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ANALYSIS OF ROHRS COUNTEREXAMPLES TO ADAPTIVE CONTROL

K.J. Astrém

Department of Automatic Control

Lund Institute of Technology, Lund, S-22007 Sweden

ABSTRACT

Slmulatlon results by Rohrs indlcate potential difficulties
with adaptive control. Analysis which explains the nature
of the difficulties and ways to avoid them are presented in
this paper.

1. INTRODUCTION

There has been a modest but noticeable progress In
adaptive control over the past 30 years. See e.g. the
review Astrdm (1981,1983). Stabllity proofs for certain
simple adaptive algorithms have recently been proven. See
Egardt (1979a,1980) Goodwin et al (1980), Morse (1980),
Narendra et al (1980). Commercial adaptive regulators have
also been announced by several manufacturers, Accuray,
ASEA, Kockumation, Leeds and Northrup and others.

Rohrs et al (1980,1981,1982) and Rohrs (1983) have presented
simulation studles of a simple model reference algorithm.
They have shown that a very simple model reference
adaptive system may become unstable if the strong
assumptions made In the stablllty proofs are violated. The
issues focus on unmodeled high frequency dynamics and
high frequency excitation either from command signals or
from disturbances.

Based on these studles and some analysis it ls clalmed that
"...the adaptlve algorithms consldered cannot be used for
practical adaptive control...".

The purpose of this paper ls to analyse Rohrs examples to
explaln the. origln of the difficulties and to propose
remedies. The different [nstability mechanlsms are
discussed in Sectlon 2. A dlscusston of each of them is then
given Iln Sections 3, 4 and 5. The reasons for the difficulties
are explained and remedies are given. The explanations
given are different from the arguments given by Rohrs,
General methods for avoiding the difflculties are given in
Section 6 and the conclusions are given in Section 7.

2. THE INSTABILITY MECHANISMS

In his simulation studies Rohrs investigated a simple model
reference adaptive control system with two adjustable
parameters. The adaptive scheme works well and results in
a stable closed loop system when applied to a first order
system without disturbances. When addlng unmodeled high
frequency dynamics Rohrs showed that there may be
unstable solutlons to the equations descrlbing closed loop
system. Several {nstabllity mechanisms can be found.
Instability may be caused by unmodeled high frequency
dynamics in comblnatlon with: :

- large command signals
- command slgnals with high frequency

- measurement nolse.

All these mechanlsms are assumed away in current stability
proofs. The dlfferent Instabllity mechanlsms will be
discussed in the following sections.

3, HIGH ADAPTATION GAIN

The simple model reference adaptive system for a
single-input-single-output continuous time system can be

descrlbed by the equations

y = G(plu
u=eTq>
(3.1
de
== = = ko¢e
at @
e =57 " Y,

where u ls the process input, y the process output, ¥ the
desired model output, e the error and © a wvector of
adjustable parameters. The transfer function of the process
Is G and p = d/dt denotes the differential operator. Th:
components of the vector ¢ are functions of the comman
signal. In Rohrs example the vector ¢ s glven by

T .
FE = 2 (3.2)

where r is the reference signal. It follows from (3.1) that

de

2. kolG(plo 81 = koy,, (3.3

Thls equation can be used for a heuristic discussion which
will glve us insight into the behaviour of the system., For
this discussion It will be assumed that the process transfer
function ls of low pass character.

Slow adaptation

Assume {irst that the adaptation loop ,&5 much slower than
the process dynamics. The term G(p)e O in (3.3) can then

be approximated by
T
G(p)¢T8 ~ [G(ple 18
and the following approximatlon to (3.3) is obtained

%% + kolG(ple 10 ~ koy

(3.4)

This is the normal situation because the MRAS algorithm %s
derived under this assumption. With the algorithm (3.1 it is
however not easy to guarantee that the parameters change
slowly as wlll be seen In the following.



The method of averaqging

If the closed loop system |ig stable and if the parameters @
change much slower than ¢ then the equation (3.4) can be
approximated by

de T
at + avglkelG(pryp 1} g = k avg((pym) (3.5)

where the function avg is defined as the average calculated
under the assumption that the Parameters @ are constant.

fquation (3.5) is stable If kelG(pigT1 is positive, This Is
true (f G is SPR and if the input signal is persistently
exciting. See Astrém and Bohlin (1965), Astrdm and Eykhoff
€1971) and Morgan and Narendra (19773,

Fast adaptation

The approximation (3.4) is based on the assumption that the
parameters 8 change much slower than the other system
variables. It s unfortunately not possible to guarantee this

by choosing the Parameter k (n (3.1) sufficlently small. This
can be seen as follows.

If the parameters 8 change more rapldly than ¢ then (3.3)
can be approximated by

de T
at *+ koo G(p)e ~ kcpym (3.6)

A llnearization for constant ¢, shows that the stabllity g
governed by the algebraic equation

'r -
detlsI+ke o  G(s)1=s""trgikps)7=0 (3.7)

where 113 the identity matrix and K is given by

T

K = ke o (3.8)

1s the equivalent adaptive loop gain. The stabllity can then
be determined by simple root-locus argument. For
sufficiently large ko ‘¢ \he system will always be unstable
if the pole-excess of Gy is larger than or equal to 2. Also

unstable by making the command signal large enough.

Once the source of the dlifficulty ig recognized it is easy to
find a remedy. Since the equivalent gain K in the adaptive
loop iz teeo large because of its slgnal dependence, one

passibllity (s simply to modify the parameter updating law
Lo

de _ k

ge (3.9)
1+¢T¢

Equation (3.6} then holds with

T
K=k 22__ (3.10)

1+¢T¢

With the modification (3.10) the equivalent gain In the
adaptation loop will be smal) and the parameters 8 wijl]
change arbitrarily slow for aj| signal levels. The actual
value of the k can be chosen based on a simple root-locus
argument for (3.7).

Equatlon (3.6) was origlnally derived by Shackcloth and
Butchart (1966). It was also used by Parks (1966) under the
name "adaptive step response", It was ;lso used by Rohrs
et al (1981) who used the term "d -root locus". The
modification (3.9 of the parameter updating law has been
used by many authors e.g. Narendra and Lin (1980). It Is
also worthwhile to note that a law of this type is obtained
automatically when adaptive laws are derived from
recurslive estimatlon. See Astrdm (1983b). The high gain
instability mechanism is the same as the one discussed in
Cyr et al (1983).

4. HIGH FREQUENCY COMMAND SIGNALS

This instability mechanism is due to an Interplay between
unmodeled high frequency dynamics and high frequency
excitation. The phenomenon ig easy to explain by using the
equivalence between MRAS and STR. The model reference
adaptive system can_thus be interpreted as a system where
process parameters are estimated and the regulator
Parameters are determined from some design principle,

The origin of the difflculty

The key problem s to understand what happens when a low
order model (5 fitted to a process having high order
dynamlcs. In such a case the low order model obtained will
depend criticatly on the properties of the Input signal, A
simple example (llustrates what happens.

If a transfer function B(s)/A(s) is determlned by least
squares the criterion is

T
v_(g) = % i CA(PIF(p)y(t)~B(p)F(plult)12dt
0

T
(4.1)

where u s the process input, y the process output, and the
components of the vector @ are the coefficients of the
polynomials A(s) and B(s), and Fls) is the transfer function
of a low pass filter (a state variable filter). If the
input-output data is generated by a process with the
transfer function Gi(p) the least squares criterion (4.1) can
be written as

2
{[A(p)G(p)—B(p)][F(p)u(t)]} dt
(4.2)

<
o
n
|
O

If the input u is a sinusoid with frequency o, it follows that
the steady state loss function Vw is zero if l{her‘e are model
parameters such that

Bliw, )
W= G(iuk) (4.3)

The transfer function of the estimated model is thus exactly
equal to transfer function of the process at the frequency
W, .

k

If the Input signal ls a sum of sinusolds with frequencies
W Wop weey w - and ({ the polynomials Ats) and B(a) are of
sufficlently hbfgh degree the model obtalned will agree
exactly with the transfer function of the process at those
frequencies. More general results are given by Mannerfelt
(1981).

The observations In Rohrs simulations will now be
explalned. The MRAS used by Rohrs can be interpreted as
an STR where a model with the transfer function



G () = b
1 s (4. 4)

:s fitted to the Process transfer function
aw ’

ult) = g -
rr(t) kyy(t) (4.5)
and the reference model
a
Bp(s) = 0
a (4.6)
the parameters are related as follows
a = a (1-k /
m . kr)
(4.7)

b =
am/kr

The parameters i and k
MRAS iy v are those that gre updated In the

In Rohrs example the process transfer function is

Gig) = 458

(s+1) (s%+30g+229) s

I
t is now clear what happens if the model (4.4) Is fitted to

(4.8) when the input j i
i ] Put is a sine wave. The condition (4,3)

- 229-3142

259-42
, - _458 (4.9)
: 25942

Numerical
» @ and b for different o are given |n

o g the first order
4.4) to the third order model (4.8) using slnusoﬁjalm&::::
+ The correct |ow fre

quenc
to a=] and b=p, Compare with (4.8), "l"l-|1;r
85 are quite reasonable,

order model (4.4), The
at the frequency o =
ssibility to get this
1 (4.4) is to have the
a and b are infinitely

Process (4.8) has g Phaseshift of g
V259 = 16,09 rads/s. The only po
property from the first order mode.

deganarate case wh
en th r
€ parameters

‘I‘ -
able 1 Steady state values of estimated Parameters for

different frequencies of the command signal

With the control

Equilibrium values for the requiator parameters

Additlonal insight is obtalned by computing the equilibrium
values of the regulator parameters kr and k_. The MRAS
used by Rohrs is described by the equations

dk

ol -kre

P (4,10
El = kye

e =y v,

Yo = Gm(p)l‘

If the transfer function of the process is G(s) and if a
constant regulator is used then the closed loop transfer
function becomes
krG
L B Tk © (4.11»
Yy

and the control error can be written as
e(t) = [Gc(p) = Gm(p)]r(t)-
It follows from (4.10) that the regulator parameters are

constant for a sinusoidal reference signal with frequency w
if k

krG(iu)
1+k_fGi(iw)
y

G _(lw) = = 6 (iw) 4.12)
j= m

Using G given by (4.8) we get after some calculations

. 3(259-4%)
r © T 458
(4.13)

. 20137+70%)

ky = 7229
Some numerical values of k_and k_ are given in Table 1.
The desired closed loop system 8 the nominal process
model is obtained for k_ = 1.5 and k. = 1.0. The models
obtained for 0 < w <2 give reasondble values of the
parameters.

Simple calculations show that the closed loop system
obtained by applying the feedback (4.5) to (4.8) is stable if

3900

y < 359 ~ 17.03

D <k

This value of ky corresponds to w = /259. See Table 1.

The equillbrium values for the regulator gailns for
sinusoldal reference values thus give a stable closed loop
system only if the frequency ls less than 16.09 rad/s. Notlice
that a and b are infinite for this frequency.

Remedy

Once the mechanisms which cause the difficultles are
understood it is easy to find suitable remedies. The key
problem when fitting a low order model to a complex
process Is that the low order model obtained will critically
depend on the frequency content of the input signal. To
achieve Identifiabillty It s also necessary that the
components of the input signal in the useful frequency



range are persistently exciting. To ensure that a
reasonable model is obtalned it is therefore necessary to
monlior the frequency content of the input signal and the
conditions for excitatlon. If the input signal ls not sultable
then a proper perturbation signal must be added. It can be
demonstrated by simulation that the oscillations arising for
w > 16.09 can be quenched by adding a reference signal with
sufficient low frequency content. Sampled systems also
behave differently because the sample-and-hold wlill
introduce additional frequencies. If it is not possible to add
a perturbation signal the parameters should be updated
only when there is proper excitation., Further details of a
scheme of this type is given in Section 6. It also follows
that the instability is generated by poor estimation and not
by high gain and large phaseshift.

5. MEASUREMENT NOISE

When measurement noise was added Rohrs also found that
the parameter k_ could drift until the stability limit is
reached. To urderstand this mechanism consider the
equations for updating the regulator gain

dk
at - - kr(y —ym) (5. 1)
dk
d_xt = ky(y—ym) (3.2)

It follows from equation (5.2) that any measurement error in
y will result in a drift of k_ with positive rate because of
the term y~. This is a pra,perty of the particular MRAS
algorithm used and not an intrinsic property of adaptive
control. A simple remedy has been known for a long time by
practitioners of MRAS. Equation (5.2) is replaced by

dk

DA o .
at ky(y ym) (5.2")

where y is a filtered version of y. Because of the dynamics
of the filter high frequency disturbances will not cause
drift. Also notice that there is a drastic difference between
the continuous time case and the discrete time case in this
respect. In the discrete time algorithms the term wyiy-y )
is replaced by y(t-dly(t) - ¥y (1)1, see Ljung ahd
Séderstrém (1983). The filtering of Rhe regression vectors
and the modification of the error have in fact been two
important themes in the development of model reference
adaptive systems. See Landau (1979).

Another drawback with the updating formula (5.1) and (5.2)
is that they can be interpreted as estimation algorithms
with forgetting of old data. See Astrdm (1980a,b). Hagglund
(1983) has proposed superior algorithms which only discount
data in the directions where there is new information.

Rohrs results for a constant reference signal are also easy
to explain. When the reference signal is a constant the
input u to the process is also a constant. Since a constant
input signal Is persistently exciting of order 1 it follows
_that the parameters k_ and k_ are not ldentifiable. The
equlllbrlum set for the parathers is then given by the
plane

2k - 2k -1 =0 (5.3)
T y

An arbitrary amall disturbance can then make the
parameters drift In this subspace. The system becomes
unstable as soon as k_ comes outside the interval (0,17.03).
A typical example i§ shown e.g. in Fig. 4-19A and in
Section 5.2.5 in Rohrs (1983),

Rohrs &lso found dlfficulties due to a combination of a
constant reference signal and a constant disturbance. Using
the method of averaging the parameters are then
approximatively described by

dkr - [ 2krr0+d0 . ]
at To T+2k, 0

0O 0O 0 0

l+2k l+2k - ro]
y y

dk 2k T +d 2k_r+d
| J

where r. is the constant reference value and d, is a
constant disturbance of the process output. These equations
hold only if 0 < ky < 16.09.

The equllibrium set I3 then

= S = (5. 4)
2ky 2kr 1+ dO/rO o]

Compared to (5.3) the measurement error then gives a shift
in the equllibrium set. Notice that the shift is proportlonal
to do/ro.

In the special case r_ = 0 the equilibrium set is k
arbitrary and k_ = o. The parameter k_ is in fact given by
the differential %quatlon Y

dk kd2
S Sppe =)

e (142K )2
y

which has the solution

ak 3+ 3k 2+ 3k = 4kd 2t
y y Y o

The galn k_ will thus increase monotonically towards + «
with incrs%ing t. When k_ becomes 17.03 the closed loop
becomes unstable. Y .

Once the basic dlfficulty is understood it is easy to find a
remedy. Simply make sure that persistent excitation is
obtained by signals in the rlght frequency range elther by
adding perturbation signals or by updating parameters only
when there is proper excitation. See Section 6. The
equllibrium set for the parameters is then a point and small
disturbances  will only generate small parameter
deviations.

6. DESIGN OF ROBUST ADAPTIVE SYSTEMS

Having developed some insight i{nto the mechanisms that
cause instability of an adaptive system design of a robust
adaptive system will now be discussed briefly. More
detalls on this problem are found in Astrdm (1980a,b). The
polnt of view that many adaptive system can be regarded
as a combination of a control design for systems having
known parameters and a recursive parameter estimation
problem Is taken. The robustness of the deterministic
design problem which is the basis of the design calculations
is first discussed. The robustness of recursive estimation
and of the comblned problem are then treated.

Robust Control Design

Robustness properties are convenlently discussed in terms
of the loop gain. See the Bode plot of a typlcal loop galn in
Flg. 1. The loop gain is unity at the cross-over frequency
w e A common engineering practlce which is now well
suppor'.ed by theory Horowitz (1963), Doyle and Stein (1981)
boils down to the following: Make the loop gain high below
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Fig._1. - Bode diagram of the loop gain.

the cross-over frequency and make sure that the loop gain
falls off rapldly above the cross-over frequency. A high
loop galn for low frequencles is obtalned by introducing
Integral action or some resonant system which gives a high
gain for special frequency bounds as is indicated in Flg. 1.
The rapld roll-off for high frequencies is necessary to
ensure that unmodeled high frequency dynamics will not
cause difficulties. Computer controlled systems should
always be provided wlth antlaltasing filters to eliminate
signal transmission above the Nyquist frequency. The high
frequency roll-off for a digital regulator is thus
slgniflcantly influenced by the sampling period.

A quantitative statement of the above discussion for a
design like the MRAS, which is based on pole placement,
can be obtained as follows. Consider a regulator designed
for the process model

B(pY ity

NTY) (6.1)

y(t) =’G(p)u(t) =

where A(p) and B(p) are polynomials. Let T/S be the ratio
of the feedforward and the feedback transfer functions
obtained from a design procedure which gives a closed loop
system with the transfer function Gm'

THEOREM 1

Consider a system with the transfer function G_. The closed
loop system obtained using a design procedure%ased on the
model G is then stable if

ool < 8| I

on the imaginary axis and at infintty.
o

The theorem is proven for discrete time systems in Astrém
(1980¢). It also follows from the result of Doyle and Stein
(1981). Other theorems of similar nature are given in
Mannerfelt (1981) and Astrdm and Wittenmark (1984).

The left-hand stde of the inequallty (6.2) ls the error in the
model transfer function. The right-hand side contains
quantities which can be computed when the deslgn
calculatlons have been performed. Notlce that G is the open

-loop .pulge transfer function of the plant model and that G

is the pulse transfer function from the command signal to
the output.

The detalled character of the {nequallty (6.2) is hlghly
problem dependent. Some general characteristics can,
however, be found by inspection. It follows that it s
necessary to have a model which glves an accurate
description of the process for frequencies around the
cross-over frequency.

Robust estimation

When a parameter estimator is used in an adaptive scheme
it Is important to make sure that good estimates are
obtained. The necessity for taking precautions so that poor
models are not generated by bad data is amply illustrated
by Rohrs’ examples.

To guarantee a stable closed loop system in the case of
known parameters it follows from Theorem 1 that precision
of the model transfer function is needed for frequencies in
the neighbourhcod of the cross-over frequency. To ensure
this it {s therefore necessary that the input signal has a
sufficient energy content in that frequency band. This can
be monitored using the system shown in Fig.2. The
conditions for persistent excitation, Astrém and Bohlin
(1965), can be monltored instead of the signal energies as
shown In Fig.2. Flitering of the signals before they are
introduced into the estimator also helps.

If the power of the useful signal component is less than the
noise power there are two options: Excitation signals may
be introduced or the parameter estimation may be switched
off. See loannou and Kokotovic (1982). Guided by the results
of Egardt (1979a) and Peterson and Narendra (1982) it is
reasonable to estimate only when the absolute level of the
useful Input energy is above a certaln level. These
safe-guards can be regarded as an implementation of the
common sense rule: Do not estimate unless the data is good.

There are other safe-guards of a similar nature to make
sure that the data used for estimation is always good by
excitation or that the parameter estimation is only made
when the data is reasonable. The difficulties due to high
frequency reference signals and measurement noise noticed
by Rohrs and others (1981,1983) will not arise if the
precautions discussed above are taken.

Robust adaptive control

To obtain a robust adaptive control algorithm [t s
necessary to use both robust control and robust estimation.
It is also necessary to make sure that the equivalent gain
in the adaptive loop is sufficiently small.

In the adaptive problem there are also some new trade-offs
to be made. Consider for example the robustness propertles
obtained by having a high open loop gain at low
frequencies. This may be obtained by having integral
action in the control loop. It can also be obtained via
adaptation. An adaptive regulator with enough parameters
will automatically introduce a high gain at those
frequencies when there are low frequency disturbances.

I have often found it beneficial to use a design method
which gives a high gain at low frequencies and use
adaptation only to find the characteristics around the
cross-over frequency. This has the additional advantage
that fewer parameters are needed. It speeds up the
estimatlon, and the degrees of the polynomials are kept low

¥
i x y

x
N

U

Elg. 2. - Circult for monitoring the signal-to-noise ratio
when estlmating a reduced order model.



which Improves the Inherent numerical problems with
polynomial representation. One possibility is to estimate a
model of the type

AlqQ)F(g)ly(t) = B(g)F(qlu(t-1) + C(qlett) (6.3)

where F(q) Is an operator having hlgh pass characteristics.

7. CONCLUSIONS

The "counterexamples" to adaptive control published by
Rohrs and others (1981,1982,1983) have been scrutinized. It
has been found that the instabilities observed are caused
either by high equivalent adaptation gain, high frequency
command signals or measurement noise. Explanations of the
different mechanisms are given and remedies are suggested.
The explanations are different from the arguments given by
Rohrs and others (1981, 1983) which are based on the notion
of high gain. Instead the arguments are based on a
characterization of the equilibrium sets for the parameters.
The instability mechanisms due to high frequency command
signals and measurement noise are both due to the fact that
the equilibrium sets contain parameter values which render
the closed loop unstable. The reason for this is that the
input signal does not excite the process properly. The
problems can be avoided by filtering and by monitoring the
excitation and either introducing perturbation signals or to
switch off the estimation when the excitation is not proper.
The instabllity due to too high equivalent adaptation gain
is avolded by modifying the parameter updating
algorithms.
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