tensile
strength and the tensile fracture properties of concrete.

It is probable that an understanding of failure mechanisms and a
development of a general theoretical approach must be based on a
description of stress vs. deformation properties of the material.
Furthermore, according to the recent decade of finite element and computer
aided research, it seems that approaches based on descriptions of the
properties of tl T ' ot - ==7 === modulated
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manners. From a general point of view, a purpose of the present study is
to give a contribution to research towards the development of such a
general approach. In more detail, the purpose of the present study is
primarily to study whether it may be fruitful to take into account the
tensile fracture properties of the concrete, i.e. the descending branch of
the tensile stress vs. deformation curve, i.e. fracture mechanics, during
analysis of the diagonal tensile failure of Tongitudinally reinforced
beams. Accordingly, the analysis primarily concerns the sensitivity of
shear strength to the tensile fracture mechanics properties of concrete
and to the absolute size of the beam. The shear failure in longitudinally
reinforced beams is much more complicated than the failures studied in
Chapter 4 and it has been necessary to make rather crude simptifying
assumptions during the analysis.

Perhaps due to tradition, shear strength analysis and shear failure in
beams and slabs is very often associated with shear stress. Therefore it
must be made clear that the magnitude of shear stress is totally dependent
on the choice of orientation of the coordinate system in which the
components of stress are defined. Where diagonal tension shear failure is
concerned, the tensile principal stresses should be of prime interest, not
the shear stresses. The insignificance of shear stresses is made clear in
a somewhat drastic statement made by Leonhardt (1978): "Shear stresses do
not exist in structures, they are only a mental aid. ..... A shear stress
means nothing else but that the principal stresses are not parallel to the
x- and y-axes", For isotropic homogeneous materials, shear stress has no
physical meaning. A physical orientation of the coordinate system within a
material can be defined only when the material has different properties in
different directions. When referring to the shear strength, normally the
ability of a beam or slab to carry a shear force is intended. This global
shear strength is not a material property but is much dependent on the
geometry of the beam and the magnitude of bending moment and axial force.

When a tensile fracture zone develops within a material, its properties
become different in different directions. Consequently, in this case a
physical orientation of the coordinate system can be defined. If shear
deformations subsequently develop in this local coordinate system,
physical shear stresses are very likely to develop in the fracture zone.
These "secondary" shear stresses may develop due to aggregate interlocking
and are often assumed to carry a great part of the global shear force. In

the present app™’ N - N 7T e, the
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influence of this shear in the fracture zones is not taken into account.
Instead, the influence of the tensile fracture properties of the material

is emphasized.

A distinction must also be made between shear in fracture zones and shear
fracture zones. By a shear fracture zone is meant a fracture zone which
does not develop perpendicular to the first principal stress, It is rather
obvious that such fracture zones can develop during shear failure in beams
made of an orthotropic material, e.g. wood (Section 4.7). The gquestion
whether shear fracture zones exist or not for materials which are
isotropic has been debated in the recent years. In the present analysis of
the diagonal tension failure it is basically assumed that shear fracture
zones do not develop in concrete (although, however, along reinforcement
bars). In spite of this basic assumption, due to the presently used method
of numerical calculations in which the fracture path is assumed in
advance, it has been possible to let the fracture zone grow only
approximately according to the direction of the first principal stress.
For this numerical reason, a simple model for the development of shear
fracture zones is utilized during the calculations.

It may be appropiate to make a few remarks with regard to the debate on
the existence of shear fracture zones. If the material is isotropic at the
instant when the fracture criterion is reached, according to the
fictitious crack model, the fracture plane will orientate it self
perpendicular to the first principal stress and, consequently, a shear
fracture zone cannot develop. However, it is likely that fictitious crack
analysis of certain specimens would indicate development of a string of
short and closely located fracture zones, which are inclined as compared
to the direction of the string. In such cases, it might be suitable to
treat the string of inclined fracture zones as if being one fracture zone.
This means that the structure is analysed at a higher scale of size and
that the "macroscopical”, or "global", fracture zone is a shear fracture
zone. In two cases it might be suitable to analyse the string of inclined
fracture zones as if being one shear fracture zone: (1) if the distance
between the individual inclined fracture zones is of the same order of
magnitude as the size of the heterogenities of the material, then it is
not suitable to assume homogenity of the material (See Fig 3.4 (2)) and
then, if not a model of the type indicated to the far right in Fig 3.4 (2)
is developed, it might be necessary to assume existence of shear fracture
zones; (2) even "7 't oo bobeesoo mle Seddeddesd desYined zones 1S
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great as compared to the size of the heterogenities of the material, then,
if the string consists of a large number of inclined zones, it might be
beneficial to assume the existence of shear fracture zones in order to
reduce the required number of elements during finite element calculations.
If it is assumed that a shear fracture zone can develop in an isotropic
material, then it is an open question whether the properties of such a
zone may be regarded as being true material properties or if the
properties of the shear fracture zone is dependent on the geoemetry of the
specimen, the loading and the boundary conditions. Examples of concrete
beams in which shear fracture zones (i.e. fracture zones identyfied by the
development of a string of inclined zones during detailed analysis on the
assumption of homogenity of the material) may develop are: (1) hollow core
beams with a very thin and narrow web (and, more generally, beams with I-
shaped cross-sections with a thin and narrow web); (2) beams, with or
without a notch, exposed to such a loading system that the shear span
becomes very short and concentrated {cutting).

In Section 5.2 general literature references may be found and different
types of approaches to shear strength analyses are briefly surveyed.
Section 5.3 concerns the present fracture mechanics shear strength
analysis: assumptions, method of calculation and computational results. In
Section 5.4, a few remarks are made and the calculated shear strengths are
compared to experimental resuits, other theoretical results, empirical
formulas and design expressions.

Shear force carried by dowel action has not been taken into account during
the present shear strength calculations. However, in conjuction to the
present shear strength study, a small study of dowel action was also
carried out, In order to reduce the size of this report, it has been
decided not to present the actual small study of dowel action. Instead
orly a few experiences shall be referred to in this introduction. In
general, dowel analysis has to be carried out in 3D. However, a simplified
alternative is to first analyse the fracture zone development in between
reinforcement bars in a section of the beam and then utilize the load-
displacement response obtained during this first analysis during a
subsequent 2D analysis of the development of fracture along the bars. This
later analysis may be compared to analysis of a beam lying (or hanging) on
a bed of springs, where the stiffness of the springs is non-linear
(including sdftening) in accordance with the first analysis of a section
of the beam. By 1fluence of the
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thickness of the concrete cower, the distance in between the bars, the
diameter of the bars and the strength and fracture propertiés of the
concrete may be studied. By means of comparison to a beam lying on a bed
of springs, numerical results may be generalized. According to a few
preliminary results, it seems that the theoretical dowel strength and
(total) dowel force-displacement response as obtained by means of fracture
mechanics are consistent with experimental results reported in literature.
If interaction between dowel action and slip between reinforcement and
concrete is to be analysed, then, particularly if the reinforcement
consists of deformed bars, the fracture analysis is likely to become much
more complicated than if only the pure dowel action is considered. From
the actual small study of the pure dowel action it may be conciuded that
it seems possible and meaningful to utilize finite elements and the
fictious crack model during dowel action analysis. Due to the large stress
gradients during the development of dowel fracture, it is probably
necessary to take into account the fracture softening of concrete during
theoretical analyses of dowel action or else the theoretical analysis may
not be very meaningful.

5.2 General literature references. Approaches for shear failure

analysis

Shear strength analyses by means of fracture mechanics seem to be few and
rather recent, Hillerborg, Modeer and Petersson (1976) suggested that it
might be meaningful to analyse shear failure by means of fracture
mechanics (the fictitious crack model) and finite elements. Subsequently,
calculation tests were carried out by Modeer (1979). To a large extent the
present shear strength analysis may be considered only as an amplification
of the test calculation carried out by Modeer. An independent early
application of fracture mechanics in shear strength analysis was presented
by Hawkins, Wyss and Mattock (1977). These authors studied the influence
of a potential crack in a spherical stress relaxation zone, developed
approximate analytical relations based on the Griffith energy release
criterium and concluded that it should be possible to use the fracture
mechanics approach outlined in the actual paper to predict the strength of
a variety of concrete members behaving in a brittle manner.

Another indepent * g shear
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strength analysis was presented by Reinhardt (1981 a,b). The analysis
presented in these papers was less complicated and attention was attracted
to agreement between the size effect law of the linear elastic fracture
mechanics and experimental results regarding the relative influence of the
absolute size of a beam. A much more detailed linear elastic fracture
mechanics analysis of a beam failing in shear was presented by Saouma and
Ingraffea (1981). In this paper the load vs. deflection response and the
crack pattern in a beam, tested by Bresler and Scordelis about 25 years
ago, were studied by means of a sofisticated finite element program,
specially developed for linear elastic fracture mechanics analyses of

concrete members.

The studies referred to above may be considered as pioneering where the
application of fracture mechanics during shear strength analysis is
concerned. According to the subsequent trends within research, it seems
that the linear elastic fracture mechanics has attracted less interest for
further developments of the fracture mechanics shear strength analyses
than the non-linear fracture mechanics of the type represented by, e.g.,
the ficitious crack model.

In connection to the pioneering studies referred to above, it is
appropriate also to mention a thesis presented by Loov (1972). In the last
namned thesis, a finite element method for analysis of discrete cracking
in concrete members was developed and this method may be considered as a
kind of fracture mechanics approach, Naturally, it is possible that
consepts of fracture mechanics may have been applied also during other
comparatively early studies of shear strength.

Shear failure analyses by means of fracture mechanics only represent a
very small part of the huge number of shear failure studies carried out in
this century. In Section 2.3, the methods of failure load prediction were
divided into three large groups: the direct experimental method, the
statistical method by means of more or less arbitrary interpolation
formulas, and the methods based on a description of the mechanical
properties of the material. Where the diagonal tension failure in
longitudinally reinforced beams is concerned, it seems that current
building codes are essentially based on the statistical method with the
more arbitrary interpolation formulas. By arbitrary interpolation formulas
is then meant formulas which do not emanate in consideration to failure
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mechanisms, but instead are chosen only in such a way that they fit to
test results, Within the statistical methods with less arbifrary
interpolation formulas, efforts are made to develop rational strength
formulas based on clever observations and assumptions regarding the shear
force carrying mechanism. The methods based on a description of the
mechanical properties of the material can be divided into at least two
sub-groups: according to one "school" very drastic simplifications are
made at the description of the properties of the material, but then the
shear strength analysis is carried out in a theoretically consistent and
exact manner without any additional approximations; according to the other
“school" the description of the properties of the material is made in a
more realistic manner, but then it is necessary to make additional
approximations during the applied shear strength calculations. The latter
type of approach has gained from the development of computers and the
development of the finite element method, but can still not be regarded as
a general method due to the Timitations of available finite element
methods and due to Timited knowledge of the mechanical properties of
concrete. The only available theoretically consistent and “exact" method
of shear strength analysis seems to be the analysis based on the theory of
ideal plasticity. However, the unfortunate feature of this theory is that
the assumed mechanical properties of concrete are unrealistic to such an
extent that the theoretical results can hardly be regarded as reliable
unless they are carefully compared to, and adjusted to, test results.
Where the methods based on more realistic descriptions of the properties
of the material are concerned, it is evident that research and development
is far from completed. An indication of this is that the majority of
finite element analyses of shear failure seem, in fact, not to be devoted
to studies of shear failure and shear strength, but instead devoted to
verification of the actual finite element approach. Such verification
analyses seem usually to indicate good agreement between the theoretical
results and the results obtained during an experimental test of a beam,
but the conclusions regarding shear strength obtained by means of finite
element analyses seem still to be few. One of the reasons for this may be
that it would probably still be expensive and time-consuming to carry out
a number of systematic detailed finite element analysis of shear failure.

Due to the huge Titerature on shear failure analyses, it is neither
possible nor meaningful to attempt to list all the articles, papers and
reports that deal with the actual subject. However, it may be appropriate
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to 1ist a few general references in which a great number of references to
additional literature may be found. Hognestad et al. (1962) have put
together a bibliography which includes a general review and short
summaries of 466 selected articles published from 1897 through 1960. In
the 1000-page publication (ACI, 1974) 40 papers covering different aspects
of shear strength analysis may be found, and in the 100-page paper (ASCE-
ACI, 1973), in which 200 reports and articles are referred to, research
results and design proposals are reviewed in order to establish the state-
of-the-art. One of the most well-known researchers within the field of
shear strength analysis was professor Kani. Significant parts of his
research have been put together in a book: (Kani, Huggins and Wittkopp,
1979). A report that summarizes great parts of usage of the theory of
plasticity in shear strength analysis has been put together by Nielsen,
Braestrup, Jensen and Bach (1978). Findings regarding the application of
the theory of plasticity may also be found in (Thurlimann, 1979). CEB/FIP
has prepared a Model Code for concrete structures and, for the shear and
torsion, the explanatory and viewpoint papers on the Model Code may be
found in (Regan and Taylor, 1978). Subsequently a comission of CEB has
published (Grasser, 1982).

According to the recent years of finite element aided research it seems
that the shear problem is, in most cases, not treated as a special
problem, but more as a possible application of more general finite element
aided approaches for the analysis of reinforced concrete. Bergan and
Holand (1979) have presented a survey of finite element analyses of
concrete structures and given an outline of a number of proposed
mathematical models for the behaviour of concrete, and in (Grootenboer,
1979) the facilities of 15 finite element models are summarized. In
(Thurlimann, 1981) a number of papers concerned with finite element aided
advanced analyses of reinforced concrete may be found. A comprehensive
state-of -the-~art report on finite element analysis of reinforced concrete
has been prepared by Nilson et al. (1982). In an appendix in the last
namned report, a collection of information on 25 generally available
programs for non-linear finite element analysis of reinforced concrete
structures is presented. As an example of a recent study in which
references to other recent studies may be found, the report by Rots,
Nauta, Kusters and Blaauwendraad (1985) may be mentioned.
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5.3 Present fracture mechanics shear strength analysis

5.3.1 Introduction

The shear force carrying mechanisms taken into account in the present study
of diagonal tension strength in the longitudinally reinforced beams are
illustrated in Fig 5.3 (1). This figure shows the forces acting on the
conrete blocks ot the left and to the right of a potential inclined fracture
section., The resulting axial force that acts across the actual section is
zero, even if the reinforcement is pre-stressed. The figure illustrates that
dowel action and aggregate interlocking are not considered during the
calculations.

The general approach used in the present analysis is to calculate the load
carrying capacity during the development and growth of a diagonal fracture
zone, taking into account the slip between reinforcement steel and concrete,
the tensile softening of the concrete along the fracture path, different
possible locations of the fracture path, and the ability of the ligament
above the fracture zone to carry the forces transferred by this ligament.
The concrete blocks at each side of the potential inclined fracture section,

and also the reinforcement bars, are assumed to be linear elastic.

As compared to most previous fracture mechanics analyses of shear strength,
the aim of the present analysis is to calculate the load carrying capacity
at the ultimate collapse of the beam and consequently not only the load at
start of unstable growth of a diagonal crack. As compared to most previous
finite element analyses of shear failure, the present calculations are not
modulated or detailed. Thus, for instance, the development of only one dia-
gonal crack is considered in each calculation. On the other hand, the pre-
sent purpose is not to analyse the failure of a specific experimental test
beam in a detailed manner, but instead to calculate ultimate shear strength
and, in particular, its sensitivity to the tensile fracture energy of con-
crete and consequently also its sensitivity to the absolute size of the beam.

5.3.2 Assumptions at load vs. crack depth calculation
During the discussion in this section, Section 5.3.2, it is assumed that the

diagonal tension fracture is bound to take place along a certain path, or
section, This fri ° s St fmcEeses ke ssesedioe g Fig 5.3 (1),



5 - SHEAR STRENGTH, page 10

Fig 5.3 (1) Forces acting on the blocks of concrete to the left
and to the right of a potential diagonal tension
fracture section.

Knowing the fracture path, the diagonal tension failure may develop

in the following manner: First a tensile fracture zone starts to develop
in a slow and stable manner, then, as the external load increases, the
growth of the fracture zone (the crack) may become unstable during
simultaneous sliding between the reinforcement and the concrete. This
unstable crack growth may then, depending on the location the crack,
either Tead to an immediate collapse of the beam or it may be stopped when
the crack grows into the upper edge of the beam. If the unstable crack
growth is stopped, then the question is whether the remaining ligament
(which becomes smaller and smaller during the subsequent stable crack
growth) is large enough to carry the compressive force in the upper edge
of the beam. Accordingly, there are two reasons for calculating the Toad
vs. crack depth: the load at start of unstable crack growth must be
determined and the size of the remaining ligament must be calculated in
order to make it possible to determine when, and at which external Tload,
the ligament will fail.

The description of the assumptions used during the calculation of load vs.
crack depth is divided into two parts. First, the finite element model is
described, then the assumed properties of the materials.

The finite element model is illustrated in Fig 5.3 (2). The concrete
blocks at each side of the tensile fracture path are modelled by two
linear elastic substructure elements. These two elements are built up of
quadrilateral elements of the type described in Section 3.6.2. (The
quadrilateral element consists of four constant strain elements.) The
substructure elements have 25 nodes along the fracture path, and 12 + 12

nodes along the ~ ~ " e beams with
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Fig 5.3 (2) a) Building up of a typical concrete block from
constant strain elements.
b) Nodes in assembled concrete blocks before start

of node opening.
c) Linkage of reinforcement bar elements to concrete
by bond stress-slip elements.

the span to depth ratio of 3. For the beams with span to depth ratios 6
and 9, the number of nodes along the reinforcement is greater: 22 + 12,
The reinforcement is modelled by truss elements, which are connected to
the nodes of the concrete blocks through springs. These springs model the
sliding between the reinforcement and the concrete. The development and
the properties of the fracture zone in between the concrete blocks is
modelled by means of node opening and internodal springs. The geometrical
shapes of the beams studied are indicated in Section 5.3.5, as well as the
the studied crack paths.

The concrete blocks are assumed to be in the state of plane stress (v=0.2)
and are assumed to behave in a linear elastic manner, defined by the
modulus of elasticity denoted E . The reinforcement steel is also assumed
to behave in a linear elastic mgnner, defined by the modulus of elasticity
denoted Es'
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The interaction between reinforcement and concrete is described by means
of bond stress-slip relations. Such relations are often used during finite
element analyses of reinforced concrete and should give a more modulated
description of reality than the sometimes used assumption of completely
rigid interaction and than the sometimes used assumption of coupling
between the reinforcement and the concrete only at the ends of the beam,
i.e. at the ends of the reinforcement bars. In spite of the widespread use
of bond stress-slip relations, some theoretical and experimental
objections can be put forward to the use of such relations: the theorem of
conjugate shear stresses may be violated at the free surfaces of concrete '
which are crossed by a reinforcement bar (e.g. a fracture surface);
lateral stress is known to have influence on the bond (which means that
splitting of the concrete along deformed bars, the thickness of the
concrete cover, the spacing of the bars and the large lateral stresses at
the supports of the beam are of importance); it may be discussed whether
the deformation term in the bond stress-slip relation always should be
described in terms of absolute deformation and not in terms of strain. In
most of the present calculations the linear elastic perfectly plastic bond
stress-slip relation shown in Fig 5.3 (3) and indicated by the letter A
has been used, This assumed shape of the relation may be compared to the
experimental results presented by Nilson (1971). During a few of the
calculations the other bond stress slip relation shown in Fig 5.3 (3) has
been used in order to determine the sensitivity to the shape of the bond
stress-slip relation. A number of papers and also references to additional
literature on steel-concrete interaction may be found in the 1879 January,
February and March issues of the Journal of the American Concrete
Institute.

The criterion for development and growth of the tensile fracture zone in
between the two concrete blocks is illustrated in Fig 4.7 (2) and the
softening properties of the fracture zone is illustrated in Fig 4.7 (3).
These figures may be found in Section 4.7 because the actual criterion and
the actual properties, originally used during the present analysis of
concrete, were subsequently used in the analysis of the shear failure of
wooden beams. Where the analysis of wood is concerned, the direction of
the Tocai coordinate system is fixed by the direction of the grain. Where
the present analysis of concrete is concerned, the direction of the Tocal
coordinate system is fixed by the assumption with respect to direction of
the crack prbbagation path, This path is assumed in accordance with
general approxi~-*~ ~ntimstdnne af dhn dinnctbione ~f +ha Fipgt principal
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Fig 5.3 (3) Bond stress-slip relations.

stresses within the beam. The actual criterion is such (See Section 5.3.3)
that ratio f /f is equal to \/f /f /2, where f is the unaxial
compressive strength and where rat1o f /f is pu% equal to 10 during the
calculations.

The stresses (or tractions) acting across the fracture path are calculated
from the nodal forces acting between the two blocks of concrete. Accordingly,
these stresses do not represent the state of stress in the points along the
fracture path, but instead they represent the tractions acting across the
path. The internodal fracture zone modelling springs are one dimensional
and are inserted and kept in the same direction as the direction of the
nodal force at the instant when the criterion for start of fracture zone
development is reached in the actual node. In the direction perpendicular
to the one dimensional spring, no force (or traction) is acting across the
fracture zone., The adopted fracture criterion, Fig 4.7 (2), is also dealt
with in Section 5.3.3. The most essential reason for the actual choice of
properties of the fracture zone is that it is the simplest choice.

By means of the above assumptions it is possible to calculate the
development of the load carrying capacity during initiation and growth of
the fracture zone, but the possibility of final collapse of the beam due
to large compressive stresses in the upper edge has so far not been dealt

w-ith. Th-is matten vt 11T ha Hdasl+ sidbh din Fha nAavt cartinn
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5.3.3 Assumptions for checking failure of Tigament

See Fig 5.3 (4) a). At the stage shown in this figure, the fracture zone
has grown close to the upper edge of the beam, leaving only a small
ligament, t, to carry the axial force, N , and the shear force, T , acting
across the unfractured ligament. t, N agd T vary during the grogth of
the tensile fracture zone and are ca]gulated according to Section 5.3.2.
To check whether the ligament is able to carry the forces T and N , a
failure criterion for the entire ligament is used. This fai?ure cr?terion
is accordingly not a failure criterion for the local points of material
within the Tigament, but a global failure criterion for the entire

ligament.
If the normal force and the shear force acting across a potential fracture
surface are denoted N, and T, according to Fig 5.3 (4) b), then

equilibrium gives:

2
g =g,C + T.5C
o

0 0
(5.3:1)
Ta =-UOSC + TOC2
where
c 2 coso s = sina
o,= N/ (tb) 4= To/ (th)

o= N /(tb/c) 1= T,/(tb/c)

As c2 + 52 = 1, the mean stresses 0, and T may be represented by a circle
in a 0-T diagram. This circle has the radius V65+’t§/2 and its centre

is located in the point (0;,’to)/2, Fig 5.3 (5) a). Accordingly, for TO+ 0
the circle is excentricaily located with respect to the 0-axis., This is
because 0, and T, do not represent the stresses in a point but mean
stresses across a section of finite size. Accordingly, as nothing is
stated about the location of resultants to 0, and T,., the excentric
location of the stress-circle does not mean that moment equilibrium of the
triangle in Fig 5.3 (4) b) is violated nor does does it mean that the
theorem of conjugate shear stress is violated. The stresses O, and T, may
be obtained dfaphica]]y in the manner illustrated in Fig 5.3 (5) a).
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Fig 5.3 (5) a) Grafical representation of mean stresses acting on the
ligament.
b) Failure criterion
¢) Conditions at the instant of failure of the ligament,

To see whether the Tigament is capable of carrying the actual forces, it
is checked whether the corresponding stresses 0, and T, for some o has
reached the failure criterion shown in Fig 5.3 (5) b). This linear
Coulomb-Mohr criterion with tension cut-off is well-known and is probably
the simplest criterion if the concrete is to be assumed to have a non-zero
tensile strength. As soon as the stress circle touches the failure

criterion, Fig = =~ 7' ’ ’ o “ire beam, is
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assumed to collapse. The angle and the stresses that correspond to failure

are denoted « , 0 , T ,0 andtT . For T + 0, « may be obtained from
u ou ou «ou U 0 u

oy %{ arctan<1'ft/fc>+ ar‘ctan<.r > - 1/2 } (5.3:2)
N

2\, /f,

For T = 0, the stress circle touches the failure criterion in several
pointg at the same time and the angle o¢ can consequently not be
calculated. Knowing To’ No and t, the i#stant of failure of the ligament
and the magnitude of the forces carried by the ligament at this instant
can be obtained from:

—F— < h(ft/fc’ No/To) before failure
t (5.3:3)

- = -u - at failure
where the function h(ft/fc’No/To) is

1

2\F /o (N T )se + ¢B) + (1-F/F)(N/T)e? + sc) (5.3:4)
In eq (5.3:4) s=sinc and c=cos a . where<x may be obtained from eq
(5.3:2). In Fig 5.3 (Sg a) the force carrying capac1ty of the ligament, as
calculated by means of eq (5.3:4), is shown for f /f =10 and N /T <-1.0.
The angle p is defined in Fig 5.3 (5) a). Ca]cu]at1oﬁ of the corrgspond1ng
0 shows that @ > 0 when N /T > -1.4, while 0 1is a compressive stress
au au o o U

when No/Tog_-1.4. As No/To may be expected to be roughly proportional to
the span to depth ratio of the beam, one may consequently expect that the
final collapse of beams of normal or great span to depth ratios will
involve a compressive failure in the upper edge of the beam, while very
short beams might fail due to the development of a fracture zone with a
tensile normal stress all the way through the beam, also through the very
upper edge of the beam., However, in such very short beams there may not be
space enough to make it possible to let the inclined tensile fracture zone
grow all the way through the beam, The final collapse of all the beams
presently studied (Section 5.3.5) has involved a compressive failure of
the ligament. While Fig 5.3 (6) a) shows the force carrying capacity of
the 1igament‘ys. ratio No/To at a constant fc/ft’ Fig 5.3 (6) b) shows the
sensitivity to changes in fr/f+. The sensitivity is indicated by C and, as
an example, at 0 10,1 gives a
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0.57 % increase in 'Eo /ft The sensitivity is fairly constant during
normal variations in f /f , and accordingly approximate values of ¥ /f
for other values of f /f than 10 may be obtained by means of an ou
exponential re]at1on.cTh1s relation may be found in the actual figure. As
an example, at -N /To=2 an increase in fc/f from 10 to 15 gives
approximately 26 % increase inT /f . (The exact increase according to
eq:s (5.3:2) and (5.3:4) is 25 %?‘f It must be noticed that the actual

Tou/ft -Oou/ft

* Tou = (T /f41 4 tD
ou ou’ "t 't fc/ft=10
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Fig 5.3 (6) b) Sensitivity of force carrying capacity of a ligament to
changes in ratio f /f . "A" is the value of ¥ /f
when fc/ft = 10.0 c(See Fig 5.3 (6) a).), andoghe
approximate expression for T /f 1is reasonably accurate
in the region 8 < fc/ft < ls?u

sensitivities are valid for the force carrying capacity of the ligament,
not the ultimate load carrying capacity of the beam, i.e. the shear
strength. The sensitivity in shear strength of the beam, f /f , to
variations in fc/f is probably to—be smaller because ratig fC/ft should
also have influence on the location of the critical crack path and
accordingly also on the size, t, of the Tigament at the final collapse of
the beam. The estimation of a smaller influence on the shear strength may
also be supported by Fig 5.3 (7) and Fig 5.3 (14).

Above, the failure criterion, Fig 5:3 (5) b), for check of the ability of
the ligament to carry the actual forces has been treated as a global
failure criterion for the entire ligament. As an alternativ, this
criterion may’be looked upon as a yield criterion for the local points of
material, In th T ’ " a work
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equation, the actual method for calculating the mean shear stress in the
ligament at failure, eq (5.3:3), may be looked upon as an dbper bound
solution of the theory of plasticity. It is not a lower bound solution
because it is not checked whether a statically admissable stress
distribution can be found, such that constant yield stresses O and‘t
along the «-surface does not violate the yield criterion in a aé1nt outs1de
the x-surface. During application of the theory of plasticity in concrete
analysis, the tensile strength of the concrete is often assumed to be
zero. This would correspond to f /f =0 in the above relations. It may be
noticed that the assumption of zeroctensile strength of the concrete, i.e.
f =0, means that the load carrying capacity of the ligament would be
predicted to be zero for all T 0. During the present calculations the
ratio ft/fC has been put equal to 1/10,

In Fig 5.3 (5) b) the actual failure criterion is shown as a failure
envelope in the T-0 space. If the actual criterion is looked upon as
failure criterion for the local points of material, then it may be
transformed into a principal stress diagram, 0 -0, In this diagram the
actual criterion consists of three straight lines in between the four
points (01, 02) = (-f , -f ), (0, ~f )}, (f, 0) and (f , ft). This Coulomb
criterion with tension cut-off is fairly well-known. Experimental results
with respect to the failure criterion in the 0_-0 space are often shown
and referred to in literature, see e.g. (Nilson, 1982)., With exception
from the tension-tension region in the Ul-Oé space, comparisons between
the actual criterion and experimental results seem to indicate that the
criterion is somewhat conservative, i.e. the actual criterion seems
commonly to give a underestimation of the load carrying capacity.

5.3.4 Assumptions for calculation of ultimate load

If only one crack path is considered during the analysis of the reinforced
concrete beam, its ultimate load carrying capacity can be calculated by

~ means of the assumptions of the preceeding sections. This ultimate load
carrying capacity is either equal to the load at start of unstable crack
growth (Section 5.3.2) or equal to the load at failure of the ligament
(Section 5.3.3). These loads are in turn dependent on the assumed lTocation
of the crack path. In this section the used method for determination of
the most dangerous, or the critical, location of the crack shall be
described.
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See Fig 5.3 (7) a). This figure shows, in a schematical manner, the load
vs. crack depth response of one typical vertical "bend crack" and of one
typical diagonal “"shear crack". The bend crack nucleates close to the mid-
section of the beam at a low load and this crack also becomes unstable at
a low load. The unstable growth of the bend crack is, however, soon
stopped and a significant increase in the load is then required before the
beam finally fails due to crushing of the ligament (or due to anchourage
failure or yielding of the reinforcement). The typical diagonal "shear
crack" nucleates and becomes unstable at higher loads, but then the
unstable growth of the diagonal crack continues very deep into the beam.
During this unstable crack growth the size of the ligament decreases and
the load corresponding to compression failure of the ligament becomes less
than the load at the start of the unstable growth of the diagonal crack.
This means that the start of unstable growth of the diagonal crack is
immediately followed by a collapse of the beam. In Fig 5.3 (7) a) the
unstable crack growth is indicated by dashed lines and the stable crack
growth is indicated by full lines.

Naturally, the properties of the reinforcement bars and the properties of
the bond stress-slip relation influence both the load at the start of the
unstable crack growth and the load at the fracture of the ligament. These
influences are entered into the computational results through the
assumptions of Sections 5.3.2 and 5.3.3.

For beams sensitive to shear failure, the most dangerous crack is
somewhere in between the two “extreme" types of cracks illustrated in Fig
5.7 (7) a). To find the location of the most dangerous crack, different
crack paths must be studied. These paths may be characterized by their
position in the lower edge of the beam and in Fig 5.3 (7) b) examples of
such paths are shown together with a schematical diagram for the
corresponding loads at start of unstable crack growth (indicated by
circles) and the corresponding loads at failure of the 1igament (indicated
by crosses). For the typical shear sensitive beam, at increased distance
from the mid-section of the beam, the load that corresponds to start of
unstable crack growth increases and the load that corresponds to failure
of the ligament decreases. The most dangerous location of the crack and
the corresponding ultimate load carrying capacity of the beam is obtained
from the point where the two curves intersect. At this point the load
carrying capétity of the beam vs. the location of the crack, i.e. the
dashed curve in slender beams
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and/or very lightly reinforced beams, one may expect the "load capacity
valley" to have its minimum at the centre of the beam and accordingly the
failure of such beams may be expected to be a pure bending failure. For
less slender beams the minimum of the load capacity valley is located away
from the centre of the beam and accordingly a diagonal failure, i.e. a

|
Crack depth,y d

a)

| aet

Load

A 9

e
e~

Position of crack path, x

b)

Determination of failure load

a) Load vs. crack depth

b) Load at start of unstable crack growth
indicated by "0") and load at final
collapse of the ligament (indicated by

"x") vs. position of crack path.

"shear failure", will develop.

5,5.5 Shear strength: computational results

Where the main series of calculations is concerned, the geometrical shapes
of the studied beams are indicated in fig 5.3 (8) and the dimensionless
ratios that define the properties of the material are indicated in Fig 5.3

(9). In the main series of calculations 15 beams with different

combinations of ratios d/f{ , £/d and o (percentage of reinforcement) are
c

dealt with. In addition to those beams, four beams are studied in order to

obtain some knowledge regarding the sensitivity to the bond stress-slip

relation and the existence of pre-existing cracks. The crack paths

considered durir

© 7.3 (10). Not
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all crack paths are considered for each beam, but at least one path
immediately to the left and one path immediately to the right of the
intersection point of Fig 5.3 (7) b).

The 19 beams referred to above have values of ratio d/)Z,C in the range 0.
3-4.8. However, for the purpose of comparison 1imit values for the shear
strength corresponding to d/{ =0 and d/{ — oo are also given. For the
purpose of comparison calculated load carrying capacities of corresponding
beams without reinforcement are also given.

In the end of this section a few analyses regarding influence of pre-
stress in the reinforcement bars are dealt with. Those analyses are
treated separately because only one possible crack path is considered
during those calculations.

In order to facilitate the interpretation and in order to make the
calculations more general, dimensionless ratios are used in the definition
of the input variables to the calculations. The corresponding
dimensionless shear strength is fv/ft, where fv is defined by:

f, = — (5.3:5)

V is the shear force, i.e. the support reaction, at the ultimate failure
o% the beam. Please note that d is the total depth of the beam and
accordingly not the total depth minus the depth of the concrete cover and
half the thickness of the reinforcement. The total depth, d, is used in

'

¢ =d/L0 d
_LdIZO
Jrom r,% o

|
. | __% .0.3d
l/d =3,6.9

¢ =05,1.0,15,2.0 %

Fig 5.3 (8) \Geometrica1 shapes of beams. ¢ =percentage of
re:
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Ratio Assumed
value
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v 0.2
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Fig 5.3 (9) Material parameter ratios. "A" refers to the
bond stress-slip relation shown in Fig 5.3 (3).
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the definition of f in order to avoid confusion between depth and height
of beams. While (5.%:5) defines shear strength, the load acting on the
beams is indicated by T /ft’ where'tv is indential to V/(bd) (=P/(2bd)).
At the instant of ultimate fai]ure'tv/ft=fv/ft.

Before going on to the calculated shear strengths, examples of more
detailed results shall be shown. These examples concern the six beams
with (d/L ,9¢,4X/d) = (0.6, 1 %, 3), (2.4, 1 %, 3), (0.6, 1 %, 6),
(2,4, 1 %, 6), (0,6, 2 %, 3) and (2.4, 2 %, 3).

Fig 5.3 (11) (six diagrams) shows the theoretical load vs. deflection
responses at the current guasi-static condition. For each beam the
response at two different crack paths, indicated by the angle y (See Fig
5.3 (10)), is shown. The actual crack paths are to the left and to the
right of the bottom of the load carrying capacity valley, indicated in Fig
5.3 (7) b). The Toad vs. deflection curves consist of a number of straight
lines which are drawn between the points of load and deflection that
correspond to the opening of a node. The instant of final collapse of the
ligament is indicated by a cross. Each diagram in Fig 5.3 (11) gives an
illustration to the influence of ratio d//f_Ch on the load vs. deflection
response and on the loads at instability and collapse of the ligament. It
is evident that the size of the beam and the brittleness of the concrete

are of importance.

In Fig 5.3 (12) an enlargement of a part of one of the curves in Fig 5.3
(11) is shown. In this enlargement not only the load and deflection at
instants of opening of nodes is shown, but the load and deflection at each
instant and accordingly also at those instants which correspond to changes
in the stiffness of the bond stress-slip relation and to complete
separation of the nodes between the two concrete blocks. The curve in Fig
5.3 (12) consists of 46 straight lines.

Since only one crack is considered during each calculation, the
theoretical deflections become small. The current analysis concerns
strength, but if the magnitude of deflection at shear failure was to be
analysed in a realistic manner it would have been quite necessary to take
into account the fact that several cracks are present in the beam at the

same time.

Fig 5.3 (13) (6 .ure zone, a/d,
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Fig 5.3 (11) (Three pages) Theoretical shear load-deflection
‘response for different beams at different crack
paths, ¥. Underlined numbers indicate ¢ and 4/d.
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Fig 5.3 (12) Enlarged detail of a load-deflection response

shown in Fig 5.3 (11). a = vertical distance from

the lower edge of beam.
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Fig 5.3 (13) (Two pages) Shear force versus depth of fracture
zone for different beams of different crack paths.
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Fig 5.3 (14) a)-f) (Two pages) Load at start of unstable crack
growth (indicated by circies: 0) and at the collapse
of the ligament (indicated by crosses: x) versus
position of the crack path. The numbers in frame
indicate: d/{ch,e , 4/d.

for the same beams and crack paths as in Fig 5.3 (11). The depth of the
fracture zone, a, is the vertical distance from the lower edge of the beam
to the node where the fracture criterion just has been reached. In Fig 5.3
(13) each diqgram illustrates how the inclination, ¥y , of the fracture path
influences thé load vs. fracture zone depth response. Comparisons between
the diagrams sh~- =~ **° AR - ~=*-1] response.
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While the loads at instability and final collapse of the ligament can be
found only for two cracks paths in Fig 5.3 (13), Fig 5.3 (14) (six
diagrams) shows these loads for several paths. Ratio £ /d and the angle ¥
are defined in Fig 5.3 (10), circles indicate the Ioad1at instability and
crosses the load at collapse of the ligament. The diagrams of Figs 5.3
(12) and 5.3 (13) are numerical correspondances to the schematical and
theoretical diagrams shown in Fig 5.3 (7).

By means of the type of diagrams shown in Fig 5.3 (14) the shear strength,
fv/ft, and the corresponding fracture path, B/pes’ can be obtained (pes=
pessimum). These quantities and also the depth of the fracture zone at
instability, ainst/d’ and the size of the ligament at its final collapse,
tf/d, are indicated in Fig 5.3 (15). The results for d/{ch=0 and d/fc?? ®
given in this table have not been obtained by means of incremental finite
element calculations, but by other methods which will be described later
on in this section.

However, it may be appropriate to first explain some numerical details on
how the results for 0.3<d/{ < 4.8 have been obtained from the results of
the finite element ca]cu]atigns. The values of f /f and

bbes have been obtained by means of linear intergolation between the known
points in the type of diagrams shown in Fig 5.3 (14). During the finite
element calculations, the size of the ligament, t, has been defined as the
vertical distance from the node where the fracture criterion just has been
reached, to the upper edge of the beam minus half the vertical distance
between two nodes along the path., During extension of the fracture zone,
the size of the ligament decreases in a step-wise manner and commonly, for
each individual crack path studied during the finite element analyses, the
instant of failure of the ligament corresponds to a location of the tip of
the fracture zone in between two nodes. In these common cases the load at
the failure of the ligament and the size of the ligament at its collapse
have, for each individual crack path, been obtained by means of linear
interpolations in diagrams that show the actual external load and the
proportional external load corresponding to failure of the ligament vs.
size of the ligament. The loads indicated by crosses in Fig 5.3 (14) are
obtained in this manner. Knowing y and knowing the size of the ligament
at its failure for the paths studied in the finite element analyses, the
size tu/d corresponding to Xpes is obtained by means of linear
interpolation.
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The results for d/{c =0 have been obtained by means of the upper bound
theorem of the theory of plasticity. Thus, according to hypothesis II in
Section 3.5.2, the actual shear strength values are upper bounds to the
shear strength at d/Xch=0. According to hypothesis I the values are then
also upper bounds to the shear strength at any d/@ch.

The actual plasticity results for d/£ =0 have been calculated with the
help of basic relations given by (Nie%sen, Braestrup, Jensen and Bach
1978). The criterion shown in Fig 5.3 (5) b) is used as yield criterion
for the concrete, plane stress is assumed and the reinforcement is assumed
not to yield. The displacement field for caiculation of the internal and
external work is chosen in accordance with Nielsen et al. This
displacement field consists of two inclined straight yield lines (one at
each symmetrical half of the beam) from the lTower edge of the beam to its
upper edge. The inclination of the straight yield lines is denoted y
(Compare Fig 5.3 (10)) and the value of y which minimizes fv/f is denoted
X o5’ The central rigid part of the beam is assigned a vertical rigid body
motion, u, and the rigid end parts of the beam are not moved. For the
actual yield criterion and the actual displacement field, the work
equation becomes:

Vu = wbd € fe (1-sin(w/2-y)) + £, (sin(n/2-y) - sing) }
siny 2 (1-siny)

when /2 -¢¥ >y 2 0, and

ubd { Fc (1-sin(w/2-v))}

Vu = —
siny 2

u

when 7w 2 vy 2 n/2 -4, where
¢ = arctan <fc/ft'1 >
2 fc/ft

The geometrical subsidiary condition is tany>d/(£ /2) and for the current
0
beams minimizing gives Yy =T/2-¥ =35, At this angle the state of
s

vee..(5.3:6)

stress in the yield line is indeterminable and may be anything along the
line from (ft7 0) to (O, -fc) in the 2D representation of the yield
criterion. The constant value of y means that f /f s predicted to
have the same valua far all rurrnn?eﬁpamc withnut anv initial crack. For
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the beam with an initial crack, f /f s reduced in proportion to the
reduction in the depth of the beam. The plasticity predictfbn of a
constant fv/ft does not seem very realistic. However, at their applied
theoretical shear strength analyses, Nielsen et al. assume that the
tensile strength of concrete is zero, i.e. ft/fc=0. If adopting this
assumption, the theory of plasticity gives more realistic results, at
least with respect to the influence of ratio £/d. On the other hand,
during the adjustment between theoretical results and test results,
Nielsen et al. found that the shear strength is approximately proportional
to V?j, i.e. approximately proportional to the tensile strength of the
concrete. In the present calculations the yield criterion of Fig 5.3 (5)
b), which includes a non-zero tensile strength, is used in order to make
the calculations consistent with the finite element analyses for non-zero
d/,QC . Furthermore, the prime purposes of the present calculations for
d/zch=0 are only to make clear that fv/ft does not approach infinity when
d/}(ch is decreased towards zero and to exemplify that f /f for any non-
zero d/{ must be smaller than, or equal to the f /f given by any upper
bound so]ut1on for d/l =0.

The results for d/f -« have been obtained by means of linear elastic
finite element ana1§ses of the current beams, i.e. from the results from
the first incremental step in the non-linear finite element calculations.
For each of the studied crack paths, the load that gives start of
development of a fracture zone is obtained from the finite element
results. By means of interpolation, the Toad that gives start of
development of fracture zone at crack path ¥ as obtained for the
largest d/4 h analysed (i.e. 2.4 or 4.8) is tﬁZn calculated. In that way
the lower bounds indicated in Fig 5.3 (15) have been determined.
Accordingly, these lower bounds are lower bounds in its strict sense only
if the critical fracture path at d/{ > ® is same as for the largest d/{
(i.e. 2.4 or 4.8) numerically analysed. In this case the indicated ch
strengths represent the strength according to the structural strength
concept of brittle structures/materials. The structural strength concept
predicts a lower, or equal, strength than the material strength concept.
Thus, according to hypothesis III in Section 3.5.2, the actual strength
values are Tower bounds to the strength when d/{ — « . According to
hypothesis I, the actual strengths are then a1soclower bounds to the shear
strength at any d/{ . For the beam with an initial crack of a depth
proportional to d, the actual lower bound is zero. In spite of th1s, the
strength of thi: - ' /Q
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increased. For the beams without the initial crack it can be noticed that
the strengths when d/lcﬁacn are not much smaller than when d/{ch=2.4. For
all these beams an increase in d/£ from 2.4 to infinity gives a
reduction in shear strength which %s less than 50 %. This means that the
sensitivity in shear strength to changes in d/{ is small for extremely
large beams and/or extremely brittle concretes.cHowever, this conclusion
is uncertain as the actual lower bound, i.e. the presently indicated and
discussed strength when d/f - , is not a lower bound in its strict sense
(See above.). cn

For 0.3<d/4 < 4.8 and 9> 0.5 %, the calculated shear strengths of Fig 5.
3 (15) are sﬁown graphically in Fig 5.3 (16) as fv/ft VS. d/{ch. In this
diagram the circles show the computational results while the Tines in
between and beyond the circles only represent estimations. Please note
that the scales on the axes of the diagram of Fig 5.3 (16) are
logarithmic. This means that a constant sensitivity in f /f to changes in
d/J&ch corresponds to a straight line. vt

For studies and evaluation of the kind of results regarding strength
presented in Fig 5.3 (15) it is helpful to calculate the sensitivity to
the different variables involved. The result of such sensitivity
calculations may be found in Fig 5.3(17).

The results of Fig:s 5.3 (11)-5.3 (17) offer the possibility for a number
of conclusions or observations. In Section 5.4 some such discussions and
remarks may be found together with comparisons to experimental results. In
this section, a few particular remarks will be made. While the present
remarks and discussions will concentrate on the results regarding ultimate
strength, the actual figures give also the possibility to make observations
regarding critical location of crack path, depth of fracture zone at
instability, size of ligament at its collaps, load vs. deflection response,
load vs. fracture zone depth and load vs. location of fracture path.

Firstly, it should be emphasized that the results shown in the actual
figures are nothing more, and nothing less, than the results of theoretical
catculations. Accordingly, of course, the results should not be Tooked upon
as if they represent the strength and the behaviour of real beams or real
slabs. Conversely, during comparisons to other analyses and during
comparisons to test results it should be noticed that no adjustment or
fitting paramet T 77 . At the time
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g 0
/ey, o(%) 8/d £/ Ypest ) 3inst/d t,/d !
i
0 .0 3 < .303 90 1.00 - i
1) .6 .0 3 .168 90 .40 - :
2.4 .0 3 137 90 .15 -
© .0 3 .18 90 .00 -
.0 .5 3 <1.581 35 1.00 -
.6 .5 3 .367 60 .50 .05
2.4 .5 3 .267 63 .30 .05
© .5 3 2 .200 63 .00 -
.0 1.0 3 <1.581 35 1.00 -
.3 1.0 3 .602 56 .85 .07
.6 1.0 3 .488 58 .65 .07
1.2 1.0 3 .394 61 .50 .08
2.4 1.0 3 .327 62 .35 .08
4.8 1.0 3 .287 62 .20 .08
@ 1.0 3 2 221 62 .00 -
.0 1.5 3 <1.581 35 1.00 -
.6 1.5 3 .564 60 .75 .10
2.4 1.5 3 .358 63 .35 .10
© 1.5 3 2 .282 63 .00 -
.0 2.0 3 <1.581 35 1.00 -
.6 2.0 3 .618 61 .75 .12
2.4 2.0 3 .385 63 .40 K
© 2.0 3 2 .263 63 .00 -
.0 1.0 6 <1.581 35 1.00 -
.6 1.0 6 .267 44 .55 .05
2.4 1.0 6 .176 45 .30 .05
© 1.0 6 2 113 45 .00 -
.0 1.0 9 <1.581 35 1.00 -
.6 1.0 9 192 39 .55 .06
2.4 1.0 9 123 42 .30 .03
© 1.0 9 2 .069 42 .00 -
0 1.0 3 <1.423 35 1.00 -
2y -6 1.0 3 461 60 .68 .09
2.4 1.0 3 .307 61 .35 .06
© 1.0 3 2 .000 61 .10 -
.0 1.0 3 <1.581 35 1.00 -
3y -6 1.0 3 .490 58 .65 .07
“) 2.4 1.0 3 .328 62 .35 .09
© 1.0 3 2 221 62 .00 -

1) Bending failure of unreinforced concrete beams (straight line o-w curve)
2) Initial open crack of depth 0.1 d in lower edge of beam:
3) Bond stress-slip relation "B", shown in Fig 5.3 (3).

Fig 5.3 (15) Theoretically calculated shear strength, fv/ft, decisive fracture
pq" oot T Ty, a, /d, and
si ifferent Bgams.
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when the calculations were carried out, the writer had little knowledge
about test results regarding shear strength of concrete beams.

An evident result of the calculations is that the shear strength decreases
at increased size of the beam and at increased brittleness of the
concrete, For the common intermediate range of d/f an approximate easy-
to-remember thumb rule is that halving two times of ratio d/f gives a 50
% increase in f /f . According to conventional strength theories the
increase would ge zero %, and according to the linear elastic fracture
mechanics, the increase would be 100 %, A comparison to the results in
Section 4.2 shows that ratio d/Af h has a greater influence on the shear
strength than on the flexural strength of {proportionally loaded)
unreinforced concrete beams.,

The computational results regarding shear strength are all in agreement
with the four general hypotheses in Section 3.5.2. In this regard also two
details of the results can be noticed in Fig 5.3 (17): during variation in
d/{ch, the (absolute value of the) sensitivity in fv/f to changes in
d/{Ch expose a maximum (in the region 0.6<d/{ hg 1.2) and, secondly, the
corresponding maximum Sensitivity is less than 0.5. Even if the actual
hypotheses are true, it is not self-evident that the finite element
calculations would not produce contradictions. Thus, since only a few
possible crack paths are considered it is theoretically possible that the
calculations could turn out to produce a shear strength greater than that
produced by the upper bound theorem of plasticity.

Where the results of Fig 5.3 {15) are concerned it may, in particular, be
noticed that the depths of the fracture zone at instability, ainst’ are
great. For the small beams a, /d is great and for the large beams
a, /X is great. Furthermore, a, /£ s not constant and, for all of
inst c¢h inst <t¢h |
the current beams, at the instant of instability no part of the fracture
zone had developed into an open crack. These matters suggest that the
basic assumptions of the linear elastic fracture mechanics are not
fulfilled. These matters also contradict basic conditions which most
probably are required for validity of the size effect law of Bazant
(1984). The actual two theories have previously been applied during
studies of the relative influence of absolute size on shear strength, and
a comparison_to the present results may be found in Section 5.4,

The sensitivity nsitivity to
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reinforcement is greater for small beams than for large beams. The reason
for this may be that the co-operation between stress transfer in the
reinforcement and in the fracture zone is better in small beams. Fig 5.3
(17) also suggests that the sensitivity to ratio d/f is greater in the
heavily reinforced beams than in the lightly reinforced beams.

Commonly the empirical and semi-empirical formulas for the shear strength
consists of a function of only P times a function of only £/d times a
function of only ft (or f ) times a function of only d (while the
influence of d were not taken into account in older formulas, it seems
that the influence of d is taken into account in most recent formulas).
According to above, the present computational results suggest that the
influence of the different variables is coupled and accordingly that it is
not suitable to express shear strength as the product of functions of the

individual variables.

The sensitivity to ratio 2/d is close to unity. This means that the shear
strength is strongly dependent on the bending moment. Conversely, this
also means that the load carrying capacities of the current beams, if
expressed in terms of their formal fiexural strength, are close to being
independent of the shear force in the beams. In spite of this, it is good
to distinguish between flexural strength and shear strength as the failure
modes are different, i.e. Xpes=900 and less than 900 respectively.

On the whole, the computational results summarized in Fig 5.3 (15) seem to
be consistent with each other. However, one of the results is in conflict
with ones intuition: one would expect that a change in the bond stress-
slip relation from curve A to curve B, shown in Fig 5.3 (3), would produce
a greater change in the calculated shear strength. The basic explanation
to the actual smallness of the influence might be that the phenomenon of
aggregate interlocking has not been considered in the present

calculations.

As evident from Fig 5.3 (15), t /d has not been calculated for the beams
without reinforcgment. These beams fail in bending and y os is known in
advance to be 90 ., In general, if the decisive fracture path, ¥ s 1s
known in advance, it is not necessary to calculate t /d and the load at
the final collapse of the Tigament, in order to ca]cﬂ]ate the ultimate
strength of beams with a brittle type of failure.
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calculated strength

estimation

1) Initial crack in beam

0.6
0.5 -
0.4 A
Q (%) ]| l/id
. 2.0 3
0.3 1 1.5 3
1.0 3
1.0 | 3"
05 3
0.2
: 1.0 6
1.0 |9
0-1 T T T T T ol
0.3 0.6 1.2 2.4 4.8 d/lch
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0.1 1.0 d(m) at
lch=0.4m

Fig 5.3 (16)
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i

: i/ ?(%) o/d c Sensitivity
i ch m -m (% / %)
5 1) .6-2.4 | 0.0 | 3 .156 .15
. .6-2.4 | 0.5 {3 .326 .23
.6-2.4 | 1.0 | 3 421 .29
6-2.4 | 1.5 |3 477 .33
6-2.4 | 2.0 {3 .519 .34
6-2.4 | 1.0 | 3 .421 .29
6-2.4 | 1.0 | 6 .229 .30
6-2.4 | 1.0 | 9 163 .32
.3-.6 1.0 | 3 .420 .30
6-1.2 | 1.0 | 3 417 .31
1.2-2.4 | 1.0 | 3 .44 .27
2.4-4.8 | 1.0 | 3 .386 19

1) Bending failure; single straight line o-w curve.

d/ %y, {e(®) | wd ¢, Sensitivity
-n {%/%)
.6 1.0 |3-6 1.269 .87
.6 1.0 }6-9 1.139 .81
2.4 1.0 |3-6 .868 .89
2.4 1.0 {6-9 .851 .88
d/e.p| el®) je/d Cp Sensitivity
p(%/%)
.6 .5-1.0] 3 .488 .4
6 .0-1.51 3 .488 .36
.5-2.0] 3 .495 .32
2.4 10.5-1.0( 3 .327 .29
2.4 .0-1.5] 3 .327 .22
2.4 .5-2.01 3 .323 .25
Fig 5.3 (17) Sensitivity in shear strength to changes in:

. _ il
a) d/lch. fv/ft = Cm ((_j/x'ch)
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Let us now turn to the results regarding influence of prestressing of the
reinforcement bars. Prestressing can be carried out in different manners:
before or after hardening of the concrete; with end anchorage of
reinforcement or with bonded reinforcement; and with direct contact steel-
concrete or with reinforcement placing in pipes. The current calculations
concern the case of prestressing before hardening of the concrete, bonded
reinforcement without end anchorage and with direct contact steel-
concrete. This is a common method for the prestressing of factory-made
beams or slabs. The current calculations concern only the load at
instability and only crack path number 1, shown in Fig 5.3 (10). While the
prestress in the reinforcement bars, f , is varied, the other variables
are held constant according to Fig 5.3 (18). The bond stress-slip curve
"A", shown in Fig 5.3 (3), is adopted and no initial cracks are assumed to

be present on the beams.

According to the finite element calculations the mechanical events within
the beams are as follows: first, before the external load is applied, a
slip develops between the steel and the concrete at the ends of the beam.
This slip is of course the result of release of the external force applied
during stressing of the steel. Next, when a certain external load has been
applied, a fracture zone starts to develop in the concrete. This stable
development starts from a point at approximately half the depth of the
beam. Later on, the maximum Toad carrying capacity (the instability load)
is reached and, if the external load is constant, the subsequent events
become rapid and unstable. These events may start with a further
development of the fracture zone and a subsequent slip between the steel
and the concrete all the way between the end of the beam and the location
of the crack path. This slip may give a great opening of the crack and a
great increase in the deflection of the beam at a fairly constant load
carrying capacity. During this opening of the crack, the size of the
ligament decreases and one may expect that finite element analyses of the
subsequent performance would indicate extremely large stresses in the
upper edge of beam, resulting in a failure of the ligament.

Fig 5.3 (18) shows the calculated load at instability., Here, these
instability loads will be assumed to represent the uitimate shear
strength. Evidently, the calculations suggest a significant benificial
effect of prestressing on shear strength., However, at prestress, f /f ,
greater than about 200, the shear strength becomes approximately constant
and even exposer - ~li~ht decnncsn Tho manecan £anm dhi~ ~T-teay is that
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plastic slip (i.e. slip at constant bond stress) between the steel and the
concrete develops all the way from the end of the beam to the location of
the subsequent crack path already before the external load is applied, i.
e. when the prestressing force is released. The development of such a slip
means that the effective prestress across the subsequent fracture path
cannot be increased above a certain value. An equilibrium calculation by
hand shows that the actual slip develops if the initial prestressing,

f /f , is greater than 192. Of course this break-point value is different
for other bond strengths, other locations of the crack path and other
diameters of the reinforcement bars.

The results for d/f - o indicated in Fig 5.3 (18) represent the load at
start of deve]opmen% of the fracture zone. The upper bound for the shear
strength at d/Xch=0, fv/f =1.58, above calculated for beams without
prestressing, is valid also for the prestressed beams. Naturally, the
exact shear strength at d/{ch=0 may be smaller.

Fig 5.3 (18) suggests that the relative benificial effect of prestressing
is greater for the extremely large beams than for the beams with
d/lch=0.6. The increase in the instability load due to prestressing,
fp/ft’ equal to 100, 200 and 300 is 85 %, 170 % and 160 % when d/{cﬂa o
and 52 %, 85 % and 78 % when d/{ch=0.6. As a result of a theorem of the
theory of plasticity and hypothesis II in section 3.5.2, one may expect
prestressing to give a zero % increase in the shear strength when d/{ch=0.
The actual results also suggest that the sensitivity to changes in d/){ch
is smaller for prestressed beams than for beams without prestressing. In
the current case, the increase in the instability load due change in d/f
from infinity to 0.6 is 52 % when f /ft=0’ 25 % when fp/ft=100, 4 % when
f /f =200 and 5 % when f /f =300.

pt pt
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t, 1y
A 0=025%
l/d =3
06 |
d/lch=06
- dllcp—co
04l
02
1 ] 1 .
0 100 200 300 fp/f

Fig 5.3 (18) Shear strength vs. prestress. Only one crack path
considered and only the load at start of unstable
crack growth analysed.

5.4 Comparisons and remarks

In this section first comparisons between the calculated shear strength
and empirical formulas will be made with respect to the relative influence
of different variables. Then a comparison with respect to absolute values
of shear strength will be made. Subsequently the influence of prestressing
is dealt with. A few remarks, in addition to those in Section 5.3.5, may
also be found,

The comparisons with respect to the relative influence of different
parameters are made by means of the results of three surveys of very large
numbers of test T T o ' cording to
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Hedman and Losberg (1978), the second is according to Leonhardt (1978) and
the third is according to Nielsen, Braestrup, Jensen and Bach (1978). The
formula of Leonhardt is analogous to a formula presented by Rafla (1971).

A great number of empirical formulas for the shear strength may be found
in literature. For instance, Elzanaty (1985), in a recent study of shear
strength, references to more than ten formulas may be found. The three
surveys used in the present comparisons are adopted because they have been
proposed by well-known researchers in the field of shear strength, because
the surveys include consideration to the influence of absolute size of
beams and because the empirical formulas corresponding to these surveys
are believed to be rather typical.

In the actual three surveys, shear strength is expressed as a function of
the compressive strength of concrete ,f , times a function of {/d times a
function of e (=cross-section area of reinforcement/bd) times a function
of d. In all three cases the function of the compressive strength is
stated to be V?ﬂ. For the mathematical description of the other functions,
the reader is rgferred to the actual references.

Where the definition of d is concerned, the following should be noticed:
during the present calculations and in the third survey, d is defined as
the total depth of the beam. In the first and second survey, d is defined
as the effective depth of the beam. During the present comparisons d is
throughout treated as if it represents the total depth of the beam. As the
present comparisons concern the relative influence of variables it seems
fair to believe that the difference in definition of d is of small
importance. The second empirical result is valid for the 5 % fractile of
shear strength while the other empirical results presently used are valid
for the mean strength. This difference should also be of small importance.

Fig 5.4 (1) shows the influence of the absolute size of beams on their
strength, In this figure the strengths are normalized with respect to the
strength at d=0.12 m. The theoretical result is shown for &Ch=400 mm. This
is a typical value of [c for normal concrete. If the theoretical result
is plotted for other reasonable values of l%h, it is found that the exact
choice of ézh is not of great importance where the actual relative in-
fluence is concerned.
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Fig 5.4 (2) shows the influence of ratio 4/d. In this figure the strengths
are normalized with respect to the strength at £/d=3.

Fig 5.4 (3) shows the influence of p when ¢30.5 %. In this figure strength
is normalized with respect to the strength at 9=0.5 %. Fig 5.4 (4) shows
the influence of 0 when ¢ 0.5 %. The theoretical curves in this latter
figure are uncertain as they are based only on a smooth extension of the
curves for 02 0.5 % and on the calculated flexural strength of concrete
beams without any reinforcement at all, i.e. with ¢ =0.0 %.

With the exception of the influence of £/d, the theoretical results seem
to be in good agreement with the empirical results: the deviation is not
greater than between the results of the surveys of experimental tests.
Where the influence of ratio £/d is concerned, the empirical results
suggest a greater influence in the region 3<£/d<6 and a smaller influence
in the region 6<{/d<9.

The difference between the size effect relations shown in Fig 5.4 (1)
shall be more clearly illustrated and also compared to the size effect of
linear elastic fracture mechanics and to a size effect law of Bazant
(1984). The actual illustration may be found in Fig 5.4 (5) and shows the
sensitivity in shear strength to changes in absolute size, i.e.

(Afv/f }/(ad/d), vs. the absolute size of the beam, d. The trivial result
of the conventional strength theories is not shown. According to those

theories the sensitivity in strength to changes in size is zero.

During analyses of the size effect in shear strength, Reinhardt (1981, a
and b) has applied the size effect of Tinear elastic fracture mechanics
and Bazant and Kim (1984T have applied the size effect law of Bazant.
According to the size effect law of Bazant f ~1/\1+d/(Ad ) , where A
is an adjustment parameter and da the maximu; particle sizg of the
aggregate, By means of adjustment to test results, Bazant and Kim found
that A=25 seems to be suitable for the shear strength of concrete beams.
The size effect law of Bazant and the linear elastic fracture mechanics
both predict a decrease in strength at increased size. On the other hand,
according to Section 5.3,5 and Section 3.5.3, for the case of shear
strength analysis, basic assumptions behind the actual two size effect
theories do not seem to be fulfilled.

Fig 5.4 (5) ind . between the

%) See also di¢ .
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Fig 5.4 (1) Influence of size on shear strength.
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size effect relations. The three empirical relations and the semi-
empirical relation of Bazant and Kim all suggest approximafé]y the same
mean sensitivity in the region 0.2 m < d < 1.0 m. This suggests that these
relations have been developed by fitting to test results valid for normal
qualities of concrete in this normal region of d. The empirical mean
sensitivity seems to be about (-0.25)-(-0.30) in the actual normal region.
The present theoretical results suggest approximately the same mean
sensitivity in the corresponding region of ratio d/{ch,

Although the four empirical relations crosses each other in the region
0.2m <d < 1.0 m, the relations are of quite different types: while one
relation suggest a continuous decrease in sensitivity, another suggests a
constant sensitivity, a third suggests a continuous increase in
sensitivity and a fourth suggests a maximum in the sensitivity at d=0.6 m.
This suggests that it is difficult to develop consistent strength formulas
from test results even if the results from a large number of tests are

available.

Even if the empirical relations represent different types of sensitivity
curves, they all happen to be such that they violate the general
hypotheses in Section 3.5.2, Besides, the semi-empirical relation of
Bazant and Kim, as well as the linear elastic fracture mechanics violate
the hypotheses. In order not to contradict the hypotheses, the sensitivity
curve should be of the type suggesSted by the result of finite element
analyses: the sensitivity should be in between -0.5 and zero and should
approach zero both when d approaches zero and when d approaches infinity.
However, the empirical relations are most probably not intended to be used
outside some normal region of d and perhaps not either intended to be used
for concrete with an unusually small or large characteristic length, zch'

In the new Swedish concrete building code, the influence of size on shear
strength is taken into account. The relation used in the code is a
modification of the original proposal of Hedman and Losberg, and is a
piece-wise linear relation: f ~constant=1.4 when d<0.2 m; f ~ 1.6-d when
0.2mgd<0.5m; f ~1.3-0.4d when 0.5 mgd 1.0 m; f ~ constant=0.9 when
d>1.0 m. The modi¥ication is such that the hypotheseg of section 3.5.2
are no contradicted as far as the properties of the sensitivity curve are
concerned. The reason for the modification in the region d<0.2 m (f =
constant) is not known, while the reason for the modifications in txe
region d>0.2 m 1 ' C . Too oo teteted des-=f-tion of test
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Fig 5.4 (5) Sensitivity in shear strength to changes in beam size
vS. beam size.
a) Present theoretical result obtained foro =1 %, £/d=3 and { =400mm
c
b) Empirical, Hedman and Losberg (19783,25 f ~1.,75-1,25 d= 1.0
¢) Empirical, Leonhardt (1978), f od (A]so Weibull-model)
v -0.
d) Empirical, Nielsen et al. (1978), f ~ 1+d (.08¢ds,7
v -0,
e) Semi-empirical, Bazant and Kim (1984), f ~ (1+d/25d ) s
v a

max particle size, d , =,02 m

a -0.5
f) Theoretical, Reinhardt (1981 a, b), f ~d
v

elastic fracture mechanics).

(Linear

The dimension of d in the above relations is metre.
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results, If a judgement is made from the present theoretical results or
from test results, the size effect at small size (d<0.2 m) Seems to be
significant enough to be exploited in the design of shallow beams and

slabs.

During a change-over period both the new Swedish concrete building code
and the older Swedish code has been allowed to be used. According to the
design rules of the older code, the absolute size has no influence on the
shear strength. In the model code of Comite Euro-International du Beton,
the influence of size is considered. According to design expressions shown
by Elzanaty (1985), the influence of size is not considered in the
American Concrete Institute Code.

In Fig 5.4 (5), the curve showing the result of the present calculations
is drawn for L =400 mm. For concrete qualities with a larger
characteristicclength, the curve will be moved to the right and for more
brittle qualities of concrete, the curve will be moved to the left. It may
be noticed that the theoretical results predict the characteristic length
of the concrete to be of equally great importance as the absolute size of
the beam. The present discussion and comparisons have mainly concerned the
influence of the absolute size while a comparison with respect to the
influence of zch has not been made. The only reason for this is that
influence of absolute size has been detected previously and a number of
experimental results are available while no experimental results regarding
the influence of the characteristic length of the concrete are available.

It may also be noticed that the theoretical curve is valid if all
geometrical dimensions of the beams, including the diameter of the bars,
are changed proportionally at a constant quality of the concrete, i.a. at
a constant absolute size of the aggregate. If the diameter of the bars is
kept constant during increase in the absolute size of the beam, one may
expect a smaller influence of the absolute size than predicted by the
present calculations. This smaller influence may be expected due to the
relative increase in stiffness and strength in the bond between the bars
and the concrete. According to experimental results shown by Leonhardt
(1978), shear strength decreases about 20 % if the bar diameter is
increased from 10 mm to 20 mm at constant percentage of reinforcement
(1.88 %). Thus the influence of the bar diameter does not seem to be of
negligible importance. Where the size of the aggregate is concerned, one
may expect a smaller influence nf the absolute size of the beam than
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predicted by the present calculations, if the absolute size of the
aggregate is not constant but is larger for the larger beams.

According to experimental results of Petersson (1981}, L h increases at
increased maximum particle size of the aggregate, but the increase is not
proportional: for a concrete with the maximum particle size 8 mm 4 =280
mm is reported, while I =400 mm is reported for a corresponding Egncrete
with the maximum partic]g size 16 mm. Taylor (1972) tested beams of
different absolute size both with a constant maximum particle size and
with maximum particle sizes scaled in proportion to the size of the beam.
As may be expected from present calculations together with the QLh values
reported by Petersson, Taylor found that both approaches gave a decrease
in strength at increased size of the beam and that this decrease is
smaller if the maximum particle size is scaled in proportion to the size
of the beam. An increase in d from 250 mm to 1000 mm gave a 16 % decrease
in shear strength for the constant maximum particle size (19 mm) and a 10
% decrease when the maximum particle sizes were scaled (9 mm and 38 mm,
respectively). The actual magnitude of the influence of size recorded by
Taylor seems to be unusually small: this is shown by Taylor in a
comparison to previous test data and the same thing is found if

comparisons are made to subsequent test data.

At this point, it may be suitable to include a few remarks with respect to
model-concretes and model-testing of shear failure. According to the

conventional theories for description of the properties of materials, i.e.
the methods based on a description of stress vs. strain response of the
material, at certain conditions (negligible influence of dead-weight,
proper scaling of loads and no change in the properties of the material)
the quasi-static behaviour of a full size structure is quite similar to
the corresponding behaviour of a small scale model. This convenient
general result of the conventional theories form the base for the model-
testing of structures made of concrete or other materials. However,
according to the concepts of fracture mechanics one may expect the scale
model to behave differently than the full-size structure. This is in
agreement with experiences reported in literature and it seems to be a
well-known experimental fact that one may not expect the scale-model of a
concrete structure to behave in the same manner as the full-size
structure. Therefore, model-concretes are used during model-testing.
However, the.difficu1ty is to choose suitable properties of model-
concrete, No genn~n=11uv ~rrantnd wila canme $+n ha auailahla (ften
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concretes with a small maximum particles size (mortar) is used and the
particle size is then scaled in proportion to the scaling of the
structure. The present study and the test results of Taylor (see above)
and, more clearly, the test results of Chana (see below) suggest that
suitable model-concretes are not achieved in this manner. According to the
fictitious crack model, similitude in behaviour can be achieved if the
shapes of the 0 -¢ curves, the g-w curves and, in the case of
multidimensional states of stress, the failure envelopes are equal for the
concrete and the model-concrete and if the ratio between the slope of the
0-¢ curve and the 0-w curve is made proportional to the size of the
structure. The last requirement corresponds to a constant d/f  and means
that brittle materials should be used during model-testing. O% course,
practical difficulties are involved in the development of a model material
with the required properties., However, while the shapes of the material
property characteristic curves should be equal for the concrete and the
model-concrete, it is not required that the absolute values of the
corresponding material property parameters, i.e. E, GF and ft, must be
equal, Where the value of ratio d/f s concerned, it is possible to
choose the size of the mode]-structﬁre according to the characteristic
length of the model-concrete instead of doing the reverse.

Chana (1981) tested beams which were exact geometrical scale models of
each other: (total depth: breadth: bar diameter: concrete cover: shear
span = 1,0:0.5:0,05:0.1:3.0 and with 1.5 % reinforcement). The prototype
beams”™ size was d=406 mm and the three series of model beams had the sizes
d=202 mm, 121 mm and 47 mm. The maximum aggregate sizes of the concretes
were scaled almost proportionally: d =20 mm, 10 mm, 5 mm and 2.4 mm. The
mean cube strength of the concretes were 47 MPa, 37 MPa, 42 MPa and 46
MPa. These strengths of the concretes were determined from 150 mm, 100 mm,
70 mm and 25 mm cubes. This should neutralize or reduce possible size
effects of the Weibull type. By the assumption f NV?1, recorded shear
strengths were normalized to the shear strength at fc=40 MPa. It was found
that the normalized shear strengths were 1,09 MPa, 1?41 MPa, 1.59 MPa and
2.17 Mpa corresponding to 30 %, 47 % and 100% greater strength in the
model-beams. Thus the influence of size is clear, and greater than found
by Taylor. As the characteristic lengths of the actual concretes is
unknown, it is difficult to make a comparison to the present theoretical
result. However, Modeer (1979) tested a concrete (aggregate size unknown)
and a mortar (aggregate size unknown) and found Xch=260 mm and 140 mm,
respectively. At the crude assumption that these values are representative
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for the prototype concrete (aggregate size 20 mm) and the "smaller" model-
concrete (aggregate size 2.4 nm), the theoretical results predict that the
smallest model beam should be about 60 % stronger than the prototype beam.
Thus, while the results of Taylor indicate a smaller size effect than the
theoretical, the results of Chana indicate a greater size effect than the
theoretical. According to the size effect law of Bazant, model-beams with
scaled aggregate size should have the same strength as the prototype beam.
The evident, possible explanation for the experimentally found size effect
is that lch is not proportional to the aggregate size. If the lch-va1ues
of Modeer are representative for the concrete qualities used by Chana, the
present method of analysis predicts that the model-beam with aggregate
size 2.4 mm should have the size d=220 mm instead of d=47 mm in order to
achieve the same strength and behaviour as the prototype beam with
aggregate size 20 mm and size d=406 mm.

A matter which sometimes is of great importance in the interpretation of
model-testing data and size effect tests is the influence of dead weight,
If dead weight is not considered during the evaluation of experimental
results, one will obtain an apparent decrease in strength at increased
size. Where the shear strength of concrete beams in three point bending is
concerned, according to Fig 5.4 (2), it seems reasonable to assume that
the equivalent contribution to the external load from the dead weight is
approximately equal to an external load that produces the same bending
moment in the mid-section of the beam as produced by the dead weight, i.e.
as a reasonable approximation, half the dead-weight of the beam may be
added to the external Toad. Although not clearly stated, it seems that
Taylor added the total dead weight of the beam while Chana may have
disregarded dead weight. This may explain a part of the difference between
the results of Taylor and the results of Chana.

With regard to the significance of the characteristic Tength of the
concrete it is also of interest to refer to the properties of high

strength concretes. High strength concretes are often reported to performe
in a brittle manner, which suggests that the characteristic length of such
concretes is small, This has been explained by the tendency of the crack
to pass through the aggregate particles instead of around the particles.
This gives a smooth fracture surface, and one may expect a low fracture
energy of the concrete, and one may also expect that the aggregate size is
of smaller 1ﬁbortance than in ordinary concrete. Where shear failure is
concerned, the ¢~*==" *omn ~€ s=oob momedb So bEob ob---—tb concretes has
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recently been reported by Elzanaty (1985). Elzanaty also found that the
crack surfaces were smoother as the concrete strength increased. As a
rather pessimistic assumption with regard to the properties of high
strength concretes vs. the properties of normal concretes, one may assume
that the modulus of elasticity times the fracture energy, EcGF’ is
constant during the increase in the tensile strength, f . If adopting this
assumption, according to the computational results of Fig 5.3 (16), a 100
% increase in the tensile strength, f , gives approximately only a 35 %
increase in the shear strength, f . For the normal qualities of concrete
it is commonly assumed that f 1svproportiona1 to f . However, Elzanaty
refers to a recent study presented by Mphonde and Frantz in 1984: these
researchers tested the shear strength of beams made of both normal and
h1§h strength concretes (20 MPa <fc<100 MPa) and proposed that f ~

+ 1,34 (f measured in MPa). This proposal suggests that an 1ncrease
1n fC from 25 MPa to 100 MPa gives only a 40 % increase in the shear
strength. At the assumption ftm, V?Z, the examplified increase in fc
corresponds to a 100 % increase in the tensile strength. Consequently the
actual 40 % increase may be compared to the above rather pessimistically
estimated theoretical 35 % increase. (According to the researchers
referred to, shear failure also becomes more sudden and explosive as the
concrete strength increases.)

The present analysis indicates proportionality between fv and ft only if
lc is constant. In accordance with the above mentioned, it seems fair to
believe that an increase in f 1is in general accompanied with a small or
great decrease in Xch' With regard to this matter and the consequential
small influence of concrete strength on shear strength it may also be
referred to the extensive research on the "so-called shear failure”
carried out by G. Kani and summarized by M. Kani, Huggins and Wittkopp
(1979). After testing 133 beams (f from 17 MPa to 34 MPa, » o from 0.5 % to
2.8 %, rectangular cross section, no shear reinforcement) Kani concluded
that shear strength of concrete beams does not depend on concrete
strength. However, this conclusion may have been made somewhat drastic for
the purpose of making experimental findings clear and easy to remember:
according to a more modulated interpretation of the actual test results,
it seems that f in general shows a slight increase during increase in f
The increase can be roughly estimated to be about 10 % when f is
increased from 17 MPa to 34 MPa. The corresponding increase suggested by
the above relation of Mphonde and Frantz is 17 % and the corresponding
increase sugges* " S *hs sbeim funn o€ s methan naccimictic theoretical
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estimation from the present computational results is 16 %. The
conventional assumption f ~ V?j predicts a 41 % increase and the
assumption f ~f (Seevbelows predicts a 59 % increase. During
app]icationsvof Ehe theory of plasticity at shear strength analysis it is
commonly assumed that f /f =0 and if some effectiveness parameter is not
used, i.e. if fitting to tgst results is not carried out, this theory
predicts a 100 % increase in f during the actual increase in fc from 17
MPa to 34 MPa. Consequently, the different proposals cover the region 0-
100 % for the increase in shear strength at the doubling of the concrete
compressive strength,

While it is commonly assumed that f is proportional to f , in practice
the direct tensile strength of the Zoncrete is usually not tested but it
is instead commonly assumed that ft~ V?L and consequently that fv~ V?l. An
exception from this proportionality may be found in the new Swedish
concrete building code and also in the Model Code of Comite Euro-
International Du Beton. According to the design tables in these codes f

is approximately proportional to f . This means that the increase 1nvf
from 25 MPa to 100 MPa is pred1cted to give a 150 % increase in f . As
compared to the above crude theoretical estimation and as compareé to the
above expression of Mphonde and Frantz, there is a difference in f
corresponding to the approximate factor 1.8. This is not a small
difference. The reason for the choice f ~f in the actual codes is not
known. In the explanatory and viewpointvpapgrs on the Model Code of CEB,
Regan (1978) briefly states that the actual relation probably over-
estimates the influence of concrete strength but the errors involved are
relatively insignificant and are almost lost in the general scatter of
test results. Here it must be mentioned that the design table of the Model
Code only includes concretes with characteristic compressive strengths
from 12 MPa to 50 MPa, and that the Swedish code only includes concretes
with chracteristic compressive strengths from 12 MPa to 57 MPa (light-
weight concretes not being included). On the other hand, the mean
compressive strengths are greater than the corresponding characteristic
compressive strengths referred to in the codes.

In order to develop a rational shear design expression for the many
different qualities of concrete available today, it may prove necessary to
consider not»only the tensile strength of the concrete but also its
brittleness. This may reduce the apparently large scatter in shear
strength and ma h~ achincved cimnlu hu ranlarinn tha maacire of absolute
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size in shear design expressions, d, with ratio d/ﬂth. As d/JZ,ch is a
dimensionless ratio this would also produce a pedagogical improvement of
shear design expressions. The current use of d instead of d/}Z,Ch can be
looked upon as being equivalent to the tacit assumption of equal
brittleness of all qualities of concrete.

Let us now turn to a comparison with respect to the absolute values of
shear strength, Two related recent Swedish test series will be utilized

for this comparison. The tests were carried out by Liaretidis and Zamani
(1980) and by Aronsson and Eskilsson (1981) and have been summarized by
Petersson, T (1983). The total of 15 beams were shear strength tested in
three point bending. The concretes may be described as low or normal
strength concretes (intended concrete quality: K20) with cube compressive
strengths of about 30 MPa, with rather high water-cement ratios, with a
normal content of aggregate and with 18 mm maximum aggregate size. For
much more detailed information about the concrete mixes and the tests, the

reader is referred to the above references.

For each beam, the cube compressive strength of the concrete was tested.
Other mechanical properties of the concretes are unknown. In the present
comparison it is assumed that the mechanical properties of the actual
concretes are in accordance with the assumptions adopted during the
calculations presented in Section 5.3. Consequently, the tensile strengths
of the concretes are simply assumed to be one tenth of the recorded
compressive strengths. th=400 mm has previously been used as an example
of a typical value for the characteristic length of a normal concrete, and
this value of Xb is also adopted during the present comparison. Of
course, the assumptions with respect to f and L are decisive for the
theoretical calculation of the absolute values o% shear strength. This
reflects a common difficulty during utilization of test results reported
in literature: often the reported experimental data do not include all

the particular data required during a theoretical study.

In Fig 5.4 (6) the experimental and theoretical shear strengths are
indicated. Ratios d/4 (with L =400 mm), b/d, and 4/d and percentage of
reinforcement are also indicateg. During the evaluation of experimental
shear strengths, account is taken to dead weight according to above: the
ultimate shear force is taken as the ultimate external load divided by two
plus the shear force at support due to dead weight divided by two.
According to above f dc taken ac the recarded cube compressive strength
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divided by ten and f is defined according to eq (5.3:5) where d is the
v
total depth of the beam.

Where the theoretical shear strengths are concerned, since the actual
values of d/ﬂch, ¢ and L/d do not happen to coincide with the particular
values studied in the finite element calculations, it has been necessary
to carry out interpolations and extrapolations. Naturally, the method of
interpolation has some influence on the theoretical results but is
estimated to have no importance where the major conclusion of the actual

comparison is concerned.

Fig 5.4 (6) indicates that the theoretical results underestimate the shear
strength with about 30 %. Underestimation of the absolute values of the
shear strength has also been found during comparison to other test results
and is consequently not unique for the comparison shown in Fig 5.4 (6). A
number of possible reasons for the underestimation may be proposed. Here,
only two possible reasons shall be mentioned: the presently used model for
the stress transfer in the fracture zone is crude (in particular, the
possible beneficial effect of aggregate interlocking across open cracks is
disregarded) and, secondly, the effect of dowel action has not been
considered during the calculations. Underestimation is of course not
satisfactory, but it would had been more remarkable if underestimation was
not found. The comparison in Fig 5.4 (6) suggests that theoretical shear
strength analysis should be carried out in a more realistic and modulated

manner than the present analysis.

Fig 5.4 (6) also indicates a 6 % standard deviation in the deviation
between the test results and the theoretical results. This is a small
deviation. If all the theoretical strengths are increased with the mean
deviation, then the standard deviation between the experimental results
and the theoretical results will be 6 %/(1-30 %)=9 %. This is not greater
than a reasonable (See below) experimental scatter. Consequently, if
taking into account such a reasonable scatter, the shear strength of the
different beams is equally underestimated. However, it must be remarked
that the actual 9 %-value is sensitive to the metod of interpolation at
the evaluation of the theoretical strengths. This means that the actual
value is only an approximate estimation.

If making a judgement from a survey of different test results where
exper-imenta] She:r- cetranathe ara ~amnarad +a Asch Atharn hu means Of some



5 - SHEAR STRENGTH, page 58

simplifying and inappropriate statistical or empirical expression, one may
arrive at the conclusion that the scatter in the shear stréhgth of
concrete beams must be great. On the other hand, if the present
theoretical calculations correctly reproduce the relative influence of the
variables in the test series of Fig 5.4 (6), then the experimental shear
strength scatter is only about 9 % and accordingly not greater then what
may be considered as normal for the strength of concrete and concrete
structures. To gain knowledge on this matter the test results of Taylor
and Chana, referred to above, are utilized. The tests of these researchers
include tests of nominally identical beams made of nominally identical
concretes, Chana applied excentric three point bending, which made it
possible to test the strength of both the left side of the beam and the
right side of the beam. As there appears to be a correlation (although
only slight) between the strength of the left side and the right side of
the nominally identical beams, the scatter in the strengths of the two
sides are calculated individuaily. In the below presentation of the
scatter, the following notation is used: (number of tests, side of beam,
depth of beam, maximum aggregate size): coefficient of variation in
failure load. The tests of Chana give: (3, left, 406 mm, 20 mm): 7 %, (3,
right, 406 mm, 20 mm): 1 %, (3, left, 202 mm, 10 mm): 6 %, (3, right, 202
mm, 10 mm): 5 %, (4, left, 121 mm, 5 mm): 12 %, (4, right, 121 mm, 5 mm):
15 % and (9, -, 47 mm, 2.4 mm): 11 %. Only one side of the smallest beams
was tested. The nominally identical beams tested by Taylor in centric
three point bending give: (4, -, 250 mm, 9 mm): 9 % and (4, -, 150 mm, 2.4
mm): 6 %. The arithmetic mean of these coefficients of variation in the
shear failure load is 8 %. Accordingly, the true experimental scatter in
the shear strength of concrete beams does not seem to be very large.

The test results of Chana give also the possibility to test the argument
that the scatter in the shear strength produces a considerably smailer
shear strength in beams with two shear spans, e.g. beams in centric three
point bending, than in beams with one shear span, e.g. cantilever beams.
According to the actual test results, the weakest side of the beams is in
mean 6 % weaker than the strongest side. This means that the mean shear
strength of beams in centric three point bending is about 3 % less than
the mean shear strength of cantilever beams. Thus, the effect of scatter
in strength does not seem to be very great.

As indicated in Fig 5.4 (6), one of the variables studied in the
experimental in *° 7 - cooocmtsd v T Pedeescas wme 4he breadth, b,
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1), 5) 4) 2), 3)

Beam 4/ % 2/d  b/d o(%) (fv/ft)exp (fv/ft)theor Deviation
A1 0.58 6.09 0.77 0.55 0.31 0.21 -32 %
A2 0.57 6.1%-1.56 0.55 0.29 0.21 -28 %
A3 0.58 6.04 2.34 0.55 0.28 0.21 -25 %
B1 0.98 6.5 0.46 0.58 0.27 0.17 =37 %
B2 0.98 6.46 0.92 0.57 0.29 0.17 -41 %
B3 0.98 6.45 1.38 0.57 0.25 0.17 -32 %
B4 0.97 5.77 0.46 0.58 0.26 0.19 -27 %
B5 0.97 5.88 0.46 0.33 0.28 0.16 -44 %
C1 1.86 6.60 0.24 0.60 0.21 0.15 -29 %
c2 1.85 6.71 0.49 0.60 0.21 0.15 -29 %
C3 1.86 6.72 0.72 0.60 0.20 0.15 -24 %
D1 2.77 6.22 0.16 0.60 0.18 0.14 -20 %
D2 2.77 6.24 0.16 0.34 0.18 0.12 -33 %
E1 3.66 6.27 0.12 0.60 0.20 0.14 -30 %
E2 3.65 6.26 0.12 0.35 0.16 0.12 -26 %

Mean deviation -30 %
Standard deviation in deviation from mean deviation 6 %

1) lch assumed to be 400 mm

2) ft assumed to be one tenth of the cube compressive strength

3) Ultimate shear force is calculated as (ultimate load)/2 +
(dead-weight)/4

4) b indicates breadth of beam

5) Depth of beam, d, is throughout defined as the total depth

Fig 5.4 (6) Comparison between experimental results presented
by Petersson, T. (1983) and theoretical calculations.

of the beam. Possible influence of the breadth will be discussed below
in conjuction to a few remarks on application of the Weibull theory.

Let us now turn to the influence of prestressing: see Fig 5.4 (7). In this
figure shear strengths are normalized to the shear strength at zero
prestress. The figure shows the present computational results, an
empirical relation proposed by Nielsen et al. (1978) and the result of a
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The present use of the empirical relation proposed by Nielsen at al. must
be explained. According to this relation fv~:1+0.81 fp/U é; where 0 is
the 0.2-stress of the prestressing bars. In the present calculations no
limitation was introduced with respect to the strength or yielding stress
of the prestressing bars. Instead O has been interpreted as the
prestress that produces plastic s]idfng between the steel and the concrete
all the way from the end of the beam to the location of the crack. In the
present case this 1limit stress corresponds to fp/ft=192'

The present interpretation of the computational method of Hedman and
Losberg must also be explained. According to this method the increase in
load carrying capacity due to prestressing is equal to the load that
produces zero strain in the lTower edge of the mid-section of the beam in
centric three point bending. This gives an absolute value of the increase
in shear strength. In Fig 5.4 (7) this increase has been normalized to the
strength at f /ft=0 as obtained during the present finite element
calculations.

The computational results shown in the actual figure are valid for

d/4 =0.6, For d >w, the computational results suggest a much greater
re]gtive influence of prestressing. For d-»w, also the computational
method of Hedman and Losberg also suggests a much greater relative
influence of prestressing.

Fig 5.4 (7) shows that the theoretical results seem to be in agreement
with empirical experiences where the influence of prestressing is
concerned.

The shear strength of factory-made prestressed beams without stirrups is
of special interest since it involves practical difficulties to place
stirrups in such beams, at least in the prestressed hollow core slabs.
However, one may ask if it is necessary to use stirrups in order to
increase shear strength. The shear failure is associated with inclined
cracking and the inclination is roughly around 450. The most effective
inclination of shear reinforcement is probably perpendicular to this
diagonal tension crack, but for practical reasons the shear reinforcement
in ordinary beams is commonly placed vertically, i.e. at about 45o
inclination to the crack. From a theoretical point of view one may ask
whether not a placing of the shear reinforcement at the inclination minus
45o to the crac! T 0T oo meem 3T affenbdas This ~eans that the



5 - SHEAR STRENGTH, page 61

shear reinforcement is a longitudinal reinforcement placed at about half
the depth of the beam. Such a placing might also be of some interest to
study where the ordinary beams without prestress are concerned.

fv
fvcl fp”t =0
L Method of calculotion
-—<¢of Hedman and Losberg
20 {1978}
- [Nielsen et al {1978),
| /1bcsed on 18 tests
Present calc.,
- Q =0.25%
11d=3
- d/lch=0.6
1.5 F
1.0 L A L s
0 100 200 300 fplﬁ

Fig 5.4 (7) Influence of prestress on shear strength.

In this discussion of shear strength, it may be appropriate to include
also a few remarks with respect to reasons for size effect in shear
strength and with respect to modes of shear failure.

The direct reason for the size effect obtained during the present
calculations is, of course, that stiffness relations used as input are
given in terms of stress versus absolute deformation. Absolute
deformations are used in the description of the fracture softening of
concrete and in the description of the bond between concrete and steel. A
fundamental theoretical justification to description of bond slip in terms
of absolute deformation is not known. In spite of this, there seems to be
a long tradition and a general agreement with respect to the use of
absolute deformation at the description of the bond. This might have been
justified by experiménta] observations which indicate that the
deformations éround a reinforcement bar takes place in local layer of zero
or constant thic’ o ) T ' " 5 a shear
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fracture zone, discussed in Section 5.1. It is not known whether
theoretical size effect in shear strength due to descriptidh of bond in
terms of absolute deformation has been analysed or noticed in studies of
shear failure. The description of the fracture softening of the concrete
in terms of absolute deformation is justified by the occurance of strain
instability and strain localizaion at start of fracture. Strain
instability and localization represent concepts of fracture mechanics.

Apart from explanations based on fracture mechanics, a theoretical
explanation to the size effect in shear strength is not known by the
writer to have been proposed (for proposed phenomenological explanations,
see below). In particular, it might be somewhat remarkable that the
Weibull theory does not seem to have been applied during analyses of size
effect in shear strength. In some ways, the Weibull theory and the linear
elastic fracture mechanics are analogous: both theories give simple,
general numerical expressions for the relative influence of size.
Furthermore, the orders of magnitude of the predicted influence of size
are the same as known from test results. If the coefficient of variation
in strength is assumed to be 10 %, then the Weibull parameter is 12 (See
Fig 3.4 (5)) and accordingly the sensitivity to changes in absolute size
at constant geometrical shape is -3/12=-0.25 (the factor 3 is because
volume is proportional to length raised to the third power.}. This result
of the Weibull theory happens to be identical with the empirical
expression for size effect proposed by Leonhardt, Fig 5.4 (5). The Weibull
theory and the linear elastic fracture mechanics are also analogous in an
other respect: both theories are estimated to be unrealistic where shear
strength analysis is concerned because fundamental assumptions behind the
actual two size effect laws are not fulfilled where the shear strength

analysis is concerned.

With respect to the prediction of shear strength produced by the Weibull
theory and linear elastic fracture mechanics, a difference on principle
concerns the influence of the breadth of the beam. The latter theory, and
the present method of analysis as well, predict zero influence of the
breadth. The Weibull theory predicts a decrease in strength at increased
breadth. According to the experimental results shown in Fig 5.4 (6),
increased breadth seems to give a slight decrease in strength. These
experimental results are fairly consistent with experimental results
presented in {Kani, Huggins and Witthopp, 1979). Three pairs of beams with

a four times di”~ ’ ) e bk Eee sbe mest ~~minally
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indentical, were tested by Kani: the beams were cast with f about 28 MPa,¢
about 2.8 %, d about 0.3 m and L /d about 6, 8 and 12. The rgtios (ultimate
shear force at b=0.6 m divided by four)/(ultimate shear force at b=0,15 m)
became 0.96, 0.93 and 1.07. The mean 1 % decrease in strength at the four
times increase in the breadth is quite insignificant. This may be compared
to the approximate mean decrease 30 % in shear strength obtained by Kani
at a four times increase in the depth from d=0.3 m to d=1.2 m (and at a
proportional increase in the length) at constant breadth, 0.15 m. Kani
proposed that an increase in breadth might produce an increase in strength
due to lateral restraint in the compressive zone. This proposal is the
opposite to the prediction produced by the Weibull theory. According to
test results, it seems that increase in breadth does not produce a very
great increase nor a very great decrease in the shear strength of concrete
beams without stirrups.

If defining phenomenological explanations to size effect as being
qualitative and not quantitative, the common or traditional
phenomenological explanation emanates from consideration of possible
influence of aggregate interlocking: in larger beams the crack widths are
greater and the grip between the aggregate particles at the sides of the
crack becomes consequently less firm, This is an apparently reasonable
explantion. However, on the basis of experimental observations, the actual
explanation has repreatedly been refuted or questioned (See below).
Instead, it has been proposed that the size effect is due to the great
strain gradients in small beams, i.e. the size effect is attributed to the
same kind of phenomenon as often referred to during discussions of the
size effect in the flexural strength of concrete beams. During the present
calculations, the shear stress transfer across cracks of great widths
(associated with aggregate interlocking) has not been considered.
Accordingly, to the extent the present calculations and the corresponding
computational results can be considered as being realistic, the present
theoretical results suggest that aggregate interlocking is not decisive
for the size effect. Instead, the present calculations give some support
to the strain gradient explanation: the strain gradient concept may be
looked upon as a kind of pheomenological correspondence to the effect of
fracture softening in localised tensile fracture zones. The beneficial
effect of the non-brittle fracture softening is greater in structures
where the formal linear elastic strain gradients are great. The
definitions of the strain gradient effect and the aggregate interlock
effect available =2re nat waru cteict hut +a camn aviant +hoge two
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phenomena might be distinguished from each other and related to the
present study by means of Fig 5.3 (7) b): while the strain gradient effect
is of significance for the load at start of unstable crack growth (curve
indicated by circles), the aggregate interlock effect may be of
significance for the load at final collapse of the ligament and the entire
beam (curve indicated by crosses). However, as in the present
calculations, even though the aggregate interlock in its common sense is
disregarded, the load at the final collapse of the ligament and the entire
beam (at each certain assumpmtion with respect to crack path) is found to
be significantly affected by the size of the beam: see Fig 5.3 (14) a)-f).

The prime experimental justification for refuting the aggregate interlock
explanation is that a size effect is also found if the aggregate size is
scaled in proportion to the size of the beam. Swamy and Qureshi (1971},
Taylor (1972) and Chana (1981) report such experimental results and
mention the strain gradient effect as a possible reason for the size
effect in shear strength. Chana argues against the aggregate interlock
explanation also on the basis of comparisons between the shear stress at
first cracking and ultimate load, and he discusses the size effect in
shear strength by means of direct reference to the strain gradient effect
in unreinforced concrete beams in bending. Walrawen (1978) tested beams
made of gravel concrete and lightweight concrete. From his test results,
Walrawen inferred that it was highly unlikely for the enhanced shear
strenghts of shallow beams to be due to high interlock strengths and he
concluded that an explanation to the size effect can be found in the
different tensile strain gradients in beams of different size. (The size
effect for beams made of Tightweight concrete appears to be equally great
as for beams made of gravel concrete). Although aggregate interlocking may
not be the (only) reason for the size effect in shear strength, it is
possible that aggregate interlock may carry a significant part of the
shear force. As previously mentioned, this may be a reason to why the
present theoretical results underestimate the absolute values of shear
strength,

The absolute shear deformations during slide between the reinforcement and
the concrete does not seem to have attracted attention during studies and
discussions of possible phenomenological explanations to the size effect.
A possibility to study the significance of this slide for the size effect
would be to compare the size effect for beams with only end anchorage of
the reinforceme - o : FEook Lem basme bl dhs maepal direct
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anchorage of the reinforcement all along the reinforcement bars. In the
case of end anchorage, possible size effect cannot be attributed to bond
stress slip. Relevent experimental results are not known. However, during
a theoretical fracture mechanics calculation, carried out in a manner
rather similar to the present calculations, Modeer (1979) assumed end
anchorage of the reinforcement. The sensitivity to changes in absolute
size suggested by the calculation of Modeer is approximately the same as
the sensitivity obtained during the present analysis of a comparable beam.
Accordingly, by judging from this comparison, the bond stress slip is not
of great significance for the size effect in shear strength. However, due
to differences between the calculation of Modeer and the present
calculations, the actual comparison might not be relevant and accordingly
the above conclusion is uncertain. In addition, application of other bond
stress-slip relations than those presently adopted may give other results.
The loads at instability indicated by Modeer give the sensitivity m=-0.26
(Compare Fig 5.3 (17)) in the region 0.48<d/{ < 2.4 for a cantilever beam
with 0.5 % reinforcement and with a length tocdepth ratio corresponding to
£/d=3.5 for a beam in three point bending.

Shear failure is often discussed in terms of different modes and it may be
appropriate to relate the commonly discussed modes to the present study of
shear strength. Firstly, the actual modes are divided into modes of
cracking and modes of ultimate failure. The two modes of cracking are the
flexural shear cracking (start of cracking in the lower edge of the beam)
and the web shear cracking (start of cracking in the web). Since cracks in
concrete close smoothly and may be narrow without limit during their first
development, no generally accepted definition of cracks and cracking is
available and thus the definitions of cracking modes are not quite clear,
If "cracking" is defined by the development of a fracture zone (not
visible by the naked eye) then the present analysis indicates flexural
shear cracking in the cases of non-prestressed beams and web shear
cracking in the case of prestressed beams. If "cracking" is defined by the
extension of the open crack, i.e. a non stress transferring crack, after
arrest of its unstable growth (visible by the naked eye) then the analysis
indicates flexural shear cracking in the cases of non-prestressed beams,
while information is not available for the prestressed beams. If
"cracking" is defined by the location of the first open crack (hardly
visible because the crack is narrow and because its development and
subsequent gfbwth is unstable and accordingly very rapid) then the

analysis indicaf B d web shear
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cracking in some cases: in general the analysis indicates the development
of an open crack in the Tower parts of the beams at almost the same
"time". The modes of ultimate failure are often separated into the
diagonal tension failure (extension of a discrete crack all the way
through the depth of the beam), bond failure, shear compression failure
(compressive failure and crushing of the concrete in the upper edge of the
beam) and web compression failure (compressive failure in an inclined
concrete truss in the web of the beam). For the sake of simplicity, the
type of failure presently analysed has been called diagonal tension
failure, but it might be more appropriate to refer to it as a combination
of the three first mentioned modes of ultimate failure: according to the
present method of analysis both the development of a diagonal crack,
failure in the upper edge of the beam and the bond strength influence the
shear strength of the beam, and it is not possible to separate the three
modes of ultimate failure as they are linked to each other. The web
crushing failure has not been considered in the present analysis. This
mode of failure may be decisive for the strength of beams reinforced with
stirrups and may also be decisive for the strength of longitudinally
reinforced beams with T or I shaped cross sections.

The shear strength of longitudinally reinforced concrete beams is
estimated to represent the most purely empirical part of current concrete
building codes. The present study, and also other studies, suggest that
fracture mechanics and finite elements may be helpful at establishment of
rational theoretical bases for shear strength design and at interpretation
of shear strength test data. The most essential conclusions of the present
study may be that the previously experimentally found size effect in shear
strength can be explained by development of localized deformations in

concrete during fracture softening and that the characteristic length,
£, of concrete is theoretically identified as a material property para-
mgter which may be of great significance for the shear strength of concrete
beams. A pedagogical improvement of shear strength expressions would be
achieved if the measure of absolute size, d, is replaced by the dimensionless
ratio d/¢ .

ch
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