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A PRACTICAL ROBUSTNESS THEOREM FOR ADAPTIVE CONTROL

Charles E. Rohrs*, Gunter Stein**, and Karl J. Astrom®

ABSTRACT

In this paper, two theorems are quoted which,
when applied together, provide much information
about the robustness of adaptive control schemes.
From these two theorems, another theorem is devel-
oped which can explain why adaptive controllers can
perform robustly in certain practical situations,
while possibly failing in other situations. 1In
particular, 1f the bandwidth constraints on a con-
trol systems are lenient enough to allow the use of
a sampling frequency which 1s smaller than the fre-
quency at which unstructured uncertainty becomes
significant, an adaptive controller can behave
robustly. Many, 1f not all, of the applications of
adaptive control which have been successful employ
relatively slow sampling of the process. Thus, the
results of this paper provide a theoretical expla-
nation of how certain adaptive controllers are per-
forming robustly in practice.

In addition, the final theorem is of a form
which provides insight into what a priori knowledge
is required to achieve robust adaptive control and
how this knowledge may be used.

1. INTRODUCTION

This paper considers the problem of robust
adaptive control from an input-output or transfer
function viewpoint. The plant is considered in
continuous—time as a combination of a parameterized
nominal plant and a multiplicative perturbation
[1]. The magnitude of the multiplicative perturba-
tion is assumed to be bounded as a function of
frequency. Such a perturbation 1s referred to as
unstructured uncertainty. The output of the
continuous-time plant is sampled and a discrete-
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time adaptive controller is applied to the result-
ing discrete~time system. We wish to investigate

the question of whether the discrete-time adaptive
control system will be stable despite the original
continuous-time unstructured uncertainty.

Two theorems are quoted and applied to the
problem. The first theorem, [2], addresses the
question of the uncertainty present in the dis-
crete—time system resulting from the sampling of
the continuous—-time system with a sampling frequen-
¢y Wg. We let the discrete-time system be repre-
sented as a parameterized nominal plant and an un—
structured multiplicative perturbation in dis-
crete-time. The theorem states that the maximum
gize of the multiplicative perturbation in dis-
crete-time over all frequencies will be approxi-
mately equal to the maximum size of the continuous-
time multiplicative perturbation in the frequency
range between zero and wg/2. Since the continuous-
time multiplicative perturbation is generally very
small at low frequencies, the practical meaning of
the result is that, by sampling a continuous-time
system slowly enough, a discrete-time system re-
sults which has very little unstructured uncertain-

ty.

The second theorem quoted 1s due to Ortega,
Praly and Landau [3] and provides an adaptive algo-
rithm in discrete~time which is robust in the sense
that, if a discrete-time plant has small enough un-
gstructured uncertainty, the adaptive control system
will be stable.

At first glance, the allowable size of un-
structured uncertainty in the second theorem ap-
pears quite small indeed. However, from the first
theorem we see that unstructured uncertainty in
sampled data systems can be extremely small in
practical situations if a low enough sampling rate
is chosen. Therefore, practical robust adaptive
control is possible. Such is the main point of
this paper.

Finally, a third theorem and an accompanying
lemma are developed which provide direct tests of
the robustness of the adaptive controller. The re-
sults give theoretical foundation and quantifica-
tion to a two-part design process. First, a nomi-
nal control design is carried out which is robust
for the plant with no unstructured uncertainty.
Then the system must be sampled slowly enough so
that the discrete-time multiplicative perturbation
is small.



2. SAMPLING THE PROCESS

The process or plant is represented by the
following transfer function:

P(s,p) = Pn(s,p) (1 + M(s)) (1

The function P,(s,p) represents a parameterized
nominal plant model with p a vector of parameters.
Ignorance of the exact value p which best repre-
sents the plant 1s an indication of structured un-
certalnty and is the reason for using an adaptive
controller. The function M(s) 1s a multiplicative
perturbation representing unstructured uncertainty.
We do not know exactly what causes a particular
M(s) to be present. The causes of M(s) may be neg-
lected high frequency dynamics, the apparent ef-
fects of non-linearities, or other effects that
cannot be measured accurately enough to be accept-
ably modeled. The only knowledge we will assume
about the multiplicative perturbation is that M(s)
represents stable dynamics and we know a bound on
its magnitude as a function of frequency.

M(Ju)| < m(Jw) (2)

We assume no knowledge at all about the phase char-
acteristics of M(s). In general m(jw) will be much
less than one at low frequencies and will grow as
frequency increases. Notice that M(s) values
larger than unity translate into completely unknown
phase characteristics for the plant P(s,p).

In order to create a sample data discrete-time
system, filters which appropriately condition the
plant's response will be allowed. Such filters are
common in practice. First, the plant may be fol-
lowed by an anti-aliasing filter, Fa(s). Second,
the plant may be preceded by a filter, Fp(s), in
order to remove the potential high frequency compo-
nents which may be present in the output of the
digital to analog converter. Finally, the effect
of the digital to analog converter itself is well
represented by an analog reconstruction as a train
of impulses followed by a filter

- a—s8T

Fa(s) = (3

where T is the sampling period.
Let
Gn(s,p) = F2(8)Fp(68)Py(s,p)Fa(s)
The discrete-time system that results from condi-
tion the plant with Fy(e) and Fp(s) and sampling at

a frequency of wg = 2r/T is given by the following
equation.

1 L
Ga(Jw,p) == [ Gn(Ju + kug,p)(1 + M(jo + kug))
T kom0
(4)
We can define a nominal parameterized discrete-time

plant as the discrete-time system which would re-~
sult if M(s) were zero.

Gan(Ju,p) = %-kf Gn( 4o + kug, p) (5)

The discrete-time unsgructured uncertainty,
My(jw,p) 1s then defined implicitly as follows:

Gd(jtﬂ,p) = Gdn(j‘",p)(l + Md(jw,p)) (6)

Theorem 1, taken from [2], provides a bound on the
magnitude of Mg.

Theorem 1:
[Mg(3w,p)} < ma(Jw,p) (¢))
with
k,Zan(j“ + kwg,p)m(ju + kwg)
mg(jw,p) = = (8)
oL Ga(dw + kug,p)

where m( jw) is taken from equation (2).
The proof 1s given in [2].

First, we remark that all the sums given in
equation (4), (5) and (8) are absolutely convergent
under the mild gondition that the term found by
setting k=0 has more poles than zeroes. More
importantly, under similarly mild conditions which
are always realized in practice, all these sums are
completely dominated by the k=0 term for the fre-
quency range

-% ¢yl (9
2 2

See [4] for further {llustration of this point. In
addition, all discrete-time transfer functions are
periodic with period wg so that the behavior for
all frequencies 1s completely determined by the
behavior for the frequencies given in (9). By
assuming the k=0 term dominates each sum, equation
(8) 1s reduced.

mg(ju,p) = m(jw) - %1 <uw< %’i (10)

Note that, with these assumptions, the dependence
of mq on p disappears. With these results we can
see that the maximum of mg(jw) over all frequencies
is approximately equal to the maximum of m(jw) over
the frequency range given in (9). Usually m(jw) is
small at low frequencies so that if wg is small the
resulting discrete—-time system may have very little
unstructured uncertainty at all frequencies. This
phenomena was observed for a specific example using
pole-zero plots in [5])

In summary, by sampling a system slowly enough
one can arrive at a discrete-time transfer function
for a process represented by the following
equation:

Ga(z™l,p) = Ggn(z~1l,p)(1 + Mg(z"1)) (lla)
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with Mg (w)| < mg(iw) (11b)

where mg(jw) is small for all w.
3.

THE ROBUSTNESS THEOREM OF ORTEGA,
PRALY AND LANDAU [3]

In this section we paraphrase a theorem from
[3] which shows that if a plant can be expressed as
in equation (11) and my(jw) is small enough, there
is an adaptive controller which remains stable
despite the unstructured uncertainty.

Starting from equation 11, write

-d -1
Ga(z"1,p) = ZBalET) (12)
Ao(z'!)
where A, and B, are polynomials
Let
Q[t] n [Bo[t],Sl[t],--.,Sns[t],ro[t],tl[t]
- T
,...,rnR[t]] (13)

¢(c] = [u[t],ufe-1],...,ult-ng],y[t],y[t~1)

»«+e,y{t-np] (14)
w[t] be the reference input
Choose u[t] to solve
wlerd] = 8T[e] o[ (15)

The choice of u[t] can be represented by the equa-
tion

- -

Sela”l]ult] = werg = RelaLiy(e) (16)
For each constant value, 9*, there is an entity to
be referred to as a nominally controlled plant,
H*(z'l), given by

H*(z-1y = Z-9Bo(z7h) an
Co(z™1)

where Co(z™1) = s*(z~1)ay(z"1) + z=d R*(2~1)B,(z"])

(18)

The nominally controlled plant is simply the
closed-loop system that results from applying the
constant feedback represented by equation (15) or
(16) with a constant 6™ to the plant of equation
(12). It is standard practice in the case where
there 18 no unatructured uncertainty in the plant
(mg(Jw) = 0) to pick the degrees of S and R large
enough to be able to achieve pole placement and

plant zero cancellation in the closed-loop. In
that case, there is some 8** g0 that
-d
B**(z71) = Z— uhen mg(ju) = 0 (19)

Cr(z™%)
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where CR(z'l) is a polynomial whose roots are de-
sired closed-loop poles.

The adaptation algorithm consists of the fol-
lowing equations:

eft] = Crlq™1] y[t] - wit) (20)
B[t] = 6[t-1] +-5$15?9%315l (21)
ple
olt] = up[t-1] + max(|d[t - d]]|2,04) (22)

Po >0, 0 < <1

This algorithm has constant adaptation gain, f,
with a normalizing factor represented by p.

For this algorithm, Theorem 2 may be proved
from the arguments of [3]. But first the following
definition is needed:

A transfer function H(z'l) i1s p stable if there are
no values of z outside a circle of radius p which
cause H(z'l) to be singular.

Theorem E_ If there exists a 9% such that

1. 24 CR(z'l)H*(z'l) is u-stable
and
2. 124 cp(z-lym*(z1) - 1/£] < %

sup
z = ul/2ejw

Then the following are true:

1. If w[t] € %« and e*[t] € 25
where
e*[e] = [qd cria~11*[q71] - 1] w(t)
then e[t] € £7 and ¢[t] € R
2. If w[t] € fe, then there exists a p, from
equation (22) so that e[t] € %o and ¢[t] € 2w
Remark 1: The first results say that if a 9* which

provides asymptotic tracking produces a nominally
controlled plant which meets the sufficient robust-
ness conditions, the system will asymptotically
track the input.

Remark 2: Similar results are obtained in [3] where
bounded output disturbances are allowed. Similar
results are also obtained in [3] when a normalized
Lease Squares algorithm is used.

In interpreting the second theorem, it is use-
ful to examine the conditions of the theorem in the
case of no unstructured uncertainty. When there is
no unstructured uncertainty the order of the adap-
tive controller may be chosen large enough so that
equation (19) applied. Equation (19) implies the
following condition on the quantities of interest
in the conditions of Theorem 2.

zd cp(z"Lyp**(z"1) = 1 23)



With equatfon (23) being true condition one of The-
orem 2 18 automatically satisfied and condition two
1s satisfied 1f 0 < £ < 2 as expected from standard
adaptive control theory. In general, condition two
states that the image of a circle of radius ul/2 in
the z-plane under the mapping zd CR(z'l)H*(z‘l)
lies in a circle whose center is 1/f and radius is
1/f. This condition is always more strict than
requiring zd CR(z‘l)H*(z—Ol) to be strictly posi-
tive real. Thus, any multiplicative perturbation
in a plant which reflects itself as a multiplica-
tive perturbation in #* with maénitude greater than
one implies that the phase of H" is indeterminable
at some frequency and condition 2 cannot be satis-
fied. Thus, small multiplicative perturbations in
discrete-time are needed for robustness. Theorem 1
shows that while nature usually dictates large high
frequency multiplicative perturbations In continu-
ous—-time models, small perturbations in discrete-—
time are possible through slow sampling.

4. GUIDELINES FOR ROBUST DESIGN

Unfortunately, Theorem 2 does not provide
direct condition which the plant mulciplicative
perturbation should satisfy to guarantee robust-
ness. Instead, it provides a condition on the
nominally controlled plant. Thus, the satisfaction
of the condition of Theorem 2 depends not only upon
the size of plant's multiplicative perturbation but
also upon the gains given in 6* and the nomimal
plant itself. 1In this section, we create a new
theorem which displays the dependence of robustness
on a priori knowledge and provides guidelines for
robust adaptive control design. In order to more
fully understand how the plant perturbation trans-—
lates into a perturbation on the nominally con-
trolled system, we make the following definitions.

Gdn(z""af’) (24)

u* -o(z'l) =
" s*(z71) + R*(z"1)Ggn(z~1,p)

where Gdn(z'l,p) from equation (11) is the
discrete~-time plant with no unstructured uncer-
tainty, and R*(z'l) and S*(z'l) represent the nom-
inal controller from equation (16). H*mso(z‘l) is
the nominal closed-loop system that would result
from using the feedback parameters 8* on the plant
if there were no unstructured uncertainty. Define
M*(z'l) implicitly by

H*(z71) = H*p=0(z"1) (1 + M*(z"1)) (25)

We note also that

Gan(z~1,p) (1 + My(z~1)
s*(z71) + R*(z"1)egn(2z"L,p) (1 + Mg(z"1))

H*(z"1l) =

(26)

From equations (24) to (26), we derive

w*(z-1) = Mg(z™1)

1+ B0 ("L, p)+R* (2 1) Gan (271, pIMg (27 1)
s*(z"1) s*(z71)

27)

Define a bound on the magnitude of M*.
sup |M*(nl/2edw)| < mu* (28)
w
Conditions which imply the conditione of

Theorem 2 can now be stated in terms of H*m-o,
Md(z'l), and my .
Theorem 3. 1If there exists a 6% such that

1. H*m,o(z‘l) is p-stable
" R*(ul/2e3wygg (nl/2e39,p))-1

24 >|Mg(ul/2ew)
s*(ul/2edw)
and for all w
sup d =lyy* -1
3. z9Cr(z™ W pap(z™)| <
z = pl/2e3w
1 sup d - | *
- - z9Cgr(z74) |m
£, = l/2e30 H
Then the comditions of Theorem 2 are met and
the stability results of Theorem 2 apply.
Proof: Conditions 1 and 2 of Theorem 3 are simply

conditions providing for u-stability of H*(z'l)

through equation (26). Condition 3 of Theorem 3

follows as a sufficient condition for condition 2

of Theorem 2.

Let

R*(z71)Ggp (271, k)
s*(z~1)

¥zl = (28)

The quantity L*is simply the loop gain of the
nominal system with no modelling errors using the
controller parameters 8”. The quantity 14L* 1s the
return difference operator of the same loop. We
note here that, in most cases, any quantity
evaluated at ui/zejw is only marginally different
from the quantity evaluated at el¥. Clearly, this
statement becomes less valid as uy decrease from
one. The size of mu*is an important quantity. Let
us investigate the quantity through equation (27)
which we rewrite using equation (28).

Ma(="h) (29)

M*(z-1) =
1+ L*"1)(1 + Ma(z"1))

Two factors are needed to keep the magnitude of
M*(z'l) small:

1. Md(z"l) must be small.
through Theorem 1.

This 18 possible

2. (1 + L*(z'l)) must be large. This is provided
by a robust nominal control design when there
is no unstructured uncertainty.

In the following lemma, we make some
assumptions on |Mg| and |1 + L*[ in order to bound
my~ and assure that condition 2 of Theorem 3 is
met.

982



Lemma 1. Assume that

1. suled(ul/zeJ“)l < og
w

and 2. inf|l + L*(ul/2ed0)| > o,
w
—m
then my* € 0g(l - op) - op

If, in addition,
e
op < 1 + 0g

Condition 2 of Theorem 3 i{s met.
The proof is obtained by manipulating inequalities.

In the following we show that from the theo-
rems stated in this paper, robust adaptive control
is at least feasible for some cases. In order to
show feasibility, we pick arbitrarily what we feel
are plausible values for 0, and 0y. Assume that
the set of controller gains 8** achieve the nominal
design objective so that equation (19) is satisfied
and the controller is robust enough on the nominal
system with no unstructured uncertainties so that
condition 2 of lemma 1 {is satisfied for some u with
0ec = =5. Also, assume that the sampling frequency
of the system is chosen so that condition one of
Lemma 1 is met with 0p = 0.1. This assumption is
easily met in applications where the required band-
width of the system is well below the frequencies
where unstructured uncertainties become signifi-
cant. Lemma 1 then shows that condition 2 of Theo-
rem 3 is met and mu* < .33,

Applying equation (19) to condition 3 of Theo-
rem 3 yields the following sufficlent condition for
stability of the adaptive control scheme in the
presence of modelling error.

1 1 sup d -1 *
1 -=1<¢ =- z9Cr(z™ 1) |m (30)
R AR Ry L L
or, for f <1
mv* inf z~d
z=ul/2e30 | cp(z~1) l

Remember that z‘d/CR(z'l) is the desired nominal
design objective. If the design is based upon min-
imum variance of control Cr(z~!) = 1 and we have
m,* < p=d/2 (31)
as the conditign that must be satisfied for robust-
ness. With my = .33 we can easily pick an appro-
priate p and obtain robust adaptive control.
5. CONCLUSIONS

Thie paper has presented theorems which show
that robust adaptive control is possible under cer-
tain practical conditfons. 1In addition, guidelines

of how to obtain a robust adaptive controller be-
come evident through the theorems. The lessons of
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the theorems are in a form which 1s pleasing from
an inctuitive sense in that they suggest require~
ments which are similar to the requirements that
one might expect from an intuitive viewpoint.

The theorems give quantitative substance to
two conditions which are required for robust adap-
tive control. The first requirement 1Is for a con—
troller design which would meet reasonable robust-
ness constralnts 1if there were no unstructured
uncertainty in the plant. This requirement is
stated in terms of a familiar measure of robust-
ness, the return difference operator.

The second requirement 1s that the unstruc-
tured uncertainty be small. Due to the potential
high gain of the adaptive loop [6], the unstruc—
tured uncertainty must be much smaller than in non-
adaptive robust control. Indeed, a multiplicative
perturbation must always have magnitude less than
unity. The key here 1s that Theorem 1 shows that
discrete-time systems which are sampled slowly may
result in a multiplication perturbation whose mag—
nitude is much less than unity for all frequen-
cles.

The practical situations for which robust
adaptive control seems feasible are those systems
whose bandwidth requirements are lenlent enough to
allow the system to be sampled at a frequency that
is smaller than the frequency at which unstructured
uncertainties become significant. It 1s pleasing
that it is exactly on systems of this nature that
adaptive controllers are performing successfully.
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