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1. Introduction

When deriving models from first principles the result is often a system of dif-
ferential algebraic equations (DAE). Consequently, it is natural to require that
interactive software for model development and simulation supports DAE sys-
tems. Unfortunately, this is hardly the case today. Most simulation packages
of today require assignment statements for derivatives and algebraic variables.
This report discusses the possibilities of supporting use of DAE systems in
interactive software for model development and simulation. This introductory
chapter is organized as follows. First, the motivations for supporting DAE
systems are reviewed and then difficulties and possibilities of solving DAE
problems are reviewed. Third, the organization of the report is described.

Motivation

Many models for physical systems are naturally given as sets of ordinary differ-
ential equations and algebraic equations. When DAE systems are supported,
the model becomes more readable since the user can recognize fundamental
relations as mass and energy balances and other phenomenological equations.
It is easier to check that the model is entered correctly and the risk of intro-
ducing errors during manual transformation is reduced.

To handle models for large and complex systems the model developer must
be able to decompose the model into submodels. Modularization simplifies
modelling and makes the model more flexible and easier to adapt and manage.
We can also build libraries of models. Technical systems are often built in a
modular way composed of standard components. Their behaviour may be
well-known. Good, generally accepted models may already exist.

Furthermore, as thoroughly motivated by Elmqvist (1978), the equation
form is the only reasonable representation for model libraries. With models on
assignment form, it must be decided for each submodel which of its variables
that are inputs (in other words are known) and which of its variables that
are outputs (defined by the model). As a simple example consider a resistor.
Ohm’s law states V1 — Va3 = RI, where V; and V3 are the voltages at the ends
of the resistor, I is the current through the resistor and R is the resistance.
The model has three variables V;, V3 and I. The resistance R is in this model
a given parameter. If we should write the model on assignment form there are
three possibilities

I:= (Vl - Vz)/R
Vi=Va+ RI
Vo :=V; — RI

The first variant assumes that V7 and V2 are inputs and defines I. This model
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is appropriate if for example one end of the resistor is connected to a voltage
source and the other to ground. The second and third variants assume that
the current and the voltage at one end is known. These models are appropriate
if the resistor is connected to a current source and ground. Consequently, for
models on assignment form we need several different models for a resistor,
depending on how it is connected to the environment. This makes both use
and maintenance of a model library messy. Furthermore, other environments
may result in algebraic loops so that equation systems with equations from
several submodels must be solved to transform the model into assignment
form. Two resistors connected in series between a voltage source and ground
is a simple example of this. Submodels cannot be transformed into assignment
form individually, but the transformation is a global problem.

How Can DAE Systems Be Solved?

As motivated above simulators should be able to deal with systems, which can
be described by sets of ordinary differential equations and algebraic equations.
This means that they should be able to solve DAE systems of the form

9(t,&,z,v,p,c) =0 (1)

where t is the time, z and v vectors of unknown variables, p a vector of known
parameters and ¢ a vector of known constants. The unknown variables are
here for convenience split into the two vectors £ and v. The vector v contains
the unknown variables which do not appear differentiated in the equations
whereas the components of  appear differentiated. We will in the following
assume that there is the same number of unknown variables and equations. To
make the problem well-posed we must also for example specify initial values.
We will in the following for the most not mention the initial values explicitly,
but assume that they are given.

A now classical paper discussing the solution of (1) is Petzold (1982a).
One approach is to use a numerical DAE solver which accepts problems on
the form (1) directly. It requires a routine for calculating the residual vector
A = g(t,%,z,v,p,c) when all arguments of g are known. One example is
the differential/algebraic system solver DASSL (Petzold, 1982b) written in
Fortran. DASSL has a reputation of being one of the best and most robust
solvers for differential/algebraic systems. Another approach is to transform
the problem into the form

'."/ = f(ta'.%p, c) (20')
z = X(t,y,pc) (2b)
v=V(t,y,p,c) (2¢)

and use a numerical ODE solver to solve (2a). Both methods have their cons
and pros.

Difficulties

Unfortunately, the numerical DAE solvers of today have basic shortcomings.
There are classes of “well-posed” DAE systems which they cannot solve. These
difficulties can in principle be removed by symbolic formula manipulation. The



theory for deciding when a general problem of form (1) has a unique solution
is incomplete.

Most numerical solvers for ordinary differential equations of today solve
explicit problems of the type (2). There are good efficient and robust com-
puter procedures available. The theory for explicit problems of the type (2)
is well-established. There are nice theorems about existence and uniqueness
of solutions (e.g. Coddington and Levinson, 1955). Unfortunately, numerical
ODE solvers cannot be used directly to solve DAE systems on the form (1).
The problem has to be transformed into the form (2). This is in general a
nontrivial problem. In some cases the transformation from (1) into the form
(2) can be done by symbolic manipulation, but nonlinearities can make it
impossible to give an analytic expression for f(t,y,p,c).

What Can Be Done?

This introduction may give a pessimistic impression. Certainly, much remains
to be done before we can say that there are good, efficient and robust computer
procedures for solving DAE systems. However, we should take an optimistic
approach. By discussing the properties of DAE systems, we get insight into
what is hard and can take advantage of that and avoid some difficulties dur-
ing the modelling. Also if the properties of DAE systems become commonly
known, the possibilities would increase that a person comes up with a bright
idea. By showing that classes of DAE systems, which the numerical DAE
solvers of today cannot handle, arise “naturally” when modelling, the need
and importance of a DAE-solving capability will be more widely recognized.
This will hopefully inspire numerics people to invent new algorithms.

We must also keep in mind that many simple things can be done to facili-
tate the numerical solution. For example, it is advisable to make some formula
manipulation before using a numerical DAE solver, since simple manipulations
may drastically reduce the order and the complexity of the problem. For ex-
ample connections between submodels lead to identities of the form A = B,
and it is of course stupid to let the numerical DAE solver handle these. It
is so easy to eliminate them, and let identical variables have just one repre-
sentative. Furthermore, when defining models it is also natural to introduce
auxiliary variables as A = (expression independent of A) for common expres-
sions to improve the readability. It is often simple to remove these variables
from the vector of unknown variables passed to the numerical DAE solver and
calculate them internally in the routine for calculating the residual.

Outline of the Report

Our aim is to discuss the difficulties and the possibilities to solve them. The
report is organized as follows. In Chapter 2 there is a short discussion on exis-
tence and uniqueness. The possibilities to transform a problem on the form (1)
into (2) are considered in Chapter 3. In the simplest case this transformation
can be done by algebraic manipulations. In more complex cases differentia-
tion of equations may be needed. It turns out that then the numerical DAE
solvers of today are also in trouble. In this case there are algebraic constraints
on components of the z-vector. This is a basic problem and is discussed in
Chapter 4. Chapter 5 considers the handling of discontinuities. The possibili-
ties of symbolic formula manipulation when using a numerical DAE solver are



discussed in Chapter 6. A summary of interesting issues is given in Chapter
7. However, before discussing the difficulties and possibilities to solve them,
some notation will be introduced.

Notation

The Jacobian of g(v) with respect to v is denoted d¢g/dv. It is a dim g X dim v
matrix whose element 1, j is dg;/dv;. We will also work with a matrix 6g/6v.
It is a dim g X dim v matrix whose element 1, j is zero if v; does not appear in
the expression g;, otherwise it is one. The matrix §g/6v can be viewed as a
structure Jacobian or incidence matrix of variable dependencies. The concept
that a variable v; appears in an expression should be interpreted literally.
A mathematical definition of ’appear’ could have been like this: A variable
v appears in h(z,v) if there exist z, vy and v; so that h(z,v1) # h(z,vs).
However, this definition of appear makes it much more difficult to check if a
variable appears in an expression or not. The variable z thus ’appears’ in the
expression (a — a)z from our point of view.



2. Existence and Uniqueness

As indicated above there is no general theory for deciding when a DAE system
of type (1) has a unique solution. However, the “simple” problem Ey =
Fy+f(t) where E and F are constant square matrices is quite well understood.
This problem is considered further in Section 4. For example Marz (1982a,b)
has been working with existence and uniqueness issues.

From a more pragmatic view, we can reformulate the question as “Can we
put any not too restrictive demands on g¢(t,z, z,v, p, c) to guarantee that the
problem is well-posed?”. For special applications like electrical circuits and
mechanics of rigid bodies the formulation will be well-posed if special rules are
followed during the model development. It is natural to demand some skill of
the model developer. Consider the following example.

EXAMPLE 2.1 — The mathematical pendulum

Consider a mathematical pendulum having the length [ and unit mass. Intro-
duce a Cartesian coordinate system with origin at the mounting point of the
pendulum and with the z-axis pointing downwards. For an ideal mathematical
pendulum the energy is preserved

:i:2+y2—2g:c=:i:(2)+§/3—29:c0

where &y denotes the value of & at the time ¢y etc. The parameter g denotes
the gravitational acceleration. We also have the constraint that the length of
the pendulum is [;
2?4yt =12

To be a well-posed problem, the initial values of 29 and yo must fulfil the
length constraint. However, even if we supply proper initial values so that the
length constraint is fulfilled, this is not a well-posed problem having a unique
solution. For example, the model allows the speed to change signs at every
instance. To see that, introduce instead polar coordinates

x=Ilcosp, y=Isinp
We can then easily remove the length constraint and get
1252 — 2glcos p = 12(0(2) — 2glcos g

The speed ¢ appears squared in the model so we can have two solutions; the
pendulum swinging up or down. We can get the well-known model

e+ g/lsinpg =0

by assuming that ¢ exists and differentiating the previous equation, but, that
is another story. A proper model can be obtained directly by using Newton’s
equation of motion or Lagrange’s equation. O
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3. Use of Numerical ODE Solvers

Let us consider the DAE system (1). What possibilities are there to use
a numerical ODE solver which can solve problems on the form (2)? The
simulator should then first transform the DAE system into the form (2) before
invoking the numerical ODE solver. We will assume that the transformation
into the form (2) can be done without differentiation. The assumption implies
that we can take y = 2. A numerical ODE solver for the problem (2) requires
a routine for calculating y when ¢, y, p, ¢ are known. If we set z = z (= @), 1t is
easy to see that what is needed is a routine that solves the algebraic equation
system g(t,z,z,v,p,c) = 0 when t, z, p and ¢ are considered to be known and
(2T vT)T are considered to be the vector of unknowns. In many cases this
equation system is sparse and a standard technique then is to partition the
problem into smaller and simpler problems. We will now consider the block
lower triangular partition.

The Block Lower Triangular Partition
If we want to solve the algebraic system
h(z) =0 (3)

it is simplified if we can split it up into smaller problems which can be solved
sequentially. A standard partition is to permute z and h giving z = Pz
and h(z) = Qh(P~1z) so that §h/6% becomes block lower triangular with
minimal diagonal blocks and non-zero diagonal elements. This partition will
be referenced as the block lower triangular partition or the BLT-partition. The
problem h(Z) = O can be solved by first solving the problem associated with
the first block, then with this solution available the problem with the second
block is solved and so on. There are efficient procedures for construction of
the permutations P and @ giving a BLT-partition (e.g. Tarjan, 1972, Wiberg,
1977 and Elmgqvist, 1978).

The BLT-Partition and Numerical ODE Solvers

In the work to solve z (= &) from g(t,2,z,v,p,c) = 0 when ¢, z, p and ¢ are
considered to be known a BLT-partition procedure can be used as a first step to
decompose the equation system into smaller ones. Let § = P(¢T vT)T denote
the permuted unknowns and consider the partitioned problem g(t,y, z, p, ¢) =
0. Note that it is trivial to determine & and v, if § is known, since § is just a
permutation of the vector (7 vT)7.

A very nice case is when the partition procedure gives a problem where
63/6% is lower triangular and where g; for all 7 is affine in y; i.e.

gi(ta Y,z,p, C) = 37{{7{1(% U150 %i-1, 2, D, C) + giZ(t7 Y1, ., Yi-1,2,p, C)

9



10

with gi1(¢,91, ..., Ji-1,%,p,¢) # O for all ¢, g, x and p. For this case it is simple
to calculate y, by calculating the elements 3; in sequential order using the
formula

Yy = —gi2(ta Y1, Y%i-1,%, P, c)/gil(t7 Y1, .., %i-1, 2, P, C)

If we take a model accepted by for example Simnon (Elmqvist, 1975, Astrém
1983, 1985) or ACSL (ACSL, 1986) and interpret the assignment statements
as equations, the partition procedure will give this desirable result.

In the singular case when g;1(¢, 91, ..., %—1, %, p,¢) = O for some ¢, g, = and
p, the problem still may be well-posed having a unique solution. For example
the function g;; may be zero for some ¢, §, £ and p that cannot be obtained,
or differentiation of some equations is needed to transform the problem into
the form (2). A third possibility is that dg/dz; = O for some j. Examples of
these cases will show up further below.

If 65/6y is diagonal, but there is a g; which is not affine in y; the simu-
lator might solve this nonlinear scalar equation by symbolic manipulation or
numerically by using for example Newton’s method. If §g/6y has nonscalar
diagonal blocks which all are small and linear the simulator can solve these
symbolically. But in the general case there may appear large, nasty non-linear
blocks that have to be solved numerically. However, there are efficient and
robust solvers (Chambers and Whitmarsh-Everiss, 1987, Soderlind, 1980) for
DAE systems of the form

¢= f(t’x’v’p,c)
0: g(t)x71)7pic)

where the Jacobian of g with respect to v is nonsingular. This is an important
case. It arises frequently and it is simpler to transform analytically a problem
of type (1) into this form than into the more restricted form (2).

It may happen that some of the blocks are singular for some ¢, §, £ and
p. As indicated above for the simple case, the original problem may still be a
well-posed problem having a unique solution.

Let us consider some examples.

Examples

EXAMPLE 3.1 — Two rotating masses connected with a slip coupling
Newton’s equation of motion gives the model

Jw=Q;+ Q,

for a rotating mass with rotational speed w and inertia J under influence of
a torque @Q; on the left side and a torque Q, on the right side. Assume that
we want to model two such rotating masses which are connected with a slip
coupling having linear characteristics with the damping coefficient d. We then
get the following model:

Jiwr = Qi1 + Q1 (a)
Jows = Qiz + Qr2 (%)
Q= —Qu (c)

Q1 = d(wy — w1) ()
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We will in the following assume that Q;; and Q,2 are known functions of time
and that Jy, J; and d are parameters.

If we want to try the approach discussed above we should assume that wy,
w2, @Qr1 and Q2 are unknown and make a partition. The partition procedure
gives:

1. Compute Q,; using (d) (assuming that w; and we are known)
Qr1 = d(wz — w1)
2. Compute Q5 using (c) and the in step 1 computed Q1
Quiz == —Qn

3. Solve w; from (a) using the in step 1 computed Q,;

w1 = (Qu+Qn)/N1
4. Solve wp from (b) using the in step 2 computed Q3

w2 = (Quiz + Qr2)/J2

This computational procedure for calculating w; and we works if J; # 0
and Jp # 0 and it is easy to verify that the problem has a unique solution
when initial values for w; and wq are defined.

Let us consider the case J; # 0 and J; = 0. The BLT-partition calculated
above is useless. It is singular, since it implies that we should calculate @, as
w2 = (Qiz + Qr2)/J2. However, it easy to see that w; disappears from the
equations (a,b,c,d) when J; = 0. Consequently, we should now view wq as
unknown when performing the BLT-partition. It gives the following sequence
of calculation:

Qiz = —Qr2 from (b)
Qr1 = —Qp2 from (c)
w1 = (Qu + Qr2)/ N1 from (a)
we = w1+ Qp1/d from (d)

The problem (a, b, c, €) is as seen mathematically well-posed even for J, = 0, if
we do not specify initial value for wy. This example shows us that the structure
of a BLT-partition is discontinuous. We need two BLT-partitions; one when
Jg # 0 and another when J, = 0. |

Let us now consider another system of two rotating masses.

EXAMPLE 3.2 — Two rigidly coupled rotating masses
A model for two rotating masses which are connected rigidly to each other is
given by (a,b,¢) and

w1 = ws (e)

It is easy to realize that the BLT-partition procedure described above will
fail if it is applied on the problem (a,b,¢,e). We have four unknown variables
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(w1, w2, Q1 and Q) and four equations (a,b,c,e). However, the equation
(e) stating w; = ws does not contain any unknown variable, since we have
assumed that w; and wg are known. If J; + J; # 0 and the initial values for
w; and w; are equal, the problem (a,b,c,e) is mathematically well-posed as
seen by the following procedure:

1. Add (a) to (b);
Jiwr + Jow2 = Qu + Qr1 + Quz + Qr2

Use (e) to substitute wy; with w; and wy with w; and use (c) to eliminate

Qr1 + Qu2;
(Ji1+ J2) w1 = Qui+ Qre (f)

2. Solve w; from (f) (recall that we assumed J; + Jz # 0) and substitute
this expression into (a);

Ji(Qu+ Qr2)/(J1+ J2) = Qu + @n1
Multiply with (J1 + J2);
J1Qu + J1Qr2 = 1Qu + J1Qr1 + J2Qi2 + J2Qr1

which is equivalent with

(J1+ J2)Qp1 = J1Qr2 — J2Qu (9)

Consequently, the model defined by (c, e, f, g) is equivalent to the model
(a,b,¢,€) if J1 + Jz # 0, and it is trivial to see that the system (c,e, f,g) has
a unique solution if w; is given an initial value. The BLT-partition procedure
applied on the problem (c,¢, f,g) will be successful. We may for instance
calculate w; from (f), calculate wy from (e), calculate Q1 from (g) and use
this value to calculate Q2 from (c).

A more careful study of (c, e, f,g) shows that this problem contains just
one first order differential equation, whereas the problem (a,b,c,e€) contains
two different variables which appear differentiated namely w; and w;. How-
ever, there is an algebraic relation between these variables; w; = w;. This
relation causes as seen a reduction of the degree. If we want to use an ODE
solver, the simulator must be able to differentiate. One possibility is to elim-
inate wy by realizing that (e) implies w; = wy as we did when we made the
transformation into (c,e, f, g). Another approach is to exchange the relation
(e) with w1 = @3 and w1(0) = w2(0). The first approach has the best numerical
properties. For the second approach numerical imperfections may cause drift
so that (e) will not be fulfilled within desired numerical accuracy. O



4. Algebraic Constraints
on the Vector z

We demonstrated above that differentiation of equations is sometimes needed
to transform a problem of type (1) into the form (2). Unfortunately, those
problems which cannot be transformed into form (2) without differentiation
may also be very difficult to solve for a numerical DAE solver. Consequently,
it is important to get insight into this problem.

Consider the special case when we can write the problem as

Ey=Fy+ f(t) (4)

where E and F are constant square matrices with regular matrix pencil sE—F,
A matrix pencil sE — F is regular if £ and F' are square and det(sE — F) is
not identical to zero. If the matrix pencil s £ — F is singular the problem (4) is
ill-posed. It is natural to demand that we have as many linearly independent
equations as unknown variables.

The Kronecker Canonical Form

Problems of the form (4) with regular pencil can be put on a canonical form,
Kronecker canonical form, which reveals structural properties. It can be shown
(Gantmacher, 1959) that there are non-singular matrices P and @ such that
by taking y = Qz and ¢ = Pf we get from (4)

21 +Cz =gy (5a)
Nz + 22 = g2 (58)

where N is a nilpotent matrix of degree n (i.e. N® =0 and N" 1 # 0). The
degree n defines what is called the index (or nil-potency) of the problem (4).
It is well-known that the solution to (5a) can be written explicitly as

t
z1(t) = e~ ()C 5 (20) + / e~ =1 g (r)dr (6a)

to

There is also an explicit solution for (5b)

s =3 (v 20 (&)

The explicit solution (6b) for the problem (5b) reveals some demands on the
problem (4) to be well-posed. The initial values must be consistent with (6b)

13
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and the function f(t) must be properly differentiable if the solution should
be a function and not only a distribution. If the solution to a problem is a
distribution but not a function the problem cannot be said to be well-behaved
in a numerical sense.

What Does the Index Imply?

If the index is zero, the Kronecker canonical form is just (5a) which means
that E is non-singular. If E is non-singular, we can put the problem (4) on
form (2) without differentiation; §y = E~!(Fy + f(t)). The problem is more
intricate if E is singular. The Kronecker canonical form has then also a (5b)
part. If E is non-singular it is well-known that the poles s of this linear and
time invariant system are given by det(s] — E_IF) = 0, where I is a unity
matrix of appropriate dimension. Equivalently we can write the equation as
det(sE — F) = 0. This formulation as a generalized eigenvalue problem has
the advantage that it also applies for singular E. If FE is singular there are
infinite eigenvalues and the properties of their eigenvectors decide the index of
the problem. Fortunately, we can avoid working with infinite eigenvalues by
studying the eigenvalues at zero of the generalized eigenvalue problem det(E —
pF) = 0. If det(E — pF) = 0 for all u the pencil is singular. The index of
(4) is equal to the size of the largest Jordan block for the eigenvalue zero of
E — uF (if there are no eigenvalues at zero, the index is zero).

If the index is one, (5b) has the form z; = g2 and the problem can obviously
be transformed to the form (2) without differentiation. If the index is greater
than one, the matrix N is nonzero and nonsingular and differentiation of
equations is needed when transforming it into the form (2).

To sum up, the problem (4) can be transformed into the form (2) without
differentiation if and only if the matrix pencil £ — uF is regular and has a full,
linearly independent set of eigenvectors for the eigenvalues 4 = O (the index
is then zero or one).

All known numerical DAE solvers have trouble with solving problems of
form (4) with index greater than one, because the error does not necessarily
decrease with the step length. The difficulties are nicely explained in Petzold
(1982a). Barrlund (1985) gives examples of how DASSL (Petzold, 1982b) be-
haves for high index problems. The approach discussed above can be extended
to time varying F, but if E is time varying or the system is non-linear there
are no extensions or results available.

Reduction of the Index

The index of problem (4) can be decreased to zero by differentiation in the
following way (e.g. Gear and Petzold (1984)):

1. If E is non-singular go to 6.

2. Find non-singular matrices P and @ such that

rro= (%)

with Ey; having full rank.
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3. Make the variable substitution ¥y = @z and multiply the equations from
the left with P giving

(o) e=(3e) =+ (29)

4. Differentiate the lower part of the system

En) . <F11> (91(0)

z= 2+ |,

( Fy 0 d2(2)

5. If the “E-matrix” for the new problem is singular, consider the new prob-
lem as your problem and go to 2.

6. The index of the problem is now zero and the index of the original problem
is equal to the number of times the sequence 2-3-4 was performed.

The reduction procedure is another method for deciding the index of a
problem on the form (4). It also reduces the index of the problem to zero,
possibly making it more suitable for numerical solution. However, numerical
imperfections may introduce drift so that the algebraic relations that we dif-
ferentiated will not be fulfilled within desired numerical accuracy. It would of
course be better to make the partition (5) first.

Examples

An important question is “Do problems with indices greater than one arise
‘naturally’?”. The answer to this question is undoubtedly yes. Let us consider
some examples and we will start by revisit the examples with rotating masses
coupled in different ways.

EXAMPLE 4.1 — Two rotating masses connected with a slip coupling
The problem of to rotating masses connected with a slip coupling formulated
as (a,b, c,d) can be written on the form (4) with

y=(w1 w2 Qu Qu)T, f)=(Qu Q= 0 0)T,

Ji 0 0O 0 0 10
0 J, 0O 0 0 01

= F =
= 0 0 0 o0}’ 0 0 1 1
0 0 0 O d —d 1 0

We get
det(E — uF) = —p?(J1Jz + pd(J1 + J2))

If J1 # 0 and Jy # O the matrix pencil has two eigenvalues at zero and a
full eigenvector set e.g. (001 0)T and (0 0 0 1)T. If one of J; or J; is zero
(implying that J1J; = 0), say Jp = 0, but d(J1 + Jz2) # O, the problem has
three eigenvalues at zero and a full eigenvector set e.g. (01 00)7, (001 0)T
and (000 1)7. If J;J, = 0 and d(J1+J2) = O then det(E— uF) is zero for all p
implying that the problem is ill-posed. Physically it means that we apply the
torques @1 or Q,2 to objects having zero inertia. Consequently, the problem
(a,b,c,d) has the index 1 provided J1Jz # O or d(Jy + Jz2) # O otherwise it is
ill-posed. Since the index is one, when the problem is well-posed, we should
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be able to transform the DAE system (a,b,c,d) into the form (2) without
differentiation. Recall that we have already done this above. O

EXAMPLE 4.2 — Two rigidly coupled rotating masses
The problem of two rigidly coupled, rotating masses formulated as (a,b,c,€)
can also be written on the form (4):

y=(w1 w2 Qu Qu)T, f=(Qu Q= 0 0)7,
Ji 0 00 0 0 1 0
0 J, 0 O 0 0 0 1
= 0 0 0 o}’ F= 0 0 1 1
0 0 00O 1 -1 00

We get
det(E — pF) = —us(Jl + Ja)

which shows that the problem is ill-posed if J; + J, = 0. Simple calculations
show that this implies that Q;; + Q,2 = 0 which is not generally fulfilled. If
J1 + Jz2 # 0 the matrix pencil has three eigenvalues at zero. However, there
is a full set of three linearly independent eigenvectors only if J; or J; is zero
and the index is for this case one. If JiJp # 0 and J1 + J2 # 0 the index
is two. Recall that to put this DAE problem formulated as (a,b,¢,d) on the
form (2) one differentiation was needed. Note that the index depends on the
formulation of the problem and that two mathematically equivalent problems
may have different indices. For example, the formulation (c,e, f,9) is as we
found above mathematically equivalent with the formulation (a,b,¢,€). Both
formulations are ill-posed when J; + J; = 0. The index of the formulation
(c,e, f,9) is one whereas the index of (a,b,c, e) is one only when J;J; = 0
otherwise it is two. m]

Let us consider an even nastier problem.

EXAMPLE 4.3 — A differentiator
Consider the figure

R
—L
C
v C | | =
+
™

Let v, denote the voltage over the capacitor and let ¢ be the current through

the capacitor (and the resistor) then a simple model of form (4) for this system
is

y:(vc Vout i)T, f(t)=(0 Vin vin)T’

1 00 0o o0 1/C
E=|lo 00|, F=|-1 1K o
000 -1 -1 =R
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where v;,, is considered to be a known function of t and C, K and R to be
parameters.
For this problem we have

det(E — pF) = —p*(R/K + p(1+1/K)/C)

implying that this is a nice problem for finite and nonzero parameters R, C,
and K. However, it is very common to assume infinite gain K when making
calculations with operational amplifiers; meaning that 1/K =0. If 1/K = 0
then det(E — uF) = —p® /C implying that there are three eigenvalues at zero,
but just two linearly independent eigenvectors. Simple calculations show that
Ve = Vi, and voy = —Ri = —(R/C)v;,. Consequently, v,y is proportional to
the time derivative of v;,, so if v;, is e.g. a step, the simulator is in trouble
if we try to solve the system numerically. You may argue that it nonphysical
to assume infinite gain, but it is usual to make this idealization when making
calculations with operational amplifiers. The motive of including this example
is to show that nasty systems may easily arise. O



5. Discontinuities

We will now consider discontinuities in g(t,,z,v,p,c). Let us start by an
example,

EXAMPLE 5.1 — Switching between rigid coupling and slip coupling

We will continue to consider rotating masses and study what happens when the
coupling switches between a rigid coupling and a slip coupling. If we assume
that the switches can be done instantly, the model will be discontinuous.

The formulation (a,b,¢c,d) modelling two rotating masses connected by
a slip coupling has index one and if transformed into the form (2), we get a
second order differential equation. The formulation (a,b,c,e) modelling two
rigidly connected masses has index two and if formulated as (c,e, f,g) the
index is one and can be transformed into a first order differential equation. If
we now take two rotating masses and let the coupling switch between a rigid
coupling and a slip coupling, we can get different variants of index and order
variations.

Let us first consider a switch from rigid coupling to slip coupling at time
t1. The model (a,b,¢c,e) is valid in the time interval 0 < t < t; and the model
(a,b,c,d) is valid for t; < ¢. The problem (a,b,c,€) with given, equal initial
values for wy and w; is a well-posed problem with a unique solution at least if
J1 # 0 and J2 # 0. In the time interval up to t; our problem is equivalent to
the problem of two rigidly coupled masses. This problem was shown to have
a unique solution, if the initial values for w; and wq are equal. After the time
t1 our problem is identical to the problem with two rotating masses connected
by a slip coupling, since the behaviour at the time ¢; is smooth. We have for
t1 that wy(t1) = wa(t1). But what are the torques Q1 (t1) and Q,2(t1)? Just
before the switch we have according to (g) that

Qr1(t1—) = (J1Qr2(t1—) — JaQu(t1-))/(J1 + J2)

and just after the switch we have according to (d) that
Qri(t1+) = d(wz(t1+) —wi(t1+)) =0

Consequently, the torques Q,1 and Q2 may be discontinuous at ¢;. The value
at t; depends on how the switch is done and we have here idealized the switch
and assumed that it can be done instantly. Fortunately, the behaviour of the
system after the switch is independent of how the switch is performed as long
as it does not imply exchange of impulse with the environment. However, we
cannot answer the question “What are the torques @,; and @2 during the
transition?”. If we accept this, the idealization can be motivated. We can also
specify Qr1(t1) ourselves. For example we can say that Q,1(¢1) = O indicating

18



19

that the switch has been performed at ¢t;. With this choice we can formulate
the model as (a,b,c) and

(if t < t; then w; — wy else Qp — d(wy — wl)) =0 (h)

The modelling of two rotating masses coupled first with a slip coupling
and then rigidly is much more intricate. Just before the transition, the speeds
w1(t1—) and wz(t1—) may have different values but after the transition they
should be equal according to (e). Consequently, the speeds w; and wy may be
discontinuous at t;. Preservation of the impulse implies that

le]_(tl—) + szg(tl—) = (J1 + Jz)w1(t1+) (Z)

What are the torques Q,1 and Q2 during the transition? Owur assumption
of an infinitely short transition implies that the speed is discontinuous. To
achieve a step in the speed, the torque @,; must contain a term

J;I:—I?Iz (w2(t1—) == wl(tl—))é(t = tl)

where 6(t) is the Dirac delta function. Consequently, numeric solution includ-
ing the time ¢; will be troublesome. However, we need not calculate Q,1(21).
Integrate the equations up to t; using (a,b,c,d) then modify w; (and ws)
according to (¢) and continue the integration using the model (a,b,¢,¢€) or
(c,e, f,9). This approach indicates that new language elements are needed to
describe the model. O

Dirac Delta Pulses

As seen above, discontinuities may imply that the solution could contain Dirac
delta pulses. Such Dirac pulses must be removed before numerical solution.
One possibility is to let the user handle the problem, because he is in most
cases aware of it. Vaguely formulated, when considering modelling of physical
objects, discontinuities in the model are often due to idealizations made by
the model developer.

Recall the example above. There the discontinuities were due to the as-
sumption that the switches between different couplings could be done instantly.
This resulted in some cases that the torques could contain Dirac pulses. An-
other example is the classical way of modelling a bouncing ball assuming an
infinitely short bounce. The assumption leads to forces having Dirac delta
components. When the model developer makes this idealization of the bounce,
he is implicitly saying that he is not really interested to model the bounce itself
and the reaction force from the floor. Consequently, it is reasonable to take
the stand point that then he cannot ask questions about the reaction force. It
should not be allowed to appear in the model. To allow this kind of idealiza-
tions, the user could be given a possibility to define how the state variables
should be recalculated when an event occurs. If he really is interested in the
reaction torque, he must model the bounce. One possible model is to consider
the ball and floor to be elastic and let the reaction force from the floor on the
ball depend on the distance from the floor.
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Detection of Discontinuities

There is also another trouble which also appears for problems of the form (2).
Cellier (1979) shows (for problems on the form (2)) that discontinuities cannot
be handled by step length control, since the integration routines can miss fast
switches and the integration routine can give a completely false result. His
approach is to view the problem as a continuous problem and to view a dis-
continuity as an event which means that we should switch to a new continuous
problem. A discontinuity that only depends on time is easy to detect. It can
be handled by integrating the equations up to that time and then restart the
integration routine. Thus the discontinuity is handled by solving two contin-
uous problems in sequence. This means that it is almost straightforward to
simulate models consisting of both continuous time submodels and sampled
submodels.

If the discontinuity depends on x and v, the problem becomes more com-
plex since we also have detect if and when events occur. Cellier’s approach is
to tell the integration via indicator functions when events may occur. The in-
tegration goes on until an indicator function indicates an event. The step-size
control mechanism of the integration routine is then disabled and the step is
repeated with a new step-size computed by a special iteration scheme to es-
tablish if and when an event has occurred. It is important that the indicator
functions are calculated with enough accuracy and resolution in time so that
events are detected. One way to get some automatic control of the calcula-
tion of the indicator functions is to introduce the indicator functions as extra
states. Thus making the integration routine explicitly aware of the indicators,
so it adjusts the step-size also with respect to the behaviour of the indicators.
However, the method does not guarantee that fast multiple switches are de-
tected. If the model is supposed to model something and the behaviour of the
model exhibits multiple fast switches, the user must really consider whether
important dynamics has been neglected. It may then be important to model
the transitions in more detail.

In Cellier’s approach the integration routines must not switch to the new
set of equation until it has been established that an event has occured. Note
that this implies, that the numerical integration routine must then evaluate the
residual A = g(¢,Z, z, v, p, ¢) outside the validity range of the equation system.
Consequently, this implies that the the set of equations must be formulated
so that this evaluation does not cause numerical overflow or division by zero.

Symbolic analysis can be used to set up the indicator functions auto-
matically. If the model is given in symbolic form, it is rather easy to detect
discontinuities by scanning through the equations.



6. Numerical DAE Solvers and
Symbolic Manipulation

We have above indicated that there are many reasons for symbolic formula
manipulation before using a numerical DAE solver. It is of interest to detect
and eliminate algebraic constraints on the vector z, since they cause trouble
for numerical DAE solvers. A basic difficulty with algebraic relations is that
they might not be detectable by local analysis of a submodel. It is necessary to
make a global analysis. It is also of interest to detect discontinuities and treat
them in special ways. All these aspects are very important, but we will not
consider them further. We will instead consider aspects of symbolic formula
manipulation to make the numerical solution more efficient and reliable.

Partitioning of the Problem

When solving the DAE problem of the form (1) numerically, the residual
A =g(t,%,z,v,p,c) and its Jacobian are evaluated a number of times and lin-
ear equation systems with the Jacobian as coefficient matrix are solved. The
possibilities to do this reliable and fast depends on the number of unknowns,
but also on the complexity of g and the structure of the Jacobian. It may be
a good idea to try to partition the problem to split it up into smaller sub-
problems and with simple interaction. It is an open question which partition
that is most favorable. There must exist efficient partition algorithms. The
possibilities that the partition gives small subproblems must be good. If the
desired partition is block diagonal form, the partition will mostly give large
blocks. If we consider the BLT-partition, each subproblem can be smaller to
the cost of a more complex interaction structure.

Elimination of Variables

Elimination of components of the vector v must be done with care not to de-
stroy structure and not to increase the computational work. As an example
assume that the model developer has introduced the variable o to denote a
complex expression that appears in many places of the model. The computa-
tions of the residual then becomes more laborious if the simulator eliminates
a by symbolic substitutions before invoking a numerical DAE solver. If the
simulator decides to remove « from the vector of unknowns passed to the nu-
merical solver, the computations of the residual becomes faster if the routine
for calculating the residual keeps the variable o internally.

It is a basic demand that the symbolic formula manipulation procedures
do not introduce divisions by zero. A basic issue is how we should consider

21



22

parameters. It may be correct to make a certain manipulation for most pa-
rameter values, but there may be certain combinations that cause division by
zero. However, in many cases those combinations never will show up, because
they are for example non-physical. This indicates that it could be useful to
let the user supply ranges for parameters.

Another demand is that the system should be able to give clear error
message. It cannot just print out transformed equations and complain. In
some way or other, it must be able to relate the error to the original equations.

Various kinds of symbolic formula manipulation are possible. Permutation
of variables must be considered as being of the simplest type. Permutation is
nice, since it is easy to implement and preserves basic properties. It is also
easy to give clear error messages when something happens since permutations
does not change individual equations.

Let us consider the possibilities to eliminate components of the vector v.
The BLT-partition can be used to find components that may be eliminated.
However, as we found above it is not a general method in our case. Note that
it can be assumed that # and z are known since they are calculated by the
numerical DAE solver. This fact gives additional freedom when eliminating
components of v. How can this freedom be explored? For example the book-
keeping can be simplified if simultaneously elimination of variables are avoided
and that only sequential elimination is allowed as done in the connection with
the BLT-partition. However, there are no good algorithms available for finding
these sequences of variables and associated equations. The problem is closely
related to what is called tearing. The idea is as follows. Consider the problem
of solving

1 0 ... 0 I Ty dy
a1 1 0 b; ) d2
anl An2 ]. bn xn dn

c1 c2 ... ¢p 1 z

If we knew 2, it would be straightforward to solve for z. Consequently, if we
want to solve the problem by an iterative procedure, we just have to iterate
over 2. The basic idea of tearing is to divide the unknown variables into
two vectors so that it is in some sense easy to solve for the variables in the
first vector z, if we know the values of the variables in the second vector
z. An iterative procedure to solve the problem then just has to iterate over
2, and the dimensionality of the problem is decreased. Unfortunately, there
are no efficient general tearing algorithms available. Our problem has special
properties. In our case the numerical DAE solver handles the iterative part
and it should also solve & and z. A user often introduces a sequence of auxiliary
variables to make the model more readable. It may be a good idea to try to
explore this fact and look for such sequences. The simulator may consider all
equations whose left part consists of a simple variable.



7. Conclusions

It is of a basic interest to be able to solve DAE systems, since many models for
physical systems are naturally given as sets of ordinary differential equations
and algebraic equations and since the equation form is the only reasonable
representation for model libraries. We have discussed the possibilities to solve
DAE systems. There are numerical solvers for DAE systems, but they are not
as reliable and robust as numerical solvers ordinary differential equations on
state space form. Unfortunately, DAE systems may exhibit bad properties,
which make them difficult to solve numerically today. By means of examples
it has been illustrated that even small, simple DAE systems can exhibit bad
properties. We have also shown that they are by no means pathological. They
arise naturally during model development. Possible ways to handle difficulties
have been indicated.

We strongly encourage research in this area, since it is of a vital interest for
simulation that these difficulties are solved. There are many open questions
to answer. The questions cover a broad range from theoretical to practical
problems. Interesting issues are

1. When can we decide whether a problem is well-posed, i.e. having a unique
solution? Can we put any not too restrictive demands on ¢(t, %, z,v, p, c),
which can be checked, to guarantee that the problem is well-posed? For
special applications the problem will be well-posed if special application
dependent rules are followed.

2. In simple cases it is possible to solve # and v from g(¢, z,z,v,p,c) = 0
directly. In more complex cases differentiations of equations are needed.
It turns out that then the numerical DAE solvers of today are also in trou-
ble. There are algebraic constraints on the components of the z-vector.
Can the constraints be detected and eliminated by symbolic formula ma-
nipulation? They may put restrictions on how the starting vector z(io)
can be chosen. Can these restrictions be determined by the simulator?

3. Discontinuities cause also difficulties, especially if they depend on z and
v. Can they be detected and can changes be flagged for the numerical
solver? Discontinuities may imply that the solution could contain Dirac
delta pulses. In many cases they are results of idealizations made by the
model developer to make the model simpler. How can such be detected
and eliminated for the numerical solver? Since the model developer often
is aware of these effects, it may be of interest to introduce new language
constructs so he can handle and eliminate Dirac delta pulses explicitly.
You may take the stand point that idealizations implies that the model
developer is not really interested in those variables containing Dirac delta
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pulses, so they should not appear in the model. The user should not be
allowed to pose questions about their behaviour.

Besides dealing with algebraic constraints on the vector = and discontinu-
ities, how could symbolic formula manipulation be used? An interesting
question is “How should we partition the problem to make numerical so-
lution more efficient and reliable?”.

One possible way to reduce the complexity of the problem by formula
manipulation is to eliminate components of the vector v from the vector
of unknowns passed to the numerical solver. However, the elimination
must be made with care not to destroy the structure or make the problem
ill-posed. For example, division by zero must not be introduced.

Connection of submodels gives simple equations of the type A = B which
are simple to eliminate. When defining models it is also natural to intro-
duce sequences of auxiliary variables to improve the readability. If we can
find those sequences, it is easy to eliminate the associated variables from
the vector of unknown passed to the numerical solver. It may, however,
be an good idea to keep them as internal variables in the routine for cal-
culating the residual. Note, also that when searching for such sequences
of auxiliary variables it can be assumed that # and z are known since they
are calculated by the numerical DAE solver. Unfortunately, there are no
good algorithms available for this kind of problem, so it is an interesting
research topic.

The man-machine interface is important. The system must be able to
give clear error messages, explaining the errors in terms of the original
equations not in transformed ones unrecognizable for the user.

The user also probably has more information available about the problem
than what he has stated. It may for example be very useful for the sim-
ulator to know that certain combinations of parameter values will never
or should never be tried. It is desirable that the simulator could be able
to pose such questions. When modelling, it is often not obvious what is
critical.

How can the numerical DAE solvers themselves be improved?
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