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DOMINANT POLE DESIGN

K J Astrém and T Higglund

ABSTRACT

This paper describes a new method for designing simple feedback systems. The
idea is to position only those closed loop poles which have a dominant influence
on the closed loop response. Techniques for approximate determination of the
dominant poles are derived, as well as design methods based on these formulas.
Apart from applications to design, the results may also be used to assess the
complexity of the compensators needed to satisfy different specifications. The
method works for systems where the closed loop dynamics can be approximated

by dominant poles.



1. INTRODUCTION

This paper was motivated by work on automatic tuning of simple regulators. See
Astrém (1981, 1982), Hagglund (1981) and Astréom and Hagglund (1983, 1984a,
1984b) which indicated the need for improved design methods for simple
regulators of the PID type. The classical Ziegler-Nichols tuning rules have the
advantage of being very simple to use since they are based on knowledge of cne
point on the Nyquist curve of the system only. See Ziegler and Nichols (1943).
The Ziegler-Nichols design method does, however, give poor control of the
damping of the closed loop system. Related methods based on amplitude and phase
margins discussed in Astrém and Higglund (1984a) also have the same difficulty.

See Hagglund and Astrém (1984).

A natural extension of the Ziegler-Nichols method is to try to find techniques
which are based on knowledge of several points on the Nyquist curve of the open
loop system. In Higglund and Astrém (1984), a new method was proposed which
uses two points on the Nyquist curve. It may be regarded as a special case of
pole-placement where it is only attempted to position the dominant closed loop
poles. This is in contrast to normal pole placement methods where all closed loop
poles are positioned. The design was derived using conformal mapping arguments.
In this paper, a more general derivation of the dominant pole design method is
presented. It contains the method of Hagglund and Astrém (1984) as a special

case.

The paper is organized as follows. The notion of dominant poles is reviewed in
Section 2. Approximate methods for determining the dominant poles are given in
Section 3. The key result is a very simple method for determining poles from the
Nyquist curve of the loop transfer function. The formula developed in Section 3
is used to derive design methods for PI, PD and PID-regulators in Section 4. The
specifications given are primarily related to the frequency and the damping of the
dominant poles. A few examples of the application of the design method are also
given. In Section 5, the design method is used tc control several models of
processes which are common in process control. The main results of the paper

are summarized in Section 6, and references are given in Section 7.



2. DOMINANT POLES

Consider a closed loop system obtained by negative feedback around a linear
system with the transfer function G(s). See Fig. 1. The transfer function of the

closed loop system from the command signal to the output is given by

6 (s) = I%‘S()ST (2.1)

Many properties of the closed loop system can be deduced from the poles and the
zeros of Gc(s). The zeros of Gc(s) are the same as the zeros of G(s) i.e. the
zeros of the plant and the regulator. The closed loop poles are the roots of the

equation
1 +G(s) =0 (2.2)

The pole-zero configurations of closed loop systems may vary considerably.
Many simple feedback loops will, however, have a configuration of the type shown
in Fig. 2 where the principal characteristics of the response is given by a

complex pair of poles P,: Py called the dominant poles. The response is also

somewhat influenced by real poles and zeros, P, and z, respectively. The steady
state properties are influenced by the dipole Py 2o Poles and zeros whose real
parts are much smaller than the real part of the dominant poles have little
influence on the transient response. Classical control was very much concerned
with closed loop systems having the pole-zero configuration shown in Fig. 2. See
Mulligan (1949), Truxal (1955), Elgerd and Stephens (1959}, Horowitz (1963).

Ue G(s) y

Fig. 1 Block diagram of a simple feedback system.
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Fig. 2 Pole-zero configuration of a simple feedback system.

Even if many closed loop systems have a pole-zero configuration similar to the
one shown in Fig. 2, there are, however, exceptions. Systems with mechanical
resonances, which may have poles and zeros close to the imaginary axis, are

generic examples of systems which do not fit the pole-zero pattern of Fig. 2.



3. DETERMINATION OF DOMINANT POLES

A simple method for estimating the dominant poles from knowledge of the Nyquist
curve of the open loop system will now be described. Consider the loop transfer
function G as a map from the s-plane to the G-plane. See Fig. 3. The map of the
imaginary axis in the s-plane is the Nyquist curve which is indicated by the full

line in Fig. 3b. The closed loop poles are given by the characteristic equation
G(s) +1=0

Therefore, the map of a straight line through the dominant poles in the s-plane is
a curve which goes through the critical point C = -1 in the G-plane. This curve
is dashed in Fig. 3b. Since the map is conformal, the straight line A'C' is mapped
into the curve AC which intersects the Nyquist curve orthogonally. The triangle
A'B'C' is also mapped conformally to ABC. If ABC can be approximated by a

triangle the following condition holds

G(lwz) - G(1w1) _ 1+G(iw2) (3 1)

a

1w2 = 1!.\11

This equation can be used to determine the dominant poles approximatively. The

‘/m G
' ‘/m s
c’ I‘:‘:‘Tﬁ'i’f}z

= B'=I'w? 2
| w Re G
I
l -

Re s
] (1)

Fig. 3 Representation of the transfer function G as a map of C to C.



procedure can be expressed as follows. Determine a point A on the Nyquist
curve such that the normal at A goes through the critical point C. The frequency

w, at A is then the argument such that G(iwz) = A. To determine o consider a

2

neighbouring point w, and compute o from (3.1). The approximation will be good

1
if the graph ABC is close to a triangle.

An analytic derivation

To provide further insight, the equation (3.1) will now be derived analytically.
For this purpose consider the equation (2.2). A Taylor series expansion around

s = iw gives
0 =1+ G(-o+tiw) = 1 + G(iw) - oG'(iw) + ...
Neglecting terms of second and higher order in o we find
1 + G(iw) - oG'(iw) =0 (3.2)

This equation is equivalent to (3.1) as Wy, =W, =W, Notice that w must be chosen
so that the normal to the Nyquist curve at w goes through the critical point.
Otherwise ¢ in (3.2} will not be real. This analytic derivation shows that the
formula (3.1) will give good results for small o, i.e. when the dominant poles are
close to the imaginary axis. The approximation (3.2) will not hold if the function
G(s) has singularities inside the circle with center in iw and radius w. This means

that ¢ must be smaller than w.

Examples

A few examples which illustrate the formula (3.2) for approximative determination

of the dominant poles will now be given.



EXAMPLE 3.1

Consider a system with the loop transfer function

k
G(s) = s(s+1)

Hence

k k

G' = - -
(=) s2(s+1)  s(s+1)?

Equation (3.2) becomes

1+ k + ok + ok =0

s(s+1) 52(s+1) s{s+1)2

Hence

s2(s+1)% + ks(s+1) + ok(s+1) + oks = O
or

st 4 253 4 (1+k)s2 + k(20+1)s + ok = O

Introducing s = iw we get

&t = (1+k)w2 +ok =0

202 + k(20+1) = 0

These equations have the solution

The relative damping is



2+k

;:
2+k+2k 2+ 2k vk 2+ 2k

The following numerical values are obtained for k = 1.

o = 0.866 (0.500)
w =1.17 (0.866)
g = 0.59 (0.500)

The correct values are given in parentheses.

EXAMPLE 3.2

Consider a system with the loop transfer function

k
s(s+1)

G(s) = 5

Hence

Gr(s) = - K 2

52(s+1)2 s(s+1)3

Equation (3.2) becomes

55 v 3s? 4 3s° + (1+k)s2 + k(1+430)s + ok = 0

Introducing s = iw gives
3% - (1+k)w2 +0k =0

wd = 3w? + K(1+30) = 0

These equations have the solution



_ (8-k)/32k+0k? — 24K - 3k

128k

3k + ./32k + 9k2

16

For k = 1 the solution becomes

o = 0.14 (0.122)
w = 0.77 (0.745)
t =0.18 (0.16) o

Difference approximations

Equation (3.1), which may be considered as a difference approximation of (3.2), is
more convenient to use than (3.2) when the Nyquist curve is determined

experimentally. The equation (3.1) can be written as

_ i(wz—wl) [1+G(iw2)]
G(iwz} - G{iwi]

(3.3)

Notice that the complex numbers 1+G(iw2) and G(iwz) - G(iwl) are orthogonal if

W, and w, are properly chosen. The frequency w can then also be estimated as

W= W, Two points on the Nyquist curve are obviously needed to use this
formula. More accurate equations can be derived if more points are known. With
three equidistant points w - h, w and w + h the following equation for o is

obtained by approximating the derivatives in (3.2) by differences

1+ G(iw) + 32 (G[i(w+h)] - G[i(w-h)]) -
2

- = (6[i(w+h)] - 26[iw] + G[i(w-h)]] = 0 (3.4)
2h
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Ue GR G P 4
a 7 _—
Fig. 4 Block diagram of a closed loop system.

A control design problem will now be presented. Consider the closed loop system
shown in Fig. 4 with a plant and a compensator. The compensator GR should be
determined so that the closed loop system has desired properties. In a single

control loop the specifications include

Transient behaviour
Rejection of load disturbances

Rejection of measurement noise

Assume that the closed loop system can be characterized by the dominant poles,
s = -0 t iw. The transient behaviour is then largely governed by o and w. It is

also influenced by the zeros of the process and the regulator to some extent.

Load disturbances may be reduced by integral action. To make sure that rejection
of low frequency disturbances does not take too long time, it is required that the

closed loop pole introduced via integral lies sufficiently close to the origin.

The effect of measurement noise is governed by the dominant poles and the high

frequency gain of the regulator.

Since the dominant poles are characterized by two parameters, a regulator of the
Pl or PD type which has two adjustable parameters is sufficient to give desired
dominant poles, provided that the desired bandwidth is not too high. A
PID-regulator which has an additional parameter adds extra flexibility with respect

to rejection of load disturbances.
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PID-regulator which has an additional parameter adds extra flexibility with respect

to rejection of load disturbances.

With these specifications it is straightforward to obtain an analytic formula for

the design. Equation (3.2) gives the following condition
[1+Gp(iw)GR(iw)] - a[c.r')(iw)GR(iw)+Gp(iw)c.]'2(iw)] =0 (4.1)

This is an equation in complex variables. It thus gives two real equations which
can be used to determine the parameters of a Pl or a PD regulator. Since a
PID-regulator has three parameters, an auxiliary condition is needed in this case.
Such a condition can be to specify a given relation between the integral time Ti

and the derivative time T q’ ie.

Ty = oT, (4.2)

A regulator also introduces zeros in the loop transfer function. These zeros are
influenced by the manner in which the command signal is introduced in the
system. It is common practice not to introduce the command signal in the

derivative action. Such a PID-regulator can be described by

t
1 deh
u=1<ep+r[e(s)ds+'rd—(H (4.3)
1
0
where
B y
and
eq = - Y

The regulator introduces a zero at
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This zero may cause an excessive overshoot if it is too close to the real part of

the dominant poles. To avoid this the regulator may be modified by choosing

e=r -y

Br -y 0<pB<1 (4.4)

[¢]
1

eq = -V

This means that the proportional part only acts on a fraction B of the reference

signal. The regulator (4.3) with e Sy and e defined by (4.4) introduces a zero at

This zero can be positioned properly by selecting B. A reasonable choice is

1
B = 30T,
i

(4.5)

since this choice will place the zero at -3o0, which is far away from the real part

of the dominant poles.

Summarizing we find that the design procedure can be described as follows.
Determine the parameters of the regulator such that (4.1}, (4.2) and (4.3) hold.
The design procedure is illustrated by several examples in the next section. This
section ends with some examples where only Pl or PD regulators are used. In

these cases, the controller is uniquely determined by Equation (4.1).

EXAMPLE 4.1 - PD control of a double integrator

With PD-control of a double integrator the loop transfer function becomes

k+kds k kd

G(s) =

where k is the proportional gain and k d is the derivative gain. The design

equation (4.1) becomes
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k k 2k kd
1+—+——+o’—-—3+—§ = 0
S S 5 S
Hence
s> + k5% + (ktoky)s + 20k = O

Introducing s = iw this gives

iw(-w+krok ) - kw? + 20k = 0

Hence
4 2
W 2 2 30
k = P [w + o ] 1 - —
202+w2 | wz
k, = 20u”_ 20 |1 - 2%
B 202+w2 wz

where the approximations vyield if o/w is small. With PD-control of a double
integrator it is possible to obtain an arbitrary pole placement. The exact gains

which give the poles - ¢ £ iw are k = w2+02 and kd = 20, o

The gains in Example 4.1 give a closed loop system with a frequency

W

1 2

w +20

=‘4—k2/4=ww4+—02w2~w1—§£
d ~ 2 2

and a relative damping

k d o w2+02 02
;1 = = . IS 1 T ——
2vk w2+<:r2 w2+202 2w2

The equations indicate the error due to the approximations used. Notice that the
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error in the relative damping is smaller than the error in the frequency. With
o/w = 0.5 the error in the relative damping is 9 % while the error in the
frequency is about 25 %. The errors may be reduced by using more terms in the
Taylor series expansion used to derive the design equation. Straightforward

calculations give the following series expansion for the design equation

2 3 4
1 20 3o 40 S50
1 +k ) + =3 + 3 + 3 + 3 +
s s s s s
r1 o 02 03 64
+ kd =+ - + 3 + 2z + “E + =0
s s s s s

or
2
(s-o)” + kd(s—a) +k=0

Using three terms in the series expansion gives

K = w4(w2—02] N [w2+ 02] [1 _ é]
w4—262w2+3a4 w4
o - 200 201 + 22
d~ 4 _.22_.4"°%“ 2
w -20 w +30 W

Similarly the following gains are obtained if four terms of the series expansion

are used.

6
W 2 2
k = g5~ *"][“—
w -w o -4o
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K = 20(w2—202)w4 N 20[1 ; 4o
47 Z?) (oh2o?-adh)

4, 4
These numbers are correct up to terms of the order of o [w .

Next a plant with the transfer function

G _(s) = 1

4.6
P (s+1)3 (4.6

will be investigated. Since the plant is of third order it is clear that exact pole
placement cannot be obtained with PI, PD or PID-control. First consider

Pl-control.

EXAMPLE 4.2 - PI control of (s+1)™

With Pl-control of the system (4.6}, the loop transfer function is

k k
G = +
it (s+1)3  s(s+1)

i

Hence

3k 3ki k
G’ = - - -
i (s+1)?  s(s+1)t s%(s+1)3

i

The design equation (3.2) becomes

k k. 30k 3ok. ok.
1 + + - + + 1 + 2 =0

(s+1)3 s(5+1)3 (s+1)4 s(s+1)4 52(s+1)3

Hence
52(s+1)4 + ksz(s+1+30) + k. [52+s(1+4o)+a] =0

or



k(1+3a)w2 + ki(wz-a) I

kw? + ki(1+4o) =~ a0t ¢ a0?

Solving for k and ki gives

= a[—4w4+20w2) + 3w+ 2w2 -1

w2 + 1202 + 60 + 1

_ - W + 208 + 302 - 120(w4—w2)
1 wZ + 126 + 60 + 1

EXAMPLE 4.3 - PD control of (s+ 1)'3

Consider PD-control of the system (4.6). The loop transfer function becomes

k+k ,s
d
G(s) = —3
(s+1)
Hence
3(k+k ,s) k
6r(s) = - —S + —S

(s+1)t (s+1)°
The design equation becomes

k+k .s 30 (k+k ;s) ok
1+ d + d- - =0

(s+1)°  (s+1)?  (s+1)°

Hence
4 2
(s+1) " + k(s+1+30) + kd(s +s+20s-0) = 0

Putting s = iw gives

16
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e

Fig.5 Areas of positive gains in the PI and PD regulators.

1430)k - (w2+o)k, + @ — 602 + 1 = 0
d

k + (1+20)k, - 4w’ + 4 = 0

These equations have the solution

- 2000 + 30% + 16002 + 202 - 60 - 1

wz + 602 + 60 + 1

k =

_w? 12007 - 20% - 120 - 3
. w? + 60% + 60 + 1 :

In the Examples 4.2 and 4.3, regulators with positive gains can be found only if
the specifications on the dominant poles are restricted to certain areas. Fig. 5
shows those combinations of o and w which give positive gains for the Pl and the
PD regulators respectively. The border-lines are given by the pure P, I and D
regulators. Notice that the approximative formulas are only valid if ¢ < w. From

this figure it is seen that the bandwidth w cannot be chosen too high if only a PI
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controller is used.

The next two examples demonstrate Pl and PD control of processes with the

transfer functions

(4.7)

where n is an integer greater than 3. Hence, Examples 4.2 and 4.3 are special

cases of the following examples.

EXAMPLE 4.4 - PI control of (s+1) "

When the system (4.7) is controlled by a Pl-controller, the loop transfer function

becomes
k k.
G(s) = — + —
(s+1) s(s+1)
Hence
nk nki ki
G' (5) = -

(s+1)™1  s(s+1)™1 s2(sen)®
The design equation (3.2) becomes

k k. nok nok. ok.
1+ . i i i

+ + + =0
(s+1)n s(s+1)n (s+1)n+1 s(s+1)n+1 52(s+1)n

Hence
52(s+1)n+1 + ksz(s+1+na) + ki[52+s[1+(n+1)a]+a] =0

Putting s = iw gives the following two equations



k(1+na)u2 + ki(wz—a) = - sze(1+iw)n+1
kuw? + k;[1+(n+1)0] = w Im(1+iw)™*?

Solving for k and ki gives

K = o[ 1+ (n+1)o]Re (1+i0)™ ! + (0—w?)Im(1+iw)"*1
w(mz + n(n+1)a2 + 2no + 1)
K = —uZRe(1+iw)n+1 + w(1+na)1m(1+iw)n+1
! W? + n[n+1)02 + 2no + 1
where

n+1

Re(1+iw)™! = [1+0?] 2 cos(n+t)e

n+1

Im(1+i0)™! = [1+w®] ? sin(n+1)e

and

¢ = atan(w)

EXAMPLE 4.5 - PD control of (s+1)™

19

When the system (4.7) is controlled by a PD-controller, the loop transfer function

becomes
k+k .s
d
G(s) = ——
(s+1)
Hence
n(k+k s) k
G (s) = € :

C(sr)™ T (s+)®



The design equation (3.2) becomes

k+k s ok on(k+k ;s)
A d , g o

(s+1)"  (s+1)"  (s+1)™!

Hence
n+1 2
(s+1) + k(s+1+no) + kd[s +s[1+(n—1)a]—a] =0
Putting s = iw gives the following two equations
k(1+no) + kd(—wz—a) = - Re(1+iw)n+1

ko + ku[1+(n-1)o] = - Im(1+iw)™*?

Solving for k and k d gives
- —w[ 14 (n-1)o]Re(1+iw)™ ! + (wP-0)Im(1+iw)™"}
w(wz + n(n—1)02 + 2no + 1)
. \n+1 . \n+l
k. = wRe (1+iw) - (14no)Im(1+iw)
d

w? n(n-i)a2 + 2no + 1

20

As n increases, it becomes of course more and more difficult to control the

process (s+1)—n with a PID controller. If a figure corresponding to Fig. 5 were

drawn for different values of n, it would be seen that the admissible areas of

combinations of o0 and w decrease with increasing n. It means that only a very

low closed loop bandwidth can be obtained with a PID controller when n is large.

The final example gives the result of PI and PD control of a heat process

described by the model

Gp(s) = e_‘/s_T

(4.8)
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EXAMPLE 4.6 - Pl and PD control of a heat process

First consider PI control of the system (4.8). The open loop transfer function

becomes
k.
G(s) = (k + S—l)e“/s_T
The proportional and the integral gains become

2erw[2wcos(r) - orsin(r) - 2osin(r) + arcos(r)]

k = -
4w2 + asz + 4row + 2r02
2erw2[2wsin(r) + orsin(r) + arcos(r)]
k., =
t 4w2 + osz + 4row + 2r02
where
r= /2
2

When the system (4.8) is controlled by a PD controller, the following loop

transfer function is obtained.

G(s) = (k + kds)e—'/s_T

The proportional and the derivative gains become

2erw[2wcos(r) - orsin(r) + 20sin(r) + arcos(r)]

2

k = -
4w + asz + 4row - 2r02

2e" [Zwsin(r) + orsin(r) + arcos(r)]

kd=|_

4w2 + asz + 4row - 2r02 o
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5. SIMULATION EXAMPLES

In Hagglund and Astrém (1984), the dominant pole design was applied to several
different simulated processes. The transfer functions of these processes were
chosen to demonstrate the limijtations of more simple design methods. In this
section, the dominant pole design is applied to some additional systems which have

dynamics that is common in process control.

The dominant pole design based on difference approximation is well suited for
auto-tuning. In Astrém and Higglund (1984b), a method to automatically identify
two points on the Nyquist curve is presented. The identification procedure
automatically determines the frequencies as well as the values of the open loop
transfer function at two points in the neighborhood of the cross over frequency.
This identification procedure is used in the following examples. The desired

relative damping of the dominant poles is chosen to § = 0.4,
The PID controller has the structure given by Equation (4.3), with the relation «
between the integral time and the derivative time equal to 0.25. See Equation

(4.2). The parameter {3 is chosen according to Equation (4.5).

Processes with the following transfer functions were used

1 1 1
G, = ¢ G, = — G, = ——
1 s 2 s+1 3 [s+1)3
G, o= — 6 = 1
4 (s+1)® 5 = (1+s)(1+0.2s) (1+0.05s) (1+0.01s)
1 -0.2s 1 -s 1 -2s
O = 5+1 ° Gz=sa® Gg = s+1 ©
1 ~-0.4s i -2s 1 —4s
G, = ——— e T S 7 = i
¥ (s+1)2 10 (5+1}2 11 (s+1)2

The PID parameters and the frequency w of the dominant poles are presented in

the following table.
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w K Ti Td B
61 15.8 21.0 0.169 0.0422 0.29
G2 15.7 24.7 0.185 0.0464 0.26
G3 1.71 3.71 2.28 0.571 0.20
G4 0.578 1.23 4.61 1.15 0.29
G5 9.52 9.62 0.492 0.123 0.16
G6 8.61 5.79 0.347 0.0867 0.26
G7 2.12 1.46 1.12 0.281 0.32
G8 1.20 0.762 1.78 0.445 0.36
Gg 2.14 3.20 1.54 0.385 0.23
G10 0.880 0.939 2.64 0.661 0.33
611 0.555 0.593 3.67 0.917 0.38

In Fig. 6 - 16, the result of the simulations are presented. The figures show the
output signals y above the input signals u. The systems are disturbed by a

set-point change followed by a constant load disturbance.

The dominant pole design manages to control all the processes satisfactory. The
processes G8 and G1 1 have time delays which are quite long compared to the
time-constants of the system. These processes are known to be difficult to control
with a PID regulator without dead-time compensation. Processes with several
different time-constants, like the process G5, is known to be poorly controlled

when the Ziegler-Nichols design is used.
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6. CONCLUSIONS

Design methods based on knowledge of only one point on the Nyquist curve, like
the Ziegler-Nichols method and specifications on phase and amplitude margins,
have the advantage of being simple to use. Ziegler and Nichols also proposed a

simple method to identify one point on the Nyquist curve.

In Higglund and Astrém (1984), the limitations of design methods based on
knowledge of only one point on the Nyquist curve was demonstrated. The
dominant pole design method, which is based on the knowledge of two points on
the Nyquist curve, is a method to approximately position those poles which have
a dominant influence on the transient behaviour of the system. In Hagglund and
Astrém (1984) and in this report, this method is shown avoid the problems
associated with the simpler methods mentioned above, and to manage to control

many models of processes which are common in the process industry.

The dominant pole design method is primarily intended to be used combined with
the autotuning method presented in Astrém and Higglund (1984b). This enables

an automatic determination of the two points on the Nyquist curve.
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