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Perspective Invariant Markings
— A Geometric Approach

Bengt Martensson

Department of Automatic Control
Lund Institute of Technology
Box 118
$-221 00 LUND, SWEDEN

Abstract.

The question of perspective invariant markings, i.e. markings with some property that
is preserved while the marking is moved in space and then seen through a camera lens,
is raised in a recent PhD-thesis [Nielsen]. The present paper investigates existence and
uniqueness questions for such objects. The main result is that if a dimensionality require-
ment is satisfied, then almost all "nice” markings have (locally) properties of this kind
almost everywhere. As an example, a perspective invariant marking system for e.g. au-
tomatically guided vehicles moving in a plane is given. This marking consists of just two
points.

1. Introduction

In a recent PhD-thesis [Nielsen] the question of so called perspective invariant markings
is discussed. A marking of this type is, loosely speaking, a kind of symbol that, when
seen through a camera lens, the image have some property that is invariant while the
marking is moved around in space. The objective is to be able to distinguish between
a set of different markings, despite the fact that they are moved around in space and
seen through a camera lens. The case of the perspective invariant marking being four
concentric regular m-gons is depicted in Figure 1, for m = 3,4,5,6. In [Nielsen] area-
based invariants for the first two of these are given explicitly.

The aim of the present paper is to pose the problem in a slightly more general setting,
and to investigate the question of existence and uniqueness of perspective invariant
markings under different conditions, and some of their properties. Essentially, only the
local question is considered. Also, this is a very unfinished paper with lots of open ends
and details to work out.

In the next section, notation is introduced and the problem formulated. Section 3
contains some general results. The main theorem tells us that if a dimensionality re-
quirement is satisfied, then almost all ”nice” functions are locally perspective invariant
markings almost everywhere! The following section contains a very simply application
of these results to the practically important case of marking objects confined to a known
2-dimensional plane (e.g. automatically guided vehicles on a factory floor). Section 5
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Figure 1. Some perspective invariant markings based on regular, concentric m-gons.
Original image and image after transformation shown.

is ties in the result in [Nielsen]. Finally, the last section contains some exercises to
challenge the reader.

I would like to thank Lars Nielsen for giving me the problem, and for many stimulating
discussions. The figures on page 2 has been generated by some functions written in the
? matrix manipulation language” CTRL-C. These functions are described in the report
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[MArtensson]. This report has been typeset by TEX, and the figures directly included
in the TEX file.

2. Definitions and Problem Statement

First of all, what do we mean by a marking? From a practical viewpoint, there is never
a need to distinguish between more than a finite number of objects, so the problem
can always be solved with some kind of licence plate system. Clearly, we can even
obtain a countable infinite set of markings in this fashion. In order to prohibit these
solutions, and to pose the problem in a mathematically interesting way, we require the
marking system to be able to distinguish between an uncountable set of markings. This
is (hopefully) not just mathematic paranoia, since a solution based on these ideas might
turn out to me more efficient to compute with today’s or tomorrow’s hardware.

We now strictly introduce all the different mappings that make up the composite map-
ping from the marking plane to the image plane.

Our objective is to identify an open set of IR¢ with a set of markings, such that the mark-
ing function, composed by the image transformations, when the motion is restricted to
a certain, given subset of the Euclidean group, still is an injective function.

In the sequel, we will use the following "meta-notation”: Let f be a function with
domain X and codomain Y, i.e.
[: X—Y

By f™ we mean the component-wise application of f to a m-dimensional vector of
elements in ¥, i.e.
frrm—yr
™21y ooy Zm) — (Y15-- -y 9m) = (F(Z1). .., f(Zm))

Sometimes X or ¥ will be modulo a permutation group C S™, but this will be clear
from the context.

We denote the marking plane by M and the image plane by II. Clearly M = Il = R?,
but we will keep the distinction for emphasis. m points in IM (I) will be denoted by
IM™ (I™). These are clearly 2m-dimensional spaces.

The marking function is really a function ¢ € C¥(U,IM™), k =1,...,00,w (C* de-
notes the analytic functions), where U is an open subset of RS

The function e is the embedding of M in IR?, i.e.

e:M— IR®

T
e (2) — [,,]
2 0
Let F C £ = £(3), the Euclidean group of motions of 3-dimensional space. £ can be

written as the direct sum of subgroups, namely as £ = % @ €7, where ER = §0(3) is
the rotational component, and €7 is the translational part. We will pose the problem of
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perspective invariant markings for ¥, not only for the full £ as in [Nielsen). In order to be
able to differentiate, we also require ¥ to have the structure of a C*-manifold of positive
dimension. For a suitable proper algebraic subset & C &, there exists coordinates on
&\ &o. Thus it is natural to denote the typical element of ¥ by M, and think of { as
coordinates. We will here use the Euler angles on £, and the Cartesian coordinates
on £T. The Euler angles, considered as a bijection from an open, dense subset of T
to an open dense subset of §0(3), can extended by continuity to a surjective mapping
from T to §0(3).

For a fixed element Mg € ¥ we have the mapping
Mg : (IR.S)m — (IRa)m/P"‘

where P™ is a subgroup of the symmetric group S™ of permutations of m letters. It is
natural to consider the space (IR*)™ /P™ instead of (R®)™, since there might be much
symmetry in the image, as embedded in three-space.

Finally, consider the image projection &
i (R*)™ — 1™ /P™

We select a length scale equal to the focal distance. It is shown in [Nielsen] that 5 can

be described as "

s [ ; ] R 1
" Y
z+1
Because of available hardware and insensitivity to measurement noise, invariants based
only on area measurements might be prefarable. This is the case [Nielsen] treats. Le.

we only want to consider the enclosed areas formed by suitable subsets of the m points,
which can be represented by a function a : I/P™ — IR", for a suitable n.

To conclude, we have the following composition of functions
R -2 M™ <5 (R?)™ M (R?)™ /P LR LY LIRS %

We will denote i™ o M{® o e™ by f{*. Clearly f™ € ¢Y(M™,I™/P™), except when
some z-coordinate of Mg*(e™) is equal to -1.

Next we define the concept of a projective invariant marking, PIM and APIM.

Definition. Let U be an open subset of R¢, £< 1,and o € C*(U,IM™). We say that o €
PIM(¢,m, #,U) if there is an open neighborhood V' C I /P™ and a local ’coordinate
system’ {a;}2™ on V; & : V — IR such that a0 f{* 00,...,ap0 f" 00 are independent
of Mg, and {o; 0 f§" 0 o}¢_, is an injective mapping from U to V. Analogously, we say
that 0 € APIM( n, F,U) if there is an open neighborhood V C IR" and a local
‘coordinate system’ {a;}®, on V; a; : V — IR such that a; o f* 00,..., ¢ 0 fitoo
are independent of Mg, and {a; o f¢" © o}t_, is an injective mapping from U to V.
@1,...,0q are called invariants, and the set {ay,...,a¢} a complete set of invariants.
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They represent some property of the image f¢* o o that does not change as M varies
over 7.

Remark. This definition is quite different from the one in [Nielsen], who only consider
the case £ = 1. In [Nielsen], the invariant is allowed to depend explicitly on o. The
invariant for a particular oy is zero if and only if 0 = 09, and in this case, this holds
for all Mg € €. A practical drawback with this weaker definition is that we need one
test per symbol involved in order to find which o that generated the image.

Remark. Note that although we call the a;’s ’coordinates’, we actually do not require
any regularity property of them, only injectivity. It will be shown in the next section
that we without loss of generality can assume that o; € Cck.

Remark. Tt follows immediately from the definition that {a;,...,a¢} are unique in the
sense that given another complete set of invariants {f,...,0¢}, there is a bijection
between {a;,...,a¢} and {B,...,Be¢}, with the same regularity properties as the least

regular of {a1,...,a¢} and {B1,...,B}.

Now we can formulate our path: Examine the properties of the mappings above, and
the possible existence of PIM and APIM for different 4, m, n, and ¥. Describe, as
explicitly as possible, a set of invariants for some nice o.

Essentially, we will only consider the local question. Everywhere it is needed, it is
assumed that the figure is in front of the camera, i.e. that all the z-coordinates of
M7 o e™ oo are greater than -1. This translates to a fairly complicated restriction of

the allowed elements of R¢ x 7.

3. Some General Results
In this section we collect a few general results pertaining to the general problem as
posed in the preceding section.

One projective invariant marking can be immediately deduced from classical projective
geometry:

PROPOSITION.  Let o() be four points on a line, three of which are fixed, and the
fourth is moved with v, in an injective fashion. Then o € PIM(1,4, §,IR). An invariant
is given by the crossratio between the four points.

Proof. This follows from the fact that the crossratio between the four points are a
projective invariant.

PROPOSITION.  Let o(IR%) C {Regular, concentric n-gons} for some n. Then P™
s".

Proof. Clearly P™ contains a subgroup isomorphic to S™. Since the object is known to
be in front of the camera, ordering of points on a straight line is preserved [Nielsen|. If
we consider the lines drawn through the corresponding corners of the polygons, we see
that P™ cannot be larger than S™. This completes the proof.
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The next proposition shows us that there is nothing to be gained by looking for e.g.
discontinuous invariants.

PROPOSITION. Assume that a;,...,a¢ are a complete set of invariants for 0 €
PIM(¢,m, ¥,U) or APIM(¢,n, ¥,U), as deﬁned above. Then there are a complete set
of invariants By,..., B for o belonging to C*. These can be taken so that the a;’s are
functions of the fB;’s.

Proof We prove the proposition only for PIM(¢,m,¥,U). The proof for
APIM(¢, n, ¥, U) differs only in notation. Denote a = (ay,..., ag)T, and similarly for 8.

-1
ao feoa is, by assumption, an injection from U C Rto R Put g = (a ofgo cr) o
as a candidate. This is well defined since the inverse exists on Codomaina. By assump-
tion, f does not depend on £. Clearly fo f¢" oo = id, the identity transformation. Thus

B is an invariant € C*, and {B,...,B¢} a complete set of invariants. The last claim
follows from the second remark in Section 2.

Remark. A natural question is weather something similar can be said about when
o is just required to be an injective function. This is not the case, since there exists
bijections from IR — IR for any £ > 1 (of course not in Cl) Put in another way, given
o € PIM(1,m, ¥,U), then for any £ > 1 we can construct ¢ € PIM(¢,m, ¥, U)!

LEMMA 1. For fixed c € M™ in general position we have

i) Ifm=1 then dim{f{(0) : M¢ € ¥} < min(3,dim ¥)
ii) Ifm =2 then dxm{f"‘ (0) : M¢ € F} < min(5,dim ¥)
iii) If m > 3 then dlm{fe (6): M€ F}=dim ¥

In case i) and ii), equality holds if T¥ C T'€ does not nontrivially intersect a certain,
of ¢ dependent proper subspace C T€.

Proof. 1t is enough to show that rank d¢f7" (o) is 3, 5, or 6, in cases i), ii), and
iii) respectivelly. Here d¢ denotes the differential with respect to Mg, o considered
as constant. This is a linear mapping from T'¥ — T (I™/P™) = IR*™, and can be
described as
di™ o de M" (e™ ()

By some book-keeping, it can be shown that, in case i), rank = 3; in case ii) rank =
5 (provided o contains two distinct points); in case iii) rank = 6 (if e.g o contains two
linearly independent vectors). It only remains to show that ker di™ generically does not
intersect im d¢ M" in a nontrivial way. But since

z
ker ds = span y
z+1

where (z,y,2)T denotes Mg o ¢(0;), by chosing o, ker di™ can be taken to be any m-
dimensional subspace not containing {z; = 0} for ¢ = 1,...,m. This completes the
proof.



Remark. This result can and should be sharpened in the sense of finding out exactly
what general position” means. The motivation for this is given in the second remark
following the theorem. It is believed that no ¥ and o € PIM(¢,m, ¥,U) exist, for which
Lemma 1 is false in an open set of points {¢(7) : v € U}.

PROPOSITION AND DEFINITION. If o and ¥ are such that Lemma 1 holds with
equality at least at one point in U, then a necessary condition for PIM(¢, m, F,U) to
be non-empty is that £+ dim ¥ < 2m. We call this property ©.

Proof. fg*oois Ck, so counting dimensions together with Lemma 1 yields the result.

Definition. We let ' denote all M € ¥ such that d, fé" is nonsingular, where d,
means the differential with respect to o, M, considered as constant.

Notation. For Mg € € we use the decomposition M¢r = Q¢r + r¢ of Me in a rota-
tional part and a translational part, corresponding to the decomposition € = g €T,
Furthermore, we will use the notation [¢},4¢Z,9%] = Q¢, and ri = r¢ — (0,0, -1)T.

% can now be further characterized:

LEMMA 2. Assume that 2m > £ and that no z-component of Mg (e™(0)) is equal
to -1. Then d, f{" is nonsingular, except when qg 1 r’é, in which case rank d, f" = m.
In particular, this means that #' is an open, dense subset of ¥ and an imbedded
submanifold (together with the inclusion map).

Remark. Physically, qg L ri, means that the marking M¢" o e™ o o(U) contains a
segment of a line through the focal point (0,0, —1)7. It is thus physically obvious that
the differential cannot have full rank. Cf. [Nielsen] page 77.

Proof. If d; fg" is singular there is a (a,b) € TIM\(0,0) such that

a X
Q¢ lb] = aqg + bgt || Q¢ [y] + 1t = zq} + yqi + ¢
0 0

ie. r'e is in the linear span of qé and qg, and thus orthogonal to qg. This proves the
first statement. Note that this property is independent of o. By the nature of f", the
rank thus drop simultaneously in all components, and since d¢ fi"* will not be identically
gero, the next statement follows. The last sentence is an immediate consequence of the
preceding ones.

Now we can prove the main theorem of this paper. Together with Sard’s theorem, it
tells us that if the dimension requirement @ is fulfilled, then ”almost any” o which is
a differentiable function will be a (locally) projective invariant marking almost every-
where.



THEOREM. Let U be an open subset of R® and o € C*(U,M™). Assume that no
z-component of M (¢™(a(U))) is equal to -1, that property © is fulfilled, and that
rank do(y) = £ for 4 € U. If a non-generic intersection of subspaces does not occur,
then 0 € PIM(¢, m, ¥, U).

Proof. Let K denote a matrix with columns spanning kerds™. It is enough to show
that
rank [K dy (M oe™o0(7)) de(MF)]=m+L+dim¥

for y € U and Mg € ¥'. By the chain rule, this can then be rewritten as
rank [K QP oe™odo dgMz"(e"'(a('y)))] =m+L+dimF

To show that this is genericaily true, it is enough to show that is sometimes true.
By choice of Q¢ and do, the second and third part can be made to span £+ dim ¥
dimensions. It was shown in the proof of lemma 1 that {spanK : & € M™} is an open
dense subset of Grass(m,3m). Together, this proves the theorem.

Remark. It may happen that o ¢ PIM(¢, m, ,U), despite that property © is fulfilled:
Let o(q) be the four vertices of a square with side 4, centered around the origin, and let
7 contain translations along the z-axis. Then o is not a perspective invariant marking.
We leave it to the reader to check the details.

Remark. The requirements on ¥ and o to be "generic” is not as innocent as it might
seem. The proper question might very well be this: Given a particular ¥ and a particular
o, is this a projective invariant marking? The theorem does not answer that question.
It is believed that the theorem can be sharpened in this direction with a moderate
amount of effort.

CONJECTURE. Replacing m by n, the analogous statements for APIM(¢, n, ¥,U) are
true.

4. A Simple Example

In this section we will explicitly describe a perspective invariant marking for a prac-
tically important example, namely when the markings are confined to lie in a known
2-dimensional subspace. This is the case for e.g. automatically guided vehicles moving
on a factory floor, each one having a marking attached to the top.

Say that the interesting plane is defined by {(z,y,2)T € IR? : z = 1}. (Taking the "nat-
ural” choice {z = 0} does not work since it violates the condition in Lemma 1.) It is
easy to see that ¥ = £(2), and can be described as follows:

7=

0 0 -1 1
{M€e€(3):Q€= [—sin(a) cos(a) O ] jTe = [y] ;a€[0,21r);z,yelR}

cos(a) sin(a) O z



Note that §' = ¥. The proposed marking is the following: Choose £ = 1. Place one
point in (0,0)T € IM, and the other point in (1,)T. This is clearly an analytic function
from IR to IM?, its differential being of full rank everywhere. The preceding results thus
tell us that there is a (local) invariant, and this is unique in the sense above. We will
now describe this explicitly, and determine what ’local’ means.

We have the mappings

(2.0} = {) (Sms ) ) - () ()

cos(a)+v sin(a)+2z+1

where a,b, ¢, and d are defined by the last equality. Calculation shows that

2 2
e (204 (-8
Cc a [ a

and thus we can locally solve for 4. In fact, the solution is unique if we know that 4 > 0.
The solution is not unique if 4 € R, since e.g. @ = §, 7 = 1 will give the same image
as & = —§, 7= —1, as the reader might check. Also observe that the expression given
above is invariant under exchange of (a,b) with (c,d), so for this identification we do
not have to distinguish between the two different image points.

5. Lars Nielsen’s results

In [Nielsen| the case of the area-based perspective invariant marking being n concentric
regular m-gons with their centers in the origin is treated. For m = 3 and 4, it is shown
that for n < 3 no invariants exists. Invariants are explicitly given for m = 3 and 4.
These have been commented upon in a remark in section 2.

A marking of this type can be described by a n-vector k = (k,...,kn), with the s-th

m-gon having a vertex in (k.-,O)T. Since only the full Euclidean group £(3) is considered,
section 3 yields that 2n > £+ dim€£ =146 = 7, i.e. n > 4, in order for invariants to
exist.

[Nielsen] then suggests the following o : IR — IM"™, namely to fix all k;’s but one,
say kj, which we allow to vary as, say, 9.

[MArtensson] contains several useful CTRLC-functions for manipulation and plotting
of these objects. Figure 1 was generated using these.

6. Exercises
Exercise 1. Consider the case with a v-dimensional marking plane M, a u-dimensional
image plane I, and a x-dimensional embedding space, and do the same analysis again.

Exercise 2. Discuss the practical implications of an invariant which takes on its values

in the Cantor set.
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