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ADAPTIVE FRICTION COMPENSATION

IN DC MOTORS

*Carlos Canudas de Wit

Department of Automatic Control
Lund Institute of Technology
Box 118, S-221 00 Lund

Sweden

ABSTRACT

The problem of torque friction compensation in direct current motors is
considered. A nonlinear discrete time polynomial representation is derived from
the physical laws. The control linear design is then based on a linearized model
and a nonlinear compensation. Through adaptive compensation the performance of
the closed-loop system is improved over the non-adaptive case, where parameter
uncertainties may be high. The control law resulting from this scheme is a
combination of two sources: a fixed linear controller based on the linearized
model and an adaptive contribution which compensates for the nonlinear effects
and model parameters uncertainty. The stability and convergence of this scheme

is studied. Some simulations exemplify the main ideas.

* Laboratoire d'Automatique de Grenoble. B.P. 46, 38402 Saint Martin d'Heres,
France. Member of the research group GRECO-Systemes adaptatifs. The Author
work's is sponsored by CONACYT-MEXICO.
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INTRODUCTION

During the last years adaptive control theory has been growing and maturing.
The strong assumptions under this theory was created have been progressively
relaxed making its applications feasible. As a result of this work, several
industrial products based on these ideas are actually available on the market, see

Astrém (1985).

Some of these assumptions are still necessary, this is the case of the hypothesis
of linearity. This property may seem restrictive since it is well known that the
most of the systems do not fulfill this condition. However in many instances the
presence of nonlinear elements make a minor contribution to the system variance
that their effects can be ignored for most purposes. In somes cases, where these
characteristiques can not be ignored, it is possible to find simple solutions: i.e.
try to split the system into distinct modes or regimes of operation over which it
is effectively linear. Other possibilities consider the existence of transformations
by which the input and the output of a nonlinear system can be reduced to a
linear or stationary form. If any of these conditions is met, it will be necessary

to adopt more complex methods.

As we mentioned above, the use of adaptive techniques in nonlinear systems,
demands a particular solution which is proper to the process nature. In this
work we consider the case of the electrical DC motors, where the friction torque
is a piecewise nonlinear function of the angular velocity. By analysing the
asymmetrical nonlinear structure we can obtain a nonlinear discrete time
representation. This model isolate the friction torque effects in order to

compensate them with an extra term in the control law.

The adaptive scheme that we will introduce here will try to use the maximum a
priori information available from the system: the structure of the nonlinear block
and some knowlege of the model parameters. It seems natural to use adaptive

schemes (or explicit identification) which not destroys this a priori informations.

It should be also noted that we only attempt to estimate the part of the system
which is related to the nonlinear nature and to the model parameter uncertainty.

These estimates will serve to compensate the friction torque effects ( it is called



here "adaptive nonlinear compensation") and allow to carry out a linear control

design based in a linearized model.

The resulting control structure can be viewed as a combination of a fixed linear
controller and a feedback adaptive compensation. This control scheme is proved
to be globally stable and globally convergent. To see previous work on similar

nonlinear systems, refer to KungM.C. and B.F. Womack (1984).
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FIG.1 Asymmetrical nonlinearity between the angular velocity and the friction

torque.

1.- PROBLEM STATEMENT

The set of equations below describe the behavior of a electrical D.C. motor
driven by current. Equation (1) is the torque balance equation, (2) is the

electrical balance equation and the set (3) related (1) and (2).

Jdn(s) = T, () - Ty(t) (1)
L gééﬁ) = R_i(t) - e, (t) - e(t) (2)
e (t) =K w(t) 5 T_(t) =K, i(t) (3)

Te(t) is the electrical torque, Tf(t) is the nonlineal friction torque related to the
angular velocity w(t) by a piecewise nonlinearity showed in Fig.1. e(t) is the input
voltage which drives the output w(t). Kb, Ki' Ra' La and ] are the electrical and

mechanical constants .

For most purpose the inductance effects can be neglected (La=0). The reduced

model can be rewriten into a discrete time version by using Euler expansion as:

(t+1) { (a+al)y(t)+b0u(t)—61 if y(t) >0
\Y + =
(a+a2)y(t)+b0u(t)+62 if y(t) <O

(4)



This equation describes a nonlinear SISO process which is splite into two regions
of operation over which a linear model is established. y(t) represent w(t) and the

input e(t) is renamed u(t). The model parameters are :

a= 1-(TKK) /IR by =( TK,) /IR,
a,=( TK,) /3 6, =(Td,) /I (5)
a,=( TK,) /3 6, =( Tdy) /J

where TS is the sampling time period, "a" is the part of the dynamic mode which
is independent of the nonlinear characteristics and can be calculated from the
motor constants as well as b.. The parametes 31.32,61,62 are related to the

0
asymmetric piecewise nonlinear coefficients.

2.- LINEAR DESIGN

To improve the linear control design it is necessary to have a linearized version
of the plant model. By reformulating equation (4) we can separate the terms
related to the nonlinear feedback and compensate with an extra term in the

control law. To do this we define the function h(t) as:

1 if y(t) >0
h(t) = { (6)
0 if y(t) <O
then, the model (4) can be rewriten as:
y(t+1) = a y(t) + by u(t) + g(t) (7)

g(t) = (a,y(t)-8,)h(t)+(ayy(t)+5,) (1-h(t)) (8)
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FIG.2 Control scheme with nonlinear compensation. Based on a linearized model.

Now, if we apply the control law u(t) = uft) - g(t)/b0 , we obtain the next

linearized model:
y(t+1) = a y(t) + by u(t) (9)

and we can find a control law u(t) based on linear control design and on the

model (9). The Figure.2 shows this idea.



3.- ADAPTIVE DESIGN

The adaptive design will be carried out with the folowing idea in mind: we will try
to use the maximum a priori information available from the process. Two
differents types of a priori information can be distinguished in the DC motor
case; structure of the nonlinear block and some knowlege of the model

parameters.
Assume the following:

A1l : The mechanical and electrical constants are well known. Hence

the parameters "a" and "b_." are known exactly .

0
A2 : The structure of the piecewise nonlinearity is known but not the
parameters dl’ d2, Kl’ K2.

The key idea is to estimate only the part of the system which is related to the
nonlinear nature and to the uncertainties in the model parameters ( g(t) in
equation (9) ), and base the linear design on the known coefficients a and bO' The
final scheme will be a combination of a fixed controller and adaptive nonlinear
compensation.

To obtain the adaptive version we proceed as follows:

the model (7) is rewriten as:

y(t+1) = #(t)T0%+T(r) ; T(t)=ay(t)+bgu(t) (10)
where;
&(t)T=[y(t)h(t) ,-h(t),y(t) (1-h(t)), (1-h(t))]
0° =[a, 8,2, 8 1

and h(t) is the switch defined in (6). Note that the scalar product d)(t)TE)"t in
equation (10) is equal to g(t) in (8). Next, the adaptive predictor in (10) will be
given by:



V(erttr) = 4(v)T B(t) + T(v) (11)
6(t)= [ 4, .53 .4,.5 1

The prediction error is then :

y(t) - ¥(tit-1) (12)

-$(t-1) 8(t-1) ; 8(t-1) = 8(t-1) - o" (13)

e(t)

e(t)

To estimate 6(t) we use a RLS algorithm which is described by the next set of

equations:
e(t) = y(t) - ¢(t-1)" 8(t-1) - T(t-1)
8(t) = 6(t-1) + P(t-1)¢(t-1)e(t) (14)
P(t) = P(t-1)-P(t-1)é(t)s(t]P(t-1)/[1+4(t]P(t-1)4(1)]

The control law, as we mentioned before, will have the form;
u(t) = 8(t) - e(t]-8(t)/n, (15)

where u(t) is the contribution of the fixed controller and ¢(t)Té(t)/bo is the

adaptive nonlinear compensation. Figure.3 shows this.

PROPERTIES OF THE ESTIMATION ALGORITHM

It is important to guarantee that the elementary properties of the RLS estimation
algorithm will not change after the model manipulations. Basically we are
estimating the function g(t) which has been expressed as a scalar product of the
observation vector ¢(t) and parameter vector 6(t), where 6(t) is linear in
parameters and ¢(t) is a nonlinear relation of the output y(t). The estimation
error has been writen as a scalar product of d)(t)Té(t). Hence we can guarantee
that the basic properties of the RLS algorithm will not be modified. Nevertheless,
it should be noted that if the assumption A1 does not hold, an extra term will

appear in the estimation error and this will produce biased estimation ( a further
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FIG.3 Control scheme with adaptive N.L. compensation.

discussion is given at the end of section 4).

The four parameters of the estimation vector demand the invertion of a 4 x 4
matrix P(t). The computation burden can be reduced by simplifying the internal
structure of the RLS equations. In order to see this, the next definitions are

made:

p()T = [ o0 a0 ]

61 = [ 8,0 8,(1)T 1T (18)
where
#,(t)T=[v(t)h(t) .-h(1)] ;8 (1= [1).6 (1)1

6, (1)T=[y() (1-n()), (1-n(1)] 5 By(t)=[3,(t) .8, (1)1
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Note that
T
[ ¢1(t) ; ] to y>0

o(t)T = [
[0, ¢2(t) ] to  y<0 (17)

Let P(-1) = ol ( « >> 0 ) be the initial value of the P(t) matrix. The inverse of P(t)

is calculate by the recursive equation as:

P(t)_1= P(t-l)'1 + ¢(t)¢(t]

or

P(t)'= P(-1)™" + Il (i)e(i)T

using definitions (16,17), we rewrite this recursive equation as:

ot
o

P() et & Y | cmmmm i (18)

[ b, (1)8, (1] EACINC
by (1), (1] " 8, (1), ()

In accordance with the equation (17), all sub-matrices given by the vector
product dak(i)daj(i)T vV k#j will belong to the null space. Equation (18) can be

written as follows:

[Pi(t} 0 } _ [ — T +Tgb, (1), (i)T 0
0

0 =T+ T, (1)4, (1]

- o

P, (t)

(19)

Since Pi(t) and Pz(t) are independent, two 2 x 2 matrices can be inverted instead

of one 4 x 4. This apply "mutatis mutandis" to the recursive invertion form:

Py(t) = P (t-1)[ T -4 (t)é, (P (t-1)/( 1 + &, (tJP(t-1)8 (1)) ]

Po(t) = Py(t-1)[ T -4,(t)oy(t]P,(t-1)/( 1 + &, (t]P(t-1)4,(t)) ]

(20)

Now using the equations (20) and (17), we can write the parameter estimation
equations as two decoupled algorithms, where é(t) can be partioned into two
disjoint sets of parameters each one associated with the éj(t) and 4>j(t) vector V j

e [1,2].
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él(t) = él(t—l) = Py(t-1)¢, (t-1)e(t)
) ) : (21)
92(t) = 62(t-1) - P2(t-1)¢2(t—1)e(t)

where e(t) is the same as (12).

4.-EXAMPLES

The following examples are based on the control schema derived before and show
the closed-loop performances obtained using adaptive compensation. The linear
design is based on pole placement with zero cancellation. Integral action is
included in order to improve high gain at low frequences ( care should be taken

to prevent windup phenomena).

The linear controller contribution is given by :

()= - g(t) + Lty ) (22)

D is the integral action, Cr is the polynomial which defines the closed-loop
desired poles, yr(t) the reference signal and polynomials S and R are obtained

from the solution of the Diophantine equation:

SDA + RB q"! = Ber

A, B are the same as defined in (9). After adding the adaptive compensation the

centrol law applied to the plant is given by:
R CR(1 1 -
u(t) = - g5 v(e) + Uy (o) b §(1) (23)

g(t) = ¢(t)T 8(r)

The numerical values can be found in Appendix B.

B |
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FIG 3. Time estimation of parameters :;1,52 and 81, 52.

EXAMPLE 1

In this example the assumptions A1 and A2 hold, the process is simulated by a
discret time equations as is described in (4), the coefficients "a" and b, are
exactly known (assumption A1). Hence perfect parameters estimation is obtained
as shown the Fig.3 . Notable differences in the rate of convergence between the
sets éi and Si are obtained. These are typical results when the process bias ( 6 )
is estimated. Ameliorations in the rate of convergence of &'s can be archived by

using a different forgeting factor for each parameters set.

The performance obtained with the adaptive compensation are shown in Fig.4.
Three curves are shown. Curve 1 shows the ideal case where the g(t)
compensation is known exactly. Curve 2 shows the case where internal
characteristics of the nonlinearity are approximated by a piecewise block having
the same values of d1 and d2 but taking k,=k.=.4, this augment the gain when the

1 72
output is positive and reduces it to negative outputs. Curve 3 shows the adaptive
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FIG 4. Closed-loop responses. Process output. Curve 1 Fixed compensation, ideal
case. Curve 2 Fixed compensation, non ideal case. Curve 3 Adaptive

compensation.

version, the output follows the ideal trajectory after some sampling periods.

EXAMPLE 2

In this example we analize a case when assumption Al doesn't hold. This means
we have uncertainty in the parameters a and bO' This incertitude may come from
two sources: 1) The physical coefficients of the process are inexact. 2)The time
discrete representation obtained in (4) is an approximated version of the
continuous time plant and hence, the model parameters derived from it will also
be approximations.The pictures (5) and {6) show this. The plant is simulated by a

continuous time system similar to the set (1-3).

Note that the uncertainty in the coefficient "a" will be assimilated by the

estimation vector é(t) in 51, 52. This is not the case for b0 ,» therefore an extra
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FIG 5. Time estimation of parameters a1, a2, 51, &2.

term will appear in the estimation error e(t) and the estimation vector will not
follow the optimal trajectory, as shown in Fig.5. In picture (6) the dynamic
response of the adaptive and ideal case are slightly deviated of the desired ones.
This is produced by the reasons discussed before (approximation structure and
coefficient of the model). Note that, even when bO is not exactly Known, the
closed-loop performances (obtained with adaptive compensation) are improved
over the non-adaptive case. Similar results, as in Example 1, were founded in

simulations with a discrete time model when the value of b ,n the equation (23) ,

0
was unexact.

It is possible to avoid the bias estimation problem by extending the size of the

estimation vector and let place to estimate the incertitude on the coefficient bo. A

trade off will be then established between the quality of the estimations and the

complexity of the estimation algorithm.

Until now, there is not a clear solution to avoid problems caused by unexact

apriori process informations. Similar drawbacks appear in the "filter RLS

version of Sartry (1984), where the " Known plant dynamics " shall be exact in

order to avoid estimation bias.
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Curve 2 non-ideal case.Fixed controller. Curve 3 Adaptive version.
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5.- STABILITY ANALYSIS

The aim of this section is to show that the closed-loop system is stable and
convergent in the deterministic case. In order to widen the analysis we will
reformulate the model gived in the Section 1 to a more general one. Some
properties of the closed-loop system will be given as result of the general linear
controller structure. In a similar way, the closed-loop system properties of the
adaptive version will be established in Lemma 2. This analysis will serve as a

preparation to prove closed-loop system stability institute by Theorem 1.

GENERAL MODEL

Consider a nonlinear time invariant system having a representation of the form:

(A1*+I\1*)y(t)+(31+§1)u(t)+a1 if y(t)>0

se=| : .
(A2 +A2 )y(t)+(Bz+BZ)u(t)+62 if y(t)<0

(24)

Where the polynomials Al*,Bl*,AZ*,BZ* (of order nal,.nbil,na2nb2 respectively)
are the known-model part of the plant. .7\1*,51*,/3.2*,52* (of order ngl,nl;l,nz:Z,nl;z
respectively) are the unknown-model part of the plant which is provided by the

model incertitude and by the non-linear feed-back of the process.

The generality of this model is restrained by the type of applications in which we
are involved. We prefer carry-out the following analysis with a general
polynomial representation rather than a more particular form in order to show

up the overall properties of the design.

Note that we can always let A1*=A2%=A* and B1=B2=B. The difference in each
case will be absorbed by the corresponding polynomial uncertainly (Ai,AZ). Then

equation (24) can be reduced to a more compact form:

y(t+1)=A"y(t)+Bu(t)+g(t) (25)

where:
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g(t)=g, (t)h(t)+g,(t) (1-h(t))

gl(t)=ix1*y(t)+é1u(t)+a1

= "
gz(t)=A2 y(t)+B2u(t)+¢§2 (26)
and
1 if y(t) >0
()] (27)
0 if y(t) <O
The nonlinear model (25) can be linearized if we apply a control law of the next
form:
u(t) = u(t) - g(t) (28)

where g(t) is the filtered version g(t)/B .Note that we can always choose B to
have its roots inside of the unit circle. [The notation X*indicate X=(1-q_1 X*) ;
x*=x1 +x2q_1 + ...+xnxq_nx+1 ]. Hence, after using the precedent control law,

the equation (25) can be transformed to:

v(t+1)=A*y(t)+Bi(t) or Ay(t)=q lBu(t) (29)

This linear non-minimal phase system ( B has been chosen as that) will be used

for the linear design.

CLOSED-LOOP GENERAL LINEAR DESIGN

The most general linear controller is giving by the fcllowing:
Ri(t)=Ty_(t)-Sy(t) : vy (t)=A (1)¥.(¢) (30)

where yr(t) is the reference signal, y(t) the process output and u(t) the input
applied to the linearized system (29). Since the B polynomial can be chosen
having all its roots inside of the unit circle, we are able to carry-out pole-zero
cancellation linear design. Let Am be the polynomial which describe the desired

closed-loop characteristics. The R,S,T polynomials will be finded by solving the
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Diophantine equation:

RA + q IBS = TBA ; T=AA R = DR (31)
m no

where Ao is the observer polynomial, An a notch filter and D the internal model
(These polynomials can be included or not, the simplest case : Ao=An=D=1 ).
Integral action can be included to improve robustness in the closed-loop system.
This is achieved by putting D= 1-q_1.

The next lemma describes the closed-loop properties of the system (25) resulting

from the feedback law (30).

LEMMA 1

Provided that the model (29) has been constructed keeping A and B prime and
that the zeros of B are inside of the unit circle, the closed-loop system resulting

from the feedback law (30,31) has the following properties:

(1) Ay(t) =a 'y (¢) (32)
(i1) (B+B)A_ ui(t)=(A-A1*q‘1)yr(t)-Am 5

(B+B,)A_ uz(t)=(A-R2*q‘1)yr(t)-Am 5, (33)

(ii1) A [y(t)-y.(t)]1=(a" -A )y, (¥) (34)

(iv) lim( y(t)- yr{t) ) = O provided that Am stable and yr(t) constant. (35)
t—o0
{v)  {u{t)} and {y(t)} are bounded provided that the polynomials (B+B1),
(B+l§2) and Am have theirs roots inside of the unit
circle. ~ (36)
The proof of Lemma 1 is refered to the Appendix A.
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ADAPTIVE CONTROL ALGORITHM

We shall analyse the adaptive nonlinear compensation algorithm based on the
same precedent linear design philosophy. We will first establish some definitions
and the closed-loop relations. Afterward we will formulate the main theorem

which guarantees closed-loop stability.

Let the adaptive algorithm be described by the next sets of equations:

ADAPTIVE PREDICTOR:

y(t+11t)=A"y(t)+Bu(t)+g(t) (37)

where:

8, (1)
g(t)= ¢(t)Té(t)=[¢1(t)Th(t).¢2(t)(1—h(t))]-[ ]
8,(t) .

¢, (1) =[y(t), ...y(t-na1),u(t), ..,u(t-nb1),1]

b,(1)T=[y(t), ...y(t-naz),u(t), ...u(t-nb2),1] (38)
o, (t)=[a] (1), oAb (enat) Bol(t). LBl (t-nbt) .8 ]
0, (t)T=[32(t), ...a2;,(t-nd2),By2 (1), -..Bo5,(t-nb2) 8,]

(39)

PREDICTION ERROR:

e(t) = y(t) - y(t1t-1) = g(t-1) - g(t-1) (40)

PARAMETER ESTIMATION ALGORITHM: Use a RLS algorithm.

CONTROL LAW:

~

Ru(t) = Ty_(t) - Sy(t) - Rg(t) ; &(t) = §(t)/B (a1)
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ASSUMPTIONS:

Atl:
The system model (24) has been transformed into the form (25), where AB are
prime polynomials, B; 1zl < 1 and R, TS polynomials are obtained from the

solution of (31).

A2:

The polynomials (B + B1), (B +*B2), T and Am are stable. If this assumption
seems restrictive then the pole-zero cancellation design can be substituted by a
pole assignment controller and the restriction on (B + 51) and (B + 132) will be

removed.
Now we can establish the following lemma:
LEMMA 2

Let assumptions A1l and A2 hold for the system (24), the closed-loop system
resulting from the adaptive non-linear compensation law (41) has the following

properties :
(i) TBA y(t) = q—lBTyr(t) + Re(t) (42)
(1) TBA [B+B Tu, (t)=[A-q 'K *1BTy_(t)+[A-qa ‘A *IRq le(t)-A T6

N -1~ = -1~ = -1
TBAm[B+B2]u2(t)=[A—q A2 ]BTyr(t)+[A-q A2 JRq e(t)—Am'I'62

(43)

where :
u(t) = w, (t)h(t) + u,(t) (1-h(t))
The proof is refered in Appendix A.

Now we can enunciate the next stability theorem based. in the elementary

properties of the RLS estimation algorithm and the lemmas established before,
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THEOREM 1

Provided that assumptions A1 and A2 hold for the system (24) ; Use a recursive

least square estimation algorithm and the adaptive nonlinear compensation law

(41), then :

(i) iim e(t) =0 (44)
(ii) { |l4(t)]] } is bounded (45)
(ii1) Lin [ Ay(e) - aly (t) 1=0 (46)

The proof is refered in Appendix A.
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CCNCLUSIONS

This work deals with a specific application of the adaptive scheme on an electrical
current motor. This type of process has a nonlinear components which degrades
the linear control design and hence can not be ignored. By handling the
continuous time differential equations we arrived at a partitioning of the overall
system to two sets of independent discrete time linear equations (Section 1). The
terms involved with the nonlinear effects and uncertainty on parameter model
were concentrated in an explicit function ( g(t) ). The linear design was carried
out (in Section 2) by using g(t) as a compensation term. An adaptive version was
developed ( in Section 3) . The overall scheme can be viewed as a linear fixed
controller with a feedback adaptive compensation. Somes examples show the
performance achieved with the adaptive compensation and the possible problems
and solutions that may come up (when the main assumptions do not hold, Section
4). Section 5 gives a formal stability analysis that is carried out under a general
framework. Details of simulations and proofs of lemmas are refered to Appendix

B and A respectively.
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This augmented system have the inputs yr(t), 61, 8., and the outputs ul(t), u2(t)

and y(t). In view that sequence {yr(t)} is bounded2 and 61, 6, are a constant
term, the sequences {ul(t)}, {uz(t)} and {y(t)} will be bounded provided that the
characteristic polynomial (B+Bl)(B+BZ)Am has all its roots inside of the unit
circle (BIBO stability). The control law sequence {u(t)} is the union of the disjoint
sequence sets {ul(t)} and {u2(t)}, hence if these sequences are bounded {u(t)}

will be also.

Remark

The polynomial B has been chosen in order to make possible the pole-zero
cancellations design. However if the conditions (v) is not fulfilled, then we change
to one pole positioning design (without zero cancellations) and the conditions over

polynomials (B+§1) and (B+l§2) will disappear.

A

PROOF OF LEMMA 2

(i) Using the control law (41) in the process model (25) we get :
Ry(t+1)=RA%y(t)+BTy_(t)-SBy(t)+R(-g(t)-g(t))
Grouping the polynomials in y(t), using the equality (31) and the definition (40) :

y(t+1)=[RA-q"'SB]=BTy, (t)+Re(t)

TBAmy(t)=q—1BTyr(t)+Re(t)

(ii) The proof is made as follows; Take the control law equations (41) and use the
relation (42) in order to eliminate the output y(t), manipulate this equation until

the control law can be expressed like a function of yr(t) and e(t) ;

Ru(t)=Ty _(t)-Sy(t)-Rg(t)
and using (42):

TBAmRu(t)=TBAmTyr(t)—S[q_iBTyr(t)+Re(t)]—TBAmRE(t)

TBAmu(t)=TAyr(t)—Se(t)—TAmé(t) from (31)
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APPENDIX A

PROOF OF LEMMA 1

(i) From algebra manipulations of equations (25}, (28), (30) and (31).

(ii) From algebra manipulations of equations (30), (32) and (31), we obtain:

A Bu(t)=Ay_(t)-A.g(t)

A Bu(t)=Ay_(t)-A [g, (t)h(t)+g,(t) (1-h(t))]

A [B+B h(t)+B,(1-h(t))Ju(t)=
using (26)

=Ay_(t)-A [(A]y(t) +5,)h(t)+ (Ayy(t) +5,) (1-h(t))]
using (32)

=[A-A *a " h(t)-E, a7 (1-h(2)) Ty, (t)-A B h(t)-A 5, (1-h(t))
(iii)

ALY (t)-y, ()4, (t)1=a 'y, (¢)

A [y(t)-y,(t)]1=[-A +a 1y, (t)

(iv)
For constant refence signals the tracking error { y(t) - yr(t) ) will converge

exponentially to zero provided that Am has its roots inside of the unit circle.

This came from (iii).

(v)

The equation (33) can be rewritten like two disjoint sets of equations that united

to equation (32) will give us the next augmented system:

- * -1
(B+81)Am 0 0 ul[t) (A—A1 q )yr(t]~Am61
~ * —1
0 (B+BZ)Am 0f- uz(t} = (A—Az q ]Vr(t}—AmGZ
-1
0 o all v a 'y ()
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adding and subtracting TAmg(t)

TBAmu(t)=TAyr(t)-Se(t)+AmTe(t+1)—TAmg(t) using (40)

since gi(t) and gz(t) are disjoints sequences, we will manipulate on one set of

these equations to simplify the analysis.

- * d
TBAmul(t)=TAyr(t)—Se(t)+TAme(t+1)—AmT[A1 y(t)+Blu(t)+61]
multiply by B each side and use the diophantine equation :

= -~ %
TBAm(B+Bl)u1(t)=BTAyr(t)+RAe(t+1)-TBAmA1 y(t)—blAmT

using again (42):

~ - -1

TBA_(B+B, )u, (t)=BTAy_(t)+RAe(t+1)-A,[q” BTy _(t)+Re(t)]-8,A T
TBA_ (B+B,)u, (t)=[A-A, *q 1IBTy_(t)+[A-K,*q 1IRq le(t)-5,A T

m 1771 1 r 1 1'm
in similar way we can obtain for the set gz(t)
TBA_(B+B,)u, (t)=[A-A *q 11BTy_(t)+[A-K *q'i]Rq'le(t)-a AT
om 2’72 2 r 2 2m
and the control law is obtained by superposition of ul(t) and uz(t) :

u(t) = u, (t)h(t) + uy(t) (1 - h(t))

'A%

PROOF OF THEOREM 1

The proof of (44-46) are based on the key technical lemma given in (Goodwin,
Ramadge and Caines, 1980 ), and using lemmas (Goodwin and Sin, 1984).
i)

To show that the prediction error e(t) goes to zero, we will first show that the
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sequences {u(t)} and {y(t)} grow not faster than linearly with e(t). Then using
the equation given by the lemma 2, we can construct the next augmented system

which has e(t),yr(t),61,62 as inputs and y(t), ul(t), u2(t) as outputs :

BTA 0 0 y(t)
0 BTA (B+B,) o |-fu (t)]=
0 0 BTA (B+B,)! lu (1)
a 'BTy_(t) + Re(t) 0

~ & -1 ~ x 1. -1
[A—A1 q ]BTyr(t)+[A—A1 q "JRq “e(t)|- 5,A,

~ x -1 e | -1
[A—Azq ]BTyr(t)+[A—A2q JRqa “e(t) 5,A T

(A.1)

where {yr(t)} is a bounded sequence and &,, &,, are constant. This system has a
characteristic polynomial equations given by BTAm(B+§1)(B+§2), en view of the
and A_ we can conclude that all the roots of this polynomial will

1 2
be inside of the unit circle and hence, using lemmas (Goodwin and Sin 1984

assumptions A
(B.3.3) ), there exist positive constants C1 and C2 that:

l$(t)ll < €, + C, maxte(r)1 v 1<t<N (A.2)
1<7<N

Now using the properties of the RLS’ algorithm ;

- e(t) =0 ; k=x__ P(-1 A3
t}:lo [1+K¢(t-1)T¢(t_1)]1/2 max( ) (A.3)

and the linear boundness of the regression vector by the estimation error, we

can apply the technical lemma (Goodwin, Ramadge and Caines, 1980) and conclude

(1).

(i)

We argument as before and use the fact that e(t) --> 0 .Provided the sequences
{yr(t)},{e(t)} are bounded and the characteristic polynomial of (A.1) is a stable
one, it follows that the sequence {y(t)}, {ui(t)} ,{u2(t)} and hence {J(t)} will be
bounded.



(ii)

Take the equation (42) and apply the limit to each side

lim TB(Amy(t)—q—lyr(t)=1im Re(t)=0

t 00 t =00

hence

Lim (Ay(t)-q"'y_(t))=0

t 00

and we obtain (iii).

29

using (44)



APPENDIX B

SIMULATION USING SIMNON PACKAGE

Four main blocks of simulations have been implemented: the reference generator,
the controller, the plant and a RLS estimation algorithm. Some flexibilities inside
of each simulation blocks are available. The reference signal (periodic square
wave) can be adjusted in period, amplitude (non symmetrical) and dc. component.
Internal switches allow the choise of different controller schemes and/or process
models. i.e. switch " sr " (switch regulator) selects between a pole placement
design with or without zeros cancellation. Switch "sp" (s. process) selects
between a first or second order continuous motor model. The nonlinear
compensation g(t) can be calculated from fixed coefficient or estimated by the RLS
algorithm, the selection is made with the switch "sa" (s. adaptation). Two sets of
two macroinstructions are only needed in order to activate, simulate and display
curves. "SIM" and "DIBUJA" simulate a discrete environment, "CSIM" and
"CDIBUJA" use a continuous time process. The following picture describes these

ideas.

SYS MOD

DISCRETE | |
MODEL i
1th ORDER

r———— — 1

| [conTivgous | | . A~ y(t
ODEL () ()

| L oroer

._oa,_i |

I +*
| [conTinuous i
I

SYS REF

REFERENCE |y (| /5 o ’
GENERATOR |+ QSr=1 R 2:_{
|
I
I

-
P

Pale Plac

MODEL
| 2th oRDER

I-——————i—-l

L s

SYS_RLS __

art)! FIXED [
COMPENSATION |~
|
|

FIG. B1 Scheme of simulation blocks.



NUMERICAL VALUES USED IN THE EXAMPLES

EXAMPLE 1
B 0.25

A 1-0.986q" !

cr (1-0.67q"1)?

S 0.25

R 0.646-0.537q *
Ts 0.01

d1 0.02

d2 0.025

k1 0.2

k2 0.6

] 0.02

The rest of the nume:-ical values are available in the

31

EXAMPLE 2

—Same
—same
-same
-S5ame
-5ame
-same
-Same
-same
—same
~-same

—same

simulation sheets.



continuous system proc

“Direct current motor with N.L. friction torque®

¥sp= switch : 1= reduced model (1 order). O=exact model (2 order).
“File is called Inproc*

"Author C.Canudas*

input v u

output y

state x1 x2 x3
der dx1 dx2 dx3

k= if y>0 then k1 else if y<O then k2 else O
d= if y>0 then dl else if y<O0 then -d2 eise O

dx1=(-ra*x1 - kb*x2 +u)/la "x1 = ceurrent
dx2=(ki%xl -k*x2 - d + v)/j “x2 = angular velocity
dx3=-(ki*kb+k+ra)*x3/(ra*j) + ki*u/(ra*j) -d/j

y = if sp> O then x3 else x2

j:.02
ra:.2
kb:.058
la:.001
ki:.08
kl:.2
k2:.6
dl:.02
d2:.025

DISCRETE SYSTEM MOD

“D.C. motor with N.L. friction torque
Y....Reduced model

"File called Dmodel

Input w u

Output y

State «x

New nx )
Time t

Tsamp ts

al=1-h*(Kb*Ki+Kl*ra)/(J*ra)
a2=1-h*(Kb*Ki+k2#ra)/(J*ra)

bO=Ki*h/(J*ra)

a=if y>0 then al else if y<O then 22 else O

d=if y>0 then -di*h/J else if y<O then d2+h/J else O

nx=a*x+bO*y+d

y=x
ts=t+h
J:0.02
ra:0.2
Kb:0.055
Ki:0.05
K1:0.2
k2:0.6
d1:0.02
d2:0.025
h:0.01



DISCRETE SYSTEM RLS
“File called PAA
“Recursive least square.Two disjoint sets of parameters estimation

Input u y

Output g

State ul yl

State f11 f12 f21 {22
State t11 t12 21 t22
State pl1l pl12 p122
State p211 p212 p222
New nul nyl

New nfll nfl2 nf21 nf22
New ntll nt12 nt21 nt22
New nplll npl12 np122
New np211 np212 np2222
Time ¢

Tsamp ts

“Switch gain and estimations error
h=if y>0 then 1 else O
o=y - bO#ul - a*yl -t11+f11 -t12+f12 -£21#f21 -t22+f22

“Estimation gain
k11=p111+fil+p112#f12
k12=p112%f11+p122%f12
denl=lam+f1l1%k11+f12+k12

k21=p211+f21+p212+F22
k22=p212+f21+p222%f22
den2=lam+f21+k21+f22+k22

"Update estimates

ntll=tll+kll*e/denl
nt12=t12+k12+e/denl
nt21=t21+k21%*e/den2
nt22=t22+k22+e/den?2

“Compute output, N.L. compensation g=f+*t

ga= ((nt1llxh+nt21%(1-h))*y+(-nt12%h+nt22+(1-h))) /b0
gl=-((111%h+121%(1-h))*y+(112 *h-122 *(1-h)))/bO

g= if sa >0 then ga else gl

"Update covariance
npl11=(p111-k1l*k11l/denl)*h/lam +p111(1-h)
np112=p112-k11+k12+h/denl v
np122=(p122-k12+k12/denl)*h/lam +p122+(1-h)

)
np211=(p211-k21+k21/den2)*(1-h)/lam +p211*h
np212=p212-k21#k22+(1-h) /den2
np222=(p222-k22+k22/den2) *(1-h) /lam +p222+h

B)pdate old data and f-vector
nul=u

nyl=y

nfll=y*h

nfl12=-h

nf21=y#*(1-h)

nf22=1-h

ts=t+dt

“Parameters

dt:0.01

{am:.99

p111:1000

p122:1000

p211:1000

p222:1000

sa:1l

2:0.9862 "Linear model coefficients
bO:.125

111:.1 “Coefficients of fixed compensation g{(t)
121:.3

112:.01

122:.0125



DISCRETE SYSTEM PI

“PI controller with anti-windup and nonlinear compensation

“gr=0 PI controller with zeros added : TF=R(z)/Cr(2)
Ysr=1 PI controller without zeros : TF= 1 /Cr(2)
"File called PIREG

Input yr y g
Output u
State x1 x2
New nxl nx2
Time t

Tsamp ts

r0=(cl+a+1)
ri=(c2-2)
e=yr -y

"filtering the reference
nx1=-r1#x1/r0 +(leclec2)#*yr/rO
yl=x1

ef= if sr >0 then (yl-y) else (yr-y)

v=rO*ef/bO+x2

ul= if v < ulow then ulow else if v <uhigh then v else
nx2=x2+(r0+r1)*ef/b0 +ul-v

u=ul-g

ts=t+h

h:.01

ulow:-10

uhigh:10

a:.9862

b0:.125

cl:-1.34 "Cr coefficients
c2:0.4489

sr:1

End

DISCRETE SYSTEM REF

“Symetric square wave generator with D.C. component
“File called GENREF

Output yr

Time ¢

Tsamp ts

w=h*per

s=sign(mod(t,w)-u/2)

amp = if s<0 then amp2 else ampl
yr=amp+dc

ts=t+h

ampl:1 “high amplitude

amp2:-1 %"jow amplitud

per:100 ®number of samplin times by period
h:0.01 “samplin time

dec:0 "dc of the square wave

End

uhigh



CONNECTING SYSTEM CSYS

“Connecting system for simulations PI+Adaptive N.L. compensation
“Yusing a discrete model.

“File called CSYS

Time ¢
yr[PI}=yr [REF]
y [PI]1=y [MOD]
g[PI]=g[RLS]
u[MoOD]=u{PI]

y [RLS]=y [MOD]
u[RLS]=u[PI]
w[MOD]}=0.0

End

MACRO csim

“Coopilation of the ciose loop system.
"Continuous time model.

"File called csim

syst PIREG PAA LNPROC GENREF CCSYS
End

MACRO CDIBUJA

"trace of curves

"Continuous time model. :
“File called CDIBUJA !

split 3 2

store y[proc] ulproc] yr{ref] t11 t12 t21 t22 e[ris]
simu 0 10

ashow y[proc] yrlref]

ashow u[proc)

ashow e

ashow t11 t21

ashow t12 t22

End



CONNECTING SYSTEM ccsys

"Connecting system for simulations PI+Adaptative N.L. compensation
"Continuous time model

“File called ccsys

Time ¢
yr{PI]=yr [REF)
y [P1]=y [PROC]
9[PI11=g[RLS]
u[PROC]=u [PI]
y [RLS]=y [PROC]
u[RLST=u[PI]
v[PROC]=0.0

End

MACRO sim
“Coopilation of the closed-loop system.
“File called sim

syst PIREG PAA DMODEL GENREF CSYS
End

MACRO dibuja
"discrete model case.
“trace of curves

split 3 2

store y[mod] ulmod] yrlref] t11 t12 ¢21 t22 e[ris]
simu 0 10

ashow y[mod] yr[ref]

ashow ul[mod]

ashou e

ashow t11 t21

ashow t12 t22

End



