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when only the system input u and the output y can be measured. Traditional
discrete time identification is applicable but is less attractive because it
results in sampling time dependent nonlinear transformation of the coeffi-
cients. Earlier state variable filter based approaches to identification seem
superior. This paper shows that the operator transformation z=1/(1+pt) gives
an exact reciprocal model
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INTRODUCTION

Identification and parameter estimation of dynamic systems are fundamental
for all model based design of control systems. The methodology of identi-
fication is often very different in cases of on-line and off-line estimation.

Many excellent methods of off-line estimation like frequency analysis,
transient analysis, and some off-line methods like maximum-likelihood iden-
tification are not directly applicable for on-line estimation. The needs in
real-time applications for on-line estimation have stimulated the development
of recursive versions of many identification methods, see (Ljung and
S6derstrdm, 1983). The methods of recursive estimation for dynamic systems
are usually based on discretized linear models formulated as ARMAX-models.

There are however systematic problems associated with the approach of
ARMAX-model based parameter estimation in some applications.

A simple observation is the following. Assume that a parameter of an
ARMAX-type model changes abruptly to a new value. Detection of a such a
change and convergence of the parameter estimate to the new wvalue would
require a time proportional to the sampling period and to the number of esti-
mated parameters. This delay may be intolerably long. It is sometimes
impossible to improve the response time. A shorter sampling period may be
incompatible with good parameter identifiability.

Adaptive control applications are often associated with recursive estimation
methods. One obvious constraint of many discrete-time adaptive control
schemes is the feature that the sampling period must be chosen to provide
good identifiability rather than good control action.

Another problem is the application of discrete-time parameter estimation to
the identification of continuous-time models. Firstly, the model
representation formulated in the differential operator must be translated to a
shift operator formulation. There are several ways to do this. An exact
parameter translation does however typically require some matrix
exponentiations. This means that a certain continuous-time parameter will
have a nonlinearly distributed influence on all the discrete-time parameters.
A consequence is that it becomes very difficult to focus the interest on a
certain continuous-time parameter. n order to monitor one continuous-time
parameter it is in general needed to estimate the full order discrete-time
parameter vector. In other words - it is difficult to separate known para-
meters from unknown ones and partitioning is not easy. Moreover, the
discrete-time parameters become dependent on the sampling interval. This is
an unattractive property and the discrete-time parameters have often no
physical meaning. There exist some linear discrete-time approximations of
the differential operator e.g. the simple backward difference or the bilinear
Tustin’s approximation with better properties of parameter translation. These
methods are however approximations with limited applicability.

Secondly, the discrete-time identification requires anti-aliasing filters of the
input-output data before sampling. High frequency dynamics will otherwise
corrupt the estimation. The assumption of elimination of high frequency
influence may be acceptable in off-line identification where some time series
signal processing may be exercised. Efficient elimination of the high



frequency components is however difficult in the c¢ase of on-line
identification. A good frequency cut-off property of a sampling filter would
require noncausal operations which cannot be implemented. A causal filter
with sufficiently good damping of high frequencies may on the other hand cut
away too much of the useful low frequency contents or introduce a delay.
Moreover, the sampling filter will be incorporated as a part of discrete-time
process model and it is difficult to separate filter parameters from process
parameters of physical significance. This situation is sometimes a dilemma
and the shortcomings of discrete-time ARMAX-type estimation become ob-
vious.

There are other cases of application where the approach of traditional time
series analysis is unsatisfactory. Consider a case where a system can be
separated into two parts where one part is well known and where the other
part is unknown or time varying. It is in this case certainly not good common
sense to estimate the well known parameters along with the unknown ones.

MOTIVATION

The arguments in the introduction have shown that there is an interest for
methods of recursive identification with good properties for estimation of con-
tinuous-time systems. In applications of hybrid adaptive control it should be
possible to choose sampling frequencies of control and identification indepen-
dently. It is desirable to make identification of partitioned, coupled and
partially known systems.

From a mathematical point of view there are some problems with traditional
approaches to recursive estimation for continuous-time systems. Operator
transformations are e.g. usually approximative or nonlinear. The discrete-
-time parameters are nonlinear in the original parameters and the estimates
are difficult to translate in real time. All sets of discrete-time parameters
are sampling time dependent. A certain continuous-time parameter becomes
distributed over all discrete parameters. Requirements on anti-aliasing may
be too restrictive or even non-realistic. It is also unsatisfactory that the
anti-aliasing filters become part of the process model.

It could therefore be asked why there is no analogue to ARMAX-models for
continuous-time systems. The succesful ARMAX-models correspond to poly-
nomials in the forward or the backward shift operators with advantages for
modelling and signal processing, respectively.

Polynomials in the differential operator can not be used for identification
immediately due to the implementation problems associated with differen-
tiation. There is no commonly used operator in parameter estimation that
corresponds to the backward shift operator of discrete-time systems.

There is however one approach to identification of continuous-time systems
that developed in the days of analog computers. It was - as far as the author
knows - pioneered by Clymer (1959) and Young (1965, 1969). An account of
these ideas is given in chapter 9 of (Eykhoff, 1974).
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The idea is to have "state wvariable filters" _uﬁ...._....s acting on the inputs and
outputs of the continuous-time process. One possible alternative is to choose

F

S TILWIHS (1)
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Let all y_, u, ; 0£i<n be outputs from the filter assembly. These filter outputs
will then give approximative derivatives of the inputs and outputs. If the

original input-output model is

a” e d" tu
|N+W|N+ " e +w<HUn|.|I|I+ seos + B u (2)
Q&u Ha&:|H n 1. . n-1 n

then we can fit the parameters Qﬁ::Quu mp.....mu of the model

Y, t oY

. 4+ s e + QH—.V\ £ m.._.c:lu.+ « s e 4+ m..—..wc (3)

n-1
A

by parameter adjustment until y_ and Yy coincide and €-»0. For good choices

of the state variable filters it holds that

a. a. , .~ b,; 1<£i<n (4)

although the filtered signals are only approximatively equal to the true state
variables.

The problems to measure and reconstruct derivatives have been reflected in
the difficulties to design adaptive control, see (Parks, 1966). The concept of
state variables filter has also had a certain influence in the theory of
adaptive control, see (Monopoli, 1974) and (Elliott, 1982).



Another source of inspiration is found in algebraic system theory. Pernebo
(1981) has developed an algebraic theory for linear systems using polynomials
in causal and stable operators. He obtains a representation where stability
and causality are itreated by the same algebraic criteria. One possibility to
use these ideas is to introduce an operator translation so that the continuous
time linear modelling is made in terms of some low pass filter operator

a 1
E S . = S)
z p+a Tipr  ° T 1/a (

with a time constant .

PROBLEM FORMULATION

The rest of this paper tries to systematize and develop some results on
estimation of parameters of continuous-time models. There is a potential for
adaptive control of continuous-time systems control although these aspects
are not elaborated here.

The idea is to find a causal, stable, realizable linear operator that may
replace the differential operator while keeping an exact transfer function.
This shall be done in such a way that we obtain a linear model for estimation
of the original transfer function parameters a., b.. We will consider cases
where we obtain a linear model in low pass filter opﬁmwmoowm. It will be shown
that there is always a linear one-to-one transformation which relates the
continuous-time parameters and the convergence points for each choice of

filter.

This approach has been used for continuous-time adaptive control by Johans-
son (1983, 1985). Canudas de Wit (1985) has performed a number of case studies
with investigations of convergence rates and other properties.

The paper starts with a model transformation. It is then shown that there
always exists a parameter transformation back to the original continuous-time
model parameters. Then follows investigations on the state space properties
of the introduced filters and the original model. The convergence rate of the
parameter estimates is then considered. Finally, there are two examples with
applications to time invariant and time varying systems, respectively.

A MODEL TRANSFORMATION

Consider a linear n-th order transfer operator formulated with a differential

operator p=d/dt and unknown coefficients a,s _uw.

n-1

_ Byp Tt gget by B(p)
Gotp) = = n-1 T A(p) (&
P+ a,p +...+ a P

n



It is assumed that A and B are coprime. Introduce now the operator

a 1
= = . = (7
z Oie T+ pt T 1/a 7

This allows us to make the following transformation

*
B(p) B (=) *

G.(p) = = = G, (=) (8)

0 Alp) >*ANV 0
with
>*ANV =1+ o,z + o NM+ ... t N:

1 2 n

* _ 2 n

B (z) = mHN + mNN + ...t m:N (9

An input —output model is now easily formulated as

A (zryty = BY(zmut) (10)

y(t) = |QHHN%uﬂﬁv|...nQDHNswuﬁdv + mHmNcuAﬂv+...+ msmNbcuAﬁv

This is now a linear model of a dynamical system at all points of time. Notice
that [zul, [zy] etc. mean filtered inputs and outputs. The parameters %y B.
may now be estimated by any suitable method for estimation of parameters of
a linear model. A reformulation of the model (10} is

T
y(t) = e g _(t) t €R (11)
T
o_= ﬁ-gp oy .a By ...msu (12)
_ 2 n T
g (t) = [fzy1ct) 2%ty ... [zul(t)...2ul(t)) (13)

We may now have the following continuous-time input-output relations.

y(t) = Gyiplult) = mmﬁmvcﬁﬁv (14)



6lp (t) (15)
T T

y(t)

T

Y(s) = 6_¢ (s) with & (s) = rﬁedﬁnvuﬁmv (16)

where L means a Laplace-transform. Finally, a Laplace transformation of (14)
gives

Gr(z(s))U(s) (17)

Y(s) 0

A particularly rich and attractive feature is the fact that the same linear
relation holds in both the time domain and the frequency domain. Notice that
this property hold without any approximations or any selection of data.

PARAMETER TRANSFORMATIONS

Before we proceed to signal processing aspects we should make clear the

relation between the parameters «,, B, of (9) and the original parameters a;
U.oH,ﬁ:mqmummmﬂmcﬁnﬁo:Sv.mmﬁwrm/\mnaowoﬂ oﬂpmm:mwﬁmﬂmamﬁmﬂmcm

dénoted by
oo b )T (18)
n
The relation between (12) and (18) is then
6 =F 08 + 06 (19)
T T T

Using the definition of z (7) and (8) it can be shown that the 2nx2n matrix F
. T
and the 2nx1 vector Od are given by

(20)

with

0
’ o, 8 i-1 n-j
0 with m -1

NSE? (21)
i-J

Further

n

6. = (gy---0, 0...0)7 with g.= [ Jc-»F (22)



The matrix _ud is invertible when Zd is invertible i.e. for all ©>0. The para-
meter transformation is then one-to-one and

8 = F Hod = mdu (23)

We may then conclude that the parameters mw. Uw of the continuous-time
transfer function G_. may be reconstructed from the parameters ., B. of 8_.

; 0 . g i 4 T
wmmsw?mﬂzmnzmEmamwmmﬂamﬁm»rmoﬂmwumhUmwwamwmwmm.. w.w ommwoa

: : i
the linear relation

_ ol _ T

y(t) = 6_gp_(t) = dem + mau o (1) (24)
T T T

y(t) = © Hﬂdeﬁﬁvu + G_g_(t) (25)

where m.d and O.q are known matrices for each <.

STATE SPACE TRANSFORMATION

It is of major concern that no information is lost when doing the operator
transformation. This is not obvious from the original approach with state
space filters where a filtered state variable could only approximate the true
one due to the low pass filter properties. In this section we will show that
there is a one-to-one mapping between the state space associated with the
original system description and that of the transformed description.

Consider therefore the transfer function

moﬁmv = = ey (26)
s + a,s + ...+ a
1 n

The controllable canonical form of (26) with a state wvector x and the
differential operator p may be written as

x, (1) —a, e+ -—a_y(x, () 1
H. H._. n H“ 0
p| -9 ; s 1 fucty (27)
‘ D e T 0 . .
x_(t) 0 +++ 0 1 0Jix () 0
n n
y(t) = (b, +-+ b_]xce)

This may be associated with the fractional form



A(plE(t) = u(t)

y(t) = B(pIE(L) (28)

with ¥ as a scalar ’partial state’, see (Kailath, 1980). The components X, of
the state vector x may now be related to £ via the the correspondence

x. (t) = p" tE(t) 1<i<n (29)

The representation (27) is sufficient to describe the dynamics of the identi-
fication object. The system order is however increased by the introduced
state wvariable filters. The filters will increase the minimal order of the
system. It is possible to find a state space of the order 2n to describe both
the process and the filters although the realisation often is non-minimal.

A’ (p)E" (L) = u(t)

y(t) = B’ (p)E’ (L) (=07
A’(p) = A(p) Tu+mLsu UN3+ ... + a’
2n
, B n_ ., 2n-1 ,
B’ (p) = B(p) [p+a)’= bp tomat B (31)
A state space realization is given by
x;(t) —a e s non=gt x:(t) 1
1, ! 2n| |1, o
p| - -9 : + s uce) (32)
. v T T 0 : :
xwwdv o -+~ 0 10 xNHmﬂv c
with
x{(t) = p2™ e (g (33)

Each of the components of ¢, may now be expressed as a linear combination
of the state vector components. We have with the arguments of (7), (31), (33).

- m : ’ -
[zul(t) = n+m>ﬁuvﬁn+mg E’(t) = (34)




2n-1_, n o_, _ ) n )
= alp ' (t)]+. .+ a m:mv 5 (t)]) = axj(t) +...+ a'a_xi(t)
n _ _n ) _ B{p) r_a in
[z7y1(t) = a HUH...U: 0...0)x" (t) MMW% Hv+m_ ult) (35)

The original state vector x of (27) is related to x’ by the following relations.

p+a|PE(t) = E(t) (36)
(p+a)

x.(t) = p" Tgt) = p [pra)Er (b (37)

From (33) and (37) we find

5 .
x.(t) = = [ Ja" Ixr . . 1sizn (38)
_ . n+i-j

Consider now the full regression vector
n n
9 (t) = ([tzy1ctr. .. t2y1ct) fzulct). .. 2wl ) (39)

The Gd;<mnﬁ0_.. is therefore related to the state vector x’ by a linear transfor-
mation matrix M’ containing coefficients obtained from (34), (35) and (38}

e_(t) = M'x"(t) (40)

Notice that all components of the state space are observable from _”Nnu\u
provided there are no common factors of A and B. This means that the states
of x'(t) and x(t) are observable from ¢ . From the construction of (32) we also
see that the state x’ is controllable .mwoB u provided there are no common
factors of A and B. Neither should there be any factor of (p+a) in B. This
means that it is in principle possible to determine an input u such that x
obtains any direction in the 2n-dimensional space. This means in a sense that
no information is lost in the filtering process. The following theorem can be
shown.

Theorem:

Let G be a rational function such that

- B(p) ra n _ B'(p) . -n s s
G(P) = Zi53 Hv+mw deg(A)=n ; deg(B)=m<n-1
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where the polynomial factorization is such that B has no common factor with A
or (p+a). Let the following strictly proper transfer operator relation hold
between input u and output y

B(p)
y(t) = wdwq¢ﬁwu

Let furthermore z be the operator

Nlm
p+a

Let P be the vector of filtered inputs and outputs
n n
o_(t) = [fzul(t)... [z ul(t) [zyl(t)... [z y1(t)] (39)

and let x’ be the state vector of the controllable canonical form of G.

Then there exists a linear transformation such that
x'(t) = T_ ¢ _(t) (41)
T'T

for an invertible matrix .H.d.

Proof: See appendix.

REMARK

The theorem above has shown that ¢ is a sufficient state wvector for the
system to be identified and the filter Lrate. The controllability of %’ and ¢

means that any direction in the 2n-dimensional space can be reached. Active
improvement of identifiability by choice of the input u is also in principle

possible.

SIGNAL PROCESSING FILTERS

It has been shown in the previous sections that the transfer operator may be
exactly transformed to the linear model

T
y(t) = 6_¢_(t) (11)

with

‘ ‘ )T (13)

o _(t) = TNU\V (z7y) ... (zu) (z"u)...
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It is straightforward to implement the filtered inputs and outputs of ¢ and we
may estimate 9.

Sometimes it may be desirable to make some data selection. Let us thus
denote such a data selection by the filter f in the time domain or F in the
frequency domain. Let subscript f denote a signal filtered by £ or F.

_—> f —_— or —_—D F >

u(t) cHAﬁV U(s) CHﬁmv

The estimation algorithm will then fit parameters to data from the relation
%Hﬁdv = 9

or

Y _(s) oq_e (s) (42)
Tt £

£f

This means that we have the the possiblity to make filtering operations in the
time domain or in the frequency domain or both. Filtering operations in the
frequency domain will lead to weightings and selections in certain frequency
ranges. Time domain filtering will mean choices of recording times, averaging
or sampling.

An interesting possibility of time domain filtering is to pick y(t) and all
components of e.nnc at certain points of time t=t_, ﬁmt.. The linear relation
(41) then of course still holds between y and ¢ . ese sampled data may now
be used to {it parameters to the continuous .m:dm model (41), (42) by using
ordinary discrete time recursive estimation methods. Notice that there is no
discrete time model involved although we use sampled data and discrete time
estimation.

This type of data sampling does not need to be equidistant and "slow
sampling” may be used if a lower convergence rate can be accepted. Notice
also that the sampling for constant parameters © may be performed without
any anti-aliasing filter. This is due to the fact that © rather than y is the
reconstructed entity. It would be necessary, however, to choose the sampling
frequency properly when it is desirable to track a time varying 6.

CHOICE OF THE LOW PASS FILTER z

It is of practical interest to consider the choice of the time constant tv=1/a of
the low pass filter z used in the modelling. Notice from (8), (11) that the
input-output relation is

Y = ( = * = =
T(g) = moﬁmvc,mv moaNﬁmvvcﬁmv md&dﬁnv (43)
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A
The accuracy of a parameter estimate o.d is often evaluated with a a quad-
ratic criterion formulated

t
. ST 2
3. (6,01 = —oﬁwmﬁavlodﬂﬁvemﬁnvu dr (44)

It is also possible to give criteria in the frequency domain. We will make
statements for "long" but finite time intervals [0,t] and assume that
Parseval’s relation holds between the time domain and the frequency domain.
A counterpart to (44) in the the frequency domain is then the following

+ 00

A i AT 2
3 (6 0] = _ ¥, i0r-82 (tre (i) |“do (45)

-

Introduce the parameter error vector as

B_(t) = 8_(t) - © (46)
T T T

and the weighting matrix

+ 00
P lcty = [o_(-i0r8 (iwrdo (47)
T T

- 00

with o.n defined in (16). The criterion (45) may now be written as

. +00 . . -
3 =6 [ [e_(-iwrel(iwrde)e_tt) = er(trp t
T T T T T

W
-

(tre(t) (48)

All components of ¢ _ are dependent on the input U(s). From (13-17) it is found
T .
that the vector Gd may be decomposed into

¢ (s) =T (s)U(s) (49)
T T
with
_ n n T
_..dﬁmv = HNAmvanmv...N Amvmoﬁmv z(s)...Z AmL (30)

In (50) we see that P depends on the spectrum of the input signal u. There is
also a dependence of the unknown transfer function G.. It is therefore
difficult to derive any result on how to choose < o_uSBm%«\ on the basis of
this type of pure quadratic criterion.

Another approach is to request a certain convergence rate of the parameter
estimates. This may be reflected in a weighted least squares criterion
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A A-\ A
3 (eer) = aomeHMwmhwv-mwaﬁveﬂﬁwvumaa (52)

where o>0 is some constant rate of desired exponential convergence. The
weighting matrix modifies to

t
PTlt) = [ 2%y

AHVGHAHVQH (53)
0 f

f

when evaluated in the time domain. The frequency domain counterpart of (52)
is

O+ice
o 1

’ _ 2 2
ue _”od:..vu T 2ni

_ _<Hnm|Qvnoﬂaﬂv6Hnm|QV ds (354)

O-jiew

By examination the integrand of (54) we find that the convergence properties
of (54) are related to the properties of U(s) and I'(s) which depends on z(s)

and Qoﬁmv. One finds that

+00
_u....._.:..v = Tu.dn..HSlQ:..MAHeloCCH|H€|QVCAH8|QVQ8 (53)

-

For a non-zero input U(s) we have the following condition for convergence of
(55).

il e monm|Qv stable

2% z(s-a) stable 2 <T<1l/«

This determines the limits of convergence rates for different parameter
estimations. It means that we have to require that Qo is stable and responds
rapidly enough to the input u. It is also necessary that the filter time
constant v is smaller than the desired time constant of convergence 1/a.

IMPFLEMENTATION OF LEAST SQUARES ESTIMATION

We will look at recursive least squares estimation of parameters of the linear
model. A minimization of (44) in the continuous time domain gives an
algorithm of the type

6_(t) = woAﬁveaﬁﬁvHwﬂﬁv-odﬁﬁveaﬂﬁvw (56)
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] T
P () = - _uoz.ve:..ve :..:un:..v (S7)
and a convergence rate given by

el ctrp”
T (o]

1

or ) (58)

nﬁvoaﬁﬁvu = -Mﬁodﬂnvsaﬂﬁv

We normally prefer a discrete-time estimation for reasons of implementation
although it is suboptimal. A discretization of (1) and (2) at time instants
t=0,h,..,kh and a Riemann sum type approximation of integration gives the
familiar recursive least squares identification, see e.g. (Ljung and
Sdderstrom, 1983).

5 = B (- —oT (4~

8_(t) = 8_(t-h) + vmhdvemﬁﬁvmxaﬁﬁv 6 (t :Vedﬁﬁv_ (59)

P ey = P t-n) + o (troi(t) ; t=0,h kh (60)
m m SH SH 4 F 4 [ A J

Some manipulations of (60) give a formula to update P, see e.g. (Ljung and
- B 5
Sdderstrom, 1983).

More sophisticated numerical integration routines may of course also be uti-
lized. With trapezoidal interpolation we may replace (60) by

3 I h T o B
P_"(kh) = P_"(kh-h) + Hemnw:vemﬁw:v+emﬂw: h) g (kh h)] (61)

2
to obtain a better approximation of (44).

The sampling rate will certainly influence the parameter accuracy both with
respect to convergence rate and with respect to the accuracy at different
"frequency points". The former aspect has been treated in the previous
section. The accuracy of the transfer function at different frequency points
may be investigated by the following arguments. The accuracy is determined
by the value of the cost criterion J and its matrix

T

:AUVGH.AWFV (61)

_u..H
s

3
(2h) =

P
Kk f

o
Introduce the pulse train function of 4 pulses
2
W, (t)y = Z &(t-kh) (62)
k=0
Then we may rewrite (61) as

-1 +00

; - a - a
P_T(t) = Msz»ha D@ (T (r)dr = ¢ (t)e (t)*W (t) Ammv
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Plancherel’s theorem for Laplace transform of a convolution gives

rﬁvmphpszﬁmv =

T T
= L{ogttrpgctrxn o} = L{o (e (tr p-Lfw, <t} (64)
Poisson’s formula now gives for large values of &

> ] [+ ]
L{wycor} s> L{ = sct-kmr} = 2{ © s(s-127K))

k=0 k=-w

; Ao (63)

The result of (64) and (65) is that there is a weighting in the frequency
domain such that when tsw there will be better accuracy of the estimated
transfer function at the frequencies

w = —— ; k=0,*1,+2,+3, ... (66)

This means that the accuracy at multiples of the sampling frequency w_will
be favoured. =



EXAMPLE 1 - Estimation of two constant parameters

Consider the system with input u, output y, and the transfer operator Oo

b
y(t) = G (plu(t) = Iuplcﬁ._..v

0 b+ a

Use the operator transformation z of (5)

N S
1 + pv

This gives the transformed model

UdN mN
Gr(z) = 1 = .

O 1 + Hmpdn..LN 1 + QHN

A linear estimation model of the type (11) is given by

T

y(t) = -—o,[zyl(t) + mHHNcuAﬁv = odAdvedaﬁv

1

with

o_t) = [tzyltt) tzulce))T
T

and the parameter vector

The original parameters are found via the relations

a,= [ay+1])/7 by= B, /T

16

(67)

(68)

(69)

(70)

(71)

(72)

(73)

Sampling and application of the recursive least squares estimation algorithm
(59-60) give the following simulation results for different choices of the filter
time constant v and the sampling interval h. All simulations have started
with initial values at zero for the parameter estimates and the filters. The
P-matrix of the recursive least squares estimation has been initialized to the

same value in all simulations.
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-2 |

0 10 20 30 40 50
Tise ¢

Figure 1: Input u and output y of the process

The simulations have been performed with mpum and Upnu and a moderate exci-

tation.

30 J
tau=0.03 h=0.03

20 |

10 |

o I T 1 T
0 10 20 30 40 50

Time ¢t

A A
Figure 2: Estimates a, and UH for h=0.03 and v=0.03

1

tau=0.3 h=0.03

20 30 40 .

Time &

A A
Figure 3: Estimates a, and UH for h=0.03 and ©=0.3

1



t2u=3.0
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h=0.03

Time ¢

A A
Figure 4: Estimates a, and UH for h=0.03 and ©=3.0

1

40 50

The simulations above show that the convergence works properly over at
least two decades of values of t. The convergence rate is faster for a shorter
T but the convergence transient may be violent for "too” short time constants
T. The estimates are accurate for all the cases of simulation above. The recur-
sive estimation has been performed every 0.03 s and is no limiting factor for

the convergence rate here.

30 .

tau=0.03 h=0.3
20 |
10
° T I T T 1
0 10 20 30 40 50
Tine t
A A
Figure 5: Estimates a, and UH for h=0.3 and ©=0.03
4. tau=0.3 h=0.3
2 ,.._(F
[+] T T T I 1
0 10 20 30 40 50

Time ¢

A
and b, for h=0.3 and ©=0.3

A
Figure 6: Estimates a 1
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tau=3.0 h=0.3

0.l i
0 10 20 30 40 50

Time ¢

A

A
Figure 7: Estimates a, and UH for h=0.3 and ©=3.0

1

The last three simulations show the convergence rate when doing slower samp-
ling than above. The convergence rate is still good in the figure 6 where
h=1=0.3 i.e. of the same order of magnitude as the process time constant H\mH.
The cases of figures 5 and 7 exhibit slower convergence but still good
accuracy at the end of the time scales.

It can be seen from the figures that there is acceptable convergence rates
over a large range of values of the time constant t. Notice that the conver-
gence rate is higher for small values of v but the parameter transient tends
to be more violent.

Finally, this paper does not treat the properties of identification in the pre-
sence of noise. The following Mmscpmﬁon shows however the convergence when
"white noise" with variance 07=0.1 is corrupting the output y. The simulations
have been run with h=t=0.3. The figure shows the parameter estimates both
with and without noise. As expected there is a certain bias of estimates when
noise is present.

2,

yislandy Rty
T f\a ;zééfa\ g

-1

-2

Figure 8: Noise influence on output y
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tau=0.3 h=0.3

Time ¢

A A
Figure 9: Noise influence on a, and UH for h=0.3 and ©=0.3.

1
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EXAMPLE 2 - Estimation of a time varying parameter

d

—1 ]
Vﬂﬁmv

k f(t)
—AAAAAN—

ARSI
3

X(s)
_ Zx(t)

Assume that the spring coefficient k and the mass m are well known and
constant. The damping coefficient d is however unknown and time varying.
Assume that the force f and the position X are measurable. The force f is
assumed to be the control input variable. The transfer function from input f to
output X is given by

b
_ 2
K = 5 (74)
m

X(s) -

F(s) mN N

s + a,s t+ a

s * 1 2

i3I+

The operator translation (5) gives the transformed transfer operator from
force f to position x

UNANNN
(75)

2 2 2
HpnNu + mwﬂmwnNuN + de z
The unknown coefficient is mp for which we find the relation
mH.edAﬁv = y(t) (76)
with
0 () = vz [1-z]x(t) (77)
yt) = - [(1-z)%xct) - mmammeﬁﬁv + dmumummﬁav (78)

A simple heuristical tracking algorithm for a, is the following threshold
m_oolga .

m:ﬂsn_i ﬁm_eﬁx:v_Ao.H
N 1 T
a, (kh) = (79)

1
%Awwv\edﬂwrv if _ed:ﬁi_wo.»

The potential for adaptive control is obvious. Assume that we want a conti-
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nuous-time adaptive controller matches the input-output behaviour to the
model

2
0

(80)
mN + Nﬁeom + SM

]

A
with £=0.8 and eono.q. It is possible to utilize the estimated parameter a, to

modify the controller on-line. Some simulation studies are presented in H;m
figures below.

2.,

1.5
1
0.5 |

Time ¢

True al

Figure 10: The true parameter a

1
2.
1.5
1
-
T 0.5 |
b
H
s
h} 0 T T 1
0 50 100 150
Time ¢
Figure 11: Estimate of ay
1
1.
04
-1
-2 T T 1
o} 50 100 150

Time ¢

Figure 12: Force F
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-1 J

0 &0 100 150
Tise ¢

Figure 13: Reference value for position X, and actual position X,

CONCLUSIONS

The old method of state variable filters for estimation of parameters in
continuous time dynamic systems has been revised. It has been shown that
this method can be made rigourous by reformulation of the model in terms of a
realizable operator. The problem formulation has also been made different
with respect to the state wvariables. It is not claimed that the derivatives of
the inputs and outputs are reconstructed by the filters. In fact, the filter
outputs tend to be bad approximates of the desired derivatives when the
filter time constants become longer. Instead we claim that the filter outputs
are linear combinations of certain state vector components. We have also
given an invertible linear transformation to find the original parameters from
the new parameter set. For each value of the filter constant T there is a
certain transformation.

It has been demonstrated that the convergence results do not depend criti-
cally on a certain choice of the low pass filter constant.

There are certain advantages from the model formulation point of view. It is
possible to maintain a connection between modelling and parameter esti-
mation. Parameters do not need to become abstract and anonymous due to
discretization transformations. It is easier to partition the object of identi-
fication into known and unknown parts. This means that the estimation may
give faster results with a moderate burden of computation.

The potential for adaptive control is very interesting. A sampling period for
the regulator may be chosen independently from that of the identification.
Unlike the ARMAX-model based discrete time adaptive regulators there is no
obligation to choose the sampling period to satisfy the needs of both control
and identication.
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APPENDIX

Theorem:

Let G be a rational function such that

IE.N—JIE. =N : =m<n-
() = oy ﬁn+mu = &gy ; deg(A)=n ; deg(B)=msn-1

where the polynomial factorization is such that B has no common factor with A

or (p+a). Let the following strictly proper transfer operator relation hold
between input u and output y

ylt) = WMchnﬁv

(p)

Let furthermore z be the operator

== a
pta

Let . be the vector of filtered inputs and outputs
n n
¢ (t) = (fzuictr. .. 12 ul(t) [zyl(t)... .1z y1(t) ] (39)

and let X’ be the state vector of the controllable canonical form of G.

Then there exists a linear transformation such that
x’'(t) = T_ ¢ _(t) (41)
T T

for an invertible matrix .H.d.
Proof

Let Y, be the output of ’i’ operators z operating on y

y (t) = [z yl(t) (A1)

The transfer operator from the input u to the output Y, is then

y_(t) = wnhmw¢ﬁﬁv (A2)

n "(p)

with
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, . n_ _2n , 2n-1 ,
A’ (p) = >Avvmﬁ+mu = p + a,p toa + as,
, _ n_ ., 2n-1 ,
B’ (p) = B(p) [p+a]”= bip t..+ bL (31)

A fractional form for (A2) is

AT(PYE’(t) = u(t)

y(t) = B’ (pIE’(t) (30

The state space realization on the controllable canonical form is given by

xr(t) —Qeeeeea-a/ x!(t) 1
1 : H“_. 2n H“ 0
p| =19 : £ 15 luce) (32)
A T o 3 .
xmwﬂv 0 --- 0 10 xw.wﬁv 0
y ¢ty = [br........b) Jxr e
where the state vector components are given by
x{(£) = p2P e (1) (33)

Consider now the fractional form (28) relating u and y

A(PIE(L) = ult)

y(t) = B(pIE(t) (28)
with
(p+a)™g () = x(t) (36)

With this state representation it holds that

- m H-w ’ -
[zul(t) = n+m>avvﬁv+mu E’(t) =

2n-1
= 2P e )e v ata (0% (0)) = axict) v ata xict)
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[z ul(t) = A(pla (p+a)™ TE’ ()
tzlyict) = B(prat(p+ra)® g (b
n _ _n , _ B(p) (_a n
(z'yltt) = a”[b,...b_0...0)x"(¢) = i) Hv+mu ult) (35)

This means that all components of ¢, may be expressed as linear combi-
nations of the components of x’. Hence

p_(t) = M’x’(t) (40), (A3)

T

The next step is to show that x’ may be expressed as a linear transformation
of ¢ _.
T

Another form of (28) is the fractional form expressed in the operator z, see
(8-10) and (Pernebo, 1981).

>*Anvwnﬁﬁv = ult)

y(t) = m*nuvmuﬁﬁv (A4)
. . * *
with coprime A and B and with

_(t) = [p+a)Tg(t) (AS5)

Recall that

n
[p+a)"e vy = 5(t) (36)
This gives that

ET(t) =

E_(t) (AG)

HHHNDN

pta

From (33) and (A6) it is found that

N:uu..ﬁ 1

2n _
U+m_ NN:.L = _u“.ranNN:nv (A7)

xHAdV = p
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where _uH for 1<£i£2n are polynomials in the operator z.

HAU+mv|mHN:|H -ir a i a 12n-i
P.(z) = TU+NHN5 = a Pu+mw T. - U+mu_

It can be seen from the following relation that all muw contain powers of z from
1 to 2n.

_N:-H-ws,p 2n-i_ _-i 2n-j
= I ( . )a (-z)
j=o0 =

P.(z) = a 'z [1-z (A8)

The factorization polynomials >*an and w*ANV are coprime. The ring of

polynomials is an integral domain and the Diophantine equations
* “ * * .
A AvaHANV + B ANvaANV = P.(z) ; 1<i<2n (A9)

have therefore solutions for all i in the given interval. The solutions are such
that there are solutions with

n
LL,Z t ..t T, Z
il in

R(z) = r
1

S..Z + ...+ 8. Z" (A10)
il in

*®

S.(z)
i

From (A4) and (A9) it is found for 1<i<2n

wwﬁnvcﬁnv+mmﬁuvwnﬁvuwwANvaﬁvuquﬁv (A11)
1 1 1 z 1

The constraints on the polynomial degrees gives a possibility to express
(A11) on the form

x](t) = [rye.er, see8 Jo_(8) (A12)
with
o_(t) = (tzy1cty- o121ty Tzulctr... t2"uice)) (39)

Let the matrix Hd be

HrHH.....-.HIHHH HP--- PHH

0
]

(A13)

Hevons
Heason
Weoeeos
Wessnn

. “ 4 a0

(2n)1 (Zn)n “(2n)1 (2n)n



Then it holds that

x’'(t) = Hdedﬁﬁv

A conclusion from (A3) and (A14) gives that

T "l we
T

Hence, T_ is an invertible matrix relating x’ and P

T
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(Al4)



