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INTRODUCTION

The problem of direct adaptive control and adaptive filtering for systems de-
scribed by delay-differential equations is considered. This kind of system
descriptions is natural to obtain for processes with flows, transport delays,
and refluxes, see [Morl and [E®GK]l. A quite different application described
by similar system equations is image processing systems. This latter
application will however not be considered here.

A model reference approach to direct adaptive control is shown to be feasible
for a class of 2-D systems. A reparametrization of the 2-D system description
is given and the identification problem is converted into a linear estimation
problem. Some necessary conditions for existence of solutions to the adaptive
prediction and direct adaptive control problem are also given.

PRELIMINARIES

Let R[z] denote the ring of polynomials in z with real coefficients. Here we
will also consider systems defined over R[z, ,z_ 1 i.e. the ring of polynomials
with real coefficients in two indeterminates - 2z, and z,. Such systems are for
example continuous-time systems with delays and two-%imensional image pro-
cessing filters. The systems may as well be described by polynomials in
R(z )[z,1 or Rl{z,1[z,] i.e. polynomials in z_, whose coefficients are rational
functions and polynomials in z. , respectively. For the theory of polynomials
of several variables, see [K&R] or ([Vanl. The algebraic properties of
Rlz,,z_ ] are different from those of R[zl., The ring of polynomials R[z] is
e.g. a Euclidean domain while R[zl,zzl is not, see [Shal, chapter 6.

Traditional methods to solve model matching problems in linears systems
theory, see [A&W1 or [Kail, are based on the Diophantine equation

AR + BS = P (1)

which for given A, B, P € R[z] has solutions R, S € R[z] if A and B are
coprime. In the two-dimensional case there are solutions R, S € R(z,)[z_,]1 for
A, B, PE RI[=z ][z?] when A and B are coprime i.e. when the Bezout identity
exists, see [MLKI1."There are also solutions R, S € R[z,1[z_,] for coprime A,
B € R(z,)[z,] and P € R{z ][22], see [K&3) and [EGKI], theorem 2.11. For
further ‘investigations on t}ne coprimeness problem of 2-D polynomials, see
[LMLK].



PROBLEM FORMULATION

The problem of direct adaptive control of 2-D systems will now be
considered. The treatment is based on a model reference approach to direct
adaptive control. A closer account is given in e.g [A&W] or [Lanl. The
model reference approach is closely connected with the problem of exact
model matching. Treatments of the 2-D case of model matching are found in
e.g. [E&E] and [Sebl.

The problem is to find a continuous-time regulator described by

_ S T
u = RY+RU (2)

to control a continuous-time object described by the factorized input-output
model

y = E " (3)

with input u, output y, and command signal u . The problem of existence of
polynomial factorizations is treated in [Khal. Here A, B, R, 5, T are polyno-
mials with unknown real coefficients in some operator(s). The operators may
be e.g. the differential operator p and some time delay operator. In this
paper the following operators will be used

. _a - ~TpP
zl = pt+a and 22 = e (4)

for some given, positive constant a. The operator z, is a low pass filter ope-
rator and z_, represents a time delay v. These operators commute in the
context of t2his presentation i.e. the input-output point of view of signal
processing.

The polynomials A and B are then

n

1A DjA ij
A(z,,z.) = Z z a,.z,z 3 a =1
1772 i=0 j=0 ijT172 00
n,_ n,
B(z,,2,) = yiB §JB bi.ziz% (5)
i=0 j=0 J
for some finite orders niA’ n.A, niB' n._. The condition on a,.. is imposed for
the purpose of normatioh. Thi transfer’ operator of (3) may also be factorized

as



Alz,,Z)E(L) = u(t)

y(t) = B(Zl,zz)ﬁ(t) (6)

for some internal state variable E.

The polynomial B may be further decomposed into a number of factors. The
main concern is the locations of zeros. Introduce for this reason the following
factorizations

B =b_B,B ; B1(0,0)=1, B,(1,1)=1 (7)

2

The polynomial B

is supposed to be such that all solutions s=s, to the
equation

1

a -sv, _
Bl(s+a' e ) =0 (8)

have Re(si)<0 while B, contains the remaining factors. The factor b is a
scalar i.e. a pure cons?tant gain, The problem to find a B, of least possible
complexity will not be considered here but is of some practical importance.
The reason to make this factorization is to assure internal stability in the
controlled system. The factor B, will play the same role of system invariant
as the relative degree, time de?ay etc. in 1-D model matching problems, see
[ASW].

ASSUMPTIONS

A number of restrictions on the class of control objects will now be given in
order to assure solutions with good properties. Assume that

Al: b00=0 i.e. there is no direct term from input to output

A2: The polynomial degrees DA njA’ D, g njB of A and B
are all known
A3: B2 is known

A4: A and B are coprime i.e. 3M,N € R(zl,zz): AM+BN=1

AS: The time delay v is known

It should be said already here that the requirement to know B2 is impractical
except when B, may be reduced to pure powers of z, and z, i.e. low pass fil-
ters and time &elays in series.



SOLUTION

The closed-loop system of (2) and (3) with time-invariant A, B, R, S, and T
gives the transfer operator as

BT
Y = s——m—y (9)
AR + Bs °©

where R, S, T may be tuned to fulfil specifications in terms of a reference
model. This model should reflect the design trade-offs and is of the type

Ym = "2 u ; Am(0,0) = 1 (10)

where A , B_ are desired pole- and zero-polynomials and where B, is the
part of {Re B@polynomial of the control object which should not be cancelled
in the closed-loop system (9).

(lla-b)

. 1
0°'m 0O b

-]
n
r’-
o
r’.

0]
where b_. is the constant gain introduced in (7). The model matching problem
is then solved via the Diophantine equation

AR + BS = P (12)

It is necessary to obtain polynomials R and S from (12) in order to have
solutions that are suitable for direct adaptive control. Such solutions do not
always exist, see example 2 below.

When there are polynomial solutions R, S in two indeterminates, it is possible
to express them as

2iR 24R i j
R(z,,z.) = X z r. .z, Z ; r_.=1
1’72 i=0 j=0 iji172 00
(13)
n, n, PN
S(z,,z,) = 515 §iS si.ziz%
i=0 j=0 J

for §ome numbers niR’ an, niS’ an which are determined in the process of
solving (12).



The model matching control law (2) is then expressed explicitly as

n. R n iR . . 5H—N i n ‘R ,
u=-3x"3g9 HH.ANWNNcV - = r j(zjw - zJ wo.ﬁnmcv
i=1 j=1 J i=1 j=1 3

(14)
n, n, . .
- S IS mH.ANWwav + £o¢B u_)
i=0 j=0 J
The data filters
i j R
z,25 vi, j20 (15)

require for their implementation the causal operators of low pass filters and
time delays and are therefore realizable.

Let the control law (14) be formulated as the scalar product of the parameter
vector 8 and the data vector ¢. The vector § thus contains filtered and
delayed inputs u and outputs y. Then we have

ult) = - 8Tgct) (16)
with
T _
e = HHHO ...Hu..u...moo...m_ﬁ.....nou (17)
and
u i J k_1 L
o = [(zyw.. . zZw. oy (Zizoy) B Lu ) ] (18)

The estimation oroblem of direct adapntive control is now to calculate 8 from



PARAMETER ESTIMATION

The parameters of the regulator may now be estimated from a linear model
obtained by manipulations of the factorization (6) using (12) and (6), respecti-
vely.

B
y =BE =B 22§ = mm Ru + Sy ) (19)
Assume that wm is known, cf. (A3), and define
u = mNc , Y = mN% etc. (20)

Introduce also the data vector ¢

¢ = TNHCV...ANHNNCT..%...ANHNNu\V... A>SU\L (21)

in accordance with standard notation of recursive estimation, see [L&S].
Then it is possible to rearrange (19) to the scalar product

ult) = - oeehﬂv (22)

The constant parameters 8 may now be estimated by any suitable method for
identification of parameters of a linear model with known components of ¢.
Recall that the estimates © of the parameters © in (22) are intended for use in
the continuous-time regulator (14). The parameters may however be estimated
by discrete-time methods. One natural choice is to sample corresponding u
and ¢ and to fit parameter estimates to the sampled data by recursive identi-
fication. For further details on recursive estimation, see [L&S].

ADAPTIVE FILTERING



It is possible to carry through all of the arguments above with the purpose to
derive adaptive filters for P with any P such that there is a solution to (12).
There is in this case no need to factorize B into wH and mm.

EXAMPLE 1

Consider the following delay-differential control object

x(t) = -3, x(t) + ajx(t-t) + bult)

y(t) = =x(t) (25)

with input u and output y. The time delay v is supposed to be known. The
problem is to design an adaptive controller

S(z,,z.) T(=z,, =z}
wit) == —2Z oty + |||W||m|cnnﬁv
WANH.NNV wANH.NNV (26)

such that the closed-loop system matches the reference model

1
y_(t) = u (t)
m 2p+l1 “c (27)
A polynomial description of the control object in terms of the operators
. 1 _ _-Tp
%1 T p+1 e “2r < (28)

is obtained via



This yields the transfer function

bz B
y(t) = E u(t) 4

1 + AmpuvaH = mNN.._.NN

Z.,2,)
— e

>ANH.NNV (30)

It is here easy to see that A and B are coprime. The zero of B appears at

=0 (31)

where the polynomial A certainly is non-zero. The zero of (31) is - in terms of
the differential operator - an infinite zero of degree 1 of the transfer
function. The reference model

1 o.mNH w

1

B
m
2p+1 1-0.5= >_= 1 (32)

has the same type of zero and it is therefore possible to find a solution to the
pole placement problem with a regulator (26) which is causal and without
derivatives. A solution with >Bu~no.uNH and wBuo.m is obtained for

R =1

T =>-0.5 = t_B (33)

Input-matching estimation based on the linear model

ANHCV = = Hmoo + mo»NNHANH%v + ﬁohbawv
(34)
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EXAMPLE 2

Consider the following delay-differential equation for a control object

x(t) -3, x(£) + ayx(t-v) + bult-v)

y(t)

x(t) (36)

This equation differs from that of the previous example in the time delay of
u. The polynomial representation now becomes

bz, z
vit) = =2 u(t)
1+ Amplvaw - a,z,z, (37)
The A- and B-polynomials now both vanish at
_ 1
(zy,2,) = Hpnmp.o_ (38)

For this reason it

is not possible to solve the polynomial Diophantine
equation

AR + BS = P (39)

for an arbitrary P. It is necessary to include in P a factor with a zero at (38).
The factor

(1 + Amp-vapu o



11

CONCLUSIONS

It has been possible to formally carry over many of the algebraic results
from 1-D direct adaptive control. There is however a strong practical
difference between the required prior information in the two cases.

The question of coprimeness is also more complicated in the 2-D case. Any
solution nNunvannmqu to the equation

Al )

n
o

S )
B(z,,2,) = 0 (41)

puts the constraint on P that P(a,b) must be zero in order to assure the
existence of a solution to (12). In contrast to the 1-D case it is not in general
possible to get rid of the common zero by pole-zero cancellation between A
and B, see example 2 and [ MLK].
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The following simulations show the results when (34) has been sampled with
sampling period h=1. Recursive least-squares-identification has been applied
to estimate the parameters.

Simulations
1
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