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Integral action and mode transitions in self-tuning process control

Lars Rundqwist

Department of Automatic Control, Lund Institute of Technology
P.O Box 118, S-221 00 Lund, Sweden

ABSTRACT

This paper focuses on two issues in self-tuning control, integral action and integral windup.
Particular attention is given to the problems arising when self-tuning controllers are cascaded
with other controllers. When control loops are coupled via utilization of a flow from a common

source, the coupling may increase these problems.

INTRODUCTION

The process configuration discussed in this paper was
encountered in an activated sludge system in a waste-
water treatment plant, with parallel almost identical
processes for degradation of biological waste. The
processes are oxygenized by air flows, see Fig 1. The
air production system has a number of compressors,
which supply all processes. The processes have
individual air flow rate controllers, which will interact
when air flows are changed. The set point is given by
another (possibly self-tuning) controller, see Fig. 2. The
maximum available air flow to each process is
time-varying.

The air flow supply is a common control problem,
see Shinskey (1978). The header pressure is controlled
{by PC). The pressure set point is either constant or
computed by a valve position controller (VPC), that will
make the most-open control valve almost wide-open, see
Fig. 3. Then at least one control valve operates close to
saturation, and the air flow is produced at lower power
demand. This type of process arrangement may be usual
in process industry. The flow may be any gas or liquid,
which is supplied to multiple users from one production
unit.

The characteristic features of this control problem
are varying process dynamics, load disturbances and
saturations with varying limits. Windup in the cascaded
self-tuning controller is analysed. A few antiwindup
solutions will be given. Results from the implementation
of self-tuning dissolved oxygen control in a wastewater
treatment plant will be given.

INTEGRAL ACTION IN SELF-TUNING CONTROLLERS

This section considers integral action in implicit self-
tuning controllers with least squares estimation, see
Astrém (1983). The subject has been studied by several
authors. Here, the approach is mainly to study the
underlying design equation for minimum variance control
of known time-invariant systems. It is assumed that if
the forgetting factor A = 1 and the parameters converge,
they converge to the solution of the design equation.

If the forgetting factor ) < 1, the parameters are
assumed to converge to a neighbourhood of the solution.
If the process is time-varying, then A must be less than
one, else the controller is unable to track parameter
variations. In Examples 1 and 2 below, the output
variance of the closed loop as a function of controller
parameters will be used to show that the parameters
approach the solution of the design equation.

In a non-integrating control law the adaptation
mechanism itself provides integral action. Using the R, S,
T - notation for the controller, it was noted in Witten-
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Fig 1 Process configuration.
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Fig 3 Pressure control and valve position control.

mark and Astrém (1984) that the covariance conditions
for inputs and outputs are valid only if R(1) = 0, when
the process has a load disturbance. If R has only one
parameter the output deterioration may be severe, see
Example 1 below.

Several methods to achieve integral action in
self-tuning controllers can be found in the literature, e.g.
in Astrém (1980), Allidina and Hughes (1982),
Wittenmark and Astrém (1984), and Tuffs and Clarke
(1985). In Tuffs and Clarke (1985), the following
controller structure can be found.
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Fig 4 Non-integrating control (6a) of the process in
Example 1.
The process model is
-1
-1 -d,, -1 C
Alahy(e) = Bl u(y) + S0l ey ()
1-gq

i.e. the load is filtered, integrated white noise. B is
stable. Tuffs and Clarke treat the case C = 1, but here a
general C will be used.

To achieve igiegral action, R is factored into R"“A,
where A = 1 - q *. Further S is here choseni as S =
T(1) + S“A. T is a known polynomial and u_ the

; c
reference value. The controller is then

Tu (t) = R'8 u(t) + [T(1) +5'a] y(t) (2)

where R' = R ,B. R' and S' are to be estimated in the
adaptive case. +hen the closed loop is given by
d

q T u (t) + Rye(t)

(3)

y(t) = =
AR A + q°(T(1) + 5'8)

In stationarity, q = 1, the gain from u, will be
unity, irrespective of R, and S'. Further, the design
equation for minimum variance control is

AR A + q‘d(r(1)+s'A) = C (4)

which can be solved for unique R, and S' if deg(R 1}!-
d-1, deg(5') = deg(A)-1, and T(1) = Ch . 1

To obtain a minimu_lla variance controller T(q ')
should be chosen as Clq ), which is unknown in the
adaptive case. Then, for almost any choice, T(1) # C(1),
and (4) cannot be solved. Still the self-tuning controller
may converge to the minimum variance solution, the
reference value being mean value,

If «R, and «S', e > 0, are substituted for R, and S'
in (2), the My design equation becomes 1

«AR A + q'd(r(1)+as'A) = oC (5)

which can be solved if & = T(1)/C(1). Then the stationary
gain from u_ is still unity. In the adaptive case, R' and S'
will simply fppruach «R B and oS', respectively.

Thus a self-tuning controller based on this
algorithm will always have unit stationary gain from
reference input, and may approach the minimum
variance solution.

Example 1: This example compares integrating and
non-integrating implicit self-tuning, control of a first
order system given by A = 1-0.4q ", B = o.a.qc = 1, and
d = 1 in (1). The noise variance is ¢ = 107 '. With the
exception of C, this process model and the same noise
sequence will be used in all examples throughout the

paper.
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Fig 5 Integrating control (6b) of the process in
Example 1.
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Fig 6 Contour levels for (8) and parameter estimates
from Fig 5.

Choose T = 1. Then the non-integrating controller
is

éiu(t) = uc(t) - ézy(t) ) (6a)
and the integrating controller is
61Au(t) - uc(t) - y(t) - 92Ay(t) (6b)

(6a) is the controller to be used if the process has
no load disturbance, but in this case its performance is
bad. Using (6a) the closed loop is given by

q—l Bl 1
y == =1z Y Y3 = il (7)
Aﬂl-!- q 82 5314- q 62 1-q

This structure cannot cancel the integrator, and
will thus (for constant parameters) have infinite
variance. The only way for the self-tuning controller to
eliminate the noise is letting 8, — 0, which will give
infinite gain in the controller.

In Fig. 4 a simulation of this case with forgetting
factor A = 0.998 is shown. As can be seen, the gain
increases (above the ‘stability limit’) until good
identification is obtained. Then the gain is reduced and
the procedure is repeated.

In Fig. 5 the same process is controlled by (6b),
using A = 0.998 with good performance. The output
variance (with ¢"= 1, a = 0.4) as a function of @ =
61;"0.6 and 8, is

2
oy [82- ac, - al]

[92- ae,+ ai] [292- Zaul— 2w1+ 1]

(8)

Contour levels and the parameter estimates from

Fig. 5 are shown in Fig. 6. As is easily seen, the
parameters approach the solution of the design equation.
o
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Fig 8 Contour levels for (10) and parameter
estimates from Fig 7.

If, on the other hand, the integrating controller (2) is
used on a process without load disturbance, there may
be another type of deterioration. This case corresponds
to letting C = C-A in (1), i.e. cancelling the integrator.
Then C(1) = 0, which implies that the scale factor « must
be infinite, else there is no solution to (5). In the limit (o
= o), (5) turns into

AR+ g% - (9)

ji.e. the design equation for minimum variance control of
a process without load disturbance. The estimated
parameters R' and S' will grow towards aR,B and oS’
where « is large and R, and S' are given by 19}.

Thus this algorithm is able to eliminate the integral
action if it isn't necessary. This may cause problems if a
load is switched on and off, and it is off for a long
period, see Example 2.

Example 2: A, B, d and 02 is the same as in Example 1. C
= A, i.e. the disturbance is pure white noise. First, in
Fig. 7, it is shown that the parameters drift away
{towards infinity) when (6b) is used, but the gain 8,/8
is bounded. This can also be seen in Fig. B, where
contour levels for the closed loop output variance as a
function of e, = 91/0.6 and 6, are shown together wjth
the parameter estimates from %ig. 7. The variance (¢° =
1 and a = 0.4) is given by

- Zu:f

V a
[62- au1+ “1] [262—- 2ac1— 2al+ 1]

(10)

which has no local minimum in the stable area. Further
(10) can be compared with the output variance when
using the non-integrating controller (6a) instead.
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Fig 10 Constant integrating controller.

When the parameters in (10) grow large then (10)
is approximately equal to (11). (11) is a function of
92/01 only. Thus only the gain is required to converge.

o

Example 3: In Fig. 9, a constant load is introduced, when
the parameters are large. The disturbance is then a
constant load and white noise. In Fig. 10 a comparison
with a constant gain integrating controller is done. The
conclusion is that integral action is lost for a few
samples in Fig. 9. Before the load change it is minimum
variance control in Fig 9, but not in Fig 10. o

INTEGRAL ACTION IN CASCADED SELF-TUNING
CONTROLLERS

Using a self-tuning controller cascaded with another
controller, see Fig. 2, creates special problems during
saturation conditions. Saturation in the control output of
the self-tuner is more easily taken care of {internally in
the algorithm), see Wittenmark and Astrom (1984), but
when the cascaded controller saturates, this information
must be fed back to the self tuner. Otherwise it will give
two types of windup, control output windup due to
integral action, and parameter windup, if the estimation
continues.

The process configuration considered, see Fig. 1-3,
enhances the saturation problem, since (at least) one
throttle valve operates close to saturation. The actual
upper limit for the control output from the self-tuner is
time-varying and unknown.

In Fig. 11 it is shown what a saturation may look
like, when the available control authority decreases. The
thick line (u) is the continuous time control input to the
process, and u is the output from the self-tuner. In
the subsequent examples, this type of saturation will be
studied.

The means to be used to handle windup problems
are different limits for the control output, and that the
controller could be run in different modes. In the sequel
the controller will have absolute and rate limits for the
control output. Automatic mode and estimation can be
switched on and off independently, and an external
control signal is output in manual mode.
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Fig 11 Continuous time control signal and limit.

The following notation will be used.

Analog signals Logical signals

HI Upper limit AUTO Automatic/manual
Lo Lower limit ADAPT Adaptation on/off
DH Positive rate limit
DL Negative rate limit

UEXT External control signal

In addition to the process output y(t), the following
signals are available to the controller. The measured
control input u_(t), the valve position v(t), which is a
nonlinear function of u_(t), and logical signals indicating
saturation of the valve. These signals can be used by the
controller to compute limits, switch off estimation etc,
thus avoiding windup.

In the simulations both process and controller are
in discrete time. Special care is then taken to account
for the effect of the saturation of uft).

In Example 4 below, the two types of windup will be
demonstrated. A few attempts to avoid windup will be
described in Examples 5-9. A Pascal-like notation will be
used, where HIGH indicates upper saturation of the
valve, and LOW lower saturation.

In these Examples, the process in Example 1,
controller {6b) and the saturation is used. The set point
for the self-tuner is 1. The lower limit for the control
value is 0, and the upper limit u is 2, except for the
interval [50,100], where it is given By

.2 mt
Uaglt) =2+ s1n[w (12)

The controller uses the limits 0 and 2, unless
anything else is said.

Example 4: No information on saturations is used in this
example. In Fig 12-13 both reset windup and parameter
windup is shown. The reset windup for constant
parameters in Fig 12 is quite large, but the estimation
using false data makes the situation in Fig 13 much
worse. o

Example 5: The rate limit is zeroed when the limit is hit.
Further, the parameter estimation is stopped, i.e.

if HIGH then DH=0, ADAPT=0;
if LOW then DL=0, ADAPT=0;

The result can be seen in Fig 14. The control
output u is constant during the period. At the end of
the limit period, a small reset windup can be seen in the
process output, because the load is slightly smaller at the
end of the period. If the load is larger at the end, it
simply takes longer time before the output is normal, but
there is no windup. o

Example 6: Here the absolute limits are given the same
value as the measured control input u and the
estimation is switched off at saturation, The estimation
and the full control space is used immediately when the
valve is unsaturated, i.e.
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Fig 12 Reset windup, constant integrating controller.
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Fig 13 Reset windup, adaptive integrating controller.

if HIGH then Hlﬂum, ADAPT=0;
if LOW then LO-um, ADAPT=0;

The result can be seen in Fig 15. As long as the
limit u ax decreases, there are no problems, but when it
starts 15 increase, the behaviour is violent. o

Example 7: The method in Example 6 is changed in the
following way. The estimation is not switched on until
the second unsaturated sampling instant. Else the method
is unaltered. The result can be seen in Fig 16. When the
limit u increases, the control output u oscillates,
but the data is not used in the estimation. Thus the
parameter windup is avoided. The reset windup is
handled by limiting u to the measured control signal
u_. -]
m

Comparing the three examples, the control output u £ in
Example 5 is constant and at the same level as when the
saturation started. Only the logical information HIGH or
LOW is used. Here the saturation lasts until the available
control signal is larger than the value at which the

saturation started.
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Fig 15 Failing antiwindup in Example 6.

In Examples 6-7, the measured control signal u_ is
also used. To handle the increasing control signal, the
estimation must not be switched on until the second
unsaturated sampling instant. Then this method is better
than the first method, since it will not give any windup
at all.

Examples 8-9 do not use the logical signals. Instead
the valve position v(t), which varies between 0 (closed
valve) and 1 (open valve), is used for determining the
control signal limits. It is also used to switch off the
estimation when the valve is almost fully opened or
closed.

Example 8: Using the valve position v, this method
estimates the allowable change in control output, when
the valve is close to either of the limits.

if v > 0.9 then DH=k:(1-v);
if v < 0.1 then DL=k-wv;
if (v > 0.98) or (v < 0.05) then ADAPT=0;
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16 Antiwindup solution in Example 7.
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Fig 17 Antiwindup solution in Example 9.

The result is not shown, but is almost identical to
the result in Example 5 (Fig 14). a

Example 9: This method uses the measured control signal
u_ and the valve position to estimate the control signal
limits.

if v > 0.9 then DH=k:(1-v), Hi=min(u_+DH,2);
if v < 0.1 then DL=k-v, LO=max{u_-DL,0);
if (v > 0.98) or (v < 0.05) then ADAPT=0;

Combining DH and HI in this way is good when u
v u__., which is often the case at saturation. This
prev':z?l!s the small reset windup at the end of the
saturation period, see Fig 14 and 17. It also prevents the
oscillation in u___, which can be seen in Example 7 (Fig
16). ref a

Both these methods switch off estimation close to the
valve limits. Unlike Example 7, Example 9 does not need
any delay in switching on the estimation. Proper gains
and limits are required in Examples 8-9. Examples 7-9
are sensitive to calibration and drift in transducers,
AD-converters etc.

AN IMPLEMENTATION EXAMPLE

Self-tuning dissolved oxygen control has been imple-
mented on the activated sludge process at the Kippala
Sewage Works, Lidingé, Sweden, which serves the
northern parts of metropolitan Stockholm. The Kiappala
plant has six parallel activated sludge systems and six
compressors in the air production system. The liquid is
oxygenized by an air flow through diffusors.
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Fig 18 Block diagram of the Kappala plant.

Bacteria consume biodegradable substrates in the
liquid under aerobic conditions. The dynamics of the
process is affected by several variables, i.e. influent flow
rate, influent substrate concentrations, temperature, pH
level, salinity etc. A common approach is to control the
dissolved oxygen (DO) concentration at the tail end of
the aerator. The DO concentration is crucial for plant
economy and for the biological conditions. The DO
dynamics is approximately described by the bilinear
differential equation
de

— =& -3

TS c+(alF+a

0 2)(cs- c}) - R, (13)
see Olsson (1984), where ¢ is DO concentration, c_ is DO
saturation concentration, F is air flow rate and is the
respiration of the bacteria, which is time-varying. If the
air flow rate and the respiration rate are constant over
a sampling period, the differential equation can be solved
to obtain a discrete first order model.

The sampling interval is 15 minutes. Since the
respiration is a load disturbance, an integrating
controller is required. Here a pole placement self-tuning
controller, see Astr8m (1983), is used, where the closed
loop pole is placed in 0.4, The control law is similar to
(6b), but instead T = 0.6. The forgetting factor is 0.98.

The DO controller and the valve position controller
use constant set points, while all other controllers have
cascaded set points. The pressure control includes
starting and stopping compressors and adjusting their
guide vanes. The air flow rate controllers and the guide
vane controllers are standard P! controllers. The other
controllers are all implemented in an Asea Novatune
control computer. The pressure controller is a Pl
algorithm, and the pressure set point is computed with
an integral controller (F), see Fig 18.

During a ten day period in January 1984, an
evaluation between three comparable aerators were
made. Air flow rates and DO concentrations for two of
them are shown in Fig 19-20. In the table below, their
averages and standard deviations are listed.

Aerator Air flow rate (m3/min) DO conc. (mg/l)
No control 73.24¢6.0 5.420.6
Manual 75.2£7.8 3.1:1.1
Self-tuning 72.7¢9.0 : 5.95+0.15

Automatic DO control reduces the average air flow
demand compared with manual DO control. The variance
in the DO concentration-is significantly lower during
self-tuning control compared with PID-control, although it
was not minimum-variance control, see Olsson et al
(1985). During periods without air flow limitation, the
standard deviation is as low as 0.02 mg/l. Minimum
variance control (closed loop pole in origin) was not
successful, the control signal was too noisy.

When the air flow rate is insufficient, due to
limitations in the air production system, the DO
concentration is lower than the set point, see Fig 19. To
avoid windup problems in the self-tuning controller the
method in Example 5 was used.
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Fig 19 DO concentration during manual control and
self-tuning control at the Kippala plant.
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Fig 20 Air flow rate during manual control and
self-tuning DO control at the Képpala plant.

SUMMARY AND CONCLUSIONS

This paper has investigated integral action in implicit
self-tuning controllers. Further, feedback from the
primary actuator {control valve}, has been shown
necessary when using cascaded (seif-tuning) controllers.
Methods to avoid reset windup and and parameter
windup in cascaded self-tuning controllers are given.
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