LUND UNIVERSITY

Pascal Systems in SIMNON

Martensson, Bengt

1984

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Martensson, B. (1984). Pascal Systems in SIMNON. (Technical Reports TFRT-7278). Department of Automatic
Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/806ec27f-e3e7-40e5-924a-3e1cf234267c

CODEN: LUTFD2/(TFRT-7278) /1-14/(1984)

PASCAL SYSTEMS IN SIMNON

BENGT MARTENSSON

DEPARTMENT OF AUTOMATIC CONTROL
LUND INSTITUTE OF TECHNOLOGY
DECEMBER 1984

Document name

LUND INSTITUTE OF TECHNOLOGY Report

Date of issue
gEF;AFﬂgENT OF AUTOMATIC CONTROL Decmber 1984
Document number
S 22100 Lund Sweden CODEN:LUTFD2/(TFRT-7278)/1-14/(1984)
Author(s) Supervisor
Bengt Martensson Sponsoring organization

Title and subtitle
Pascal Systems in Simnon

Abstract

Abstract:

It is. demonstrated how to write Pascal systems in the VAX-VMS
xergon of Sxm.n.op. An example in the form of an discrete time
universal stabilizing” regulator is included. Some hopefully useful

tips and comments are given along the way. A proof of the stability of
the regulator is contained in an appendix.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient's notes

English

DOKUMENTDATABLAD RT 3/81

Security classification

Distribution: The report may be ordered from the Department of Automatic Control or borrowed through
the University Library 2, Box 1010, S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Pascal Systems in Simnon

Pascal Systems in Simnon

Abstract:

It is demonstrated how to write Pascal systems in the VAX-VMS
version of Simnon. An example in the form of an discrete time
"universal stabilizing” regulator is included. Some hopefully useful
tips and comments are given along the way. A proof of the stability of
the regulator is contained in an appendix.

i. Introduction

It is well known that it is possible to write Fortran subsystems in Simnon. In the
VAX-VMS version it is also possible to write systems in Pascal, utilizing some of
the nonstandard features of Vax-Pascal. This report is intended to document this.

In what follows it is assumed that the reader is familiar with Simnon e.g. as
described in [1]. Knowledge about Fortran systems in Simnon, especially chapter
7 in [2] is helpful, but believed not necessary.

General "how to do it" - info is collected in the next section. Section 3 contains
as an example the system "Helmuth"”, which is a kind of discrete time "universal
stabilizing” regulator. The fourth section contains some general comments.

The program list of "Helmuth"” is presented in Appendix 1. Some other necessary
files are included in the following appendices. Appendix 4 presents a neat Simnon
macro, intended to show a technique of documenting simulation results depending
on parameters. Finally, slightly off the track, Appendix 5 contains a full
description and a proof of stability and convergence of the algorithm.

It should be stressed out that these possibilities do not necessarily generalize to
other versions of Simnon. Needless to say, the command file in appendix 3 runs
only on the computer at the Department of Automatic Control in Lund.

My thanks goes to Leif Andersson and Tomas Schénthal who have been very

helpful when I found out many of the things which are documented here.

2. How To Do It

The reader is advised to compare with the appendices when reading this section.
The description will be given in the same order as in the listings, which probably
not is the most logical order.

The Pascal system is compiled as a "module"”, and henceforth no "begin" of a
main block is permitted. It is ended by an odd "end.".

Types, variables and external procedures for Simnon are declared as in the
listing in Appendix 1. The variables the Pascal system is using are declared next.
The dynamic memory allocation in the standard Pascal is inhibited by declaring
these variables outside all procedures. Otherwise, all variables will be lost

Pascal Systems in Simnon

Pascal Systems in Simnon

Abstract;

It is demonstrated how to write Pascal systems in the VAX-VMS
version of Simnon. An example in the form of an discrete time
"universal stabilizing” regulator is included. Some hopefully useful
tips and comments are given along the way. A proof of the stability of
the regulator is contained in an appendix.

1. Introduction

It is well known that it is possible to write Fortran subsystems in Simnon. In the
VAX-VMS version it is also possible to write systems in Pascal, utilizing some of
the nonstandard features of Vax-Pascal. This report is intended to document this.

In what follows it is assumed that the reader is familiar with Simnon e.g. as
described in [1]. Knowledge about Fortran systems in Simnon, especially chapter
7 in [2] is helpful, but believed not necessary.

General "how to do'it" - info is collected in the next section. Section 3 contains
as an example the system "Helmuth”, which is a kind of discrete time "universal
stabilizing” regulator. The fourth section contains some general comments.

The program list of "Helmuth" is presented in Appendix 1. Some other necessary
files are included in the following appendices. Appendix 4 presents a neat Simnon
macro, intended to show a technique of documenting simulation results depending
on parameters. Finally, slightly off the track, Appendix 5 contains a full
description and a proof of stability and convergence of the algorithm.

It should be stressed out that these possibilities do not necessarily generalize to
other versions of Simnon. Needless to say, the command file in appendix 3 runs
only on the computer at the Department of Automatic Control in Lund.

My thanks goes to Leif Andersson and Tomas Schénthal who have been very

helpful when I found out many of the things which are documented here.

2. How To Do It

The reader is advised to compare with the appendices when reading this section.
The description will be given in the same order as in the listings, which probably
not is the most logical order.

The Pascal system is compiled as a "module”, and henceforth no "begin" of a
main block is permitted. It is ended by an odd "end.".

Types, variables and external procedures for Simnon are declared as in the
listing in Appendix 1. The variables the Pascal system is using are declared next.
The dynamic memory allocation in the standard Pascal is inhibited by declaring
these variables outside all procedures. Otherwise, all variables will be lost

Pascal Systems in Simnon How To Do It

between successive calls.

The main procedure is of course declared global, and consists of a case statment.
The structure follows from the example. Part 1 is executed when Simnon is
started, parts 2-3 when the "syst" command is given. Part 2 ties the Pascal
system's variable with Simnon "variables”, with the name contained in the
"string" (array [1..8] of char). The example is hoped to be sufficient explanation,
otherwise chapter 7 of [2] should be consulted. Observe that when writing
external systems in Pascal or Fortran, unlike the case when you are writing
systems in the Simnon language, it is not possible to use the same identifier on a
state and its initial value. This is slightly annoying.

Part 3 assigns default values to the "par"'s. Part 4 is executed once at the start
of each simulation, and corresponds to the "initial" section of the Simnon
language. Parts 5 and 6 are executed once at every simulation step, and
corresponds to the "output" and "dynamics" sections. Part 7 is called once at
every instant of time Simnon stores something in the store file. Time-consuming
calculation, not needed for the dynamics- or output-sections, can be put here.
Finally, section 8 is executed when the simulation is stopped. e.g. closing of files
can be put here.

A Fortran source file "SYSTS.FOR" is required. See Appendix 2 for the concrete
example. The variable NSYSTS should be put equal to the number of included
systems. Adjust the computed GOTO statement if necessary. A call to the Pascal
system is done as in the "8 CALL HELMUTH" line.

The Pascal system and SYSTS are then linked together with Simnon's object
libraries into your own version of Simnon. The command file | have been using
is included in Appendix 3.

To run your own Simnon version use "invoke simnon", not "run simnon".
Otherwise, you will not e.g. get access to the help facility.

3. An Example: Helmuth

The system Helmuth contains a first order discrete time linear system, and a
somewhat weird "adaptive” or "universal" controller that will stabilize it. It is
different from other adaptive algorithms in the sense that it is not based on
identification ideas, and it does not use probing signals.

The algorithm is based on a stepwise search through a dense sequence of all
possible controllers, which in this case is in simple 1-1 correspondence with the
real numbers R. The dense sequence on R is generated by an random number
generator, which yields an uniform distribution on the interval [0,1], composed
with a bijection from (0,1) to (-c0,00).

As can be seen from the simulation in Appendix 4, the system behaves quite
wildly, but the algorithm does the job.

A full description, together with a proof of stability and convergence, is included
in Appendix 5.

An algorithm of this type has, as far as the author is aware, never occured in
the literature. For more results of this type, see [3].

Pascal Systems in Simnon Some Comments

4. Some Comments

The procedure Testifcrash is used to test weather |y| > crash, where y is the
output of the system to be controlled, and crash is a parameter in the Simnon
sense. If this is true, the simulation is stopped gracefully by setting the global
boolean variable Istop to true. Crash should normally be set to a "very large"
number, slightly less than the largest real number the computer can hold.

This is to prevent a program crash due to numerical overflow. Another use of
this is to interrupt a simulation just when or before things "explode™.

The Simnon macro "run", given in Appendix 4, shows how to automatically put
parameter values on your hardcopy's. This is very useful for documentation
purposes.

It is believed that it is evident how to use the macro, and what it does, perhaps
with the following exception: If you forget the "free'"-ing the following bug occurs:
The first time you assign a value to the global intrac variables (i.e. a. and b.) they
will be assigned the same type (i.e. integer or real) as their values. If you first
make them integer, and then give them a non-integer value, the value will be
truncated.

It is not possible to write a Pascal (or Fortran) system and "control" it with a
"controller” with "direct term". In this case, Simnon will complain about
"algebraic loop detected", regardless if it is true or not. Strictly speaking, this is
a bug in Simnon, but it is a consequence of the tree-building in the equation
sorting parts of Simnon.

It is tempting to call the executable code something else than "simnon". This will
however confuse the "invoke" command so you lose the help utility.

Since the executable code is fairly large (> 500 blocks in VAX-VMS) and it is
fairly easy to generate, it is probably a good idea to let it reside on a
non-backed-up area.

5. References

[1] Astrém, K J, A Simnon Tutorial, CODEN: LUTFD2/(TFRT-3168)/1-52/(1982),
Department of Automatic Control, Lund Institute of Technology

[2] Elmqvist, H, Simnon Users Manual, Report TFRT-3091, Department of
Automatic Control, Lund Institute of Technology

[3] Martensson, B, PhD - thesis, to appear (sometime!)

Pascal Systems in Simnon

Appendix 1

Program List
Module Helmuth(output);

{Simple discrete time adaptive controller by searching a dense
sequence of controllers

Pascal system to be linked into Simnon

Author Bengt Martensson, 841210 }

{#########Types for simnon ########H#HHRRHARRAHFHHRHHH)

type
simnonid=packed array [1..8] of char;
destinrec=record
idum,ipart: integer
end;

const
maxindex = 15;

type
index = 1.maxindex;
vector = array [index] of real;

{######### Variables for Simnon ########H##H##H#H##H#}

var
destin : [common] destinrec;
t : [common(time)] real;
Istop : [common(user)] boolean;

(####H#H######## Procedures for Simnon ##H##H#HFAHRHF#RAFHFAHHRN)

external(ident2)]Procedure Ident(stype,sysid: simnonid); external;
external(tsamp2)]Procedure Tsamp(var v:real; vid: simnonid); external;
[external(input2)]Procedure Input(var v:real; vid: simnonid); external;
external(outpu2)]Procedure Outpu2(var v:real; vid: simnonid); external;
external(state2}]Procedure State(var v:real; vid: simnonid); external;
external(init2)]Procedure Init(var v:real; vid: simnonid); external;
external(Der2)]Procedure Der(var v:real; vid: simnonid); external;
external(new2)]Procedure New(var v:real; vid: simnonid); external;
external(par2)]Procedure Par(var v:real; vid: simnonid); external;
external(var2)] Procedure auxvar(var v:real; vid: simnonid);external;
external(inpuv2)]Procedure Inputv(var v:vector; n: integer; vid: simnonid);
external;

Pascal Systems in Simnon

[external(outpv2)]Procedure Outputv(var v:vector; n: integer; vid: simnonid);

external;
[external(statv2)]Procedure Statev(var v:vector; n: integer; vid: simnonid);
external;
[external(initv2)]Procedure Initv(var v:vector; n: integer; vid: simnonid);
external;
[external(Derv2)]Procedure Derv(var v:vector; n: integer; vid: simnonid);
external;
[external(newv2)]Procedure Newv(var v:vector; n: integer; vid: simnonid);
external;
[external(parv2)]Procedure Parv(var v:vector; n: integer; vid: simnonid);
external;

[external(varv2)] Procedure Auxvarv(var v:vector; n: integer;
vid: simnonid); external;

{#HAHHHRHHBHRRR R BHRARHRBHRRHRER R BRRAR IR BRRHRAHRAR AR AR)

var
a,b,y,uknylinormnlinorm,yinit,nzero : real;
initseed llinit,crash,oldlinorm,yO,h,ts : real;
seed : integer;
writtenonce : boolean;

procedure Testifcrash;
{Stops the simulation gracefully if abs(y) > crash}

begin
if (abs(y) > crash) and not writtenonce then
begin
writeln('Abs(y) > crash = 'crash,’ Simulation stopped!');
writtenonce := true;
Istop = true;
end;
end;

function tan(x : real) : real;

begin
tan = sin(x)/cos(x);
end;

function mth$random(var seed : integer):real;external;

const

Pascal Systems in Simnon

pi = 3.1415926;

function Newk : real;
{generates a dense sequence on R}

begin

Newk := tan(pismth$random(seed) - pi/2);
end;

Procedure Updategain;

begin
if linorm - oldlinorm > nxy0O then {try new regulator}
begin
k = Newk;
oldlinorm := llnorm;
n:=n+1;
y0 = abs(y);
end;
end;

[Global] procedure Helmuth;

begin

case destin.ipart of

1: Ident('DISC '/'HELMUTH '); {identification}

2: begin {declaration of variables}
State(y,'vy);
New(ny,'ny)
Init(yinit,'yinit ');
State(linorm,'linorm ');
New(nlinorm,'nlinorm ');
Init(11init,"11init ');
Par(a,'a K
Par(b,'b ')
Par(initseed,'initseed');
Par(crash,'crash ');
Par(h,’h K
Tsamp(ts,'ts K
Auxvar(k,'k);
Auxvar(u,'u K
Auxvar(n,'n K
Auxvar(zero,'zero K

end;

3: begin {Assignments of 'Par's}
crash := 1E30;
a:= 2;

Pascal Systems in Simnon

b:=1;
h = 1;
initseed = 1;
yinit = 1;
end;
4: begin
zero = 0;
writtenonce := false;
seed = round(initseed);
n = 0;
y0 = 0;
oldlinorm := O;
end;
5: begin
Testifcrash;
Updategain;
u = -ksxy;
end;
6: begin
ny = axy + bxu;
nlinorm := linorm + abs(y);
ts =t + h;
end;
7: begin
end;
8: begin
end;
end;
end;

end.

{Initial section}

{output section}

{dynamics section}

{computation on accepted values}

{final computations}

Pascal Systems in Simnon

Appendix 2

SYSTS.FOR
SUBROUTINE SYSTS

c
DIMENSION SNAM1(2),SIFIL(2) FUNC1(2)
COMMON/DESTIN/ISYST,IDUM
COMMON/NSYSTS/NSYST
COMMON /NALLOC/NS
COMMON /SYSAV/ S(10000)
COMMON/SAVEAR/IS(42)
COMMON /DEVICE/LKB,LTP,LLP,LDIS,LTO LPLOT LXXX LDK1,LDK2,LDK3LDK4

o
DATA SNAM1,FUNC1/4HNOIS,4HE1 ,4HFUNC4H1 [
DATA SIFIL/4HIFIL,4HE /

o

C SIZE OF INTEGER SAVE AREAS (IS)

c

C OPTA 14

C SNOISE 6

C SDELAY 9

C SIFILE 5

C SFUNC 4

C LOGGER 2

C STIME 1

c

c «+ VAX ERROR HANDLER FOR FORTRAN SYSTEM IS DECLARED HERE:
EXTERNAL FORSYSHDL
CALL LIB$ESTABLISH(FORSYSHDL)

o
NSYST=8
NS=10000

o
GO TO (1,2,3,45,6,7,8)ISYST

c

1 CALL SOPTA(ISS)
RETURN

c

2 CALL SNOISE(SNAM1]S(15)S)
RETURN

o

3 CALL STIME(IS(21).S)
RETURN

o

4 CALL SDELAY(IS(22).S)
RETURN

c

5 CALL SIFILE(SIFIL.LDK2]S(31)S)
RETURN

o

6 CALL LOGGER(IS(36).S)
RETURN

c

7 CALL SFUNC(FUNC1,S(38).S)

Pascal Systems in Simnon

RETURN
C
8 CALL HELMUTH
RETURN

END

- 10 -
Pascal Systems in Simnon

Appendix 3

Link Command File

$ on error then goto delobj

$ delete simnon.exe;x

$ pascal helmuth

$ link/nomap/executable=simnon -
paclib:simlib/include=(simnon$main,extsub),-
build:unimpl,-
use:[]helmuth, -
use:[]systs, -
paclib:simlib/library .-
build:every/options

$ delobj:

$ delete helmuth.obj;+

Pascal Systems in Simnon

Neat Macro

macro run ; simtime ; ain
default simtime = 60
default ain = 2

default bin = 1

free a.

free b.

let a. = ain

let b, = bin

par a : a.

par b : b.

simu O simtime [store O
switch graph on

split 2 2
ashow y
show zero
text 'y'

axes v -5 5 h 0 simtime
show k

show zero
text 'gain k'
ashow n

text 'n'

ashow linorm
text 'linorm'

switch mark off

mark a 0 14

mark "Helmuth

mark a 0 135

mark :a = a.;b = b.

end

bin

- 11 -

Appendix 4

- 12 -
Pascal Systems in Simnon

Simulation Results

84.12.12 - 14:40:10 nr: 1
hcopy

Helmuth

a=2;b=1

3.E11

-3.El11

_gain k

This figure was generated by the command "Run"

2.5

2.E12

1.E12

Ilnorm

40.

- 13 -
Pascal Systems in Simnon

Appendix 5

Full Description, Proof of Convergence of the Helmuth Regulator

Let the time t € N = {0,1,..}. Denote the ¢! norm of y(.) truncated at time t by
(t), eg.

t
Z(t) = T |y(i)l
0

Let (ky)ci’obe a dense sequence on R. Suppose that the system to be controlled is
y(t+1) = ay(t) + bu(t) (*)

where a and b are unknown (including signs) real numbers. To make things
interesting, we assume that () is unstable, i.e. |a] > 1.

The algorithm can be described in some sort of "pseudo Pascal language":

for n ;= 1 to oo do
begin
Yo = vl
to = i
ki=k ;
repeat
(regulate with the control law u = -ky);
until X(t) - () > ny;
0 0
end

Proof of stability and convergence

There is an open set of k's such that the system (x) is stable when controlled by
the control law u = -ky. By shrinking this open set somewhat to O, there is a
real number N > 0 such that ¥(co) exists, and is < N |y(0)] for all k € O (just sum
the infinite geometric series). But this means that for n in the algorithm
sufficiently large and k € O, the condition in the repeat statement will never be
satisfied. Since (k) is dense in R and therefore ku € O for infinitely many v, this
proves convergence and stability.

