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Adaptive Stabilization
Without High-(Gain

Bengt Martensson

Department of Automatic Control
Lund Institute of Technology
Box 118, S-221 00 Lund

Sweden

Abstract: During the last few years there has been a very intense discussion on the applicability
of adaptive control and on ‘standard assumptions’ made in the traditional theory. Some years ago,
the question of what ss really the relevant information needed for successful adaptive control was starting to
receive some attention. The present work belongs to this tradition.

A very brief introduction to the concept of adaptive control is first given. The prototype problem
of stabilizing an unstable, unknown plant is studied. The main result is the complete characterization
of necessary and sufficient a priori knowledge needed for adaptive stabilization, namely knowledge
of the order of any stabilizing controller. The concept of switching function controller is introduced,
and some properties stated. ‘The Turing Machine of Universal Controllers’ is then presented. As the
title indicates, this adaptive controller possessed the greatest stabilizing power a smooth, non-linear
controller can have. The preceding works in this field have all dealt with variations on the theme of
high-gain stabilization. This paper deals only with adaptive stabilization algorithms not requiring
high-gain-stabilizability. Finally, the problem of stabilization to a possibly non-zero reference value
is solved.

1. Introduction

The discipline of Control Theory studies the problem of achieving “satisfactory performance” of a
plant, i.e. a dynamical system to be controlled, by manipulating the input u in order to e.g. keep
the output y close to 0, or to follow a reference signal r. The most general problem of control
theory can in loose terms be described as the following: Given a set G of plants, we are to find
one controller K that achieves “satisfactory performance” (or optimal in some sense) to each one
of the plants G € G. Figure 1 illustrates the concept. The dependence of the input u of the output
is exactly the concept of feedback.

Controller Plant

Figure 1. The Most General Control Configuration.
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Parameters
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Figure 2. The General Adaptive Controller.

Adaptive Control is one—out of several other possible—approaches to solving this problem. It
is an approach based on the concept of learning, i.e. the splitting of the ‘true’ state space of the
non-linear system an adaptive controller constitutes in parameters and states. See Figure 2! The
parameters reside in the “adaptation box”, while the states reside in the “regulator box”. The
parameters are moving “slower” that the states, thereby motivating the values of the parameters
as a state of knowledge on the dynamics of the plant.

Adaptive control is a vital subfield within control theory, with over 100 papers published every
year. For an excellent overview of the field see [Astrom].

In the end of the seventies and the beginning of the eighties, proof for convergence and stability
of the commonly used adaptive schemes appeared. These proofs all required some variant of the
following assumptions:

(i) A bound n* on the order of the transfer function g(s) = n(s)/d(s) is known.

(ii) The relative degree r = deg d(s) — deg n(s) is known exactly.

(iii) The plant is minimum phase.

(iv) The sign of the ‘instantaneous gain’, i.e. the leading coefficient of n(s)*, is known.

This work is concerned with the fundamental limitations and possibilities of adaptive control,
regardless of the particular algorithm used. In particular—are the four assumptions (i)—(iv) really
necessary? To this end, what is believed to be the most fundamental problem is studied, namely
the stabilization of an unstable plant. It can be argued that this is the “prototype problem”, if we
can do this there is hope for more achievements, and vice versa. It is also a very clean, quantitative

problem.
We next give some more precise definitions for the sequel.

Definitions

Consider Figure 2! In general, with fixed values of the parameters, the dynamics in the states are
assumed to be linear. Under this condition, we make the following definition.

We assume that d(s) is monic
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Definition 1.1. Let the set of plants g, its times T, its input space U, its output space Y, and its
space of reference signals R are given. Let [ be a non-negative integer and X a vector bundle of
rank !/ over the C°°-manifold M. We shall call the mapping

S:YxRxX —U

a linear adaptive controller with state space R’ and parameter space M if it is smooth in the sense
of a control system, [Brockett], and for fixed k € M the mapping S : ¥ x R x R} — U/ is linear.
That is, it can locally be written as

2= F(t,k)z+G(t,k)y zcR
u=H(tk)z+ K(t,k)y
];: = f(y)r’t,z,k)

where F, G, H, K, and f are locally defined C*-functions. Here z = (27,k7)7 is a decomposition
of the state of the controller corresponding to the local decomposition of X in IR! and M. o

For a global, coordinate free description of a non-linear control system as a section of a certain
pull-back bundle, see [Brockett].

With this definition, what makes a nonlinear controller into a linear adaptive controller is the
(local) decomposition of the state space into a vector space times a manifold, together with linearity
for fixed values of the parameters.

This definition covers the traditional approaches to adaptive control, namely model reference
adaptive control and the self tuning regulator. Compare Figure 2!

Convergence of Adaptive Control

We will next make precise what we mean by convergence of a certain adaptive controller, controlling
a certain plant. Only the stabilization problem, i.e. when r = 0, will be considered. We restrict
our attention to stabilization of strictly proper, time-invariant, linear plants described by finite
dimensional differential equations, with vector spaces as their state space. That is, plants that can
be written on state space form as

£ = Az + Bu, z € R", u€eR™

MIMO
y=Cz, y € RP ( )

Definition 1.2. We shall say that the linear adaptive controller K # 0, controlling the plant G,
whose state space is IR", converges, if, as t — 00, M 3 k converges to a finite value ko, while
R!'S>2z—-0and R">z— 0ast— oo. o

Adaptive Control Problems
Finally, this is what shall be meant by an adaptive control problem.

Definition 1.3. We shall call the following an adaptive control problem: Let § be a set of plants.
The adaptive control problem consists of finding a linear adaptive controller K, such that for any
plant G € G, the controller K, controlling G, converges in the sense above. o

The ‘size’ of § can be considered as a measure of the uncertainty of the plant.
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2. Necessary and Sufficient Conditions for Adaptive Stabilization

This section contains the complete characterization of the a priori knowledge needed to adaptively
stabilize an unknown plant, namely the order of any fixed linear controller capable of stabilizing
the plant. The necessity was proved in [Byrnes-Helmke-Morse|, while the sufficiency was proved in
[Martensson 1985]. A new proof of the sufficiency part is given, based on the results on switching
functions presented in Section 5.

The Main Theorem

The following theorem is the most general result on adaptive stabilization.

THEOREM 2.1. Let G be a set of plants of the type (MIMO). The necessary and sufficient
a priori knowledge for adaptive stabilization is knowledge of an integer | such that for any plant
G € § there exists a fixed linear controller of order | stabilizing G.

Proof of Necessity. See [Byrnes-Helmke-Morse]. w

The original proof of the sufficiency of this a priori information is the controller given in Section
6. The result can also be obtained by the method of switching functions introduced in Section 5.
We will devote the next sections to the development of some tools for proving this result.

3. A Viewpoint on Dynamic Feedback

In this section it is shown that, from a certain point of view, dynamic feedback can conceptually
be replaced by static feedback.

The idea is very simple: the plant is augmented by a box of integrators, each with its own input
and output. Static feedback is then applied to the augmented plant, i.e. the plant together with
the integrators. The situation is depicted in Figure 3.

H

Y

Y
Q

Figure 8. Dynamic feedback considered as static feedback.
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More formally: Consider the following dynamic feedback problem: Given the plant
z = Az + Bu, z€R", veR™
y = Cg, y €R? (MIMO)
and the controller
z=Fz+ Gy, zeR!
u=Hz+ Ky

It is easy to see that this is equivalent to the static feedback problem

i=Ai+ Bi
§=C% (MIMOA)
&= Kj
where
. (7 . u . y
) =) o= (Y)
and
. A O . B 0 . C 0) = K H
0 0 o I 0 I G F

Remark 3.1. This observation might seem very powerful at least at first sight, but note the highly
non-generic nature of A B and C. This means e. g. that results on generic pole placement by
static output feedback, see [Brockett Byrnes|, [Byrnes|, do not translate at all. o

4. Estimation of the Norm of the State

In this section a lemma is proven, which gives an estimate of the norm of the state = of (MIMO),
expressed in the LZ norm of y and u. The lemma has a simple corollary, which implies that, under
mild conditions, to show that an adaptive algorithm converges and stabilizes the plant, it is enough
to show that the controller stays bounded. First we give the continuous time version.

LEMMA 4.1. Assume that the linear system (MIMO) is observable. Then:
(i) For all £(0), there are constants co and ¢; such that

lz(®)1* < co+ ex (/ot ly(r)I1* dr + /Ot lu(r)II? df)

for all u(.), and t > 0. Here ¢ does not depend on t or u; and ¢ does not depend on t, u(.)
or z(0).
(ii) For T > 0, ¢y can be taken so

e <o ([ onrars [ juirar)

for all t, u(.), and z(t — T).
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Remark 4.2. In (ii) we can consider ¢; as a function of T. This function can clearly be taken
continuous and decreasing. o

Remark 4.3. Note that, for ¢ bounded from below (i) follows trivially from (ii). Also note that
the co-term is necessary if and only if we allow arbitrary small ¢ > 0. o

Remark 4.4. 1t is not possible to improve the result by deleting the integral of u. A simple counter-
example can be constructed by letting (MIMO) be an integrator, the initial state z(0) = 0, and the
input u(r) = 6 (1 — (¢t — €)), for some small € > 0. Choose coordinates in the state space so that
z = y. Then clearly z(t) = 1, and fyzdr = g, so by letting € — 0, we arrive at a contradiction.
The lemma is true without the u-dependent term if and only if G(s) has a proper left-inverse. o

Proof. In an obvious operator notation we have

z(t) = e*tz(0) + / t eAt=7) Bu(r) dr =: Ltz(0) + Liu(.) (=)
y(.) = Lsz(0) + Lau(.) (~)

where L}, L%, L3, and L4 are bounded linear operators between suitable Hilbert spaces. We first
prove (ii). Let T > 0 be given. By using time invariance, it is enough to show (ii) for ¢ = T. From
observability, (~) can be solved with respect to z(0), i.e. z(0) is the image of y(.) and u(.) under
a continuous linear mapping. Inserted into (), this proves (ii).

By Remark 4.3, it only remains to show (i) for small ¢, say ¢ < 1. For this, note that the operators
L1={L{:0<t<1}and L5 = {L} :0 <t < 1} are uniformly bounded by, say, k; and k,. From
these observations, (i) follows (for ¢t < 1) from (), since fcf |lu||? dr < fot (lwl|® + [|y]|?) dr. The
proof is finished. "

A Useful Corollary

The lemma has the following immediate corollary, which will be used in the connection with
adaptive stabilizers. We make the following definition:

Definition 4.5. A function f: RP xIR™ X IR xR — IR will be called L2-compatible if it is satisfies
a Lipschitz-condition and there exists a constant ¢ > 0 such that f(y,u,k,t) > c(”y”2 + |]u||2) for
all k£ and all ¢. o

The name is motivated by the fact that for f being an L2-compatible function, we can estimate
the L2-norm of (y, u) by the integral of f, as will be done in the proof of the following corollary.

COROLLARY 4.6. Consider the plant (MIMO), and let u(.) be a continuous time-function.
Let k satisfy .
k= f(y,u,k,t), k(0)=ko

where f is an L%-compatible function. Then, if k converges to a finite limit ko, as t — 0o, it holds
that ||z(t)|| — 0 as t — oo.
Proof. Clearly

e 1 [ 1
[ O 1y de < 2 7 skt dt = 2 (koo o) < 00
0 0

Thus, for any T > 0, the right hand side of (ii) in Lemma 4.1 approaches zero when t approaches
infinity. The corollary follows. W
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Remark 4.7. In previous ‘universal’ stabilizing algorithms, the step of showing that z(t) — 0 as
t — oo has involved a minimum phase argument. This is not required here. o

5. Switching Function Controllers

In this section we will deal with the following problem: We want to adaptively stabilize an unknown
plant G of type (MIMO), for which we know that G belongs to a set §. Here § is a set of plants
for which there exists a finite or countable set of controllers K, such that for any G € G, there is
at least one controller K € K such that the control law u = Ky will stabilize G.

A heuristically appealing algorithm for stabilizing the unknown plant G would be to try each
one of the K’s for ¢ units of time, until we find one that stabilizes the system. It is shown in
[Martensson 1986| that this is possible if and only if we know a bound on the McMillan degree of
the plants belonging to §. Instead we try each one of the controllers for some time, according to
some criterion, in a way that will hopefully converge, and thus will switch among the controllers
only a finite number of times. A switching function is a criterion of this type.

The concept of switching function was first introduced in [Willems-Byrnes|, where the set of
plants § under consideration was single-input, single-output, minimum phase plants of relative
degree one. In [Byrnes-Willems] this was generalized to multivariable plants satisfying analogous
conditions.

In the remainder of this section, we introduce the pertinent concepts formally, and give a result
on switching function based adaptive stabilization.

Definitions

Definition 5.1. Let s(k) be a function of a real variable, and {7}, a sequence of increasing real
numbers. For r = 2,3,...,Nq, we shall say that s(k) is a switching function of rank r with associated
switching points {r;}, if s(k) is constant for k ¢ {r;}, and, for all a € R, s({k > a}) ={1,...,r}.
Further, just as a notational convenience, we require a switching function to be right continuous.

o

Remark 5.2. Note that it follows from the definition that infinity is the only limit point of the
sequence {7;}. o
By switching function controller we shall mean the following.

Definition 5.3. Forr =2,3,...,8o, let K = {Ky,...,K,} be a set of controllers, with card K = r.
Let f be a Lipschitz-continuous function and s(k) a switching law of rank r. A controller of the
type

v =K,y
. (SFC)
k = f(y, u’ k, t)

will be called a switching function controller. o

Remark 5.4. Note that in general the control law v = K;y must be interpreted in an operator-
theoretic way, not as a matrix multiplication. o

Remark 5.5. The way (SFC) is written requires all the controllers K;,..., K, to be simultaneously
connected to the output of the plant, while the switching law chooses which controller’s output to
connect to the plants input, at least if the K;’s contain dynamics. For r large or infinite, this is
clearly not a practical way of implementing a controller. However, if all the controllers have a (not
necessarily minimal) realization on a state space of a certain dimension, then this difficulty can be
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circumvented by considering the augmented plant as in Section 3, and considering the controllers
as static controllers. o

For further reference, we shall make clear what we mean by a set of controllers stabilizing a set of
plants in some sense.

Definition 5.6. Let f an L®-compatible function, § a set of plants of the type (MIMO), all of
which having the same number of inputs and outputs, and K a set of controllers of compatible
dimensions. For ko € IR, let k be the unique solution to k = f(y,u,k,t), k(0) = kog. We shall say
that K is stabilizing for G with respect to f (or is f-stabilizing for G) if the following holds: For
any plant G € § there is a controller K € K and constants ¢, T such that the control law u = Ky
will stabilize G in the sense that

oo

fly,u,k,t) dt < c||z(to)]|?
to

for all £(0) € R™ and for all ko € IR,t0 > T o

Remark 5.7. In particular, the left hand side stays finite, so it follows from Corollary 4.6 that
z(t) — 0 as t — oo. It also follows that the solution to the differential equation is indeed globally
defined. o

Remark 5.8. By considering singleton sets in the definition, it is clear what we shall mean by the
statement the controller K stabilizes the plant G with respect to f. o

The Main Result on Switching Functions

With the machinery developed so far, we can now easily prove the following results on switching
function controllers.

THEOREM 5.9. Suppose that f is an L?-compatible function, and that the set of controllers
K is f-stabilizing for the set of plants §. Then there is a sequence o = {r;} such that for s(k) any
switching function of rank equal to card K, with associated switching points {7;}, the control law
(SFC) will stabilize any plant G € § in the sense that for all (0), k(0), it holds that ||z(t)|| — 0 as
t — oo, while k converges to a finite limit. Further, there is a ‘universal’ switching point sequence
o, independent of the individual set §.

Proof. 'The steps in the proof are the following: To say that the theorem is false is to say that
for all switching sequences, there is a switching function with the stated properties such that
stabilization does not take place. It will be shown that, if stabilization does not take place, the
sequence {7;} has to satisfy a certain requirement, depending on §, namely (£) below. A sequence
o is given, with the property that for all allowed G, the requirement is violated. We conclude that
with this very sequence stabilization takes place, which will establish the theorem.

From Corollary 4.6, and since k is increasing, it follows that in order to show stabilization it is
enough to show that k£ is bounded. By the definition of switching function, this is equivalent to
the statement that s, considered as a function of time, only switches a finite number of times. So
we assume that this is not the case, and investigate the implications of this assumption.

Consider an arbitrary, but fixed, G € §. Say that controller K; is f-stabilizing for G, and that
the controller K; is used with start at time ¢o. That is, k(to) = 7;, where s(r;) = i. By the
assumptions, this will happen for arbitrarily large k¥ and ¢. Therefore, with T as in Definition 5.6,
we shall make the assumption that to > T.
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The assumption that s switches an infinite number of times implies that we will reach the next
switching point 77, after a finite time. But this is exactly the statement that

o0

t Yy, u, k) dt > 1541 — 75 (¢)

where the left hand side, by assumption finite, is evaluated as if the controller K; was used forever.
We will show that the sequence {r;} can be taken in a way so that (;) cannot be satisfied for j
sufficiently large, which will prove the theorem.

By definition of f being L2-compatible, there is a ¢, so that the left hand side of ({) can be

estimated as
o0

fy,u,k, 1) dt < el|z(to)]|?
to
Using the same argument as in the proof of Corollary 4.6, it follows from Lemma 4.1, part(i), that
for all z(0), there exist constants ¢ and ¢; such that

l=(€)|* < co + e1k(t)

for all . Substituting ¢t = to, k = 7;, and combining the last two estimates, we see that a necessary
condition for (;) to be satisfied, is that

Ti+1 — T < eco -+ ceqT; (£)

But there are sequences {7;} such that, for any ¢, co, ¢1, the statement (£) will be false for all
sufficiently large 7. This is the case e.g. for the sequence defined by

— 2 =
Tj41 =175, 1=2,3,...

T1=2

Therefore, with a switching sequence like this chosen, the assumption of s to switch infinitely many
times leads to a contradiction. Since G was arbitrary, the proof is complete. n

Proof of Sufficiency in Theorem 2.1

The proof is a fairly straightforward application of Theorem 5.9. Consider a controller in the spirit
of Section 3, namely as a constant M X P-matrix, where M :=m + 1, and P := p+ . The set of
controllers K is taken to be all such with rational coefficients, i.e. K := QM XP Let f be defined
as f(y,u,k,t) = ||ly||> + ||u]|?. This is an L?-compatible function. A stabilizing controller places
the closed loop poles in the open left half plane. The poles depend continuously of the parameters
in the controller. Since K is dense in the space of all controllers of order I, i.e. RM*¥ K is thus
[-stabilizing for §. Theorem 5.9 establishes the existence of a switching function such that the
corresponding switching function controller (SFC) stabilizes any plant in §. This completes the
proof. u

Remark 5.10. By some additional effort, an explicit algorithm based on the ideas in the proof
can be constructed. o

In [Mértensson 1986], it is shown that the controller can also be taken to be continuous by
‘smoothing-out’ the discontinuities. Another approach is presented in the next section.
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6. “The Turing Machine” of Universal Stabilizers

In this section we will consider the problem of adaptively stabilizing the plant (MIMO), given
only the a priori information that an integer ! is known, such that there exists a fixed linear time-
invariant controller of order ! that will stabilize the system. An explicit algorithm for this will be
given. This will be given only very briefly, without proof. A more detailed discussion, including a
discrete time version, is given in [Martensson 1986]. The proof is also given in [Martensson 1985].

As shown in Section 3, it suffices to consider adaptive control based on static feedback. A (fixed)
controller is then nothing but a matrix in RM*P , where M and P denotes the number of inputs
and outputs to the augmented plant (MIMOA). For the sequel, we assume that this augmentation
has been done, and therefore we only consider static feedback. Since a (fixed) controller achieving
internal stability to the closed loop system places all the eigenvalues in the open left-half plane,
(or the open unit disc) and these depend continuously on the parameters of the controller, there
is an open set in parameter space yielding a stable system. Equip R™*¥ with the norm

l4)? =) _(4)F

4,

Thus we identify RM*P , as a normed space, with RMF equipped with the Euclidean norm. For
the rest of this section, we let ||.| denote the this vector norm, or the corresponding induced
matrix norm. Partition R™®*F = R* x SMP-1 in a natural way, namely by dividing out the
norm of every non-zero matrix. SMF~1 is now the unit sphere in a normed space of controllers.
Let the controller be

i = g(h(k)) N (h(K))§ (1)
k= lgl* + [|al® (2)

where
N (R) is ‘almost periodic’ and dense on SMP-1 (3)

while h and ¢ are continuous, scalar functions satisfying

WE) oo, koo ()
There exists an a such that 5| < (5)

g({au + (8,7) 2°=n) =R"Y forneZ, o#0, >p (6)
ko (h(R) 22— 0, koo (7

THEOREM 6.1. Consider the minimal plant (MIMO). Assume that ! is chosen so that there
exists a fixed linear stabilizing controller, and that the augmentation to (MIMOA) has beed done.
The controller (1) - (2), subject to (3) — (7), will then stabilize the system in the sense that

(z(t), 2(t), k() — (0,0,kc0) as t — 00

where koo < 0.

One set of functions satisfying (4) — (7) is

h(k) = \/logk,  k>1
g(h) =Vh (sin\/ﬁ—i- 1)
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The construction of the function IV (h) is a standard exercise in calculus on manifolds. One such
is given explicitly in the references cited above.

7. Setpoint Stabilization

In this section it will be shown how to introduce integrators in the loop, thereby being able to
track a constant reference signal with error approaching zero asymptotically. The problem is as
follows: Let G be a set of plants as before, and » € IR? a given constant (a reference value). We
want to find a controller K such that for all G € § it holds that

r—Z (= constant)
y—r
z— 2

k— koo

as t — oo.

Tracking with Zero Error Asymptotically

Every engineer knows that you cannot track a constant reference signal with zero error asymp-
totically without having integrators in the loop*. The analogous statement of course applies to
multivariable plants. Conversely, with integrators in every loop, the asymptotic tracking error is
zero, provided the closed loop system is stable. This shall mean that every fixed linear combination
of rows or columns of the matrix G(s) has a pole at the origin.

The construction for adaptively stabilizing a plant, with a constant reference signal r(t) = ro is
very simple: We just put the diagonal ‘precompensator’ K = s~11I,, in front of the plant. For the
sequel, consider the problem of adaptively stabilizing the ‘plant’ G(s) := G(s)K (s) instead. This
is depicted in Figure 4.

|
I
I
|
K(s) I
I
|

Figure 4. Setpoint Stabilization by Introducing Integrators.

More precisely, we have the following result.

& Quick and dirty proof: y(co) = r(oo) <= ¢(0)/(1+ ¢(0)) =1 <= ¢(0) = o0 u
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THEOREM 7.1. Assume that the controller K stabilizes the plant G in the usual sense. Let
r € IRP be given. Suppose that there exists a unique £ such that

Let K operate on —e := y — r instead of y. Then, as t — oo it holds that y — r, z — %, and
k— koo.

Remark 7.2. The uniqueness follows automatically from observability. o

Proof. We can write

%(m—:?:)=A(x—i:)+Bu

y—r=C(z— %)

So, assuming we have a proof of a theorem saying that the assumptions are satisfyed, we only have
to substitute all occurances of = by £ — £, and all occurances of y by y — r in order to construct a
proof of the above theorem for the case in question. So Theorem 7.1 is really a meta-theorem on
adaptive stabilization. i

The most natural use of Theorem 7.1 is in the form of the following corollary:

COROLLARY 7.3. Assume K stabilizes G(s) = 1G1(s), where detG # 0. Then with error

3

feedback K will also do set-point stabilization for any r € IR?,

Extensions and Comments

Everyone with experience of practical control engineering knows that plants of high relative degree
are very hard to control manually, but often fairly simple to control with simple controllers, such as
standard PID-controllers. Something similar is true about adaptive control. We need some extra
dynamics in our controllers, that is all. By preceding the plant by integrators as in the construction
above, the minimal order of a stabilizing controller might increase. A classical control engineer
would say that we do this at the expense of a decrease of the phase by 90°, and thus need some

extra phase advancing to stabilize the plant.
The same argument may be used to introduce multiple integrators in the loop, thus being able
to track ramps of higher order.
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