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ABSTRACT

A simple technique is presented for on-line estimation of constant or
slowly-varying continuous-time process parameters and time delay. The method is
shown to allow considerable flexibility for application to systems of varying
complexity. A major advantage of the algorithm lies in its ability to track

time-delay variations over a practically unlimited range.

The technique is based on approximation of time delay in the frequency
domain by a rational transfer function, construction of the derivatives of process
input and output using multiple filters, and estimation using a model nonlinear in
the desired parameters. In spite of this inherent nonlinearity with respect to the
sought parameters, the estimation schemes lead to the true, unique solution, in
general. The cases when this is not true are shown to not be of serious

consequence.



1. INTRODUCTION

Many practical systems can be described reasonably well by linear models
including time delays. But the usefulness of these models for reliable, optimal
application has been seriously hindered by the elusive nature of time delays.
Unknown, time-varying time delays have frustrated attempts to identify the model
parameters under the assumption of a known, constant time delay, by imparting
multiple minima to the cost function that these identification methods seek to
minimize (Pupeikis, 1985; Kaminskas, 1979). Methods seeking to circumvent the
problem of multiple minima caused by unknown time delay, by resorting to such
techniques as identification of several different model structures from the
available data followed by selection of one, nevertheless restrict themselves to
off-line procedures ill-equipped for time-variations in the time delay or the
system parameters (Marchand and Fu, 1985; Bohn, 1985; Lilja, 1985; Song and

Yu, 1985; Abrishamkar and Bekey, 1985; Rao and Sivakumar, 1976)

On-line procedures capable of tracking time-varying time delays and system
parameters have resorted to descrete-time representation of the model. Of these,
the methods that overparameterize the discrete model estimate the time delay only
to its closest value that is an integer multiple of the sampling period, by utilizing
computationally elaborate ways of rejecting the extraneous estimated parameters
(Bokor and Keviczky, 1985; Kurz and Goedecke, 1981). On the other hand, the
methods that modify the structure of the discrete model, in order to estimate the
time delay true to a fraction of the sampling period, face minimization of a cost

function exhibiting multiple minima among other numerical problems (Astrém and



Wittenmark, 1984, 1985; Lee and Hang, 1985).

This work presents an on-line method for recursive estimation of the
continuous-time process parameters and time delay, which is conceptually simple
and does not suffer from the above drawbacks. The technique constructs the
derivatives of the system input and output by use of multiple filters, approximates
the expression for the time delay in the frequency domain by a rational transfer
function, discretizes the resultant model while retaining the continuous-time
system parameters and time delay in the discrete structure, and employs standard

estimation algorithms to track time-varying time delay and parameters.

The next section presents the transformation of the continuous-time system
model into the final discrete form suitable for identification. Section 3 develops
the application of two recursive estimation schemes and introduces an important
stepping mechanism that circumvents the bounds on identifiable time-delay
variations dictated by their frequency-domain approximation. Section 4 deals with
special situations that warrant certain precautions in implementing the proposed
technique. Illustrative simulation examples are interspersed in Sections 3 and 4 at
appropriate junctures. The final section summarizes the analysis and states the

conclusions.



2. SYSTEM FORMULATION FOR ESTIMATION

Consider a continuous-time, linear representation of a deterministic,

single-input, single-output system

i
d u(t-rd)

n i m
d t
v(t) + Eai_yit_).z zbi—-i— , n>m (1)
i=1 dt i=0 dt

where y(t) and u(t) are output and input, respectively, n and m are known model

orders, and r, is the total time delay of the system. The time delay is divided into

d

two parts as

T, = 7_+ 1 (2)

where To is a prespecified part, and 7' is the unknown (positive or negative)
variation around Tor The problem is to estimate on-line the constant or

slowly-varying, unknown system parameters a,, bi' and 7.

The approach taken here involves transformation of equation (1) to the

frequency domain as

[1 + izr;aisi] y(s) + Y(0) = ‘i:o b, s’ [u(s)e_fos] e TS +u0) (3

where Y(0) and U(0) are the initial conditions given by

n-1 n . m-1 m . .
vio)= Y. Y yi0)s®™d ., ana  u(o)= Y Y ul(o)s™I

i=0 j=i+1 i=0 j=i+1



yl(O) and ul(O) being the initial conditions of the ith derivatives of y(t) and u(t),

respectively.

For the proposed estimation technique, equation (3) needs to be expressed in
a form where all the unknown parameters appear only in conjunction with terms
L]

3 . e . -r's .
involving finite powers in s. Hence, the factor e is approximated as a

finite-dimensional rational transfer function of the form

-Tr's N(t's
=~ D(t's (4)

where N and D are polynomials in 7's.

. ] . -r's
Alternatives for approximation of e

Several alternatives are possible for approximating e’ " according to
equation (4). The simplest and most common is the Padé approximation which has

the general form

1 - L
e TS N | —2_ . e=1,2,... (5)

This approximation is exact in the limit as ¢ tends to infinity. For finite ¢, its
amplitude matches exactly that of e-T'S, whereas the range of wr' for which the
phase match is exact increases as £ becomes large. For instance, the phase match
is excellent for wvalues of wr' upto 1 for ¢=1 and upto 2.2 for ¢=4. The

disadvantage of selecting large ¢, of course, is the resultant increase in the order



of equation (3). Since the range of validity of the approximation improves only
marginally for a significant increase in the model order, it is computationally

unattractive to select ¢ larger than 1.

Another important alternative is to minimize a frequency-domain objective
function to determine the coefficients of the polynomials N(7's) and D(r's) of
prespecified orders (Lilja, 1985). These coefficients, n,, di' are obtained as

_jw

M
(ng.d ) = min Y e *D(iw) - N(jw,)|? W(ju) (6)

where w, are M number of different frequencies, each with a weighting factor
W(jwk), spanning the range of wr' for which the approximation represented by
(ni'di) is sought to be valid in a least-squares sense. This method offers the
flexibility of extending the range of applicability of the approximation in equation
(4) beyond that possible with a Padé approximation of the same order, at the
expense of achieving poorer match in both the amplitude and the phase compared
to the exact match provided by the Padé approximation over its narrower range.
Again, it is found in this case that, for a fixed order, the approximation quality

deteriorates substantially for a marginal increase in the range of wr' for which it

is valid.

Hence, it is clear that different choices of the approximation in equation (4)
offer trade-offs between its range of validity, the goodness of its match, and the
increase in the order of equation (3). The selection of a particular choice will be
dictated by considerations of the specific process application; in particular, the

largest expected absolute value of 7 and the process frequency range that the



model is expected to emulate will determine how complex the approximation needs
to be. However, as will become clear later, slow variations in 7 q over a
practically unlimited range can be tracked without straining the expected value of
7', so that even a very simple choice of the approximation, as, for instance, the

first-order Padé approximation, should suffice in most cases.

Model reformulation

Indeed, the first-order Padé approximation will be used in the development
to follow, in order to preserve clarity of presentation. No generality is lost, of
course, and the technique is applicable for any other form of approximation

selected.

L]
Using the approximation in equation (5), for ¢=1, to substitute for e ™ in

equation (3) gives

O = i “To°][1 - 0.5¢'s
[1 +) as ] y(s) +Y(0) = Y} b [u(s)e HW] +U(0) (7)
i=1 i=0
The use of equation (7) for parameter estimation requires knowledge of signals
that are time-derivatives of y(t) and u(t). Since these signals cannot be usually
measured in an easy, reliable manner, they will be constructed using the
multifilter technique employed before by Young (1965, 1969) and Eykhoff (1974)
for off-line estimation and by Canudas (1985) for on-line estimation. Using a

dynamic operator, F(s), on both sides of equation (7) and defining



y.(s) = siy(s)F(s) vie[t,n], Y(s)=Y(O)F(s)(1 + 0.57's)
i o (8)

u(s) = s'u(s)F(s) vie[om], U(s)=U(O)F(s)(1 +0.50's)

the equation (7) becomes

n
Vo(s) + @g*r) vy(s) + iz=:2(ai+rai_1] y;(s) + 7ay . (s) +Y(s)
7S m ~T S -7 S
= bouo(s)e + 2: (®;-7b; 1) ui(s)e - rbmum+1(s)e + Uo(s) (9)

i=1

where 7 is defined as 0.57'. Reverting to the time domain to enable estimation, the

inverse Laplace transformation of equation (9) yields

n+1

m+1
y (1) + E;Aaiyi(t) + 1 [r,(s)] = E;SBiui(t—To) + [ 7V [u(s)] (10)

where
gt @ =a, +7a, ,vie€e[2n], ® 44 = Ta 71
By = b, , B; =b;, -7b, ,vieE [t,m] , Bpsg = ~7b,

The initial conditions appearing in equation (10) will vanish as time increases,
provided that the operator F(s) is stable, which will be ensured by its choice. It is
also worth noting that for negative values of 7' the initial conditions will take
longer to disappear due to the nonminimum-phase character evident from the

definitions in equation (8).

Use of the model form in equation (10) for recursive parameter estimation
requires sampling the filtered signals at discrete instants kh, k=0,1,2... The

sampling period, h, should be chosen small enough to avoid any significant
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overlap of the sampled frequency bands of the process. Sampling leads to a

discrete model suitable for parameter estimation,

n+1 m+1
y, (k) = “12-:1 oy, (k) + izs:o B;u; (k - 7 _/h) (12)

where the initial conditions have been neglected for the above-mentioned reason.
The signals ui(k-rolh) can be obtained by sampling with time-period h the delayed
signals ui(t—ro). In principle, these signals can be delayed using specific-purpose
routines, although perhaps at extra computational burden. Thus, it would be
usually advisable for the user to specify 7, as an integer multiple of the sampling
period, h, even though the development presented here does not require this

restriction.
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3. PARAMETER ESTIMATION

Several methods can be used to estimate the parameters a,, bi’ T, using
equations (11) and (12). Here we restrict our attention to the well-known class of

least-squares algorithms that seek to minimize the objective function

1 L n+1 m+1 2
ORI Dl PACID PAOIA IS SLNCINCSWEIN IS
k=1 i=1 i=0

with respect to the parameter vector, 6, based on information available upto the
current sampling instant, L. Two algorithms utilizing different definitions of the

vector 0 are presented below.

Linear estimation scheme

In this scheme the parameter vector, 0, is defined as (ozi,[ii) rendering
equation (13) linear with respect to the elements of 8. Standard recursive
least-squares (RLS) algorithm is, therefore, employed to obtain estimates of o Bi.
The goal of obtaining the parameters a, bi' 7, from these estimates of o, [3i, then

requires a nonlinear transformation according to equation set (11).

When the estimates of o, rsi, have converged to their true values, this
nonlinear transformation will, in general, be unique. (The pathological cases
where a,, bi' 7, will not be unique are analysed in Section 4.) One simple way to

perform this unique transformation is to obtain from the equation set (11),



12

through algebraic manipulation, the polynomials of the form

n+1 . .
MLy (_1)‘air"+1" = 0 (14)
i=1
m+1 .
Y pir"‘”“ - 0 (15)
e

The unique value of 7 is identified as the common root between these polynomials.
This common root can be readily determined by reciprocal substitution of the
lower-order polynomial into the higher-order polynomial until the order of both
is reduced to unity. Having deduced r, the parameters a,, bi’ are easily obtained

from equation set (11).

When the estimates of o, Bi, are in transient condition, the nonlinear
transformation to a,, bi' 7, will, in general, not even exist since all the roots of the
polynomial in (14) might be different from the roots of the polynomial in (15);
indeed, some or all of these roots could be complex. When this transformation
happens to exist, it might well render values of a,, bi' r, far from their true

values even though o, [3i, may represent reasonable transient estimates.

The lack of availability of any estimates of a,, bi’ 7, during transient
conditions involving parameter changes is the only drawback of this estimation
scheme. This will not be of serious consequence in applications that do not make
use of transient parameters and rely on the old estimates until the new estimates
have converged. Such is the case, for instance, in many control applications that
base the controller parameters on the estimates of the process parameters,

requiring a transformation that is often unreliable when the estimates are in
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transience.

It is worth mentioning here that the estimates of o, Bi, can be used directly
in equation (7) when the model expressed by the Laplace inverse of this equation
would suffice for the user's purpose. Of course, in the event that the process
dynamics represented by a, bi‘ are known, the linear estimation scheme, with r as

the sole element in 0, can be readily employed to estimate the time delay.

Nonlinear estimation scheme

In this scheme the parameter vector, 0, is defined as (ai,bi,r) so that equation
(13) becomes nonlinear with respect to the elements of 6. A recursive nonlinear
least-squares algorithm, presented by Goodwin and Sin (1984), is then applied to

obtain direct estimates of a,, bi' 7. The algorithm takes the form

8(k) = 8(k-1) + P(k-1)¥(k-1)[y_(k) - ¥_(k.B(k-1))] (16)

P(k-2)¥ (k-1)¥(k-1) "P(k-2)

T (17)
A+ ¥(k-1) P(k-2)¥(k-1)

P(k-1) = P(k-2) -

where

dy_(k.8)

U(k-1) = —g5 o = &(k-1)

and {/o(k,e) is defined as the right-hand side of equation (12) with o, rii, denoted
as functions of 8. Here 6(k) represents the estimate of the vector 6 at instant k,

and P(k) can be recognized as the symmetric covariance matrix and )\ as the
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forgetting factor analogous to the linear RLS algorithm.

Again, in this case, the objective function in equation (13) has a unique
minimum, except in pathological situations discussed in Section 4. Hence, if the
initial values of the parameters are good enough for the algorithm to converge, it

will converge to the unique values of a, bi' T

Choice of F(s)

The motivation for choice of the operator F(s) derives from the cost

function in equation (13) expressed in the frequency domain as

iajh o n+1 i m+1 i 2 2
v(e) = [ 6% (jw) [1 + Zl(iw) o | - Zo(iw) B; |F(jw) ¢ (w)dw (18)
-n/h 1= ™

where Go(s) is the true process transfer function, and <I>u(w) is the spectral
density of the input signal. It is clear from equation (18) that the operator F(s)
acts as a weighting function that dictates the relative importance of matching the
model to the true process at any particular frequency. The estimation algorithms
will identify parameters that will enable the model to describe the process
accurately in the frequency range where the magnitude of F(jw) is high, while
representing the process poorly in the frequency range where this magnitude is

low.
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The opposing factors influencing the choice of F(s) surface clearly from this
interpretation. On one hand, it is desirable to suppress high-frequency
information while seeking an accurate model representation only in the
low-frequency range in which 7' can assume relatively larger absolute values
without leading the approximation in equation (4) to jeopardize the sought
accuracy of model representation. This consideration suggests a choice of F(jw)
with low magnitude for high frequencies. On the other hand, the user may select
an ambitious high-order model if the application requires identification of some
fast process modes as well. This intention would be frustrated unless the
magnitude of F(jw) is chosen to be significant at the frequencies of these fast

modes.

Having decided the highest frequency, wp, for which the model is sought to
represent the process accurately, the ideal choice of F(jw) would be uniform
magnitude for frequencies upto up and zero thereafter. In practice, however, F(s)
is selected as a linear filter of the form cf/(s+c)f, with f > n+1, in order to
enable construction of the signals yi(t), ui(t), by the multifilter technique. Thus,
the magnitude of F(jw) is constant for frequencies upto ¢ and diminishes
thereafter at a rate dependent on f. For reasonably fast suppression of the
higher frequencies which are not of interest, it is advisable to choose f>n+1,
although too high a value of f may be computationally unattractive. With f
specified, the cut-off frequency, c, is selected at the smallest value that would
ensure a significant magnitude of F(jw) at the high frequency wp. A lower value

of ¢ would render unidentifiable any process modes close to wp, and a higher

value of ¢ would narrow the range of 7' that can be successfully identified.
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Equation (18) also shows that even over the frequency range where the
magnitude of F(jw) is uniform, the estimated model will represent the process
more accurately for frequencies at which the magnitude of Go(ju) or the spectral
density (Du(w) are relatively high. Thus, in essence, the product
|G°(jw)|2|F(jw)|2<I>u(w) represents the true weighting for a given frequency.
Having prescribed the filter parameters, c, f, and with some idea of the amplitude
of the input signal and a rough notion of the band-width of the process
frequency spectrum, it should be possible to deduce an upper bound on
frequency, W oax’ above which the amalgam of the frequency spectra of the
process, the input, and the filter would be expected to have an insignificant
magnitude. Then, Woox will correspond to a conservative estimate of the
band-width of the combined spectrum. Knowing the range of wr' for which the
chosen approximation in equation (4) is valid, this estimate of W oax a0 be
translated into a value 1'*, a conservative estimate of the maximum absclute 7'
which would be expected to preserve the accuracy of the approximation, enabling

unbiased estimation.

The value of 7 reflects only upon the rate of time-delay variation that can
be tracked successfully, and not, as will be clear later, upon the range of this
variation. The value of 7 and an experience-based notion of the algorithm's
convergence rate will indicate the secure rate of time-delay variation. If the
process time delay is expected to vary much faster than this rate, then either a
less ambitious up must be specified or a more complex approximation in equation

(4) must be chosen.
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Choice of the input signal

Use of a periodic input is inadvisable for estimation of the time delay. If a
periodic signal is used, care must be taken to ensure that the time-period of the
signal is large compared to the relevant absolute values of 7. Moreover, the
uniqueness of the minimum of the objective function in equation (13) is contingent
upon choice of an input for which the required signals u(t), u(t), etc., are linearly
independent. For instance, a choice of u(t) = e—m, where v is a constant, is clearly

detrimental in this respect.

The amplitude of the input signal is important, too. It is best to select a
signal with high magnitude for frequencies upto wp and low magnitude at higher
frequencies. If the density spectrum of the input is more uniform over
frequencies, a high amplitude will facilitate faster convergence, but will also tend
to render more significant the frequencies above up, leading to higher W oax’ and

*
lower 7.

Example 1

A first-order process with time delay is simulated. The process is identified

using a model of the form

bo -2.55 (1 - 0.57's
e (

G(s) as + 1 T +0.57's

Here, the time delay is expected to be in the vicinity of 2.5, and the first-order
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T'

Padé approximation is used for e S, With the intention of identifying frequencies
upto wp = 2.0, the filter parameters are chosen as ¢ = 1.5, f = 3. The input signal
is chosen to be periodic square-wave with an amplitude of 0.1 around a mean of
0.1. The time-period of the input is chosen as 10 so that it is much greater than
the expected value of 7'. With these choices and the expected first-order process
frequency spectrum, the value of W o ax is reckoned at 4.0, beyond which the
overall magnitude of the combined spectrum would be expected to be insignificant.
Thus, practically zero bias would be expected for absolute values of 7 upto at

least 7 = 0.25, for the chosen approximation of e’

The sampling period is chosen to be 0.1 so that the sampling frequency is
larger than zwmax ensuring insignificant overlap between the bands of the
sampled frequency spectrum. Recursive nonlinear least-squares algorithm is
used. The diagonal elements of the covariance matrix are initialized to 103 and a
forgetting factor of 0.98 is specified expecting slow variations in the parameters.

The initial guess for a, is conservatively taken as 1.5. For lack of knowledge of

1

even the sign of bo’ the initial guess of Bo is taken to be zero. Since the best

guess of the time delay is 2.5, the initial value of 7 is set to zero.

Figure 1 shows the parameter estimates obtained when the process is

simulated with constant a, = 1.0 and bo = 0.5, and with 7, taking the values 1.7,

1 d
3.0, 2.2, 3.8 at times 0, 20, 40, 60, respectively. The estimates converge without
bias in the third leg where |r'| = 0.3, and exhibit increasing bias for larger
absolute values of r'. In the final leg, the value of ' = +1.3 clearly seems to exert

excessively the approximation of e-rs used in the model, leading to unacceptable

bias in estimates.
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Figure 2 shows the estimates obtained when a, is changed from 1.0 to 1.5 at

1
time 20, and bo is changed from 0.5 to 0.3 at time 50, while r d stays constant at
2.0. It is observed that the estimation scheme tracks changes in the process
dynamics effectively, without excessive drift in the estimate of the time delay. The
slower process mode in the second leg reduces the effective value of -

which makes the Padé approximation valid for a larger absolute 7', leading to a

slight reduction of bias in the estimates.

The stepping mechanism

This mechanism enables attainment of unbiased estimates over a practically
unlimited range of the slowly-varying time delay, enhancing immensely the
capability of the proposed algorithm. Its philosophy lies in a reduction of the

effective value of || by changing on-line the user-specified parameter Tor

Upon calculation of the new parameter estimates at each sampling instant, a
user-specified criterion is used to test whether the parameters have converged.
One such criterion requires the absolute relative change over two successive
instants for each of the estimated parameters to be less than a prespecified small

value, €. Thus, convergence is inferred at instant kc, if

L.E 1° < € (19)

for each of the elements, Oi, of the parameter vector, 0. Recall that for the linear

estimation scheme such a test would be performed anyway, before calculation of



20

Si' Bi' r, from the converged estimates &i' ﬁi.
When convergence is detected at instant kc’ the values of T and r are
changed as

T, = %d(kc] . %(kc) = 0 (20)

Thus, in the successive instants, the filtered signals u, used in the estimation
algorithm are delayed by the new value of To: As discussed in Section 2, if T has
been specified as an integer multiple of the sampling time, h, this restriction can
be continued, without loss of generality, and the new 7, can be chosen as the
integer multiple of h closest to 7 d(kc)' In this case, ;(kc) will be modified to a

small value such that 7 + T(kc) =7 d(kc).

At the instant kc, the value of 7 in the estimation algorithm is aritificially set
to zero, or to the small value mentioned above. For the nonlinear estimation
scheme, this is accomplished directly by changing the value of the corresponding
element in the parameter vector, 6. For the linear estimation scheme, the changed
value of 7 and the estimated values of ﬁi, Bi’ are used in equation set (11) to
obtain the values of &i’ éi' to which the elements of the parameter vector 6 are to

be set.

It should be noted that the above changes are not to be accompanied by any
other change in the elements of the estimation scheme. In particular, the diagonal
elements of the covariance matrix should not be reset. This ensures that the
estimation algorithm is not perturbed unduly and the converged state is

preserved if the estimate of 7 q was close to its true value.
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If, at instant kc‘ the estimates were biased due to |r'| being too large for the
approximation in equation (4) to be valid, the changes in equation (20) have the
effect of reducing || and making the approximation more accurate. The
parameter estimates will then show another transience before converging to less
biased estimates. Successive applications of equations (19) and (20) will ensure

achievement of unbiased estimates as To steps to the true value of r a4

When the process time delay undergoes a large change, the value of ' may
be much greater than the value of ¥ for which the approximation is expected to
be valid. In this case, it may be inefficient to wait for the convergence in equation
(19) if the convergence rate is slow. However, so long as the change in r d is
gradual, 7 will move in the correct direction during transience. Then, improved
performance can be achieved by executing the changes in equation (20) at
intermediate instants prior to kc, whenever the absolute value of 7 exceeds a
prespecified multiple of 7. of course, this option is not available for the linear

estimation scheme, which does not yield values of Si, Bi‘ , during transience.

Example 2

To demonstrate the power of the modified algorithm, the same system is
used as in Example 1. In this case, the initial To is specified to be 2.0. The
process parameters ag, bo‘ stay constant at 1.0, 0.5, respectively, while r d takes
the values 3.0, 4.0, 5.0, at times 0, 20, 40, respectively. All other conditions are

identical to Example 1. Figure 3a shows the parameter estimates obtained with

fixed To: It is apparent that the estimates become progressively more biased as r d
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drifts farther away from To: Figure 3b shows the effect of utilizing the stepping
mechanism with a value of 1% specified for € in criterion (19). Unbiased estimates
result as T successively steps toward r,, extending the validity of the Padé
approximation over a practically unlimited range. In the simulation, T, was
updated to the integer multiple of sampling time closest to 7., for the reason

mentioned above.

Example 3

A more complex system is simulated, represented by the transfer function

Go(s) = -0.5(1 - 0.7s) e
(1.0s + 1)(0.4s + 1)

with 4 taking the wvalues 1.7, 1.3, 1.0, 1.8, 2.8, at times 0, 20, 40, 60, and 80,
respectively. A model with n = 2, m = 1, and with first-order Padé approximation
for e—T'S, was used to identify this process. The initial 7, Was taken to be 1.5, and
the estimates of all parameters were initialized to zero. The filter parameters
were chosen as ¢ = 3.0, and f = 4. The stepping mechanism was used with all
other conditions being identical to those used in Example 2. The results are
shown in Figure 4, with the values of To omitted for sake of clarity. Excellent,
unbiased estimates are achieved, even though the variations in time delay far

* .
exceed the value of 7. (The last leg shows no bias upon convergence after some

time.)
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4. SPECIAL CASES

In the previous section, it was mentioned that the estimation schemes might
not converge to true parameter values in certain special cases. These cases,
discussed here, reveal themselves to be rather benign. The discussion is

facilitated by writing the transfer function of the true process in reduced form as

b'(s + Zl)(s + 22)""(5 + Zm,) e_T 2 e ° (21)

G°(s)
(s +p)(s +p,))....(s +p.)

Pole-zero cancellation

It is clear from equation (21) that the cancellation of a pole or a zero is not
possible unless the factor e-T's can be represented by a finite number of poles
and zeroes analogous to equation (4). Any such representation is valid only upto
a certain value of wr' above which the representation is inadequate and cannot

lead to any cancellation with the process poles and zeroes.

7's

Consider, for the moment, a first-order Padé representation of e in
equation (21), valid for values of wr' less than 1. It would seem, then, that so long
as 7 is small enough for this representation to be valid, the zero or pole of this
representation could conceivably cancel a pole or a zero of the process.
Reflection shows, however, that this situation cannot occur. Consider the case

where the pole of the first-order Padé representation of e’ > in equation (21)
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cancels the ith zero, z,, of the process. In order for this to be possible, the Padé
representation would have to be valid at least upto the frequency |zi|. This, in
turn, implies that || must be less than 1/ |zi|. The pole of the Padé
representation, 1/(0.5|7'|]), would have to be larger than |zi|/0.5 and,
consequently, cannot cancel the proposed zero, z;. Considerations of higher-order
representations of e-T'S in equation (21) lead to even bigger discrepancies of this

nature. Hence, cancellation of a process pole or zero is not possible.

Presence of impostors

Equation (21) shows that if a combination of process zeroes and poles
mimics the form of approximation (4) used in the model, then the estimation
schemes will not be able to differentiate between the true value of 7 and the

fictitious wvalue, 7., represented by that combination. For example, if the

f’
first-order Padé approximation is used in the model, then the presence of one or
more pairs of zeroes and poles of the form (1—rfs)/(1+rfs) in the process transfer
function will offer that many incorrect but equally viable solutions to the

estimation scheme. Then, the objective function in equation (13) will exhibit more

than one minimum, and the uniqueness of solution will be lost.

Clearly, the higher the order of the approximation selected in equation (4),

the less likely will be the existence of a closely resembling form in the process

. . . . -7's
transfer function. Moreover, since all reasonably accurate approximations of e

will include at least one factor of the form (l-clr’s)/(1+czr's), where c,, ¢, are

positive constants, no resembling equivalent is possible in the process transfer
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function for stable, minimum-phase processes.

Consider a nonminimum-phase process with transfer function containing a
factor of the form (1—rfs)/(1+rfs), 7>0. Suppose that first-order Padé
approximation is used in the model. A second solution corresponding to = 2rf
will exist only if the objective function in equation (18) has a significant weighting
for the frequency 1/r,, i.e., only if @ ax > 1/rf. Now if the true solution 7' is
within the range of *, where 1 = llwmax is the maximum absolute value of 7'
for which the Padé approximation is valid, then |7'| < r < Ter Thus the spurious
solution, 7' = ZTf’ will be at least twice the value of the true solution if the latter

lies within 7. For higher-order approximations in equation (4), this difference is

even larger.

The true solution will be expected to lie within r* when the process
parameter variations are slow and the stepping mechanism described previously
is being used. Hence, if the initial parameter estimates are close to their true
values, the estimation algorithm will continue to converge to the true solution and
will not drift to the other minimum. For the linear estimation scheme, this will be
ensured by selecting as the true solution the negative or the smaller positive root
out of the two common roots that will be obtained between polynomials (14) and

(15) after reducing each of them to order 2.

Hence, the possibility of identifying the wrong solution exists only for
nonminimum-phase processes, when the process parameter variations are not
slow or during the initial phase of estimation. Even in these singular situations, it

is straightforward to force convergence to the correct solution, as outlined
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below.

For the linear estimation scheme, upon convergence, the existence of two
common roots between polynomials (14) and (15) will indicate presence of a
spurious solution. Upon detecting this situation, the value of To can be changed by
an amount less than 1'*, and parameters allowed to reconverge. Of the two new
common roots obtained between (14) and (15) from the newly converged
parameters, the one that is almost identical to one of the previous solutions can
be identified as the incorrect solution and rejected. The other new root would be
different from the other previous solution by an amount roughly equal to the

change made in T and this root represents the true solution.

For the nonlinear estimation scheme, upon convergence to one particular
solution (:;.,5.,;), the existence and value of the other solution can be determined

by substituting in polynomials (14) and (15) o = a o = 0, [3 [3

n+1 m+1 0,

and finding the common root between them in the usual way. If a common root is
found, it represents the value of r corresponding to the other solution. The
selection between the two solutions is then made, in the same manner as for the
linear estimation scheme, by changing Ty Upon identifying the correct solution,
the estimates Si, Bi’ 7, can be set to these values and To moved closer, if

necessary.

Analogous procedures can be used, if a more complex approximation has

been selected for equation (4).
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Underparameterized model

When the model orders are not large enough to account for all the process
modes within the frequency range for which the weighting in equation (18) is
significant, the identified slower modes and the identified 7' will be different from
their true values. However, in spite of seemingly erroneous estimates, the
identified model will give the closest possible representation of the true process,

as guaranteed by equation (18). The following example best illustrates this.

Example 4

A second-order process is simulated, having the transfer function

6°(s) = 0.5 o LS

(1.0s + 1)(0.4s + 1)

A constant value of 2.0 is assumed for 7y» SO that 7' is only 0.2 and the stepping
method is not employed. All other conditions of identification are identical to

those in Example 3. Figure 5a shows the parameter estimates for a model with

TS Al parameters are

n=2 m=0, and first-order Padé approximation for e
seen to converge to their true values. A reduced-order model with n = 1, m = 0,
was then used for identification under identical conditions. Figure 5b shows that,

in this case, the converged value of a, is 1.11, and that of 7 is 0.52. This is

1
exactly what one would expect, considering the well-known approximation of a
second-order system as a first-order system with time delay. Thus, even though

the estimated time delay and time constant are different from their true values,
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the identified model represents the real process as closely as possible given its

inferior structure.

Presence of noise

Uncertainties caused by the presence of measurement or process noise can
cause poorer estimation. Although the development above has been presented for
a deterministic process, it is clear from equation (18) that the noise will be
perceived by the estimation algorithm only after passing through the filter, F(s).
Thus, zero-mean noise of frequency greater than W ax is expected to cause no
observable deterioration in parameter estimates. Lower frequency noise will bias
the parameter estimates more significantly as the weighting in equation (18)
becomes larger at that frequency. The following example helps to illustrate the

extent of deterioration that may result.

Example 5

Measurement noise is added to the process simulated in Example 2. Runs
are made under identical conditions as for the stepping-method identification
shown in Figure 3b. Discrete white noise with standard deviation equal to 10% of
the amplitude of the process output was added to the sampled output before
reception by the estimation algorithm. No observable change in the performance
compared to the run in Figure 3b occurred when the noise was introduced at

every sampling instant. Figures 6a and 6b show, omitting Ty for clarity, the
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parameter estimates when the noise was introduced every third and tenth sample,
respectively. As expected, the performance deteriorates as the noise frequency
decreases. The high-frequency noise at the sampling frequency is clearly beyond
the range of W ax’ and is, therefore, essentially not perceived by the estimation
scheme. The noise at the frequency of 3.3 is still well-over the filter cut-off
frequency of 1.5, and is dampened significantly as a result. Thus, the
performance in Figure 6a is only slightly poorer. The noise at the frequency of
1.0 interferes directly with the process mode, without any curtailment by the
filter. This leads to significant deterioration of the parameter estimates, as shown

in Figure 6b.
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5. CONCLUSIONS

A conceptually straightforward technique is presented for on-line estimation
of constant or slowly-varying time delay and continuous-time parameters. Earlier
works with similar objectives, proposed in the literature, suffer from one or
more of the following drawbacks--limitation to off-line identification, problems due
to creation of multiple extrema of the objective function, and estimation of time
delay only to an integer multiple of the sampling time. The method presented here

avoids these drawbacks.

A frequency-domain transformation of the continuous-time model of a
linear, deterministic, SISO system is subjected to approximation of the unknown
time-delay variation by a rational transfer function. Several possible
approximations are indicated. The derivative signals appearing in the time-domain
transformation of the approximate model are then constructed from the process
output and input by using a multifilter technique previously proposed in the
literature. After sampling, a discrete model results that is nonlinear with respect

to the desired parameters.

Two alternatives for estimation are proposed. One involves use of linear
RLS algorithm followed by a nonlinear algebraic transformation, but suffers from
the drawback that the desired parameters are not available during transient
conditions of time-delay and parameter changes. The other estimation method
overcomes this drawback by utilizing a previously proposed recursive nonlinear

least-squares algorithm that vyields directly the estimates of the desired
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parameters. Both schemes lead to the true, unique solution, in general.

A stepping mechanism is then developed which permits tracking of the time
delay over an unlimited range, despite the limitations imposed by the
approximation used for the time-delay variation. It achieves this by modifying
on-line the known part of the time delay, so that the unknown variations around
the known value stay within reasonable bounds. Several simulation examples are

presented to illustrate the capability of the proposed technique.

Finally, it is shown that the algorithm is immune to possibility of pole-zero
cancellations, yields best possible estimates when the chosen model is structurally
inferior, and is robust to the presence of high-frequency measurement or
process noise. The singular case of presence of multiple solutions is shown to be
possible only for nonminimum-phase processes and only under extreme
conditions; simple procedures are presented for detecting and circumventing this

problem if it occurs.

The method offers various choices of implementation, allowing flexibility with

respect to the complexity of the process application.
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FIGURE CAPTIONS

Figure 1: Parameter estimates for Example 1 for changes in time delay
Figure 2: Parameter estimates for Example 1 for changes in process dynamics.

Figure 3: Parameter estimates for Example 2, (a) with constant 7,» and (b) with o

changing by the stepping mechanism.
Figure 4: Parameter estimates for Example 3.

Figure 5: Parameter estimates for Example 4, (a) for a second-order model, and

(b) for a first-order model.

Figure 6: Parameter estimates for Example 5, (a) with medium-frequency noise,

and (b) with low-frequency noise.
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SIMNON LISTING FOR FIRST-ORDER PROCESS IDENTIFICATION

CONTINUOUS SYSTEM PROC
"first order process with noise
"File called Proc

Input u nse
Output y

State x1
Der dx1
time ¢

a=if t<ta then al else a2 "select time-constant
b=if t<tb then bl eise b2 "select gain

"states
dx1= (-x1 + b#u + nse*nsetyp)/a

"Outputs
y=xl+nse*(l-nsetyp)

"Parameters

al:1 "time constant before ta

22:1 "time constant after ta

ta:20 "time at which a changes

bl:.5 “gain before tb

b2:.5 "gain after tb

tb:50 "time at which b changes

nsetyp:0 "0 = measurement noise, 1 = process noise
End

DISCRETE SYSTEM REF
“ reference generator, raw undelayed “u’
"file called genref

Input nse delta
Output yrl

Time ¢

Tsamp ts

s=sign(mod(t,per)-per/2) "periodic square wave with noise
yrl=if s<0 then amp+tnse else amp2+nse

ts=t+del ta

amp:.2 "ypper value of signal u(t)
amp2:0 “lower value of signal u(t)
per:10 “time-period of signal u(t)

End



DISCRETE SYSTEM DTU

"delay signal u by amount d to generate delayed signal ud
“file called dtu

"systems dtu0 and dtul are identical except for first line
"delta is the smallest unit of delay.

Input delta u d

Output ud

State nl n2 n3 n4 n5 n6 n7

State n8 n9 nl0 nll nl2 nl13 nl4

State nl1l5 nl16 nl7 nl18 nl1l9 n20 n21
State n22 n23 n24 n25 n26 n27 n28
State n29 n30 n31 n32 n33 n34 n35
State n36 n37 n38 n39 n40 n4l n4?2
State n43 n44 n45 nd46 nd47 nd48 n49 nbO
New nnl nn2 nn3 nn4 nnS nn6 nn7

New nn8 nn9 nnl10 nnll nnl12 nnl3 nnlé4
New nnl5 nnl6 nnl7 nnl18 nnl19 nn20 nn21
New nn22 nn23 nn24 nn25 nn26 nn27 nn28
New nn29 nn30 nn31 nn32 nn33 nn34 nn35
New nn36 nn37 nn38 nn39 nnd40 nnd4l nn42
New nn43 nn44 nn45 nn46 nn47 nn48 nn49 nn50
Time t

Tsamp ts

do=delta/2.
dl=1*delta+d0
d2=2+del ta+d0
d3=3%*del ta+d0
d4=4%del ta+d0
d5=5*del ta+d0
d6=6+*del ta+d0
d7=7%del ta+d0
d8=8%del ta+d0
d9=9*del ta+d0
d10=10*del ta+d0
dll=11*del ta+d0
d12=12*del ta+d0
d13=13*del ta+d0
dl4=14%del ta+d0
d15=15%del ta+d0
d16=16+del ta+d0
d17=17+del ta+d0
d18=18%del ta+d0
d19=19*del ta+d0
d20=20*del ta+d0
d21=21+del ta+d0
d22=22%de | ta+d0
d23=23*del ta+d0
d24=24%del ta+d0
d25=25+del ta+d0
d26=26*del ta+d0
d27=27*del ta+d0
d28=28*del ta+d0
d29=29x*del ta+d0
d30=30%de | ta+d0
d31=31*del| ta+d0
d32=32+del ta+d0
d33=33*del ta+d0
d34=34%del| ta+d0
d35=35#del ta+d0
d36=36*de | ta+d0
d37=37*del ta+d0
d38=38*del ta+d0
d39=39%del ta+d0
d40=40%de| ta+d0
d41=41%del ta+d0
d42=42%*de| ta+d0
d43=43%del ta+d0
d44=44+del ta+d0
d45=45*del ta+d0
d46=46*de| ta+d0
d47=47+del ta+d0
d48=48%de| ta+d0
d49=49xdelta+d0
d50=50%*de! ta+d0



rO= if d<d0 then u else 0.

rl= if d<dl and d>d0 then nl else
r2= if d<d2 and d>dl1 then n2 else
r3= if d<d3 and d>d2 then n3 else
r4= if d<d4 and d>d3 then n4 else
rb= if d<d5 and d>d4 then nb5 else
r6= if d<d6 and d>d5 then nb6 else
r7= if d<d7 and d>d6 then n7 else
r8= if d<d8 and d>d7 then n8 else
r9= if d<d9 and d>d8 then n9 else
r10= if d<d10 and d>d9 then nl0 else O.
rll= if d<dl11 and d>d10 then nll else
rl2= if d<d12 and d>dl11 then nl2 else
r13= if d<d13 and d>d12 then nl3 else
rl4= if d<dl14 and d>d13 then nl4 else
r15= if d<d15 and d>d14 then nl5 else
r16= if d<d16 and d>d15 then nl6 else
rl17= if d<d17 and d>d16 then nl7 else
r18= if d<d18 and d>d17 then nl8 else
r19= if d<d19 and d>d18 then nl9 else
r20= if d<d20 and d>d19 then n20 else
r21= if d<d21 and d>d20 then n21 else
r22= if d<d22 and d>d21 then n22 else
r23= if d<d23 and d>d22 then n23 else
r24= if d<d24 and d>d23 then n24 else
r25= if d<d25 and d>d24 then n25 else
r26= if d<d26 and d>d25 then n26 else
r27= if d<d27 and d>d26 then n27 else
r28= if d<d28 and d>d27 then n28 else
r29= if d<d29 and d>d28 then n29 else
r30= if d<d30 and d>d29 then n30 else
r3l= if d<d31 and d>d30 then n31 else
r32= if d<d32 and d>d31 then n32 else
r33= if d<d33 and d>d32 then n33 else
r34= if d<d34 and d>d33 then n34 else
r35= if d<d35 and d>d34 then n35 else
r36= if d<d36 and d>d35 then n36 else
r37= if d<d37 and d>d36 then n37 else
r38= if d<d38 and d>d37 then n38 else
r39= if d<d39 and d>d38 then n39 else
r40= if d<d40 and d>d39 then n40 else
r4l= if d<d41 and d>d40 then nd4l else
r42= if d<d42 and d>d41 then n42 else
r43= if d<d43 and d>d42 then n43 else
rd44= if d<d44 and d>d43 then n44 else
rd45= if d<d45 and d>d44 then n45 else
r46= if d<d46 and d>d45 then n46 else
r47= if d<d47 and d>d46 then n47 else
r48= if d<d48 and d>d47 then n48 else
rd49= if d<d49 and d>d48 then n49 else
r50= if d<d50 and d>d49 then n50 else

OO0OO0OO0O0O0CO0OO0O0

. .

.

(e eNoNeleNoNoNoNoNoNoNoNoNeoNoNoNoNoNoNoNoNoNeNoNeNeoNoNoNoNeNeoNoReo oo Ne NoNoNo Neo)

udl=rO+r1+r2+r3+r4+r5+r6+r7+r8+r9+r10+rl1l+r12+r13+rl4+ri15+r16+rl7
ud2=ud1+r18+r19+r20+r21+r22+r23+r24+r25+r26+r27+r28+r29+r30+r31+r32+r33
ud =ud2+r34+r35+r36+r37+r38+r39+r40+rd41+r42+rd43+rd44+r45+r46+rd47+r48+r49+r50

nn50=n49
nn49=n48
nn48=n47
nn47=n46
nn46=n45
nn45=n44
nn44=n43
nn43=n42
nn42=n41
nn41=n40
nn40=n39
nn39=n38
nn38=n37
nn37=n36
nn36=n35
nn35=n34
nn34=n33
nn33=n32
nn32=n31
nn31=n30



nn30=n29
nn29=n28
nn28=n27
nn27=n26
nn26=n25
nn25=n24
nn24=n23
nn23=n22
nn22=n21
nn21=n20
nn20=n19
nnl9=n18
nnl8=n17
nnl7=nl6
nnl6=nl15
nnl5=n14
nnl4=n13
nnl3=n12
nnl2=nl11l
nnll=nl0
nnl10=n9
nn9=n8
nn8=n7
nn7=n6
nn6=n5
nn5=n4
nn4=n3
nn3=n2
nn2=nl
nnl=u

ts=t+del ta

End

DISCRETE SYSTEM DGEN
"generate the value of process time delay
“file called dgen

Input delta
Output d
Time ¢
Tsamp ts

dd=if t<tl then dl else if t<t2 then d2 else if t<t3 then d3 else O
d=if t<t3 then dd else if t<t4 then d4 else db

ts=t+del ta

aaaaa
NN =
WWN W=
®®O®NON

t1:20
t2:40
+3:60
t4:80

end



DISCRETE SYSTEM RLS

"Sequential nonlinear RLS estimation
“"ref. Goodwin and Sin pp. 310

"File called RLS

"q is the value of TAU-zero by uhich

the filtered u’s are to be delayed

"ud is the value assigned to TAU-zero by the estimation scheme

Input u0 ul yO yl1 y2
Qutput delta g

State thl th2 th3
State pll pl2 p22
State pl13 p23 p33
State ud

New nthl nth2 nth3
New npll npl2 np22
New npl3 np23 np33
New nud

time ¢

Tsamp ts

“yector si(t-1)
f1=-y1-0.54th3%y2
f2=u0-0.5*%th3*ul
£3=-0.5%(thl#y2+yl+th2xul)

"Estimation error

e=yO+thluyl-th2+u0+0.5+th3* (thlxy2+yl+th2*ul)

e3=0 "to please macro ddelay

YEstimation gain
k1=pl1xfl+p12*f2+p13%f3
k2=p12%f1+p22%f2+p23%f3
k3=p13%f1+p23*f2+p33*f3
den=]|am+flxkl+f2xk2+f3%k3

"Update estimates.
nthl=thl+kl*e/den
nth2=th2+k2%e/den
mth3=th3+k3*e/den

"Update covariance.
mpl1=(pl1-kl*kl/den)/lam
npl12=p12-k1*k2/den
mp22=(p22-k2+k2/den)/lam
npl13=p13-k1*k3/den
np23=p23-k2*k3/den
mp33=(p33-k3+k3/den)/lam

"reset covariance matrix

npll= if abs(e)>eset then pset else
np22= if abs(e)>eset then pset else
np33= if abs(e)>eset then pset else

"logic for selecting q

qQ=ud

qth=q+mth3
ratiol=abs(kl*e/den/(thl+1e-20))
ratio2=abs(k2+e/den/(th2+1e-20))
ratio3=abs(k3+e/den/(th3+1e-20))
change=if ratiol<eps and ratio2<eps
update=if change>.9 and abs(mth3)>h
Yupdate ud to closest multiple of h

mpll
mp22
mp33

and ratio3<eps then 1 else O "convergence
then 1 else 0 “Will q change by > h
in range 0,5

nud=if update>.9 then (min(5,max(0,h*int(qth/h)))) else ud
nth3=if update>.9 then (qth-nud) else mth3

"Update sampling time
ts=t+h
del ta=h

“"Parameters
h:.1 "sampling time

lam: .98 "forgetting factor
pl1:1000 “covariance matrix elements

p22:1000
p33:1000

eset:1e34 “error threshold above which covariance is reset



pset:1000 “yvalue to which covariance is reset

thl:1.5

th2:0

th3:0

ud:2.5

eps:0.0 “"relative absolute change for convergence test

End

CONTINUOUS SYSTEM FILTER

"File called Filter

"Multifilter technique

"] th order filters, | = 2 or 3

Input v y
OQutput u0 ul y0 yl y2

State x1 x2 x3
State z1 z2 23
Der dx1 dx2 dx3
Der dzl dz2 dz3

"states

dxl= -c*xl + c*x2
dx2= -c#x2 + c*x3
dx3= -c*x3 + cx*y

dzl= -c*zl + c*22
dz2= -c*22 + c*23
dz3= -c#*z3 + c*u

“Outputs

yo=if 1>2.9 then x1 else if 1>1.9 then x2 else O
y13=c*(x2-x1)

y12=c*(x3-x2)

yl=if 1>2.9 then y13 else if 1>1.9 then yl2 else O
y23=c"2%(x3-2%x2+x1)

y22=c"2*(y-2%x3+x2)

y2=if 1>2.9 then y23 else if 1>1.9 then y22 else O

uo=if 1>2.9 then 21 else if 1>1.9 then 22 else O
ul3=c*(z2-z1)

ul2=c#*(z3-22)

ul=if 1>2.9 then ul3 else if 1>1.9 then ul2 else O

"Parameters
c:1.5 "Filter cut-off frequency [hz]
1:3 "order of filter

End



CONNECTING SYSTEM CDELAY
“connect filter, proc, rls, ref, noisel, dtu, dtu0, dtul, dgen
“File called CDELAY

Time ¢
nse[refl=el[noisel]
nse[procl=e2[noisel]
uldtul=yrilref]
ulproc]l=ud[dtu]
ulfilterJ=yri[ref]
y[filter]=y[proc]
uldtu0]=uO[filter]
uO[ris]l=ud[dtu0]
ul[dtull=ullfilter]
ullris]=ud[dtul]
yo[risl=yo[filter]
yilrisl=y1l[filter]
y2[ris]l=y2[filter]
delta[refl=deltalrls]
deltaldgen]=delta[ris]
deltaldtul=deltalrls]
delta[dtuO]=deltalrls]
deltaldtull=delta[ris]
d[dtul=d[dgen]
d[dtu0]=qlris]
d[dtull=q[ris])

end

MACRO SDELAY

“compilation of system and generation of noise
“File called Sdelay

LET n.noisel=2

,nodd.noisel1=21853

SYST NOISE1l GENREF DGEN DTU PROC FILTER DTUO DTUl RLS CDELAY
Par dt:.1

Par stdevl1:0

Par stdev2:0

Par rect:0

Par same:1

End

MACRO DDELAY

split 2 2
store e e3 thl th2 qth q a b d[dtu] ulfilter] y[proc) uolris]

simu O 100 .005

ashow e e3

text ‘o

ashow a thl

text a“’

ashow b th2

text 'b”

ashow d qth q

text’d”’

disp thl th2 qth pll p22 p33

End



SIMNON LISTING FOR SECOND-ORDER PROCESS IDENTIFICATION

Systems REF, DGEN, DTU, DTUO, DTU1, (and DTU2)

for the first-order process identification

CONTINUOUS SYSTEM PROC
"second order process with noise
“File called Proc

Input u nse
Output y

State x1 x2
Der dx1 dx2
Time ¢

ca0=1./(al*a2)
cal=(al+a2)*cal
cb0=bO*cal
cb1=bO*bl*cal

“states
dx1l=x2+cbi*u

are identical to those

dx2=-ca0*x1-cal*x2+(cbO-cal*cbl)*u+tnse*nsetyp+*cal

YOutputs
y=xl+nse*(1-nsetyp)

"for plots
pthl=al*a2
pth2=al+a2
pth4=bOxb1
pth5=b0

"Parameters
al:l

22:.4
b0:-.5
bl:-.7
nsetyp:0 "0 = meas. noise,

End

1 = process noise



DISCRETE SYSTEM RLS

"Sequential nonlinear RLS

“identifies (th4s+th5)/(thlss+th2s+1) times (first order Pade for th3=delay)
“ref. Goodwin and Sin pp. 310

"File called RLS

"q is TAU-zero sent to dtu0,1,..

"ud is generated value of TAU-zero

Input u0 ul u2 yO yl y2 y3
Output delta q

State thl th2 th3 th4 th§
State pll pl2 p22

State pl13 p23 p33

State pl4 p24 p34 pis

State pl5 p25 p35 p45 p55
State ud

New nthl nth2 nth3 nth4 nth§
New npll npl2 np22

New npl3 np23 np33

New npl4 np24 np34 npi4d

New npl5 np25 np35 np45 np55
New nud

Time ¢t

Tsamp ts

“vector si(t-1)

f1=- .5xth3xy3-y2

£2=- . 5xth3xy2-y1
f3=-.54%(thl*y3+th2+y2+yl+th4*u2+thS+yl)
f4=- ,5%th3*u2+ul

f5=-.5%th3*ul+u0

YEstimation error
ey=y0+(th2+.5%th3) #y1+(thl+ 5+th2+th3) *y2+ Exthl*th3*y3
e=ey-th5*u0-(th4-.5%th3*th5)*ul- (- .6xth3*th4)*u2

e3=0 "to please macro ddelay

"Estimation gain

k1=p11*f1+p12*#f2+p13+f3+p14*f4+p156*f5
k2=p12*f1+p224Ff2+p23+f3+p24*f4+p25+f5
k3=p13*f1+p23*f2+p33%f3+p34%f4+p35+f5
k4=p14*f1+p24%f2+p34%f3+p444f4+p4A5*f5
k5=p15*f1+p25%f2+p35+f3+pA45xf4+pE5+f5
den=lam+flkk1l+f2+k2+f3%k3+f4*k4+f5+k5

"Update estimates.
nthl=thl+kl*e/den
nth2=th2+k2#%e/den
mth3=th3+k3%e/den
nth4=th4+k4*e/den
nth5=th5+k5*e/den

"Update covariance.
mpli=(pll-k1l*k1l/den)/lam
npl12=p12-k1*k2/den
mp22=(p22-k2+*k2/den)/lam
np13=p13-k1*k3/den
np23=p23-k2%k3/den
mp33=(p33-k3*k3/den)/lam
npl4=pl4-kl+k4/den
np24=p24-k2+k4/den
np34=p34-k3+kd/den
mp44=(p44-k4*kd/den)/lam
np16=p15-k1*k5/den
np25=p25-k2+*k5/den
np35=p35-k3+k5/den
np45=p45-k4*k5/den
mp55=(p55-k5*k5/den)/lam

“update covariance matrix

npll= if abs(e)>eset then pset else mpll
np22= if abs(e)>eset then pset else mp22
np33= if abs(e)>eset then pset else mp33
np44= if abs(e)>eset then pset else mp44
np55= if abs(e)>eset then pset else mpES



"logic for selecting q

q=ud

qth=q+mth3

ratiol=abs(kl*e/den/(thl+1le-20))
ratio2=abs(k2*e/den/(th2+1e-20))
ratio3=abs(k3+e/den/(th3+1e-20))
ratiod4=abs(k4+e/den/(thd+1e-20))
ratio5=abs(k5%e/den/(th5+1e-20))

chang3=if ratiol<eps and ratio2<eps and ratio3<eps then 1 else 0
change=if chang3>.9 and ratio4<eps and ratio5<eps then 1 else O "convergence
update=if change>.9 and abs(mth3)>h then 1 else O

nud=if update>.9 then (min(5,max(0,h*int(qth/h)))) else ud
nth3=if update>.9 then (qth-nud) else mth3

"Update sampling time
ts=t+h
delta=h

"Parameters

h:.1 "sampling time

lam:.98 "forgetting factor

p11:1000 “covariance elements

p22:1000

p33:1000

p44:1000

p55:1000

eset:1le34 "error threshold for covariance reset
pset:1000 "reset value of covariance elements
thl:0

th2:0

th3:0

th4:0

th5:0

ud:1.5

eps:0.01 "relative absolute change for convergence test

End



CONTINUOUS SYSTEM FILTER
"File called Filter
"Multifilter technique
“3rd,4th order filters

Input v y
OQutput u0 ul u2 yO yl1 y2 y3

State x1 x2 x3 x4
State z1 z2 z3 24
Der dx1 dx2 dx3 dx4
Der dzl dz2 dz3 dz4

Wstates

dx1l= -c*xl + c*x2
dx2= -c*x2 + c*x3
dx3= -c*x3 + c*x4
dx4= -c¥x4 + c*xy
dzl= -c*zl + c*22
dz2= -c*z2 + ¢*23
dz3= -c*z3 + c*24
dz4= -c*z4 + c*u
"Outputs

yO=if 1>3.9 then x1 else x2

yl=if 1>3.9 then c*(x2-x1) else c*(x3-x2)

y2=if 1>3.9 then c"2*(x3-2%x2+x1) else c"2%(x4-2%x3+x2)

y3=if 1>3.9 then c¢“3#(x4-3%x3+3%x2-x1) else c 3+ (y-3+x4+3*x3-x2)

u0=if 1>3.9 then z1 else z2

ul=if 1>3.9 then c*(z2-21) else c*(z3-22)
u2=if 1>3.9 then c¢"2%(z3-2%22+z1) else c"2*(z4-2%23+22)

“Parameters

c:3 "Filter cut-off frequency [hz]
1:4 "order of filter
End

CONNECTING SYSTEM CDELAY
“connect filter, proc, ris, ref, dgen, dtu, dtu0, dtul, dtu2, noisel
“File called CDELAY

Time t
nse[ref]=el[noisel]
nse[procl=e2[noisel]
uldtul=yri[ref]
ulprocl=ud{dtu]
ulfilterl=yri[ref]
y[filter]=y[proc]
ul[dtuo]=uO[filter]
uO[rls]=ud[dtu0]
uldtull=ul[filter]
ullris]=ud[dtul]
uldtu2)=u2l[filter]
u2([risl=ud[dtu2]
yo[ris]l=yO[filter]
yilrisl=y1[filter]
y2[risl=y2[filter]
y3lrisl=y3([filter]
delta[ref]=deltalrls]
delta[dgen)=delta[rls]
delta[dtu]l=delta[rls]
delta[dtuO]l=delta[rls]
delta[dtul]l=deltalris]
delta[dtu2]=delta[rls]
d[dtu]l=d[dgen]
d[dtu0)=ql[ris]
ddtul]l=qlris]
d[dtu2]=q(ris]

end



MACRO DDELAY

split 2 2
store e thl th2 qth q th4 th5 pthl pth2 d[dtu] pth4 pthb

simu 0 100 .005

ashow e

text ‘e’

ashow thl pthl th2 pth2

text al,a2”

ashow th4 pth4 thbs pthb

text bO,bl”

ashow d qth g

text d”

disp thl th2 qth th4 th5 pl11 p22 p33 p44 pb5

End

MACRO SDELAY

“compilation of system and generation of noise
"File called sdelay

LET n.noisel=2

,nhodd.noisel=21853

SYST NOISE1 GENREF DGEN DTU PROC FILTER DTUO DTU1 DTU2 RLS CDELAY
Par dt:.1

Par stdevl:0

Par stdev2:0

Par rect:0

Par same:1

End



