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SYSTEM REPRESENTATIONS

Karl Johan Astrém

Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

Abstract

The representation of systems is a key issue in system theory
and in computer aided control engineering. This paper discusses
different ways to represent systems and suggests an approach based on
object-oriented programming which admits hierarchical descriptions of
system structure and behaviour, A prototype implementation of the
ideas is described together with experiences of using it.

1. INTRODUCTION

The notion of system is an essential clement of control theory. The
representation ol systems is also a key issue in computer aided control
engineering (CACE). Systems can be represented in many different
ways. There are graphical representations like block diagrams, signal
low diagrams and bond graphs. There are also mathematical rep-
resentations like state space models and input-output relations which
come in many different forms, matrix fractions, impulse responses, fre-
quency responses. YWhen working with control systems it is {requently
useful to use several different representations of a system.

Only fairly primitive ways of representing systems are used in
current CACSD systems. Typical examples are the Matlab derivatives
where systerns are described by matrices. A slightly more sophisticated
representation is used in the simulation language Simnon. This
representation recognizes that a system has the properties, inputs,
outputs and states. Simnon also allows a system to be described as an
interconnection of subsystems. However only flat interconnections are
allowed.

This paper presents a more flexible way to describe systems
which is based on object-oriented programming. It is shown that
a general structural description of hierarchically connected systems
can be constructed [rom siinple ingredients by making a systemn an
object with the properties Name, Inputs, Oulputs, Subsystems and
Connections,

It is also necessary to add behavioural descriptions to obtain
a useful tool. This is done by creating new objects which describe
behaviour. A system can then inherit both structure and behaviour.
Behaviour can be characterized in many different ways. A state
description is one of the simpler alternatives. This can be covered
by introducing the object StateBehaviour with the properties States,
StateTransitionMap and OutputMap. The behavioural descriptions
should also allow a given system to be described by models of different
complexity. Apart {rom the detailed quantitative descriptions it is also
useful to be able to deal with qualitative descriptions of behaviour.

The paper also describes a small prototype implementation which
was designed to experiment with the ideas. This prototype which
is written in Lisp admits hierarchical system representalion and
symbolic manipulation of the system descriptions. The experiments
with the prototype indicate that the approach is one way towards
implementation of powerful CACE systems.

The paper is organized as follows. Some system representations
in current CACSD packages are described in Section 2. Requirements
on system representations are given in Section 3. Sections 4 and 5 deal
with representation of system structure and behavior. The prototype
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implementation is described in Section 7. Some conclusions are drawn
in Section 8.

2. EXAMPLES

Some examples of system representations used in current CACSD
packages are given in this chapter.

Matrix languages

Linear timeinvariant systems can be described using arrays. Such sys-
tems are conveniently handled in some matrix language like MATLAB,
(Moler 1981) or its derivatives MatrixX, (Walker et al. 1982), CTRL-
C, (Little et al. 1984). A system is represented as a matrix quadruplet
in CTRL-C. In MatrixX it is represented as a system matrix and an
integer which gives the order of the system. It is, however, clear that
it is not sufficient to only have matrices. A detailed discussion of this
is found in Astrém (1984). There are a few more data types like poly-
nomials and transfer functions in Blaise (Delebecque and Steer, 19853),
Impact, (Rimvall and Cellier 1984) and Eagles, (Gavel et al 1986). A
more sophisticated data structure for systems was used in the Lund
packages (Astrém 1985). Our experiences indicate that it would be
very useful to have even more flexible concepts.

Simnon

The system description used in the simulation language Simnon,
(Elmgvist 1977), includes system descriptions for continuous and
discrete time systems. A continuous system corresponds to a state
models described by an ordinary differential equation like

d
f:[(z, u, 1) 0
y=g(r wt)

where z is the state vector, u the input vector and y the output vector
The Simnon representalion is

CONTINUOUS SYSTEM <system identifier>

INPUT <list of inputs>

OUTPUT <list of outputs>

STATE <list of states>

DER <list of derivatives>

TIME <variable>

Computation of outputs

Conputation of derivatives

Parameter assignment

Initial value assignment

END

The standard state space model for a discrete time system is

z(terr) = [k, uk, tx)
y(te) = g(zk, uk, L)

4
)

where {tx} is a sequence of sampling points. In Simnon such a system
is described as



DISCRETE SYSTEM <system identifier>
INPUT <list of inputs>

OUTPUT <list of outputs>

STATE <list of states>

NEW <list of new states>

TIME <variable>

TSAMP <variable>

Computation of outputs

Computation of new values of the states
Update the TSAMP-variable

Modify states in continuous subsystems
Parameter assignment

Initial value assignment

END

Notice that this description is analogous to continuous systems. There
is however a new variable TSAMP which gives the next time that the
system should be sampled. In Simnon it is also possible to connect
subsystems by using a connecting system which is described by

CONNECTING SYSTEM <system identifier>
TIME <variable>

Computation of inputs

Parameter assignment

END

The notation in Simnon is very natural for a control engineer. Long

experience of using it has also shown that it is very easy to teach and
use.

Discussion

The matrix based languages lack a proper system concept. This means
that it is difficult to implement operations which are naturally viewed
as operations on a system. We cannot make the natural abstractions
used in system theory. Low level matrix operations have to be used
instead. Simnon has a notion of systems. A drawback with this notion
is however that it only admits flat interconneetions. Particularly when
dealing with large systems it would be desirable to have an hierarchical
interconnection of sybsystem. One pessibility to do this was suggested
in Astrdm (1985). A more fexible approach is suggested in this paper,
Since Simnen is a simulation language there are also only a limited
number of system operations which are supported.

3. REQUIREMENTS

We will now briefly discuss some key issues in system representation.
An important requirement is that the deseriptions introduced should
admit hierarchical system representations. Another is that it should be
convenient to express systems composed of regular patterns of similar
components in a convenient way.

To discuss suitable system descriptions we must also know how
they are typically used. Typical operations on a system may be to:

Combine several subsystems into a new subsystem.
Expand a system into its subsystem.
Find interconnected loops.
Compute steady state operating points.
Compute steady state input-output relations.
Simulate.
Linearize.
Describe region of validity of linearized model.
Analyse stability, reachability and observability,
Make a Kalman decomposition.
Compute system inverses.
Compute sensitivity functions.
Compute well-conditioned linear representations.
Find linear characteristics like:

poles and zeros,

transfer {unctions,

frequency curves.
Transform system representations.
Perform and validate control design.

Make model reductions.
Fit parameters to experimental data.
Find graphical representations.

Some of these operations are conveniently done .numerically.
Others require formula manipulation. It is therefore essential that
the system can support numerical as well as formal calculations.

To describe systems it is thus necessary to have a rich structure
which makes it possible to describe hierarchical interconnections of
subsystems where each subsystem in turn is composed of subsystems.
The subsystems may be of different types. They may be described in
terms of state models, as input-output relations like impulse responses
or transfer functions. We also have a need for descriptions of different
complexity.

4. SYSTEM STRUCTURE

Representation of system structure is a key element when dealing .
with complex systems. Graphical representations, like block diagrams,
signal flow diagrams and bond graphs are common for this purpose.
They can be used to present details of subsystems as will as to give
an overview of systems. In a block diagram description a subsystem is
represented by a box and interconnections by lines between the boxes.
See Figure 1. A line can represent a simple connection which tells that
the variables at the connections are the same. It can also represent
a more complex situation where several variables are involved. [t
is common practice to introduce arrows to indicate causality when
this is possible. There may also be special symbols to denote simple
operations like addition and multiplication of signals. There are many
related descriptions like signal flow graphs and bond graphs.
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Figure 1. Example of a hierarchical block diagram. The Closed-
LoopSystem is composed of two subsystems Process and Regulator.

To capture descriptions like block diagrams it is necessary to
introduce the notions of subsystems and interconnections. In this
paper we will only consider systems with well defined inputs and
outputs. Such a system can be regarded as an abstraction of a box
with input and output terminals. It can be represented as an object
with the variables

Name

Tnpute

Outputs

Subsystems

Connections

The inputs and outpuls can be simple variables but they could alse be
objeets with properties like units, range, elc. A primitive connection is
@ pair of input and output terminals. The connection implies that the
corresponding terminal variables are the same. To avoid ambiguity the
name of the associated system is also given. The notation (Regulator
sp) denotes the terminal sp of the regulator. The system in Figure |
can be represented as follows

Name ClosedLoopSystenm

Input r

Outputs y

Subsystems Regulator Process

Connections r (Regulator sp)

(Regulator cv) (Process u)

(Regulator mv) (Process y)

y (Regulator y)



The regulator has the representation

Name Regulator

Input mv sp

Outputs cv

Subsystems nil

Connections nil
It thus has two inputs, mv the measured value and sp the sel point.
It has one output the controlled variable ev. The regulator has no
subsystems and consequently no connections, In suich a case the
corresponding variables will be not be given.

The process in Figure 1 has the representation

Name Process

Input u

Outputs y

This notation is simple, natural and quite powerful,

Methods

A system structure has a number of associated operations. Examples
of basic low level constructor and destructer function are

MakeSystem

AddInputs

Dellnputs
Basic query and selector functions of the type

Inputs?

Inputs
are also needed to work with a system structure, The function Inputs?
returns true il the subsystem has inputs and the function Input returns
all inputs to a given subsystem. These functions operate on one level
only. There are alsa primitive display functions like

ShowSystem

and a system editor which admils a structured editing of a system.

The functions discussed so far relate to-a particular system only,
For a system with subsystems it is also of interest to find all attributes
of the system and of all assaciated subsystems. This is done by the
functiens

AllInputs

AllQutputs |

AllSubsystems

AllConnections

It is sometimes also desirable to show the attributes hierarchically
corresponding to the the subsystem hierarchy. This is done by the
function.

HierarchyOfInputs
HierarchyOfOutputs
HierarchyOfSubsystems
HierarchyOfConnections

Several functions are useful in order to explore the structure of a
system. There are some auxiliary functions which are useful to explore
the connections. The functions

InputsConnectedTo

OutputsConnectedTo

return the systems which are connected to the input and output
terminals of a given system. The function

ContainedIn

gives all the systems which contain a given system as a subsystem.

A loop is a closed path obtained by scanning a connection of
subsystems in the direction defined by the input-output causality, The
functions

Loop?

Loop

AllLoops

tell il a given subsystem is contained in a loop, gives & loop associated
with a given subsystem and all loops associated with a given system,
These functions can be used to trace a given collection of subsystems.

System Operations

It is convenient to have a number of operations which act on a system
and generate new systems. This is accomplished by the functions

Aggregate

Disaggregate
The function Aggragate applies to a colleclion of subsystems and gives
a new subsystem. The appropriate connections are generated [rom the
aggregated subsystemns.

There are also a number of other system operations which are
useful to form composite systems from simple ingredients. Typical
examples are

Invert
ParallelConnect
SeriesConnect
FeedbackConnect

These operations will have to operate on many dilferent properties of a*
system. They will create new system with the appropriate properties.

5. SYSTEM BEHAVIOR

Only topological properties of a system i.e. structure and intercon-
nections, have been discussed so far. To describe a system it is also
necessary to describe how it behaves. Systems behavior is a very rich
field. Examples of categories of behavior are

Static

Qualitative
StateSpace
StochasticStateSpace
StochasticInputOutput
LinearStateSpace
TransferFunction
TransientResponse
DescribingFunction

These categories can be described as objects. The static behavior can
be described by a nonlinear function. Several methods are needed to
work with static behavior e.g.

FindOutput
FindInput
Linearize

MaxGain

MinGain
DegreeOfLinearity
OperatingRange

Qualitative behavior attempts to describe some gross properties of a
system like gain, time constants, and estimate of largest dynamic gain,
some measure of nonlinearity, and some measure of how deterministic
a system is. Associated with these properties we also need methods to
obtain these properties from the more detailed representations. The
ideas developed for automatic tuning of regulators are quite useful for
this purpose. See Astrém and Hagglund (1984). I is quite useful
te allow qualitative system descriptions because it ullows qualitative
reasoning about system properties. In large systems composed of many
subsystems we may e.g. neglect an interconnection il a system with a
very low gain is connected in parallel with a system with a very high
gain. In a simulation where we are exploring phenomena in a time
scale of minutes we may use static models for subsystems whose time
constants are less that one tenth of & second,

The state space and the transfer function behavior are well
described in standard texts on control engineering, In this paper we
will only use some simple forms of nonlinear state space behavior.

It is also very useful to introduce the ValidityRange property 1o
indicate the region of validity of the model, This can be deseribed as
& subset of the product of the input spaces and the state spaces. With
such a feature it is possible to write a simulation program which will
raise an exception if the state of the system goes outside the region of
validity during a simulation.



6. A PROTOTYPE IMPLEMENTATION

A small prototype program was written to test the ideas described
in the previous sections. The program was written in ExperLisp on
the Macintosh. The main goal was to experiment with descriptions
of system structure. A secondary goal was to try some formula
manipulation. The prototype can only handle a simple type of system
behavior namely continuous time state model behavior. The version
of BxperLisp that we used does unfortunately only support object-
oriented programming to a limited degree. Our implementation was
based on the defstruct function which can be used to generale a
structure.

A system was implemented as structure with seven named com-
ponents (slots)

Name

Inputs

Outputs

Subsystems

Connections

States

Behavior

The first five slots are used to describe system structure and the last
two to describe system behavior. The system behavior is characterized
in terms of the functions f and g in equation (1). The function [ gives
the rate of change of the state and the function ¢ is the output map.
These functions are given as Lisp functions.

The prototype has primitive constructor, destructor, query, selec-
tor and display functions for the system properties. The higher level
operations include functions like

ShowSubsystemHierarchy

GetAllSubsystems

for all system variables. There are also operations to explore the
system structure and tools for linearization of system behavior.,

An Example

Consider the model following control system shown in the block
diagram in Figure 2. The system named S1 has three subsystems
Model, FF and $2. The system S2 has also three subsystems Reg,
Proc and Sensor. The inputs, outputs and subsystems are shown in
the ligure. The connections can also be read from the figure. State
variables are introduced to describe the behavior of the systems. These
are also shown in the figure. The behavior of each system is described
by the functions f and g in the model (1). The properties of the
subsystems are given below,
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Figure 2. Block diagram of a2 model Tollowing control system.

Model Desired closed behavior.

Input u
Output ¢
States z;z,
Behaviour
dz;
75—__wz1
dIz

= w(—z; — 2cz5 1 ¢)
y=x
FF Feedforward compensation.
Input u
Output y

State =z
Behaviour

dr
dt
y=k(z+u)

= —az+(b-a)z

Reg Simple PID regulator.
Input r y
Output u
State 1 d
Behaviour
dd N
= (y-4
il (v~ ad)
di 1
= ,‘,—1‘,(" )
u=k(r—y+i+ N(d-y))
Process Process dynamics.

Input u
Output y
State z)z,
Behaviour

dIl

= —a/zy + bu
dt
d
7%3:: a/zy + ez,
Yy=1zI
Sensor Scnsor dynamics.
Input u
Output y
State z
Behaviour

dz 1
z -7

In our prototype we have not put much effort into the user interface.
We are simply using the ordinary Lisp functions.



Sample Dialog

The simple dialog below illustrates how the system works. The
function call (Show System S1) generates the following listing of the
description of the system S1

HE:’BHHBH=‘=H====ﬂ-!===!ﬂ===-ﬂ

SYSTEM: Si

_____ .
Inputs : (c)
Dutputs : (y)
States : nil
**% Subsystems *¥x
Fhtdtd b
(52 Model FF)
**% Connections **x
+Httt b
(c 81)
(st y)
*** Behaviour #*%
tttttt it
*++ no state equations defined +++
*++ no output equations defined +++
nil
There are several tools Lo explote the system structure. The function
call
(AllSubsystems 52)
returns all subsystems of S2 i.e.

(Reg Proc Sensor)

Il the function is applied to a system whose subsystemns also have
subsystems all lower level subsystems are returned. An example is

(AllSubsystems S1)
which returns

(52 Model FF Reg Proc Sensor)
The function AllSubsystems AllSubsystems can also be applied to
a list of several systems as in

(GetAllSubsystemns '(S1 S2))

which returns
(52 Model FF Reg Proc Sensor)

The function GetSubsystemHierarchy can be used to get the detail

of the subsystem structure. An example is
(GetSubsystemHierarchy '(S1))

which returns

(81 (82 Model FF) S2 (Reg Proc Sensor) Reg nil
Proc nil Sensor nil Model nil FF nil)

To list the hierarchy of subsystems we can use the function
(ShowSubsystemHierarchy S1)
which generates
AR R R L L L S
Subsyststems of: Si1
R T T W
S2
Reg
Proc
Sensor
Model
FF
nil
There are similar functions to investigate the other systemn variables.
The function call
(AllStates "Model)

returns all states of a system i.e,
((x1 x2) nil nil nil)

and the function
(GetAllStates ’(Reg Proc Sensor))

returns all states of a list of systems
(1 d) nil ((x1 x2) nil ((x) nil nil)))

The function call
(TableOfConnections Proc)
returns the table of connections for the system Proc i.e.

((u Proc) (Proc y))
The connections are printed using

(ShowConnectionTable (TableOfConnections Proc))
which generates

(u Proc)
(Proc y)
nil
The function call
(StateEqns (Behaviour proc))
returns the function [ which gives the rate of change of the state, i.c.

(CC-Ga* (x1 %% (1 /2)))) + (b * u)) .
(Ga* (x1 # (1 /20)) - (a* (x2 %+ (1/ 2 )

The output map g of the system proc is obtained by
(OutputEqus (Behaviour Proc))

which returns

((x2))
The functions f and g which give the behaviour of the syslem are
listed by the function call
(ShowBehaviourList (Behaviour Proc))
which results in
State-Eqns
((~ Ca % (ato*+ (1 /2)))) + (b * u))
(@ * (x1 #x (1 /20)) - (a* (x2* (1 /2NN
Output-Eqns

A system can be linearized through
(ShowBehaviourTable (Linearize Proc))
The system is then first linearized using the the function Linearize
which generates a list of linearized equations. This list is then printed
using the command ShowBehaviourTable. The result is as follows
System - Matrix
(a*((1/2)*(xl**((1/2)-1))))0:
(a* (1 /72) % &1+ ((1/2)-1N)N
GG@=* (1 /72) % (x2* ((1/2)- 1))

Input - Matrix

7. CONCLUSIONS

The main purpose of this paper has been to explore new ways to
describe interconnected systems using object-oriented programming.
It is relatively easy to implement a system like the prototype in Lisp.
Implementation is much casier in & programming environment which
supports object-oriented programming with a powerful inheritanee
mechanism,

Our experiences indicate that the system descriptions proposed
are natural and easy to work with. A complete system for describing
system structure can be implemented following the ideas outlined in
the paper. A few additional functions are needed to explore system
structure. The extension to systems with bidirectional interaction is
straightforward. The user interface can be improve considerably by
incorporating graphics of the type described in Elmqvist and Mattsson
(1986). Work along these lines is under way.



Much more work is required to obtain a system which can describe
system behavior in a reasonably complete way. Our experiments
indicate that such systems are much easier to implement in an
object-oriented environments like Flavors, Loops or Object Lisp which
support inheritance.
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