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Paper presented at the IFAC Workshop on Adaptive Control of Chemical
Processes, Frankfurt/Main, FRG, October 19835.

AUTOMATIC TUNING OF PID CONTROLLERS BASED ON DOMINANT POLE DESIGN

T Hagglund and K J Astrém

Department of Automatic Control, Lund Institute of Technology
Lund, Sweden

Abstract:

This paper describes a new method for designing simple feedback systems. The idea is to
position only those closed loop poles which have a dominant influence on the closed loop
response. Techniques for approximate determination of the dominant poles are derived, as
well as design methods based on these formulas. The design methods are shown to be suitable

for automatic tuning of PID controllers.

1. INTRODUCTION

This paper was motivated by work on automatic tuning of
simple regulators. See Astrém and Hagglund (1983, 1984a,
1984b} which indicated the need for improved design
methods for simple regulators of the PID type. The
classical Ziegler-Nichols tuning rules have the advantage
of being very simple to use since they are based on
knowledge of one point on the Nyquist curve of the
system only. See Ziegler and Nichols (1943). The
Ziegler-Nichols design method does, however, give poor
control of the damping of the closed loop system. Related
methods based on amplitude and phase margins discussed
in Astrém and Higglund (1984a) also have the same
difficulty. See Higglund and Astrém (1984).

A natural extension of the Ziegler-Nichols method is to
try to find techniques which are based on knowledge of
several points on the Nyquist curve of the open loop
system. In Hagglund and Astrém (1984), a new method
was proposed which uses two points on the Nyquist
curve. It may be regarded as a special case of
pole-placement where it is only attempted to position the
dominant closed loop poles. This is in contrast to normal
pole placement methods where all closed loop poles are
positioned. The design was derived using conformal
mapping arguments. In this paper, a more general
derivation of the dominant pole design method is
presented. It contains the method of Hagglund and Astrém
(1984) as a special case.

The paper is organized as follows. The notion of dominant
poles is reviewed in Section 2. Approximate methods for
determining the dominant poles are given in Section 3.
The key result is a very simple method for determining
poles from the Nyquist curve of the loop transfer
function. The formula developed in Section 3 is used to
derive design methods for Pl, PD and PID-regulators in
Section 4. The specifications given are primarily related
to the frequency and the damping of the dominant poles.
A few examples of the application of the design method
are also given. In Section 5, an auto-tuning method
suitable for the design method is reviewed. In Section 6,
the design method is used to control several models of
processes which are common in process control. The
main results of the paper are summarized in Section 7,
and references are given in Section 8.
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Fig. 1 Block diagram of a simple feedback system.
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2. DOMINANT POLES

Consider a closed loop system obtained by negative
feedback around a linear system with the transfer
function G(s). See Fig. 1. The transfer function of the
closed loop system from the command signal to the output
is given by

G (s) = 136?5) (2.1)

Many properties of the closed loop system can be deduced
from the poles and the zeros of G (s). The zeros of G (s)
are the same as the zeros of G(s) i.e. the zeros of the
plant and the regulator. The closed loop poles are the
roots of the equation

1+6G(s) =0 (2.2)

The pole-zero configurations of closed loop systems may
vary considerably. Many simple feedback loops will,
however, have a configuration of the type shown in Fig. 2
where the principal characteristics of the response is
given by a complex pair of poles p,. p, called the
dominant poles. The response is also somewhat influenced
by real poles and zeros, Py and z, respectively. The
steady stale properties are m!lucncet} by the dipole p,,
z,. Poles and zeros whose real parts are much smaller
than the real part of the dominant poles have little
influence on the transient response. Classical control was
very much concerned with closed loop systems having
the pole-zero configuration shown in Fig. 2. See Mulligan
(1949), Truxal (1955), Elgerd and Stephens (1959),
Horowitz (1963).

A
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Fig. 2 Pole-zero configuration of a simple feedback
system.



3. DETERMINATION OF DOMINANT POLES

A simple method for estimating the dominant poles from
knowledge of the Nyquist curve of the open loop system
will now be described. Consider the loop transfer
function G as a map from the s-plane to the G-plane. See
Fig. 3. The map of the imaginary axis in the s-plane is the
Nyquist curve which is indicated by the full line in
Fig. 3b. The closed loop poles are given by the
characteristic equation

G(s) +1 =0

Therefore, the map of a straight line through the
dominant poles in the s-plane is a curve which goes
through the critical point C = -1 in the G-plane. This
curve is dashed in Fig. 3b. Since the map is conformal,
the straight line A'C' is mapped into the curve AC which
intersects the Nyquist curve orthogonally. The triangle
A'B'C’ is also mapped conformally to ABC. If ABC can be
approximated by a triangle the following condition holds

G{il-:z] - G[iwl} 1+G(iw,)

= = =
1w, = '.I.b.ll o

2

(3.1)

This equation can be used to determine the dominant
poles approximatively. The procedure can be expressed as
follows. Determine a point A on the Nyquist curve such
that the normal at A goes through the critical point C.
The frequency w, at A is then the argument such that
Gliw,) = A. To délermine ¢ consider a neighbouring point
w, and compute o from (3.1). The approximation will be
good if the graph ABC is close to a triangle.

An analytic derivation

To provide further insight, the equation (3.1) will now be
derived analytically. For this purpose consider the
equation (2.2). A Taylor series expansion around s = iw
gives

0 =1+ G(-o+iw) =1 + G(iw) - oG’ (iw) + ...

Neglecting terms of second and higher order in o we find

1 + G(iw) - oG’ (iw) = 0O (3.2)

This equation is equivalent to (3.1) as Wy =W, =
Notice that w must be chosen so that the normal ?o the
Nyquist curve at w goes through the critical point.
Otherwise o in (3.2) will not be real. This analytic
derivation shows that the formula (3.1) will give good
results for small o, i.a. when the dominant poles are close
to the imaginary axis. The approximation (3.2) will not
hold if the function G(s) has singularities inside the circle
with center in iw and radius w. This means that ¢ must be
smaller than w.

An example which illustrates the formula (3.2) for

approximative determination of the dominant poles will
now be given.

Jl Im G

Fig. 3 Representation of the transfer function G as a
map of C to C.

EXAMPLE 3.1
Consider a system with the loop transfer function
G(s) = _k_z
s(s+1)
Hence
Gl == 2 - z " = 3
s7(s+1) s(s+1)

Equation (3.2) becomes

s+ 35t w35 (1+k)s2 + k(1+30)s + ok = 0
Introducing s = iw gives two real equations with the
solution

(8-k)/32k+0k% — 24Kk - 3KZ
a= 128k

3Kk + J32k + oKkZ
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For k = 1 the solution becomes

o =0.14 (0.122)
w=0.77 (0.745)
g = 0.18 (0.16)
The correct values are given in parentheses. o

Difference approximations

Equation (3.1), which may be considered as a difference
approximation of (3.2), is more convenient to use than
(3.2) when the Nyquist curve is determined
experimentally. The equation (3.1) can be written as

i(wz_ui) [1+G(i("2)]
G[iuzj - G[iwlj

(3.3)

Notice that the complex numbers 1+G[iu2} and

Gliw,) - G(iw,} are orthogonal if w, and w, are properly
2 :

chosen. The Trequency w can then also be estimated as

w = w,. Two points on the Nyquist curve are obviously

needeg to use this formula. More accurate equations can

be derived if more peoints are known.

4. DOMINANT POLE DESIGN

A control design problem will now be presented. Consider
the closed loop system shown in Fig. 4 with a plant and a
compensator. The compensator G, should be determined
so that the closed loop system %as desired properties.
Assume that the closed loop system can be characterized
by the dominant poles, s =-0t iw. The transient
behaviour is then largely governed by ¢ and w. It is also
influenced by the zeros of the process and the regulator
to some extent.

Fig. 4 Block diagram of a closed loop system.



Since the dominant poles are characterized by two
parameters, a regulator of the Pl or PD type which has
two adjustable parameters is sufficient to give desired
dominant poles, provided that the desired bandwidth is not
too high. A PID-regulator which has an additional
parameter adds extra flexibility with respect to rejection
of lcad disturbances.

A design procedure

With these specifications it is straightforward td obtain an
analytic formula for the design. Equation (3.2) gives the
following condition

( 146 Gp ] - ol GGy + G Gp ]=o0 (4.1)

This is an equation in complex variables, It thus gives two
real equations which can be wused to determine the
parameters of a Pl or a PD regulator. Since a
PID-regulator has three parameters, an auxiliary condition
is needed in this case. Such a condition can be to specify
a given relation between the integral time T. and the
derivative time Td' i.e. !

Td = o:Ti (4.2)

A regulator also introduces zeros in the loop transfer
function. These zeros are influenced by the manner in
which the command signal is introduced in the system. It
is common practice not to introduce the command signal
in the derivative action. Such a PID-regulator can be
described by

t
1 deg
u-Kep-f-.rIe(S)dS'FTd —a*gl (4.3)
i
0
where

ep=e-r-y > e = -y

The regulator introduces a zero at

This zero may cause an excessive overshoot if it is too
close to the real part of the dominant poles. To avoid this
the regulator may be modified by choosing

e=r -y

ep-[ir—y 0<p <1 (4.4)

eq = -V

This means that the proportional part only acts on a
fraction B of the reference signal. The regulator (4.3)
with ey e4 and e defined by (4.4) introduces a zero at

This zero can be positioned properly by selecting 3. A
reasonable choice is

. .5
B 3chi (4 )

since this choice will place the zero at -3¢, which is far
away from the real part of the dominant poles.

Summarizing we find that the design procedure can be
described as follows. Determine the parameters of the
regulator such that (4.1), (4.2) and (4.3) hold. The design
procedure is illustrated by several examples in Section 6.

Examples

This section ends with some examples where only Pl or
PD regulators are used. In these cases, the controller is
uniquely determined by Equation {4.1).

EXAMPLE 4.1 - PD control of a double integrator
With PD-control of a double integrator the loop transfer
function becomes

k+kds k kd

2 2
H s s

G(s) =

where k is the proportional gain and k, is the derivative
gain. Solving the design equation (4.1) for k and kd gives

4 2
w 2, 2 30
k = - [w + 0 ] 1 - —
262+u2 [ u2
k. = 2"‘“"2 2¢ |1 - i
d 20‘2+uz w2

where the approximations vyield if ofw is small. With
PD-control of a double integrator it is possible to obtain
an arbitrary pole placemenb TQe exact gains which give
the poles - ¢ t iw are k = w +0 andkd=2<7. o
The gains in Example 4.1 give a closed loop system with a
frequency w, and a relative damping ;1 equal to

1
.\‘4 22 2
w =,&_k2/4=u_‘°i.‘:’_w1_§"_
1 d m2+202 2u2

k d o uzﬂsz 62
;1 o — = . = g 1 - —
2vk \/u2+0‘2 u2+202 21.:2

The equations indicate the error due to the
approximations used. Notice that the error in the relative
damping is smaller than the error in the frequency. With
o/w = 0.5 the error in the relative damping is 9 % while
the error in the frequency is about 25 %. The errors
may be reduced by using more terms in the Taylor series
expansion used to derive the design equation.

Next a plant with the transfer function

6,(s) = . (4.6)

(s+1)°

will be investigated. Since the plant is of third order it is
clear that exact pole placement cannot be obtained with PI,
PD or PID-control. First consider Pl-control.

EXAMPLE 4.2 - Pl control of (s+1)'3
With Pl-control of the system (4.6), the loop transfer
function is

k k.
i

G B —
*) (s+1)> ' s(s+1)°

Solving the design equation (4.1) for k and ki gives

- a[—4u4+20u2:| + 3w+ 20 - 1

k
w2+1202+60+1
Kk == u5 + 21..:4 ¥ 3a® = 12(![:»4—#42}
1 u2+1202+60+1 o]



EXAMPLE 4.3 - PD control of (s+1)'3
Consider PD-control of the system (4.6). The loop
transfer function becomes

The design equation (4.1) has the solution

" _—20u4+3w4+166w2+2w2—60~1
u2+602+6a+1
K =u4+12au2—2w2—120—3
d 2 2
w + 60" + 60 + 1 -]

In the Examples 4.2 and 4.3, regulators with positive gains
can be found only if the specifications on the dominant
poles are restricted to certain areas. Fig. 5 shows those
combinations of ¢ and w which give positive gains for the
Pl and the PD regulators respectively. The border-lines
are given by the pure P, | and D regulators. Notice that
the approximative formulas are only valid if o < w. From
this figure it is seen that the bandwidth w cannot be
chosen too high if only a Pl controller is used.

How to find a proper w

The choice of a proper w is crucial in the dominant pole
design. Since a PID regulator has a limited complexity, it
is clear that arbitrarily large values of w can not be
chosen. This is also clearly illustrated in the examples.
See Fig. 5. It is also clear that the approach will always
work for open loop stable systems if w is chosen
sufficiently low.

Guidelines for possible values of w can be obtained as
follows. The open loop cross over frequency w_ can
serve as a first approximation. The phase lead genérated
by a PID regulator depends on the ratio « = T /T. and the
maximum derivative gain. With « = 0.25 the largest lead is
approximately 40°. This means that a proper phase
margin may be obtained with w = w . To obtain a good
transient response it is, however, alsé necessary that the
slope dlogiG(iw)1/dlogw is close to -1 at the crossover.
Evaluation of the slope at the open loop cross over
frequency gives an indication if the cross over frequency
can be chosen as w. There is again some margin. A PID
regulator can e.g. increase the slope by at most 0.4 when
o« = 0.25, If the slope conditions can not be satisfied, a
lower value of w must be chosen.

By evaluating how rapidly the phase changes we can also
get an indication if the dynamics is dominated by time
delays. In these cases the rule (4.2) is not appropriate. It
is much better with pure PI control.

Fig.5 Areas of positive gains in the Pl and PD
regulators.

5. AUTO-TUNING

If the dominant pole design method is combined with some
method for automatic determination of two points on the
Nyquist curve, an auto-tuning method can be derived. In
Astrom and Higglund (1984b), a method to automatically
identify points on the Nyquist curve is presented. The
identification procedure automatically determines the
frequencies as well as the values of the open loop
transfer function at points in the neighborhood of the
cross over frequency. It is therefore well suited for the
dominant pole design. The method will be shortly
reviewed.

The technique is based on the observation that a system
with a phase lag of at least 7 at high frequencies may
oscillate with period t_under relay centrol. To determine
the critical point the system is connected in a feedback
loop with a relay as is shown in Fig. 6. The error e is
then a periodic signal, and the parameters k and w_ can
be determined approximatively from the first harmonic
component of the oscillation.

Let d be the relay amplitude and let a be the amplitude of
the first harmonic of the error signal. A Fourier series
expansion gives that the first harmonic of the relay
cutput has the amplitude 4d/r. The following condition is
then obtained by tracing signals around the feedback loop.

.2m, _ ma
G(lz) vy (5.1)

This result also follows from the describing function
approximation because the describing function of a relay
is given by N(a) = 4d/ma. Notice that the technique will
automatically generate an input signal to the process
which has a significant frequency content at w . This
ensures that the critical point can be determined
accurately.

The period of the limit cycle oscillation can easily be
determined from the times between zero-crossings. The
amplitude may be determined by measuring the
peak-to-peak values of the output. These estimation
methods are easy to implement because they are based on
counting and comparisons only. Since the describing
function analysis is based on the first harmonic of the
oscillation, the simple estimation techniques require that
the first harmonic dominates. If this is not the case, it
may be necessary to filter the signal before measuring.
More elaborate estimation schemes like least squares
estimation and extended Kalman filtering may also be used
to determine the amplitude and the frequency of the limit
cycle oscillation. Simulations and experiments on
industrial processes have indicated that little is gained in
practice by using more sophisticated methods for
determining the amplitude and the period.

There are many variations of the scheme. Other points
on the Nyquist curve can be estimated by introducing
known dynamics and hysteresis in the relay. See Astrém
and Higglund (1984ab). The negative reciprocal of the
describing function of such a relay is

1 n 2

2 .
“FN@yc"@Vve - -i (5.2)

Process

Yret

Fig. 6 Block diagram of the auto-tuner. The system
operates as a relay controller in the tuning mode
() and as an ordinary PID regulator in the
control mode (c).



where d is the relay amplitude and e is the hysteresis
width. This function can be regarded as a straight line
parallel to the real axis, in the complex plane. See Fig. 7.

Two experiments with relay feedback having different
ratios e/d give the information about the process which is
nceded in order to apply the design method given in
Section 3. This estimation method is in good harmony
with the dominant pole design technique, because it will
give the open loop cross over frequency. By introducing
a small amount of hysteresis in the relay we can also
obtain the open loop transfer function at a neighboring
point. By evaluating the gradient of the open loop transfer
function we can then determine if the cross over
frequency is a good candidate for w. If it is, the PID
parameters are straightforwardly given by the dominant
pole design. See equation (3.1). If the cross over
frequency is not an achievable bandwidth w, we can find
another candidate for w from a relay oscillation
experiment with larger hysteresis.

6. SIMULATION EXAMPLES

In this section, the dominant pole design is applied to
some systems which have dynamics that is common in
process control. The identification procedure described in
the previous section is used in the following examples.
The desired relative damping of the dominant poles is
chosen to § = 0.4, The PID controller has the structure
given by Equation (4.3), with the relation o between the
integral time and the derivative time equal to 0.25. See
Equation (4.2). The parameter (3 is chosen according to
Equation (4.5).

Processes with the following transfer functions were used

1 1 1
G, = - G,==— n G, = ——
1 s 2 s+1 n 3 (s+1)3
G, = - — G = i
4 (S+1)6 5 (1+s)(1+0.2s) (1+0.05s) (1+0.01s)
1 -0.4s _ 1 -2s _ 1 -4s
G6=——2e G7————2e GB_ 2e
(s+1) (s+1) (s+1)

The PID parameters and the frequency w of the dominant
poles are presented in the following table.

w K Ti Td [¢]
61 15.8 21.0 0.169 0.0422 0.29
G2 15.7 24.7 0.185 0.0464 0.26
G3 1.71 3.71 2.28 0.571 0.20
04 0.578 1.23 4.61 1.15 0.29
G5 9.52 9.62 0.492 0.123 0.16
66 2.14 3.20 1.54 0.385 0.23
G7 0.880 0.939 2.64 0.661 0.33
G8 0.555 0.593 3.67 0.917 0.38

In Fig. 8 - 15, the result of the simulations are presented.
The figures show the output signals y above the input
signals u. The systems are disturbed by a set-point
change followed by a constant load disturbance.

The dominant pole design manages to control all the
processes satisfactory. The process G, has a time delay
which is quite long compared to the time-constant of the
syslem. These processes are known to be difficult to
control with a PID regulator without dead-time
compensation. Processes with several different
time-constants, like the process G_., is known to be poorly
controlled when the Ziegler-Nichols design is used.

Fig. 7 The nzgative reciprocal of the describing function
N(a), and the Nyquist curve cf G(s).

The cross over frequency was chosen as the desired w in
all cases, except for G, and G,. The slope of the
amplitude curwe at the cross over for the system G, is
-2.1, which indicates that the cross over frequency is too
high in this case. This is also indicated by the droop in
the step response. The phase gradients are high for G

G_, and G8 indicating dominating time delay. B
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7. CONCLUSIONS

Design methods based on knowledge of only one point on
the Nyquist curve, like the Ziegler-Nichols method and
specifications on phase and amplitude margins, have the
advantage of being simplz to use. Ziegler and Nichols also
proposed a simple method to identify one point on the
ilyquist curve.

In Higglund and Astrém (1984), the limitations of design
methods based on knowledge of only one point on the
Nyquist curve was demonstrated. The dominant pole
design method, which is based on the knowledge of two
points on the Nyquist curve, is a method to approximately
position those poles which have a dominant influence on
the transient behaviour of the system. In Higglund and
Astrom (1984) and in this report, this method is shown
avoid the problems associated with the simpler methods
mentioned above, and to manage to control many models
of processes which are common in the process industry.

The dominant pole design method is primarily intended to
be used combined with the autotuning method presented
in Astréom and Hagglund (1984b). This enables an
automatic determination of the two points on the Nyquist
curve.
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