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1. INTRODUCTION

There has recently been a substantial development in the technology dealing
with images and graphics. The main achievements are fast AD-converters and
cheaper memory. Consequently hardware for AD-conversion of images, for
image storing, and for image presentation, is commercially available. The
user does not have to build special hardware for this anymore. Neither is it
necessary to do complicated file handling to deal with images.

Research on the use of the technology is of significant interest today in the
fleld of automatic control, especially on time sequences of images. With the
technology as a background our main interest is thus on the algorithmic level.

A laboratory environment has been created to do experiments. This has meant

extension of hardware

software development

- experiments with test and demonstration programs

definition of laboratory processes for further evaluation of algorithms

The goal has been design and implementation of a convenient and useful
system for experiments. To a large extent the purpose is to use standard
components to increase the capabilities of the existing VAX based computer
system. The level of the basic tools is chosen so that all programming is
made in the high level language PASCAL. Moreover there should be good
structures for large programs to allow easy accumulation and documentation
of the different activities around the system. This report presents the system
from the standpoint of a user in image processing.

A schematic overview is presented below.
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The main part of the system consists of a Matrox raster image memory
interfaced to a VAX-11/780 via a Unibus-Multibus-interface.

The raster memory is 512 x 512 pixels with 8 bits/pixel. For the video output
a standard RGB monitor is used. There are four video input channels, where
one 1s used for a video camera. The raster memory has special programmable
hardware, which for the input side consists of input channel selection, frame
grab commands and setting of gain and offset. This may e. g. be used for
hardware thresholding. The memory is addressable to individual pixels. The
output hardware consists of video generators (RGB) interpreting the content
of the raster memory via a color look up table. This programmable color look
up table allows e.g. Iimmediate pseudo coloring and grey scale
transformations. Both the input and the output work at the video rate 25
frames per second.

The communication between the raster memory and the VAX is done wvia the
Unibus with a bandwidth of approximately 1.6 MByte/s. The information
transferred is both raster register commands and data. Software has been
developed to handle this. It consists of procedures for controlling the
hardware but also other facilities presented later. Observe that the VAX
virtual memory eliminates the need for special code to store matrices of the
size 512 x 512. The ADA concept of package is used for the organization of the
code. Some laboratory equipments for the experiments are interfaced via
DA-converters.

This report presents a simple way to get a comfortable and easy-to-handle
system. The speed is limited to the capabllity of the VAX. However, all
solutions of the visual servo problem can in principal be demonstrated. The
report is organized as a short presentation in the chapters 2-4. The purpose
is to give a feeling for the image laboratory as an environment for control
experiments. A lot of essential information for the presumptive user is then
placed in the appendices.



2. THE RASTER IMAGE MEMORY

We will concentrate on the raster image memory hardware and its
programming. The system consists of different pieces of standard equipment.
Building the complete system thus means a couple of interface problems. One
problem is that the Matrox hardware is connected to the INTEL Multibus and
is not marketed for the VAX Unibus. It is also necessary to map the raster
memory registers into the virtual address space of the VAX. This makes it
possible to reach the raster memory from a program.

2.1 Hardware

2 Matrox RGB-Graph/64-4

1 Matrox VAF-512

1 Unibus-Multibus-interface

1 Intensa GPC-25 video camera

1 Barco CD 33 HR monitor
The camera is a standard black and white video camera with 1" newvicon. An
electronic eye lens with automatic aperture control makes it possible to use
the camera in a wide range of light conditions. It is possible to mount other
1" vidicons or other lenses. There is also an external sync possibility.
The Multibus-Unibus-interface was made by Bo Nilsson at the Computer
Engineering Department [see Appendix D]. The interface is designed to be
transparent. This means the translation from Unibus to Multibus format and

vice versa is much faster than the bus bandwidth.

The Matrox system consists of three plug in cards as seen on the photo in
figure 2.1.

A block diagram over VAF-512 and RGB-Graph and their connections is seen
in figure 2.2.
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The image system ls programmed via commands on bus addresses. The
different control registers are presented in Appendix E. This will give a more
complete picture of the programming facilities than in the introduction of this
report. A full description is found in the manuals. Notice that the 8
bits/pixels are divided into 4 bits on each RGB-Graph card. This means that
the system may be viewed as two image planes with 512 x 512 = 4 bits each.
Video enable-disable commands may then be used to display one plane while
new information is put in the other plane.

The control software between the raster memory and the high level program
will be discussed. The code is structured in a package in the way described
in chapter 3. The package consists of routines specified in PASCAL and
implemented in assembler. The package specification consists of external
declarations, and the implementation is put in a library.

There are two main services provided by these routines. One is to map the
raster memory registers into the VAX virtual memory. This is done by
MapRaster. The other service is to provide communication procedures. Among
these there are both general procedures and more special e.g. those handling
the raster memory as two image planes.

The specification of the package Raster in Appendix B gives a detalled
presentation of the low level software.



3. SOFTWARE DEVELOPMENT ENVIRONMENT

The focus will now be on the user situation. The software system is supposed
to be easy to use. To achleve this, PASCAL procedures and data are grouped
together using the concept of package from ADA.

The user is supposed to do two things. First write a PASCAL program as
described in the following. Here may any procedure from any package be
used. Second write a complle and link command procedure. This command
procedure shall define the used packages to the preprocessor. Furthermore
the link command shall invoke the used libraries. The example in Appendix A
illustrates these subjects.

The packages

Our packages are text files. A package is divided into sections by
preprocessor commands. The sectlon keywords are

.PROGRAM .FORWARD
.LABEL .PROCEDURE
.CONST JINIT

.TYPE -MAIN

.VAR .END
.EXTERN

The commands defines sections of a Pascal program. The .INIT command
defines a section that will be placed first in the main body. The .END
command results in that the preprocessor neglects the text until next
command. It is possible to specify the sections in any order i.e. to mix
.TYPE, .VAR, .PROCEDURE sections.

This is the heart of the software development. The users write their own
packages where one is the main program, and may use any of the other
packages. This modularization makes it easier for several implementors to
work together in the same project. It is also easy to accumulate finished
parts of a project in a package.

We have structured our packages in the spirit of ADA with a specification
part and a body part. The specification part contains what is usable outside
the package, and the body contains the implementation. To do this in PASCAL
the procedure specification is separated from its code using forward
declarations in a starting .FORWARD section.

Support packages

There are a number of support packages implemented in PASCAL. The
specification part of some of these are presented in appendix B.



The preprocessor ComPack

The preprocessor ComPack is a file handling program used to combine
packages. The input to the program is a list of flles of package type. The
sections of each package flle are appended to files corresponding to the
section types. A sceleton program compackprog includes the section files. A
number of garbage files with extension .sec are generated and should be
deleted.

The command procedure

We wlill concentrate on the example demo.com in appendix A. The procedure is
written in the VAX control language DCL. A call is made as

$ @demo

This will result in an executable program demo.exe in the following way.
Line 8 DCL symbol starting compack.

Line 9-14 List of packages used.

Line 17 Compile the Pascal program with the name compackprog.
Line 20 Link the program. Invoke the library Raster.

Line 22-23 Clean up.



4, EXPERIMENTAL SETUP

We have some experimental setups at the department. They are used for
control experiments in the lab. Automatic control of dynamical systems uses
feedback from the process variables. If a camera is used the control is based
on a pattern in an image, a position of an object, recognizing a shape etc.

To study such control we have interfaced the lab processes to the VAX.
Standard DA-converters are used. The software needed to include this in the
software system is placed in the support package ADconv.pak. Primitives for
handling real time programming in PASCAL are developed. To handle the
communication between concurrent processes the rendezvous concept from
ADA is used (see appendix C). The photo below illustrates one setup. The car
is controlled using only image information.




Another example is the Turtle seen below. The main difference is that the
Turtle has touch-sensors, indicating if it hits an object. The control is based
on a combination of image and touch information.

The camera may also easily be used to supervise other processes. Examples
are a tank process, a ball and beam process or a minimover MICROBOT.
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APPENDIX A

User Example

A complete user program is presented. Both the program and the command
procedure are listed.

First a command procedure called demo.com is presented. The packages
mentioned below and demo.pak are listed in demo.com as input to compack.
The assembler routine library is invoked in the link command.

Second a Pascal program called demo.pak is presented. It is structured as a
package using the section keywords. The program uses type declarations,
external declared procedures and Pascal procedures from the packages
Raster.pak, RasterReg.pak, LookUp.pak, ImageDef.pak, and SimpilFil.pak
(compare Appendix B).

Remark 1 More information is found in chapter 3.
Remark 2 The program modification cycle is

1. Edit demo.pak
2. @demo



{ Command procedure to generate the DEMO program

write sys$ocutput " *

vrite sys$output "Generating DEMO program. "
wvrite sys$output " "

vrite sys$output "Handling packages."
show time

compack

Raster. pak

RasterReg. pak

LookUp. pak

ImageDef. pak

SimplFil. pak

Demo. pak

write sys$output "Compiling.”
show time

pascal/object=demo compackprog
vrite sys$output "Linking. "
show time

link/nomap demo, rasteropt/opt
show time

delete demo.obj;*

delete *.gec;#

hoLOGSE

LB OBY

12
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package DEMO is
== A demonegtration program

-- Author: Lars Nielsen
-- Date: 1983-09-07

package DEMO body is

. PROGRAM

program demo(input, output, imagefile);
. TYPE

optype = arrayl-1..1,-1..1] of real;

record

optype;
real;

operatortype
op
opsum

end;

. VAR

exit

comchar

operator

inimage, outimage

boolean;

char;

operatortype;

imagetype; { from ImageDef. pak 1}

. PROCEDURE

function limit(val: integer): integer;
consgt minlI = 0; maxI = 255;
begin
if val > wmaxI then limit:=maxI
else if val < minl then limit:=minI
else limit:=val;
end;

procedure Threshold(level: integer;
var Inimage, Outlmage: imagetype);
{ threshold InImage, put result in OutIwmage }
const minx = 1; maxx = S512; miny = 1; maxy = 512;
minlI = O; maxl = 2355;
var %,y: integer;
begin
for y := miny to maxy do for x:= minx to maxx do
if InImagely,x] > level then OutlImagely, x] := maxl
else OutImagely, x] := minI;
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procedure Invert(var Inimage, Outlmage: imagetype);
{ Invert InImage, put result in OutImage }
congt minx = 1; maxx 512; miny = 1; waxy = 512;
minI = 0; wmaxI 2353;
var x,y: integer;
begin
for y := miny to maxy do for x:= winx to maxx do
OutlImagely, x] := maxI - InImagely,x];
end;

procedure NewOperator;
{ define nevw 3 % 3 neighbourhood operator }
var 1,j : integer;

begin
with operator do
begin
for j:=-1 to 1 do for i:= -1 to 1 do
begin

write(’operatorl ’, j:2,’, ',1:2,°'1 = ");
readln(opl Jj, 11);
end;

opsum: =0;

for j:=-1 to 1 do for i:= -1 to 1 do
opsum: =opsum+opl(j, 11;

end;

end;

procedure LowPassOperator;

begin
with operator do
begin
opf-1,-11 :=1; opf-1, 0] := 1; opl-1, 1] := 1;
opfl 0,-1]1 :=1; opl O, 01 := 2; opl O, 11 := 1;
opl 1,-1) :=1; opl 1, 01 :=1; opl 1, 11 := 1;
opsum := 10;
end;
end;
.n lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
procedure HighPassOperator;
begin
with operator do
begin

opl-1,-11 : l 1; 11 :
opl O,-11 := -1; oplL O, 01 := 9; opl O, 11 := -1;
opl 1,-11 : 1l 1; 11 :

[}
[
[t
]
)
~
|
[N
O
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procedure Operate(var InlImage, OutImage: imagetype);
{ apply operator on Inlmage, put result in OutlImage }
const minx = 2; maxx = 511; miny = 2; maxy = 511;
var X,Y¥,1, j, help: integer;

temp : real;

localop ¢ optype;

localopsum : real;
begin

localop:=operator. op;
localopsum: =operator. opsum;
for y := miny to maxy do for x:= minx to maxx do
begin
temp:=0;
for j:=-1 to 1 do for i:=-1 to 1 do
begin
help:=inimagely+j, x+il;
temp:=help#*localop(j, 1il1+temp;

end;
outimagely, ®x):=1limit(round(temp/localopsum));
end;
end;
i 0 3 e e e R S R A S S e ==w==}

procedure Init;

var %X,y: integer;

begin

LowPassOperator;

for x:= 1 to 512 do for y:= 1 to 512 do
begin
inimagefl %, yl1 := O;
outimagel %, yl := O;
end;

end;

« MAIN

Init;

exit := false;

repeat
writeln;
writeln(’--===-- Menu ---------—---——rr e ’);
writeln;
writeln(’Elxitl, Fireezel, GLrabContl, Slavel, Rlestorel’);
writeln;
writeln(’BllackWhitel, P[seudoColorl’);



wvriteln;

le

writeln(’T[hresholdl, Ilnvertl]’);

writeln;

writeln(’Nlewoperatorl, Olperatel, LLlowpassl, Hlighpasel’);

writeln;
write(’Command

> ’);

readln(comchar);
if comchar in [’e’, °'E’, 'f’, 'F’, ’'g’, 'G’,

case comchar
\mhi~m~
wH\\ \“.ﬁ

n!\ \m\
ﬁmvh \m\
Hc\\!w\

!U\!\ms
nvsssw‘
\.ﬂ\\ -H-n

\H\\ QH\

\5! 12\
4
\0\5-0-

\Pws \—l\
h’vvvmv
end

-mss smsv \HJ.\ vwnv

\U\‘ hw-\ \v\h .wﬁh

-.ﬁ-v ..H.ss .u... -H-

-5- s2- -D- -D-\ -H- -—l- .wu- H’] then
of

exlit := true;

begin

GrabOne; { from RasterReg. pak 1}
ReadImage(InImage); { from ImageDef. pak }
end;

GrabCont; { from RasterRegq. pak }
SaveFile(InImage); { from SimplFil. pak }
begin

RestoreFile(InImage); { from SimplFil. pak }
WriteImage(InImage); { from ImageDef.pak }
end;

BlackWhite256; { from LookUp. pak }
Pgeudo; { from LookUp. pak 1}
begin

Threshold (128, InImage, InImage);
WriteImage(InImage);

end;

begin

Invert(InImage, InImage);
WriteImage(InImage);

end;

NewOperator;

begin

Operate(InImage, OutImage);
WriteImage(OutImage);
InImage := OutlImage;

end;

LowPassOperator;
HighPassOperator;

elee writeln(’Error in command’);

until exit;

. END
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APPENDIX B
Packages
The specification part of some support packages are listed. They are
Raster.pak
RasterReg.pak
LookUp.pak
ImageDef.pak
ADConv.pak
DigConv.pak
SimplFil.pak

The package Raster is implemented in assembler. All other packages are
implemented in PASCAL.
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package RASTER is
-- Procedures for Raster Operations

-- Authors: Tommy Eesebo, Lars Nielsen
-- Date: 1983-09-06

-- If the logical name NORAST ie defined when MapRaster is
-- called the actual connection to the raster hardware is
-- inhibited.

-- If the logical name RASTCHECK is defined when MapRaster is
-- called a parameter check is made in various procedure

-- calls and a diagnostic printout occurs if an error is

-~ found.

bytes = 0..255;
- EXTERN

function MapRaster: integer; extern;

{ Initializee procedures. This procedure handles the
mapping of registers into the virtual memory. A call to
this procedure should be done as the first thing in a
ugser program. This results in a call to MapIOPage which
in turn will call a System Services routine. This will
map the virtual addresses of the variables in the library
to a physical VAX iopage address. Notice that the user
needs not to be priviliged to use it, since MapIOPage is
installed on the VAX system with priviliges. }

procedure MultiSet(nr: integer; word: integer); extern;

{ Write on Multibus address nr. MultiSet and MultiGet are
the fundamental operations to be able to read and write
on any Multibus address. This means that all other
operations way be expressed in these, but are though
ugseful either of convenience or gspeed considerations. }

procedure MultiGet(nr: integer; var vord: integer); extern;
{ Read on Multibus addrese nr. }

procedure SetRasterReg(nr: integer; word: integer); extern;
{ Write on address nr in active plane. }

procedure GetRasterReg(nr: integer;var word: integer); extern;
{ Read on address nr in active plane. }
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procedure RasterRead(var image: array [nl..n2: integerl of
packed arrayiml..m2: integer] of bytes;
Xc, yc, nx, ny, increment: integer); extern;
{ Reades area (xc, yc) , (xc+nx, yc+ny) from Raster memory
to the variable image.
Note that (xc, yc) 1is upper left corner of the area and
that (xc+nx, yc+ny) is lower right corner.
(xc, yc) will be stored in imagel 1, 11.}

procedure RasterWrite(var image: array [nl..n2: integerl] of
packed arraylmil..m2: integerl] of bytes;
Xc, yc, nx, ny, increment: integer); extern;
{ Writes area (xc, yc) , (xc+nx, yc+ny) to Raster memory
from the variable image.
Note that (xc, yc) is upper left corner of the area and
that (xc+nx, yc+ny) is lower right corner.
(xc, yc) will be fetched from imagel 1, 11.}

procedure RasterMS4Read(var image: array [nl..n2: integer] of
packed arraylml..m2: integer] of bytes;
Xc, yc, nx, ny, increment: integer); extern;
{ Same as RasterRead but only Most Significant 4 bits. }

procedure RasterMS4Write(var image: array [nl..n2: integerl] of
packed arrayfml..mwm2: integerl of bytes;
Xc, yc, nx, ny, increment: integer); extern;
{ Same as RasterWrite but only Most Significant 4 bits. }

mlI.l.l....|.l.l.|||.|.|.ll..|||.l.l.l.lllllIl||Il|||..l|||||Il.l..l.|l|al..1ll|.l|||l.|lu

procedure VieiblePlane(nr: integer; visible: boolean); extern;
{ Set plane visibility status. }

procedure DrawPlane(nr: integer); extern;
{ Enables drawing in plane nr. }

procedure RasterErase(color:integer); extern;
{ Clears active plane to value color. 1}

procedure RasterCol(color:integer); extern;
{ Specify a new color. 1}

function ReadPixel(x, y: integer): integer; extern;
{ Get value at (x,y). }

procedure WritePixel(x, y: integer); extern;
{ Write a dot of current color in (x,y). }

procedure RasterClip(xl, yl,x2,y2: integer); extern;
{ Set limite for VerLine and HorLine. }

procedure RasterVerLine(x1, yl, y2:integer); extern;
{ Draw vertical line. }
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procedure RaeterHorLine(yl, xl1, x2:integer); extern;
{ Draw horizontal line. }

procedure RasterPaint(xlow, ylow, xhigh, yhigh:integer); extern;
{ Paint a window on screen in current color. }

. END

S ———————— A e e e ]
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package RasterReg is

-- Procedures to initialize and handle the Matrox registers
-- Reference: Matrox VAF-512 wmanual page 24

-- Author: Lars Nielsen
-- Date: 1983-09-06

. FORWARD

procedure GrabOne; forwvard;
{ Grab one frame and freeze it. }

procedure GrabCont; forward;
{ Do continuous frame grabbing to Raster memory. 1}

. END

package LookUp is
-- procedures to program the look up table

-- Authore: Hilding Elmgvist, Lare Nielegen
-- Date: 1983-09-06

The look up table has 256 entries numbered O .. 255.
Each entry has an eight bit register for each of the
colors r, g and b.

. FORWARD

procedure SetColorMap(color, r, g, b: integer); forward;
{ Set r g b valuee in entry color }

procedure GetColorMap(color:integer;var r,g,b:integer); forward;
{ Get r g b values from entry color }

procedure BlackWhitel6; forward;
{ Initializes color look up table for 16 uniformly
distributed intensities of black and white. }

procedure BlackWhite?256; forward;
{ Initializes color look up table for 256 uniformly
distributed intensities of black and white. 1}
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procedure TwoPlaneg; forwvard;
{ Initializes color look up table for
two planes of 16 colors. 1}

procedure Pseudo; forwvard;
{ Initializes color look up table for 16 pseudo colors. }

procedure ColorPlane; forwvard;
{ Initializes color look up table for
one plane of 256 colors. }

« END

package IMAGEDEF is
-~ Definitione for image handling using RASTER routines

-- Author: Tommy Essebo
-- Date: 1982-11-02

The raster memory ie represented by a matrix of bytes:
imagelrow, columnl , where 1 <= row, coloumn <= 512
The top left pixel is imagell,1] and lower left corner
is in imagelS512, 11

. CONST

imagesize = 512;

. TYPE

imageline = packed array [1l..imageesizel of bytes;
imagetype = array [1l..imagesizel of imageline;

. FORWARD

procedure ReadlImage(var image: imagetype); forward;
{ Reads one image from Raster memory }

procedure WriteImage(var image: imagetype); forward;
{ Writee one image to Raster memory }

. END



23

package ADCONV is
-- procedures for A/D and D/A conversion
== Author: Tommy Essebo

-- Date: 1983-01-27

The analog values are real numbers in the range -1 to 1
A/D input channels: 0 - 15

D/A output channels: 0 - S

AnalogOut will limit the values i1f needed

. FORWARD
function AnalogIn(chan: integer): real; forward;

procedure AnalogOut(chan: integer; val: real); forward;

. END

package DIGCONV is
-- procedureg for digital input/output

-- Author: Tommy Essebo
-- Date: 1983-02-09

The digital valuee are boolean values

Input channels: O - 15
Output channele: 0 - 15

. FORWARD

function DigitalIn(chan: integer): boolean; forward;
procedure DigitalOut(chan: integer; val: boolean); forward;

. END
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package SIMPLEFILER is

-- Procedures to save and restore imagefilees.
-- The image is 512x512 bytes.

-~ Author: Lars Nielsen
-- Date: 1983-09-06

. TYPE

filenametype = packed array [1..601 of char;
. VAR

imagefile : file of imageline;

. FORWARD

procedure Restorefile(var image: imagetype); forward;
{ Aske for a filename and reads it to
the Pascal matrix image. 1}

procedure Savefile(var image: imagetype); forward;
{ Asks for a filename. Writes the Pascalmatrix image
to this file. }

. END
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APPENDIX C

Rendezvous in Pascal

Abstract

The ADA rendezvous mechanism for inter-process communication and

synchronization is implemented for Pascal programs using procedure calls and
records with variants.

Rendez-voug concepts

The following ADA concepts for communication and synchronization between
tasks are implemented:

Entry call Accept call # 1 Accept call # 2
select select
<entry call> <acceptl> <acceptl>
or or
<accept2> <accept2>
or or
<acceptn> <acceptn>
. or else
. delay <sec> :
. end select end select

All entries declared in one task forms a group qualified by the process. The
intertask message format is related only to the entry since this is used as
tag-field for the variant part of the message record.

Task declaration and activation.

In Ada a task is activated when the declaration of it is executed. In this
implementation a task must be explicitly activated by a DCL command
(usually SPAWN). A task is an executable image in the VMS environment and
it must be created by the usual compile and link sequence before it is
activated. A task is terminated when all it’s statements are executed (or
when an exception occurs).



Description of individual procedures/primitives.

InitRV(sectname, filename: packed array [integer] of char);

Initializes the rendezvous package.

sectname - name of the global section to be used for
communication between the tasks.

filename - name of the section file (usually a logical name).

procedure DeclareEntries(process: proceastype; validentries: entryset);
Declares all entries in one task.

process - process to be declared

validentries - set of entries in this process

procedure ConnectEntrieg(process: processtype);

Declares a process that can subsequently be called from this task. If the
process is not yet declared by another task, the calling task will wait at this
point until this is done before continuing.

function EntryPar: pmessagetype;

Returns pointer to a global message record to be used in all entry calls in
one process.

procedure CallEntry(process: processtype; par: pmessagetype);

Makes an entry call.

The specified entry in the process must be set in the message. par must point

to the global message record retrieved from EntryPar. The answer (if any)
from the rendezvous is returned in the same record as the call.



27

procedure SelectAccept(acceptset: entryset; wvar par: pmessagetype; delay:
real);

Makes an accept call. -

At the call par should point to nil since a new wvalue will be returned by
SelectAccept.

delay - timeout value in seconds. If delay = 0 there is no timeout (i. e. delay
is infinite) and if delay < 0 the else construct of the select statement will be
used. In this case the SelectAccept call will return immediately if there is no
entry call waiting. Par will be set to nil if no rendezvous was possible
because of else or timeout.

procedure EndAccept(var par: pmessagetype);

Ends the accept statement.
Par will be set to nil by this call.

Message format

All messages consist of a fixed part and a variable user-defined part
implemented as a record with variants. The fixed part of the messages
consists of the following fields:

fp, bp: pointer;

processpid: integer;

returnaddress: pointer;

entry: entries;

Fp, bp, processpid and returnaddress are set by the rendezvous procedures
and should not be changed by the user. The last field, entry is used as case
tag-field for the variant part. It must be set by the user when making an
entry call to indicate which entry in the process to be called.



Example:

{ processA }
var

p: pmessagetype;

InitRv(’SECT’, °‘SECTFILE’);

ConnectEntriee(processB);
p := EntryPar;
while true do
begin
{ Define message }
p*.entry := entryl;
p*.data :=

CallEntry(processB, p);

{ check answver }
wvith p*. do
end { while true 1};

28

{ processB }
var p: pmessagetype;
acceptset: entryset;

InitRv("SECT’, 'SECTFILE’);
accepteget := [entryl,
DeclareEntries(processB,

entry2l;
acceptset);

vhile true do
begin

SelectAccept (acceptset, p, 5.0);
if p = nil then { timeout case }
else { perform accept code }
case p*.entry of

entryl:
entry2: ...
end { case };

EndAccept(p);

end { while true };



APPENDIX D
Unibug to Multibus converter
A short excerpt from the report of Bo Nilsson. The block diagram gives the

idea. The lay out on the two interface cards are presented. One card is
installed on the Unibus and the other card on the Multibus.
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Allmdnt.

Read modify write, DMA och avbrott &r ej implementerat. vad
gdller RMW torde detta ej innebdra ndgon inskrdnkning. Detta
med tanke pa att kort som ansluts till Multibus miste vara

slavkort. En md&jlighet att koppla ur interfacekortet till

Multibus finns emellertid tillgdnglig. En yttre signal BREQ

aktiveras, vilket resulterar i att signalen BACK (synkronise-

rad med MSYN) talar om att Multibus dr ledig. En mer vilord-

nad synkronisering dr t&@nkt att skdtas via en seriekanal.

Vid urkoppling av spdnning till Multibus-racket &r det l&dmp-
ligt att stdlla omkopplaren pd interfacekortet till Unibus i
ldge off.

vid m<msw¢mwwgoawoum¢chwwos kan receiverkretsarna (8640) och
driverkretsarna (8881) bytas ut mot tranceiverkretsar (8641),
¢wamﬁ ger dubbelriktad anslutning till Unibus. Med ytterligare
logik kan sen DMA och avbrott troligen implementeras relativt

enkelt.



Instdllning av dip-switchar.

P& Multibus dr minne och IO separerade. Eftersom Unibus endast
har minnes—-adressering dr det nddvdndigt att avsdtta en del av
Unibus adressrymd till IO. Med de 10 1lsb pa dipswitcharna avko-
das 256 byte till IO. Adresser utanfdr Qmmmm 256 byte blir min-
ne. P4 de kort som placeras i Multibus-racket maste ddrfbr min-
ne och I0 ligga i olika adressomraden. Observera att om Multi-
bus-kort med 16 bitars IO-adress anvidnds, mdste avkodningen f&r
de 8 msb pd IO-kortet stdmma Sverens med instdllningen pa dip-

switcharna.

Eftersom antalet adressledningar pa Multibus dr 24 och p& Uni-
bus endast 18 maste de 6 msb tvangssdttas. Detta gdrs med de

6 msb pa den vdnstra dipswitchen.

Ex: a) adress 3E800 - 3E8FF avsdtts till IO

b) alla kort i Multibus-racket har minnesadresser
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APPENDIX E

Raster Registers

The set of registers in the Matrox system is presented. This gives a complete
picture of the programming possibilities. The first 7 pages are from the
Matrox VAF-512 manual. The next 8 pages are from the Matrox
RGB-Graph/64-4 manual.

Technical note

The two RGB-Graphs are placed on different Multibus addresses. Then on
the slave card the strap 72-71 shall be out and strap 73-72 be in.



* MATROX VAF-512 *

* REGISTERS *
4,0  REGISTERS:

The VAF-512 is programmed via a series of registers and ports that are described in
subsections 4.1 through 4.12. These locations are all accessed by programmed I/0 and
can be strapped on any 16 address boundary within system 1/0 space.

2

4.1 ADDRESS REGISTER LOW:

WRITE ONLY

7 6 5 4 3 2 1 0 BIT LOC

LT T T"T T T 1] - BASE ADDRESS + OOH = [ ]
AS-SHIPPED ADDRESS = 60H

LAD7 LADO

LADO through LAD7 are the lower 8 bits of look-up table address. The address mims one
of the lock-up table location to be accessed 1s first loaded into Address Register Low
and Address Reglstet High, then the location is accessed through one of the three data

ports. The address registers are automatically incremented before each data port
access, 80 the Addreass Reglster need only be accessed once when a look—up table ig
bedng £11led, :

4.2 ADDRESS REGISTER HIGH:

WRITE ONLY

7 6 5 4 3 2 1 0 BIT LOC
X [XTXTEIXIRT T ] BASE ADDRESS + OlH =[]
,I AS-SHUIPPED ADDRESS

© “—Llapg

"
o
—
it

[}

= 1AD9

LAD8 and LAD9 are the two most significant bits of the look-up table address.

. l“?
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4.3

)

* MATROX VAF-512 *

GAIN/OFFSET REGISTER:

* REGISTERS *

WRITE ONLY
7 6 5 4 3 2 1 0 BIT LOC
T 1 1 1 | BASE ADDRESS + 02H = []
AS=SHIPPED ADDRESS = 62H
00
01
- 02
03
GO
Gl
G2
G3
BITS 0-3: 00-03. These four bits provide digital control of the offset of
the analogue video signal with respect to the ADC. OH written
to these bits produces zero offset. That is to say. the black
-level of the analogue signal will generate OOH at the output of
the ADC. FH written to these bits will offset the analogue
signal half of full scale. That is to say, a level halfway
between black and white will cause the ADC to generate QOIl
Sixteen offset levels are possible. This feature is used in
conjunction with the gain control to expand sections of the
analogue video signal.
BITS 4-7: GO-G3. These four bits provide digital control ,of the ADC gain.

EH written to these bits produces normal gain: if there is no
of fset, the whole analogue signal will be digitized with the
black level producing OOH and the white level producing FFH or
OFl depending on which ADC is used. If OH is written to these
bits, the gain is doubled and only half of the analogue signal
will be digitized. In effect, this allows half of the signal to
be expanded to full scale. The offset bits can be used to
position the expanded section within the full scale. Sixteen
levels of gain can be set.

. 04
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* MATROX VAF-512 * * REGISTERS *

4.4 MODE REGISTER:

WRITE ONLY
7 6 5 4 3 2 1 0 BIT LOC
LLIxl T 1T T L] BASE ADDRESS + 038 =L__]
B AS-SHIPPED ADDRESS = 634
AD 0 1 0 1
Al 0 0 1 L
VIDEO | VIDEO | VIDEO VIDEO
0 1 2 3
——— INT SYNC
BLK SYNC
OVERLAYEN
 BFSEL
BLINKEN
BITS O AND 1: A0 AND Al. The user uses these two bits to enable one of the

four video inputs to the Frame Grabber.

BIT 2: INT SYNC. When a one is written to this bit, the PLL will use
the on-board sync source. When a zero is written to this bit,
the PLL will lock onto the sync in the video signal that the
user supplies at the selected video input. When using Frame

. Grab, external sync must be used. When changing from Internal

Sync to External Sync or vice versa, leave enough time (abt .l

sec) for internal timing to stabilize.

BIT 3: BLK SYNC. When a one is written to this bit, the Frame
Grabber’s PLL is programmed to lock onto block sync provided at
the selected video input. When a zero is written to this bit,
the PLL is programmed to lock onto serrated sync (CCIR/EIA).
This bit should be zero if Internal Sync 1s used.

BIT 4: OVERLAYEN: When a one is written to this bit, an RGB-Alpha can
insert text on the display. When this bit is zero the RGB-Alpha
ycannot insert text on the display. This bit must be zero if no
“RGB-Alpha is used.,
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* MATROX VAF-512 * * REGISTERS *

4ob MODE REGISTER (cont’d):

J BIT 6: BFSEL: When a one is written to this bit, the blink frequency is
programmed to be 3.75 Hz. When a zero 1s written to this bit, the
blink frequency is programmed to be 1.8Hz.

.,
BIT 7: BLINKEN: When a | is written to this bit, Blink is enabled.
When this bit is zero, Blink is disabled.

4.5 VECTOR SLOPE REGISTER:
WRITE ONLY
7 6 5 4 3 2 1 0 BIT LOC
[T TTTTTT] BASE ADDRESS + O4H = [ ]
_ . AS~-SHIPPED ADDRESS = 64H
K7 KO’

KO through K7 are the lower 8 bits of the vector slope (K), which is a 10 bit binary
value determined as follows:

K = 1Ayl when IAXI2IAY
d Fay:q]

OR

K = IAX| when |AXI<IAY]
N7

The value of K is mHSm%,m. equal to or less than 1 and is loaded into KO-K9 as follows:

20, 271, 272, 273, 274, 275, 276, 277, 28, 179

R Yt Y P PR I
K9 K8 K K K5 K& K3 K2 K KO

The two most significant bits of the slope (K8, K9) are placed in the Start Register.

P
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* MATROX VAF-512 * * REGISTERS *

4.6 X=Y LENGTH REGISTER:

WRITE ONLY A'

7 6 54 3 2 1 0 BIT
LI T T T T TT7] BASE ADDRESS + 0511
~ AS-SHIPPED ADDRESS

I

65H

L7 Lo

LO through L7 are the lower 8 bits of the X-Y length which is the 10 bit binary value
of the change in the X coordinate or the change in the Y coordinate, whichever is
greater. The two most significant bits are placed in the Start Register.

IFIAXI=IAY] THEN L =IAXI

IFIAX|CIAY] THEN L =AYl

4.7 TEXTURE REGISTER:

WRITE ONLY

7 6 5 4 3 2 1 0 BIT

LT T T TTTT1] BASE ADDRESS + 06H = [ ]
AS-SHIPPED ADDRESS = 66H -..

17 T0

TO through T7 determine the texture of the vector. A vector is composed of 8-pixel
recurring segments c:mnm the pixels :wnSH: the segments are drawn or not drawn’
depending on the state of the corresponding bit in the Texture Register. The pixel
corresponding to bit O is the first pixel in the sequence. Pixels are drawn if the
corresponding bit is one and they are not drawn if the corresponding bit is zero.

o pd”
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* MATROX VAF-512 * * REGISTERS *

+.8 START REGISTER:

J WRITE ONLY

76 5 4 3 2 1 0 BIT LOC
FCT T T T 11 BASE ADDRESS + O7H = [
AS~-SHIPPED ADDRESS = 67H

——TTG

QX

QY

L8

19

BITS O AND 1: K8 AND K9. These two bits are the two most significant bits of

the vector slope (K). See section 4.5.

BIT 2: COMP. When a 1 is written to this bit, the Texture Register is
complemented after each 8 pixel vector segment is drawn. For
example, if the Texture Register initially contained all zero's,
the vector would be drawn with the first 8 pixels not displayed,

d the next 8 pixels displayed, the next 8 pixels not displayed and
so on. When this bit is 0, it has no effect.

BIT 3: TG. A one must be written to this bit when the vector slope is
equal to or greater than 45° from the X axis. A zero must be
written to this bit when the vector slope is less than 45° from

thre X axis.

BITS 4 AND 5: QX AND QY. These two bits must be used to indicate which
quadrant the vector is to be drawn in, as shown in the following
table.

QY 0 0 1 1
QX 0 1 0 1

UPPER UPPER LOWER LOWER
QUADRANT | RIGHT LEFT RIGHT LEFT

BITS 6 AND 7: L8 AND L9. These are the two most significant bits of the X-Y
length. See section 4.6.

Writing to this register initiates the vector draw operation. Because of this, it must
be accessed after the Vector Slope, X-Y length, and Texture Registers have been filled
with the required parameters.
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* MATROX VAF-512 * * REGISTERS *

4.9 DATA PORTS: The RGB-Alpha must be isolated from the VAF board before writing to the
following data ports. This may be done by setting OVERLAYEN (Mode Register-Bit 4) to
zero.

4.9.1 RED DATA PORT:

READ/WRITE

Ty

7 6 54 3 2 1 0 BIT LOC
O I ) s s BASE ADDRESS + O8H = [ ]
: AS~-SHIPPED ADDRESS 68H

This location is an 8 bit read/write port to the red look-up table location addressed
by the current contents of the Address Register.

4.9.2  BLUE DATA PORT:

READ/WRITE

7 6 54 3 2 1 0 BIT
[TTTTTTTI=]1 BASE ADDRESS + 094
AS—SHIPPED ADDKESS

LOC
C_1

69H

This location is an 8 bit read/write port to the blue look-up table location addressed
by the current contents of the Address Register.

4.9.3  GREEN DATA PORT:

READ/WRITE

7 6 54 3 2 1 0 BIT LOC
LT T T T T 1T BASE ADDRESS + OAH =[]
AS-SHIPPED ADDRESS = GAH

This location is an 8 bit read/write port to the green look-up table location addressed
by the current contents of the Address Register.

4.10 STATUS REGISTER:

READ ONLY
7.6 5 4 3 2 1 0 BIT LOC -
[XTX[XTXTXIX]XT ] BASE ADDRESS + OBH =[]
AS~SHIPPED ADURESS = 6BH
BUSY
BIT O: BUSY. When this bit is 1, the Vector Generator is in the process

6f drawing a vector. When this bit is 0, the Vector Generator is
idle. Reading this register will reset the interrupt request
‘flip-flop.

* k %k % %
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4.3 REGISTERS:

4.3.1 X-REGISTER LOW:

WRITE ONLY

. i

7 6 5 4 3 2+1 0O BIT LoC.
L T T T T T T T BASE ADDRESS + OOH

ﬁln AS SHIPPED ADDRESS AQH
XBIT O

XBIT 1
XBIT 2
XBIT 3
XBIT 4
XBIT 5
XBIT 6
XBIT 7

:

This register holds the lower 8 bits of the X coordinate of the display memory location
that is to be accessed.

4.3.2 X-REGISTER HIGH:

WRITE ONLY .
7 6 54 3 2 1 0 BIT LOC.
[ T T T ToToToT ] BASE ADDRESS + OlH = [__|
— AS-SHIPPED ADDRESS = AlH
DON’T
CARE

XBIT 8

This register holds the 9th bit of the X coordinate for the RGB-GRAPH/32 and the RGB-
GRAPH/64. If a One is written to any of bits 1-3 the clipping circuit will interdict
Memory access. This also applies to Bit 0 on the RGB-GRAPH/16.

4.3.3 Y-REGISTER LOW:

WRITE ONLY

7 6 5 4 3 2 1 0 BIT L0C.
L I T T T T 1771 BASE ADDRESS + 02H

ﬁw AS-SHIPPED ADDRESS
YBIT O

YBIT 1
YBIT 2
YBIT 3
YBIT 4
YBIT 5
YBIT 6
YBIT 7

:

I
R
jas]

il

This register holds the lower 8 bits of the Y coordinate of the display memory location
that is to be accessed.
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J £.3.4

4.3.5

4.3.6

Y-REGISTER HIGH:

WRITE ONLY
7 6 5 4 3 2 1 0 BIT LOC.
[ T T JoJoJof] BASE ADDRESS + O03H = [ |
R— : AS-SHIPPED ADDRESS = A3H
DON’T
CARE

YBIT 8
This register holds the 9th bit of the Y coordinate for the RGB-GRAPH/64. If a One is

written to any of Bits 1-3 the clipping circuit will interdict memory access. This
also applies to Bit 0 on the RGB-GRAPH/16 and RGB-GRAPH/32.

DATA REGISTER LOW:

READ/WRITE

7 6 5 4 3 2 1.0 BIT LOC.

[ T T T T T 71771 BASE ADDRESS + 04H = [ |

AS-SHTPPED ADDRESS A4H

DATA 0 RID)

DATA 1 (BLUE) As Shipped Configuration
DATA 2 (REEN)

DATA 3 (OVERLAY OR GREEN)

Any four bits of this register can be used as a data port to the Display Memory if the
appropriate straps are installed (see Section 5.2). * When the board is shipped, straps
are installed which allow the display memory to be accessed through the four least
significant bits of this register, as shown above., Bits not selected for use are don’t
care for write and zexro for read.

DATA REGISTER HIGH:

READ/WRITE

7 6 5 4 3 2 1 0 BIT LocC.

L I T T T T 71 BASE ADDRESS + O5H = [ |

AS-SHIPPED ADDRESS ASH

As in the case of the Data Register Low, any four bits of this register can be used as
a data port to the Display Memory if the appropriate straps are installed (see Section
5-3). Any bits not selected are "don’t care" for write and zero for read.

L
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4.3.7  STATUS REGISTER: ﬁ ’

READ ONLY

7 6 5 4 3 2 1 0 BIT 3
L [ofolololofolo] BASE ADDRESS + O6H

AS-SHIPPED ADDRESS A6H

]

&

PRMEM FLAG

: Bit 7: PRMEM FLAG. When this bit is one, the memory 1s being preset or a frame grab
is in process. When this bit is zero, the memory is neither being preset nor
is a frame grab in process.

4.3.8 CONTROL REGISTER NO. 1

WRITE ONLY
7 6 5 4 3 2 1 0 BIT LOC.
A S O N N BASE ADDRESS + O6H = [ |
AS-SHIPPED ADDRESS = A6H

BLUE FLOOD
*VIDEN

DBLE RES

* bMA

FGC

FGS \q

= —— A PRESET

BIT 1: BLUE FLOOD. When this bit is zero, operation is normal. When this bit is one,
the Blue output is driven on during active video. BLUE FLOOD is used to
provide a visible raster to trigger the light pen. When activated, it is only
generated on the composite video output; the TTIL output are not affected.

VIDEN. Zrmpm this bit is zero, TTL video is enabled. When this bit is one,
TIL video is in high impedence (tri-state) mode.

Bit 2

Bit 3: DBLE RES. When this bit is one, bit planes 0 and 2 are multiplexed together
and bit planes 1 and 3 are multiplexed together to provide twice the X*AXS
resolution. Note however, that the bits per pixel are halved. When this bit
1s zero, resolution is normal and there are four independent bit planes.

Bit 4: DMA. When this bit is one, the Display Memory can be accessed by DMA. All
DMA transfers are made at the same 1K block of system address space, the base
address of which, is set by straps (see Section 5.4). This system address
space is mapped into different areas of the Display Memory, before the block
transfer, by loading the X and Y Registers with the transfer's Display Memory
starting address minus one. As the transfer proceeds, the X and Y Registers
are automatfcally incremented before each byte transfer. When several 1K
blocks are sequentially transferred to or from contiguous Display Memory, the
XY starting address need only be loaded before the first block transfer.

When bit 4 is zero the RGB-GRAPH's Display Memory is accessed normally and the a
X and Y registers must be loaded with a new set of coordinates before each e
byte or word transfer.

14




{ J....u.m CONTROL REGISTER NO. 1 (Cont’d):

Bit 5: FGC. When this bit is 0, the RGB-GRAPH operates in continuous frame grab
mode. If a frame grabber is connected, the board will continually grab and
display sequential frames: in effect, it will display what the camera sees.
When the vﬁﬁ is 1, the RGB-GRAPH will freeze the frame that was in the display
memory at the time the bit changed state. The user can watch the action, then
freeze it.

Bit 6: FGS. This bit is also provided for frame-grabbing operations. If a one is
written to FGS , the RGB-GRAPH will grab and hold a single frame of
video information. It will continue to display the information until
one is again written to FGS, at which time a new frame will be grabbed. 1f a
zero is written to this bit, it will have no effect.

Bit 7: PRESET. When a one is written to this bit, the Display Memory will be preset
to the value in the Data Register. If a zero is written to this bit, it will
have no effect.

NOTE: During initialization, the output operation to this register must be repeated

twice. After initialization, one output is enough to load the register.

4.3.9 CONTROL REGISTER NO. 2:

f \0 WRITE ONLY
7 6 5 4 3 2 1 0 BIT L0C.
) ) [ BASE ADDRESS + 07H = [__]
AS-SHIPPED ADDRESS = A7H
| | HORIZONTAL SYNC. | O 1 2 3 4 5 6 7
i DELAY DOTS | DOTS| DOTS | DOTS | DOTS | DOTS |DOTS | DOTS
XPAN O 1 0 1 0 1 0 1 0
XPAN 1 1 1 0 0 1 1 0 0]
XPAN 2 1 1 1 1 0 0 0 0
ZOOM FACTOR 1 2 3 4 5 6 7 8
XZOooM 0 1 0 1 0] 1 0 1 0
XZOOM 1 1 1 0 0 1 1 0 0
XZOOM 2 1 1 1 1 0 0 0 0
ZOOM FACTICR 1 2 4
YZOOM O 0] 1 0]
YZOOM 1 0 0 1

o g0l

NOTE: X zooms om.mnmmnmn than 4 are not possible when using the 256 x 256 format.

:,t1
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4.3.9  CONTROL REGISTER NO. 2 (Cont’d):

Bit 0-2:

Bit 3-5:

Bit 6 & 7:

NOTE: For

XPANO-XPAN2. These three bits are used in conjunction with the CRTC
starting address registers (RI2 and R14) to horizontally pan the display.
XPANO-XPAN2 can be set to delay the horizontal sync. pulse by 1 through 7
dots;,(see Table above). A pan is accomplished by sequentially
Hnnnmmm:nusm this delay until it reaches 7 dots then resetting XPANO-XPAN2
and incrementing the CRTC starting address registers during vertical
blanking. This operation is repeated at a rate that will give the
required pan speed.

XZOOMO-XZ00M2. These three bits are used in conjunction with several CRTC
registers (RO, Rl1, R2, R3, R12, R13) to expand the display along the
horizontal axis (see Section 44,

YZOOMO and YZOOMl. These two bits are used in conjunction with several
CRTC registers (R3, R4, R5, R6, R7, R9, R12, R13) to expand the display

along the vertical axis (see Section 4.4),

a normal display, X and Y zoom factors of one must be loaded.

4.3.10 AUXILIARY LIGHT PEN REGISTER:

READ ONLY

7 6 5 4

3 2 1 0 BIT LOC.

LofoT T

BASE ADDRESS + 08H _ _
A8H

| [ T T
— AS-SHIPPED ADDRESS
XLPO
X1P1
XLpP2
- YLPO

YLP1

Bits 0-2:

Bits 3-~5:

YLP2

XLPO-XIP2. These bits are the three least significant bits of the light
pen X coordinate. The most significant bits are provided by CRTC R17: bits
0-4 represent XIP3-XLP7 for 256 x 256 formats and bits 0~5 represent XIP3-
XLP8 for 512 x 512 formats. Note that the data from CRTC R17 must be
shifted to the left three bits before they can be combined with XIPO-XIP2
from this register. Unused bits in CRTC R17 are zero.

YLPO-YLP2. These bits are the three least significant bits of the light
pen Y coordinate. The most significant digits are provided by CRTC Rl6:
bits 0-4 represent YLP3-YLP7 for 256 x 256 formats and bits 0-5 represent
YLP3-YLP8 for 512 x 512 formats. Note that the data from CRTC R16 must be
shifted” three spaces to the left before it can be combined with YLPO-YIP2
from this register. Unused bits in CRTC R16 are zero.

16



§.3.11 CONTROL REGISTER NO. 3:
("

WRITE ONLY
7 6 5 4 3 2 1 0 BIT _ LOC.
CT [ [ [ [ [ &4 |iow BASE ADDRESS + O8H = u
—_— : AS-SHIPPED ADDRESS = A8H
DON’T v — VENO
CARE VEN1 As Shipped Configuration
VEN2
VEN3
OR
WRITE ONLY
7 6 5 4 3 2 1 0 BIT LOC.
7 [ [ [ T [ [ |utce BASE ADDRESS + 09H = |
—— AS-SHIPPED ADDRESS = A9H
DON’T
CARE -

The four video enable bits can be strapped to any four bits in the two I/0 locations
shown above (see Section 5.4), and must be strapped to the same four bits that are used
by the data port (see Section 4.3.5). The as—shipped configuration is shown here.

Bit O: VENO. When this bit is one, video from bit plane O is enabled. When this bit
a\ d is zero, video from bit plane O is disabled.

Bit 1: VENl. When this bit is one, video from bit plane 1 is enabled. When this bit
is zero, video from bit plane 1 is disabled.

Bit 2: VEN2. When this bit is one, video from bit plane 2 is enabled. When this bit
is zero, video from bit plane 2 is disabled.

Bit 3: VEN3. Whem this bit is one, video from bit plane 3 is enabled. When this bit
is zero, video from bit plane 3 is disabled.

4.3.12 CONTROL REGISTER NO. 4:

WRITE ONLY
7 6 5 4 3 2 1 0 BIT LOC.
N O O O A A BASE ADDRESS + OAH = [_]
AS-SHIPPED ADDRESS = AAH
— —/
DON’T WENO/CRTC SEL)
CARE WEN1/ As Shipped Configuration
WEN2/
WEN3/
7 6 5 4 3 2 1 0 BIT 10C.
CT T T T 1 T [ |uca BASE ADDRESS + OBH = [ |
S — < AS-SHIPPED ADDRESS = ABH
DON’T
CARE
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4.3.12 CONTROL REGISTER NO. 4 (Cont’d): ﬂ

The four bits of Control Register No. 3 can be strapped to any four bits in the two I/0
locations shown above (see Section 5.4) and must be strapped to the same four bits that
are used as the data port. The as—shipped configuration is shown here.

Bit O: WENO/CRTG SEL/. When this bit is zero, bit plane 0 and the CRTC can be
written to. When this bit is one, bit plane 0 and the CRTC cannot be written
to. The CRTC SEL/ function is required for master slave configurations where
the CRTCs of two or more boards at the same address are programmed differently.

Bit 1: WEN1/. When this bit is zero, bit plane 1 can be written to. When this bit is
one, bit plane 1 cannot be written to.

Bit 2: WEN2/ When this bit is zero, bit plane 2 can be written to. When this bit is
one, bit plane 2 cannot be written to.

Bit 3: WEN3Z When this bit is zero, bit plane 3 can be written to. When this bit is
one, bit plane 3 cannot be written to.

4.3.13 CRTC STATUS REGISTER:

2. 10
[0]0]0] BASE ADDRESS + OCH
AS-SHIPPED ADDRESS =

LocC.
= @

VERTICAL BLANKING
LPEN REGISTER FULL

Bit 5: VERTICAL BLANKING. When this bit is one, the scan is in vertical blanking.
When this bit is zero, the scan is not in vertical blanking,

Bit 6: LPEN REGISTER FULL. This bit goes to one whenever a light pen strobe occurs.
This bit goes to zero whenever either CRTC R16 or R17 are read.

4.3.14 CRTC ADDRESS REGISTER:

WRITE ONLY

7 6 54 3 2 1 0 BIT LOC.
LT T T T TT 1] BASE ADDRESS + OCH =[]
AS-SHIPPED ADDRESS = ACH

When one of the CRIC registers is to be accessed, its address is placed in this
register, then data is input or output through the CRTC Data Register. Addresses and
descriptions for the CRTC registers are found in the CRTC data sheets,
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4.3.15 CRTC DATA REGISTER:
3 READ/WRITE
7 6 5 4 3 2 1 0 BIT LOC.
(T T T T T 1T 11 BASE ADDRESS + OEH = [ |
AS-SHIPPED ADDRESS = AEH
s
This location is the data port to and from the CRTC.
4.3.16 VECTOR REGISTER:
WRITE ONLY
7 6 5 4 3 2 1 0 BIT LoC.
CT T T T T 1T 1] BASE ADDRESS + OFH = [ |
ﬁl AS-SHTPPED ADDRESS = AFH
INCX.
—— INCY
DECX
DECY
=— WRT

BIT 0O: INCX. When a one is written to this bit, the X-Register is incremented.
Writing a zero to this bit has no effect on the X-Y coordinates.

Bit 1: INCY. When a one is written to this bit, the Y-Register is incremented.

d Writing a zero to this bit has no effect on the X-Y coordinates.

Bit 2: DECX. When a one is written to this bit, the X-Register is decremented.
Writing a zero to this bit has no effect on the X-Y coordinates.

Bit 3: DECY. When a one is written to this bit, the Y-Register is decremented.
Writing a zero to this bit has no effect on the X-Y coordinates.

Bit 4: WRT. Whem this bit is zero, the contents of the Data Register are
automatically written to the Display Memory when the Vector Registor is
loaded. When this bit is one, data is not automatically written to the
Display Memory when the Vector Register is loaded.

NOTE: The Vector Register will not function properly if the RGB-GRAPH is in DMA mode.

Figure 5-1 shows the direction that the graphics trace will take when different values

are written to the Vector Register.

3

® »re

Y
VECTOR DIRECTION (BIT 0-3)

Figure 4.1 -
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