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Abstract. There has been substantial progress in theory and practice of automatic control
through application of mathematical analysis and numerics. Nonnumerical data processing has,
however, so far only had marginal influence on control systems, Actual implementations of
control systems also contain a substantial amount of heuristic logic. The paper shows that this
loglc may be replaced by an expert system. This leads to simplifications in implementation as

well as new capabilities in the control system.
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1. INTRODUCTION

The purpose of this paper is to ldentify possible uses
of expert system techniques in implementation of
control systems. It 1is first observed that actual
implementation of control laws often involves a
substantial amount of heuristic loglc. This is true for
simple regulators as well as for more sophisticated
multivariable control loops. Expert system
methodologles provide a systematic approach for
dealing with heuristic loglc. Selected basic elements
of an expert system are presented. Stochastic dynamic
programming offers a framework in which the
heuristics can be embedded. This points to
requirements for a new artificial intelligence approach
for heuristic planning under uncertainty. An example
is sketched to illustrate the ldeas. Once the expert
system approach is taken it Is also possible to obtain
control systems with new functions. This is also
illustrated.

2. THE PRACTICE OF AUTOMATIC
CONTROL

There has been a very significant development of
control theory over the past thirty years. This has led
to many new ideas and concepts, as well as increased
insight and new design procedures. The inspiration has
largely come from two sources: mathematics and
digital computing. However, this vigorous theoretical
development has so far only had a modest impact on
the practice of automatic control.

The making of a control system can be composed of the
following activities: modeling, identification, analysis,
simulation, control law design and implementation. It
is fair to say that the development that has taken
place during the past 30 years has had a drastic
influence on lidentification, analysis and design.
Implementation has changed in the sense that digital
systems are now replacing analog systems. There are,
however, many aspects of the implementation that have
not changed much.

Although major progress has been made in linear and
nonlinear systems theory, there are several instances
where theory lags application needs. Typical examples
are systems with selectors and anti-windup. Such
systems are frequently approached purely empirically.

Consider for example an ordinary PID-regulator. Its
linear behaviour can be described by the model:
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PID-control can be understood very well from this
linear equation, suitable values of the parameters can
be determined, etc. However, in practice there are
many important aspects which are not captured by the
simple formula. To obtain a good PID regulator it is
also necessary to consider operator interfaces,
operational issues like switching between manual and
automatic operation, transients due to parameter
changes, nonlinear actuators, windup of the integral
term, selectors etc. An operational industrial PID
regulator thus consists of an implementation of the
equation (1) and some heuristic logic that takes care of
these issues. Although these heuristic factors are of
extreme importance for good control they have not
attracted much interest from theoreticians. They are
instead hidden 1in practical designs and rarely
discussed in the control literature. One reason for this
is that the theoretical analysis is quite difficult.

We can thus conclude that practical solutions even to
such mundane problems as PID control are not done by
theory alone, but that heuristics play an important
role. These heuristics show up in terms of logic that
surrounds the implementation of the linear control law
given by equation (1). The standard way of bullding
industrial process control systems is to combine PID
regulators, selectors, logic and sequencing circuits. It
is a very noticeable trend that DDC (Direct Digital
Control) sgystems and PLC (Programmable Logic
Controllers) systems are merging. The design of such
systems also involves a lot of heuristics.

Heurlstics is even more important in multivariable and
self-tuning regulators. In these case the fundamental
control law is much more complicated than the control
law given by equatlon (1). To obtain a well functioning
adaptive control system it is also necessary to
provide it with a considerable amount of heuristic
logic. This goes under names like safety nets or safety
jackets. Experience has shown that it is quite time
consuming to design and test this heuristic logic.



The background considerations to this point have been
directed at a very elementary configuration for a
process control problem, namely, a collection of
structurally similar control loops. There s one
performance measure (small error) and the loops are
running under manual or self-tuning control. A more
sophisticated configuration, within the theoretical
framework of dynamic programming, has been available
for some time. In practice dynamic programming
formulations have not been widely wused due to
computer requirements. See Bellman (1957). In fact
some attempts have been made to use this framework,
while making heuristic approximations to avoid some
of the computational and storage demands of the pure
algorithm., See Astrdm and Helmersson (1982). Still the
focus has been on low level system components, such
as isolated loops.

Although this paper refers to control activities for low
level components, the main consideration for expert
control is the higher level problem of control of a
plant with all its interacting lower level components.
At the higher level it is also possible to formulate the
control problem in a dynamic programming framework.
Stages are periods between changes in the control laws
applied to the lower level components. States. are
"plant-wide". Decislons correspond to selections of the
automatic activities (control law type for a given
loop, estimation, etc.) carried out on the components.
There are also multiple "plant-wide" performance
measures. Heuristics are important at both high and
low levels in this control problem.

3. HEURISTICS

In the previous section it was mentioned that
heuristics plays a role in ordinary PID regulators and
an even greater role in systems which combine PID
regulators with loglc, and in adaptive regulators. In
implementations of the regulators heuristics shows up
in the form of selectors, if-then-else or case

statements. In many cases this part of the code may be
much larger than the pure code for the control
algorithm. The debugging, modification, and testing of
the control logic can also be very time consuming.
From a purely pragmatic point of view of efficient
engineering It thus make sense to look at better ways
of implementing the heuristic part of the code.

Once we accept as a fact that control algorithms will
contaln heuristics we may also ask what a more
extensive use of heuristics may contribute to control
systems. As an illustration let us consider typical
adaptive algorithms like model reference adaptive
controllers or self-tuning regulators that are currently
being used. See Astrdm (1983). These algorithms may
be viewed as local gradient algorithms in the following
sense. Starting from reasonably good a priori guesses
of system order, sampling period, and parameters, the
algorithms can adjust the regulator parameters to give
a closed loop system with good performance provided
that the initlal guesses are not too far off. The
algorithms are also capable of tracking a system
provided that the parameters do not change too
quickly. The algorithms will however not work if the
prior guesses are too far off. The sampling peried is a
typical case. Most dlgital adaptive algorithms will fail
if the sampling period is too short. The present
adaptive control algorithms thus have a limited range
in which they will operate satisfactorily. Outside this
range they may result in unstable closed loop system.
This is in fact the development which has led to the
safety jackets mentioned in Section 2.

There have recently been proposals for other types of
tuning algorithms that have a wide range of
operability, although they do not have the good local
properties of the self-tuners. See Astrdm and H3gglund
(1983). It seems appealing to explore the possibility of
designing systems that combine a wide range of
algorithms with different properties. To do this

efficlent ways of orchestrating different aigorithms to
achieve varying control objectives are needed. This
problem has important analogues in existing expert
system applications, so it Is useful to look there for
tools that may aid in solving the control problem.

4. EXPERT SYSTEMS

Expert systems is a rapidly expanding area within the
field of Artificial Intelligence (Al). See Winston (1977),
Waterman and Hayes-Roth (1978), Nilsson (1980), Barr
and Feigenbaum (1982), Davis (1982) and Davis and
Lenat (1982). One objective of Al {s to develop
computer-based models for problem solving. It |is
distinguished from physical modeling because it
attempts to model those aspects of a problem, which
are not naturally amenable to numerical representation
or more efficlently represented by heuristics. One
objective for expert systems is to model the
knowledge and procedures used by a human expert in
solving problems within a well-defined domain.
Important examples of expert systems are documented
{n Barr and Feigenbaum (1982) and Davies (1982).

A typical
components:

expert system has three principal

1. System data base
2. Knowledge sources
3. Supervisory strategy

The System Data Base

The system data base is the repository of facts,
evidence, hypotheses, and goals. For a process control
example, the facts would include static data such as
sensor measurement tolerances, operating thresholds,
alarm level thresholds, constraints on operational
sequencing, plant component configurations etc.
Evidence includes dynamic data from sensors,
instrument engineering reports, and laboratory and
test reports.

A practical observation for plant operations is that
evidence as described above is typically diverse in
type, often nolsy, somewhat delayed, possibly
incomplete, and sometimes contradictory. An
experienced process control engineer has techniques
for dealing with these complications. He can develop
hypotheses on-line to supplement the current
collection of facts. In an expert system, hypotheses
are also generated and stored in the data base to cope
with the limitations of known facts or measured
evidence. One important class of hypotheses in an
expert control system will be the various state
estimates made by parameter estimation algorithms.
Including them under hypotheses acknowledges both
that they are derived from evidence (data), and that
their derivation 1is conditioned on other model
assumptions.

It is worth commenting that the hypotheses are
avallable in a way that permits external audit of
system logic. The hypotheses are thus supported with
the rationale and evidence for their creation.

Goals are other important entries in the data base. In
an expert system they are usually both static and
dynamic in nature. Static goals include the wide array
of performance objectives like malntain stable
operation, find optimal stationary operating points or
determine if the current control law can be improved.
Dynamic goals include those established on-line, either
by external command or from the program itself.



Knowledge Sources and Knowledge Representation

Representation of knowledge in an Al system is often
the most challenging aspect of the design. The
knowledge sources in an expert system are models for
the essential problem elements. In a process control
application these elements include the portion of the
operator’s skill to be automated, the control and
estimation algorithms that may be applied, the
appropriate characterization of these algorithms, and
judgemental knowledge on when to apply them.

A wide variety of approaches have been developed and
used for the task of modeling knowledge represen-
tation. Among the more prominent are first order
predicate calculus (logic), procedural representations,
semantic networks, production systems (the Al
versions of the if-then-else structure mentioned
above), frames, see e.g. IEEE (1983). The kinds of
knowledge necessary include:

- a characterization of the available control and
estimation algorithms,

- indicators for invoking supervision, planning, and
fault diagnosis, and

- lInstructions for supervision, dlagnosis and planning.

Production rules and frame structures have some ver:y
desirable features for a process control application.
Production rules operate on the entitles in the data
base, resulting in new entries and modifications of
earlier ones. They may be viewed as f{functions
operating on the state. Since the data base is broader
in concept than the usual notion of state, production
rules are also richer in content than common transition
functions. For expert systems, production rules are
typically described as: "if <situation> then <actlon>".
The ’situation’ is some collection of facts, evidence,
hypotheses, and goals. The ’action’ can Include
physical operations, parameter estimations, plausible
inferences, activation of a new controller, or
specification of a new goal to be pursued.

Frames are data structures for representing common
situations. See Winston (1977). A frame can contain
several kinds of information, including instructions for
its use, what can happen next, what to do next,
preconditions for an operation to be applicable, and so
forth. A frame may be viewed as a network of nodes
and relations. The top level nodes define the expanse
of knowledge, that is, they present the collected
topics. The lower nodes (called slots) are filled with
specific information details on the higher level topic.
Slots can be defined to limit the conditions to be met
in their entrles. Since these entries may be '"frames"
(subframes at lower levels), It is evident that this
knowledge structure can become complex.

Frames provide an efficient approach to organizing
expectations and presumptions. They provide a
convenient mechanism for default assignment of
information. They can be coded to produce in operation
the expected entry, unless something causes this to be
overwritten. They can also be used for making
generalizations. Frames also {incorporate a wuseful
inheritance mechanism. For example, when a
characteristic at a lower level slot 1s not avallable, it
is possible to infer its wvalue from slot entries in
higher level frames.

Supervisory Strateqy

The purpose of the supervisory strategy is to decide
from the context (current data base of facts, evidence,
hypotheses, and goals) which production rules to
select next. Picture here the experience of a human
operator who, given time and enough information,
knows how to bring a process in line with required
operational conditions. In an expert system this
knowledge of planning what to do may also be
represented in the same "sltuation-action" format used

for the production rules or in terms of frames.
Separating the supervision knowledge (what to do)
from the production knowledge (how to do it in detall)
offers a significant flexibility for developing and
modifying a process control system.

Current process control systems have considered
selection of alternatives in a very limited scope by
hardwired logic. If the scope were widened (e.g., to
include use of some adaptive control algorithms), the
number of considerations to be taken into account may
grow unwieldy. Rather than to preprogram a logic to
treat each case in an explicit branching logic, the
objective of expert control is to encode the knowledge
sufficlent to make * intelligent decisions and
recommendatlons automatically.

An on-line fault, a command to change production
goals, etc., calls for a sequence of steps to bring the
process in line with requirements. Each step in this
plan will involve some action to adjust the process.
The actlions taken must not Interfere with the
preconditions of actions to follow in accordance with
the control plan. With many actions available, and with
many possible sequences, the development of a control
plan can be recast as a search through a large network
for that path that reaches the currently established
goals. This searching and planning in a complex
environment is a fundamental activity in Al systems.
Consider the following to see why this might be
needed.

In classical algorithmic control there are well-defined
and highly constrained notions of state and state
transition. These are assoclated with physical
parameters and operations. In expert control we want
to deal with more ambiguous, less constralned, more
qualitative notlons, in addition to the available
quantitative knowledge. Control strategy development
In classlical control can use tools like dynamic
programming with an exhaustive but efficient search in
control space for a plan. Expert control is meant to
deal with those process control problems where there
are still too many alternatives with complicated inter-
relationships for search to be practical. In an expert
system the problem of finding a plan for 8 stepg with 4
options at each step, would not deal with all 4~ = 64000
possibilities. Heuristics might be found, for example,
to fix the steps at plan stages 2, 4, and 6, whereupon
the search would be reduced to 4:4~ = 64 options.

Important work on expert systems for planning has
been carried out in the context of robot motion,
Nilsson  (1980), Sacerdot{ (1977, and genetics
experiment design, Stefik (1981a,b). But the planning
problem for expert control of a complex plant has
elements not addressed in these works: uncertainty in
the state, In the models, and in the outcome of an
applied action. (Nilsson does treat the last
consideration in his program STRIPS, op.cit.) The
stochastic dynamic programming problem formulation
provides a framework for the requisite planning. But
this algorithmic approach which amounts to global
search, may not be feasible. The use of an expert
system has been turned upon this search task before
with noteworthy success on a complex problem,
Buchanen et al (1969). Before turning to this problem in
{ts fullness, however, Initlal efforts will be limited to
simpler cases. In the next section, although no specific
planning formulation is put forth, some of the elements
of the planning problem are described for the case of a
single objective for a single loop.

5. AN ADAPTIVE REGULATOR

To illustrate the concepts a simple example in steady
state control of an industrial process will be
investigated. It is shown that expert control can give
added performance to such a mundane operation. The
different actions that we would like the system to
perform are first given. The process state and



different ways to organize the control logic are then
discusged.

Operations

For simplicity we consider only a single regulation
loop. Let the goal be to keep the fluctuations of a
process variable close to a given set point with
reasonable control actions. If the dynamics of the
process and the disturbances were known a minimum
variance regulator could be designed. Examples of
such control strategies and the underlying theory are
given in Astrdm (1970). If the process is described by
the sampled model

Ay(t) = Bu(t-d) + Ce(t), ‘ (G

where u is the control variable, y the output, e white
noise, and A, B and C are polynomials in the forward
shift operator, then the optimal control law is

Ru = -Sy (2)

where the polynomials R and S are given by

z CB = AR + BS. (3)

The operations necessary to obtain and maintain the
minimum variance control law glven by equation (2) in
a safe way will now be discussed.

In the terminology of Section 4 the "action" minimum
variance control is thus the main function of the
system. To apply such an action it is necessary to
have a model (1) for the process, the disturbances and
a sampling interval. With the simple minimum variance
control law it is also necessary to insure that the
preconditions for minimum variance control are
satisfled. The most important condition is that the
dynamics is minimum phase, i.e., that the process
zeros are inside the unit disc. A particular feature of
the minimum variance control law is that the process
zeros are cancelled. This may lead to ringing if the
zeros are not sufficiently well damped. The trade-off
between input and output variance is governed by the
prediction horizon d-<h, where d is the delay in (1), h
is the sampling period. Notice that if the process is
stable then the model will always have zeros with
arbitrarily good damping if the sampling perilod is
long enough. See Astrdm, et al., (1983). To be able to
detect ringing and to take appropriate actions it is
useful to include a ringing detector.

There is a convenient way to find out if a process is
under minimum variance control because the output
would then be a moving average

yit) = A [e(t) + ...+ £, e(t-dh+h)]. (4)

d-1

where
- R
F = B (&=}

and h is the sampling period. A minimum wvariance
supervisor can thus be based on the calculation of the
correlation function of the output.

If the process model {s not available a self-tuning
regulator (STR) may be used. See Astréom and
Wittenmark (1973). Such a regulator may under certain
conditions converge to the minimum variance regulator
which could be designed if the process model were
known. The simple self-tuner is in essence a parameter
estimator. In the STR the model is reparameterized in
terms of the regulator parameters. A parameter
estimator will thus be included as an operator. The
preconditions for parameter estimation is experimental
data obtained when the process is properly excited. To

ensure a proper operation of the estimator we will
therefore also introduce an excitation supervisor. This
would in essence determine the energy of the input
signal in the useful frequency range.

If there is not enough excitation we have two options.
Either to stop the updating of the parameters or else
to introduce perturbation signals. In those cases when
perturbation signals are allowed the system will be
provided with a perturbation signal generator. The
generation of the perturbation signal requires some
information about the frequency range of interest and
about the allowable perturbation levels. This may be
derived from the knowledge of d- h.

The self-tuning regulator also requires prior
knowledge. In particular the following data is needed
for the basic STR. See Wittenmark (1973).

h sampling period

d delay in number of sampling periods
nr degree of the polynomial R

ns degree of the polynomial S

A forgetting factor

eo initial estimate

initlal covariance
uﬁ, ul high and low control limits

The parameters d and h are crucial because the closed
loop system may become unstable if they are
underestimated. To detect this the system should
therefore be provided with a stability supervisor.
There are possibilities to find out if the integers nr
and ns are large enough simply by calculating the
covariance functions r__(t) and r_ (t). See Astrém
and Wittenmark (1973%” We can Xhus construct a
degree supervisor and include it in the system.

The importance of knowledge of the product d+h has
been emphasized. A robust estimate of this quantity
may be derived from the Ziegler-Nichols auto-tuner
discussed in Astrém (1982). This procedure gives the
critical gain kc and the critical period t_. An
kc-tc-estimator with some supervision, as is discussed
in Astrom and H&agglund (1983), is thus also provided. A
safe estimate of d-h is actually t /2. When using the
kc-tc-estimator we will also get data which is useful
to estimate other parameters.

Other functions may also be provided. Assume that it
is known that the process dynamics changes with a few
parameters like production. Gainscheduling may then
be considered. For this purpose it is useful to have
functions llke smooth and store requlator parameters,
get requlator parameters and test scheduling
hypothesis. The last operator scans the parameter
values stored in a table for a given process state and
determines if the values are reasonably close. These
tables themselves are produced during operations
where conditions, parameters, and outcomes are
stored. The operator that compiles these tables is a
learning supervisor.

The operators discussed may be grouped as follows:

Main monitor:
stability_supervisor
compute_means_and_variances

Main control:

Back_up control:
pid_control
kc_tc_estimator

Fixed gain minimum variance control:
minimum_variance_control
minimum_variance_supervisor

ringing_detector
degree_supervisor



Estimation:
parameter_estimation
estimation_supervisor
excltation_supervisor
perturbation_signal_generator
Jump_detector

Self-tuning:
self _tuning_regulation

Learning:
get_regulator_parameters
smooth_and_store_regulator_parameters
test_scheduling_hypothesis

In the terminology of expert systems we thus have six
knowledge sources.

The Data Base

The system data base will be required to store current
process data, to support technical audit and learning.
The entries in the data base must accommodate these
demands.

Data base planes. The data base hosts static. and
dynamic data consisting of facts, evidende,
hypotheses, and goals. These data types need not be
maintalned separately in an implementation. Rather it
is usually more appropriate to divide the data base
along planes that are the focus of the knowledge
sources. One of the most important planes is the event
list.

Event lists. One convenient and often used approach
for dealing with a time-varying environment in an
expert system is to make the processing
'event-driven’. Suitable actions are proposed under
the direction of the supervisory control according to
the nature of events entered onto a so-called event
list. These events may be entered into the processing
from an external source, or they may result from
internal processing by the knowledge sources on
earlier events. Event types include: threshold
crossings for process levels and rates, human operator
command entries, entry of new hypothesis on process
conditions, modification of an earller hypothesis,
request for control mode change, announcement of
control mode change, and requests by the human
operator for information,

A few examples of event lists will now be given. Some
lists are organized to provide data for the different
knowledge sources. Data used for the main monitor is
shown in Table 1. The major control modes are manual
backup, minimum variance and self-tuning. An entry is
made in Table 1 when the mode changes or when the set
point is changed.

Table 1 - Main monitoring table. An entry is made
whenever there Is a mode switch or a set-point change.

# |Time |u a. |7 |° Stable |Regulator
S D B Ml M R4 type

It may be useful to add a few entries in the table such
as max and min values or percentile values. The mean
values entered in the table for even n are flat means
between the events n and n+l. From the data shown in
Table 1 It is possible to make deductions llke: What
are the relations between the mean values of u and y?
Do these relations change with time? Are there any
relations between the standard deviations and the
mean value of the control signal? What are the patterns

of the mode switches? Does the system go to tuning
mode after large set point changes? What control
modes are used for most of the time? Are these drastic
variations in performance with time and modes? The
answers to these questions will allow us to make
inference about the characteristics of the process.

The essential data used in the backup mode is shown in
Table 2. An entry in thls table is made whenever the
system goes into backup mode or when a kc_tc_tuning
is made when the system is in back_up mode

Table 2 - Backup Control table. An entry is made
whenever the back-up control is activated.

# Time k t P I D
=] c

The reason for entering both the critical point and the
PID parameters are that we have introduced options
for the system to modify the PID design rules.

The main data generated during periods with flxed
gain minimum variance control are given in Table 3.
An entry into this table is made whenever the fixed
gain minimum variance control is invelved.

Table 3 - Minimum variance control table.

Parameters

From Tables 1 and 3 we can ask questions like: What
structures of minimum variance regulators are used?
Do the structures have any relations to the operating
conditions? Are there any patterns in the performances
obtalned?

In practice the number of event types is large - a
system of modest complexity may have in excess of
fifty. The event type together with the rules in the
supervisory control element for the ordering of their
processing combine to produce the flow for an
event-driven system. There are also other tables in
the system data base like a parameter estimation table
and a learning control table.

The hypothesis list. The hypothesis list is another
important part of the data base. This is an organized
collection of the derived working understandings of
the process conditions. The organization often takes
the form of levels of abstraction. The lower levels are
typlcally concerned with immediate inferences from
sensor data. For example, the hypothesis that
deviations are small is easily deduced from a list of
the current means and variances. See Table 2. More
complicated hypotheses may include making an
estimate of the current level of stability of the
process. Both numerical evaluations and rule-of-thumb
heuristics can be used for this purpose.

As the level of abstraction increases it may be
necessary to interact with the process engineer to
blend his capability with that of the machine. In order
to provide a mixed initiative capability, it Iis
important for the engineer to have access to the
rationale upon which system inferences are based. In
an expert system this is provided by the simple



mechanism of attaching rule numbers to internal
events. In this way the data base supports the
capability for a technical audit of the processing.

Another important function of the data base is to store
processing history in a manner suitable for automatic
learning. The idea 1Is similar to learning from
experience in chess or checkers. See Samuel (1967) and
Michalski et al (1983). In the process control problem
there are analogous questions. For example, It is
currently difficult to determine analytical approaches
for selecting thresholds for control mode switching.

The process supervisor. It is good design practice in
bullding an expert system to separate the knowledge
appropriate for control of the ‘decision flow from the
detalled knowledge that concerns the application at
hand. See e.g. Winston (1977). In many practical cases,
however, the organization of the expert system’s data
base and production rules leaves little of substance for
the system supervisor to do. See Nii et al. (1982). In
the simple structure outlined here, the functions left
over for the process supervisor include loglc for
establishing event priorities from the control context
and logic for deciding processing order among equal
priority events. If learning modes are installed in the
system, the loglc for enabling/disabling their use is
another function of the process supervisor. T

6. CONCLUSIONS

It is straightforward to extract a more general pattern
from the example in Sectlion 5 and from similar
problems. To solve a control problem using this
approach we first determine a number of design
approaches that may be appropriate to the problem.
The design methods are analysed carefully to
determine the conditions when they will work and when
they do not work. Next we attempt to find criteria for
those conditions. Finally an expert system is used to
decide when and how to take appropriate actions. The
approach which clearly can be applied to a wide
variety of problems seems to offer Interesting
possibilities to combine analytical and heuristic
approaches.

For simplicity the use of AI techniques in process
control has been introduced for the case of single loop
control and without regard to the specific details of
the potential industrial application. This approach
permitted the uncluttered presentation of some of the
elemental concepts that arise with the mergling of the
Al and the control technologies. A heuristic component
has been added to the familiar estimation and control
algorithms. A key point is that the incorporation of
heuristics through Al structures results In systems
that are far more flexible and transparent than and
selector and safety-jacket hardware logic.

Experience in buildlng expert systems for real
applications has shown that the power of the Al
approach only comes to the forefront when the problem
at hand 1is sufficlently complex. Plant operators run
systems with multiple loops, unpredictable material
variations, etc. Over time and with experience the
operators generate rules-of-thumb that help them deal
with this complexibility. This set of rules Iis
intimately confined to their plant and process. An Al
structure that permits planning under uncertainty has
been shown to be useful in dealing with this situation.
In important ways this planning is an heuristic
extension to stochastic dynamic programming (SDP).
This observation 1is sobering for the difficulties
attendant even In simple systems with SDP are well
known. This paper has pointed out that the use of an
expert system can provide a framework for the
blending of the numerical algorithms and the detailed
expertise of the plant operator. Experimental
investigations of systems of this type are currently
being performed.
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