LUND UNIVERSITY

A Visual Servo

Nielsen, Lars

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nielsen, L. (1987). A Visual Servo. (Technical Reports TFRT-7339). Department of Automatic Control, Lund
Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/1db70206-f648-4c88-bc19-98e5492f7510

CODEN: LUTFD2/(TFRT-7339/1-010/(1987)

A Visual Servo

Lars Nielsen

Department of Automatic Control
Lund Institute of Technology
February 1987

Document name

Department of Automatic Control Report
Lund Institute of Technology Date of issue
P.O. Box 118 February 1987
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-7339)/1-010/(1987)
Author(s) Supervisor

Lars Nielsen

Sponsoring organisation

The Swedish Board of Technical Development

Title and subtitle
A Visual Servo

Abstract

Control based on image information offers great possibilities for advanced automation. Here, a flexible system
for study of visual servoing has been developed by extending a stnadard computer with commercially available
instrumentation. A robot moving on the floor is controlled by image feedback. The conclusion is that an
industrially useful behavior of automated guided vehicles (AGV) in flexible warehouses could be obtained
using available technology and the principles presented here. A flexible system increases the requirements on
good interaction with an operator. A man-robot interface has been designed, based on operator manipulating
interactive color graphics overlaid on images of the working scene of the robot. The interaction is done spec-
ifying obstacles and stations rather than explicit path coordinates. Visual recognition in a three-dimensional
scene has to cope with the problem that objects have infinitely many poses, which may not all be stored.
A key contribution in this work is the design of marking symbols, which are described by invariants under
parallel projection. The invariants are based on integrated measures and are thus insensitive to individual
pixel errors. The constructed symbols can be used for robot marking or as signposts. The marking problem
formulation is new and so are the results and the analysis.

Key words
Image processing, Vision, Feedback control, Robotics, Event handling, Motion programming, Image invariants.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 10

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Paper presented at the 1st IFAC Workshop on Vision Control,

June 10 - 12, Espoo, Finland.

A VISUAL SERVO

Lars Nielsen

Department of Automatic Control, Lund Institute of Technology,

Box 118, 5-221 00 Lund, Sweden

Abstract. Control based on image information offers great possibilities for advanced automation.
Here, a flexible system for study of visual servoing has been developed by extending a standard
computer with commercially available instrumentation. A robot moving on the floor is controlled
, by image feedback. The conclusion is that an industrially useful behavior of automated guided

vehicles (AGV) in flexible warehouses could be
presented here. A flexible system increases the

obtained using available technology and the principles
requirements on good interaction with an operator. A

man-robot interface has been designed, based on an operator manipulating interactive color graphics
overlaid on images of the working scene of the robot. The interaction is done specifying obstacles
and stations rather than explicit path coordinates. Visual recognition in a three-dimensional scene
has to cope with the problem that objects have infinitely many poses, which may not all be stored.
A key contribution in this work is the design of marking symbols, which are described by invariants
under parallel projection. The invariants are based on integrated measures and are thus insensitive
to individual pixel errors. The constructed symbols can be used for robot marking or as signposts.
The marking problem formulation is new and so are the results and the analysis.

Keywords., Image processing, Vision, Feedback control, Robotics, Event handling, Motion program-

ming, Image invariants.

1. INTRODUCTION

Recent developments in imaging technology are substantial
and exciting. Research on the applications of this tech-
nology to the field of automatic control is of significant
interest. One particularly interesting application is auto-
mated guided vehicles (AGV) used in warehouses as part
of a flexible manufacturing system. Currently these vehi-
cles are controlled by magnetic trails in the floor, and the
paths are essentially fixed due to the cost of rearranging
the magnetic trails. A much more flexible system can be
developed using a visual servo with a camera on a wall
or ceiling supervising the AGV. Of course hybrid systems
with visual servoing in specific areas and magnetic trails
for traveling in between can be used in warehouses where
flexibility is not needed everywhere.

The scene is three-dimensional and the shape and the size
of objects thus vary when viewed in different orientations
and at different distances from the camera. Current indus-
trial vision systems are essentially limited to the interpreta-
tion of images extracted from a primarily two-dimensional
scene. The approach is based on edge detection and con-
tour description. Special purpose hardware implementing
this approach is commercially available and typically used
in industrial applications involving conveyor belts (Peters-
son, 1983). The extension of this technique to the interpre-
tation of images extracted from a three-dimensional scene
is a major research direction and promises to increase the
applicability of the existing state of the art hardware,

‘The theory of visual servoing has not developed far enough
so that the closed loop performance can be judged only by
analysis of theoretical models or simulations. A prototype

system therefore needs to be built, and significant experi-
ments with the system must be performed. Here the philos-
ophy has been to use simple robots and develop a flexible
laboratory at a reasonable cost, The laboratory set-up is
presented in Section 2. In Sections 3 and 4 the abstract
structure of the AGV scenario is formalized to clarify the
aspects of the system common with general robot appli-
cations. Section 5 presents the man-robot interface. Our
approach to visual recognition in three-dimensional scenes
is presented in Section 6. The key idea is to use marking
symbols, which have properties invariant under projection.
Section 7 gives some experimental data, and conclusions are
given in Section 8. Throughout the presentation a number
of details have been left out. A complete presentation can
be found in (Nielsen, 1985).

2. THE LABORATORY SET-UP

The laboratory represents the first effort in vision control
at Lund University, The project started 1982, and has in-
cluded development of both hardware and software. The
image system is built around a Matrox raster image mem-
ory interfaced to a VAX-11/780 via a Unibus-Multibys-
interface. Robots and interactive devices are interfaced to
the Vax via general AD and DA converters, Two joysticks
and a mouse with three on/ofl buttons are used for in-

teraction. A schematic overview of the system is given in
Fig. 2.1.

2.1 Hardware
The video camera used is a black and white Intensa GPC-

25 camera. The camera can be equipped with any tube of
the 1” vidicon type and any lens with a C-mount (1"x32

Raster Image

Memory b
5” v {Matrox) /%
c]
e Bus
g interface
2 Computer Video tape

recorder

(VAX-11/780)

OHCOIK L 40e04
= E

Fig. 2.1 A schematic overview of the system that con-
sists of different pieces of standard equipment.

The interfaces are simple and general.

threads/inch). In the laboratory set up the camera is
equipped with a 1” newvicon camera tube. A 25 mm lens
with automatic aperture control is used. The resolution of
the camera is approximately 525 lines and 800 dots per line,
the light sensitivity is 1-2 lux, and the automatic light com-
pensation is 1:30000. A video camera like ours equipped
with a high sensitivity vidicon combined with automatic
aperture control solves the problem of getting good visual

- quality of the image data, when the illumination changes.
The camera may without any adjustments be operated in
illuminations varying from-outdoor summer season day-
light to indoor standard lamps. A Barco CD 33 HR RGB
monitor is used to present the video output. There is also
a home video set with a video tape recorder, a color video
camera, and a TV. The color video camera of the video set
has lower quality than the GPC camera. The video set pro-
vides, however, an easy way to handle image information
from other places via the exchange of video tapes.

A raster image memory with simple interfaces (both for
the video and the computer) has been built from commer-
cially available plug-in boards manufactured by Matrox.
The image memory uses standard video-signals to external
video equipment such as video-cameras, video-recorders, or
monitors. The connection to the computer is via a general
bus. The bus communication bandwidth is approximately
1.6 Mbyte/s. Two RGB-Graph/64-4 boards provides the
system with a raster memory of 512 x 512 pixels with 8
bits/pixel, where each board stores 4 bits/pixel. The VAF-
512 board is a video input/output processor board. The
video hardware works at the video rate of 25 frames per
second. The boards are controlled via programmable I/0
registers. The controls include the timing of the image sys-
tem (it can either follow an on-board sync generator or
follow the input video signal via an on board phase-locked
loop circuit), the frame grab commands (selection of input
channel, of repeated image sampling or frozen image, and
of gain and offset values in the video quantization), the read
and write of the content of the memory {random access of
individual pixels), and the video output control interpret-
ing the content of the raster memory via a programmable
color look-up table. The VAF-512 board provides the mas-
ter sync pulses of the image memory, the camera and the
RGB monitor.

Any process may be interfaced via the AD and DA con-
verters. In our experiments two vehicles moving on the

floor are used. They are seen in Fig. 2.2. One vehicle is
a commercially available toy Turtle marketed by Terrapin,
Inc. The Turtle has a dome which is 30 cm in diameter.
It has two separately driven wheels individually controlled
using on/off signals transferred via a cord. For each wheel
the drive train has an electrical motor and a gear-box. The
motor makes 300 revolutions for one revolution of the wheel
providing a maximum speed of roughly 15 cm/s. The Tur-
tle has touch-sensors. If the dome of the Turtle is tilted
due to the contact with an object then the status of four
switches indicates one of eight directions. The control sys-
tem of the Turtle may thus combine image and touch in-
formation.

The other vehicle is the Ilon car, which has four Ilon wheels.
It allows complete control of the motion in the plane via
control of the rotation of the four wheel motors. The Ilon
car may thus be moved straight forward, straight sideways
or be rotated on the spot. The on-board electronics of
the Ilon car is controlled using three analog voltages in the
range —10 - 10 V, transferred via a cord. They are set
points for the speed of the forward-backward motion, the
sideways motion, and the rotation motion. The dimensions
of the car are: length 60 cm, width 25 cm, and height 20

cIm.

Photograph of the two vehicles. The Turtle is
seen to the left and the Ilon car is seen to the
right.

Fig. 2.2

2.2 Software

We foresaw large programs when the project was started.
Therefore, the idea of object oriented programming was
adopted. This means that the code can be modularized
in packages so that types, variables, procedures which are
logically connected, can also be kept together textually.
Programs are built by having packages performing basic
functions and then by developing packages of increasing
levels of abstraction based on the basic functions.

The lowest level software is a package containing routines
for communication between the raster memory and a pro-
gram on the Vax. The registers of the raster memory are
mapped into addresses of the Vax virtual memory, and the
functions are performed via the information passed to these
registers. The routines are implemented in assembly lan-
guage. We have chosen to use the programming language
standard Pascal for the further abstraction levels of the
code. A file handling preprocessor has been developed to
modularize code while keeping to standards. Packages are
implemented as text files with a special structure, contain-
ing Pascal statements and preprocessor keywords. These
keywords are commands to the preprocessor which divides

the file into sections corresponding to the sections of a Pas-
cal program. The sections are then combined into a pro-
gram. A style inspired by Ada has been adopted, where
packages are structured in terms of a specification and a
body.

There are a number of basic support packages implemented
in Pascal. They contain sufficient operations to build user
programs without knowing the explicit organization of the
hardware. The operations include video control commands,
image definitions and in/out operations, color look-up table
handling, AD and DA conversion, and file handling to save
and restore images. The virtual memory of the Vax auto-
matically solves the problem of addressing large amounts
of data in software. It is thus neither necessary to build
special hardware nor to make complicated file handling to
deal with images. A complete example in (Nielsen, 1985)
describes how to make a simple but complete user pro-
gram based on the support packages. The extension to
more complicated image processing or interaction is only a
matter of further software development.

2.8 Functionality

The experimental equipment has proven comfortable and
easy to handle. Its speed is limited by the capability of the
Vax computer, but all aspects of the visual servo problem
may in principle be demonstrated. Equipment which sim-
plify the implementation of an image laboratory have been
used. The system has also successfully been used in ex-
periments on inspection of GaAs-wafers (Silverberg et al,
1985), on motion detection in image sequences (Nielsen,
1984), and on measurement on the ash-line in bark ovens
(Dahl and Nielsen, 1986). The latter experiments were
performed using the video tape recorder to bring in images
from an industrial bark oven.

3. THE SCENARIO

The Turtle will simulate an AGV working on the floor in a
warehouse. The video camera is placed to get an overview
of the scene, and is fixed in position. The Turtle moves on
the floor performing a workcycle, which consists of visits
to work stations. A human operator is assumed to define
the workeycle and then not to be active or even present
during the repeated cycles. The stations are the funda-
mental sites in the workspace symbolizing places where a
load is collected or delivered, or where a task is performed.
The requirements on the motion paths between stations
are more flexible. The primary concern is that the Turtle
reaches the stations. The scenario also includes obstacles,
either deseribed by the operator using the man-robot inter-
face or detected by the program. The program checks that
the motion paths of the Turtle avoid the known obstacles.
When the Turtle detects new obstacles during operation
the paths are replanned automatically. If the Turtle is un-
able to reach a station, due to new obstacles, it calls for
help by sending an alarm to the operator.

The visual servo is provided with the capability to handle
three different types of events when working unsupervised.
Firstly, the Turtle can interact with the Ilon car symboliz-
ing another (bigger) AGV which occasionally delivers ma-
terial. The position of the Ilon car is not specified from time

to time, but it is assumed to signal when it comes or leaves.
The Turtle should go to the Hon car and make a symbolic
load transfer. Secondly, objects may unexpectedly appear
in the work space. For example, humans may enter a risk
zone. An external motion detector signals if something is
moving into the scene. Thirdly, detected collisions must be
handled.

3.1 The Workspace

A formal description of the scenario reveals the structure
of the experiment. The notion of workspace is adopted
(Brady et al, 1982). The extent of the workspace is here
all points the robot can reach and the camera can see. The
elements in the workspace are easily abstracted to geomet-
rical objects in the floor plane. The elements are obstacles,
stations, event points, and paths, whereas the geometrical
objects are points, curves, and areas within closed curves,
The curves are restricted to be polygons in the actual im-
plementation. The workspace elements are defined as fol-
lows.

Obstacle: An obstacle is an area on the floor within a closed
curve. It is a forbidden area for the robot. The obstacles
entered by the operator are assumed to be stationary.

Obstacle map: The set of all known obstacles is called the
obstacle map.

Station: Point on the floor. The stations are assumed to
be fixed in position. The set of stations are ordered in
sequence. The robot should visit the stations in the so
defined order.

Event point: Point on the floor, which the robot has to
visit to handle an event.

Path: A path is a curve (polygon) between two points on
the floor. There are two types of paths. The path be-
tween two stations is called a station-to-station path,
and the path to or from an event point is called a tem-
porary path.

Workeycle: A workeyele is a set of paths forming a closed
route, which the robot should run repeatedly.

Path attribute: The boolean path attributes are cooperate,
verify, and explore. The attributes are associated with
the station-to-station paths. They are used to determine
whether or not an action may be taken in the event
handling as described in Section 4. Typically the robot
should postpone excursions when carrying a heavy load,
and wait until the load is delivered.

4. THE ACTIONS

The visual servo is a system where the human operator
is relieved of continuous supervision, but still should be
available in emergencies. The needed robot actions will be
presented starting with the primitive actions, then more
complex actions, and finally the event handling.

Four motion procedures, similar to the Turtle procedure
notation (Abelson and diSessa, 1980, Appendix A), are
used to command the motion: Forw(length), Backw(length)
TurnLeft(angle), TurnRight(angle). The length and an-
gle are converted to the time the on/off signals of the
Turtle motors have to be set to obtain a move. We will
here use: Turn(angle) instead of TurnLeft(angle) or Turn-
Right(angle) to simplify the writing. The motion of the

Turtle to a desired position from its actual Pposition is per-
formed by first turning the desired angle and thereafter
moving forward the desired length, The robot moves back-
wards only for fine adjustment of its position and after a
collision. The state of the control is the last measured po-
sition and heading of the Turtle. We have
MoveTo(position) is

Calculate(in position; out length,angle)

Turn(angle)

Forw(length)

The uncertainties in the Turtle position are vectors but
we will work only with the magnitude. The top of the
Turtle may vary the distance r < 2em depending on if the
Turtle leans on the forward or on the backward support.
The disturbances during normal motion are mainly due
to varying friction between the wheels and the floor and to
backlash in the drive train. The maximum error in position
R after a MoveTo command is the sum of the static error
r and the motion errors, and a rough estimate for a 15 ¢m
MoveTo command is R < 5¢m. The precision is thus poor,
but the advantage of feedback is that crude systems can be
used. Larger unusual disturbances may occur if the Turtle
touches an obstacle or one wheel slips, for example on a
piece of paper.

4.1 Bassc actions

Three basic actions are sufficient to build the needed be-
havior of the robot. They are two motions: path follow-
ing with image feedback (PathFollowing), contour follow-
ing with the help of touch-sensors (ContourFollowingBy-
Touch), and one planning action: path finding using a map
(PathFinding).

PathFollowing. Tmage feedback is used to control the Tur-
tle while following a path. The position of the marking
symbol at the top of Turtle is determined in the image,
This position is transformed to the position on the floor.
The paths are restricted to polygons, where each segment
is restricted to a maximal length of 15 cm. The strategy
for following of the path is illustrated by an example in
Fig. 4.1. The path is described by S - starting point, T
- terminal point, V1-V4 - points of the path. The points
P1-P8 show an example of a motion. The basic idea is to
execute MoveTo commands to each of the polygon vertices.
The state of the control is updated after each MoveTo by
measuring in the image. A move is accepted if it is within
the limits of normal motion disturbances R, which is illus-
trated as circles around V1-V4. If the robot is outside a
circle then a large error has occurred and a new MoveTo
command to the same point is performed, as for P1 and
P2. At the terminal point we require the precision of the
static error r. The Turtle moved backward from PT7 to P8
to correct its final position.

ContourFollowingByTouch. The Turtle can follow an ob-
ject contour by use of the touch sensors. The Turtle cannot
move with its dorme in constant contact with an object. In-
stead the touch sensing is based on repeated collisions as
in Winston (1977, p. 248). After a collision the Turtle first
moves the distance ! away from the obstacle. Thereafter
the path is a square with side 4/. We use | = 15 cm. The
robot will collide with the obstacle again while following
the square path. The basic search motion is then repeated

Fig. 41 An example of path following.

until either of two cases for a stop condition is fulfilled. In
the first case the contour following is continued until the
object is encircled. In the second case the contour follow-
ing is continued until the robot reaches the planned path
on the other side of the object. An example of a result of
the contour following is seen in Fig. 4.2,

ar

Fig. 4.2 An example of contour following.

The knowledge of the object contour is the points Pi and
Qi which are measured from the image. The points Pi are
the Turtle positions at the obstacle boundary after a col-
lision. The points represent the center and are hence one
Turtle radius away from the obstacle, The points Qi are
the position after moving back I = 15 cm. Each line seg-
ment PiPi+1 is moved the distance of one Turtle radius to
shrink the polygon. The shrunk polygon form the geomet-
ric description of the object. In the case when the search
stops when the path is reached, then only an open part of
the object contour is obtained. In that case the contour
segment is extended to a closed curve, by introducing two
extra points behind the end points P1 and PN of the open
contour.

Pathfinding. A path finding algorithm is needed both for
flexible operation and for task level programming {Brady
et al, 1982). The path finding problem is simple to state:
Given an obstacle map, an initial state and a final state of
the robot; find a robot path that avoids the obstacles. The
general and complete solution seems to be very complex
(Brady et al, 1982). The visual servo uses image feedback,
so we have the restriction that the robot must stay in the
area which can be supervised by the camera. The restric-
tion is described by introducing the mapping of the image
boundaries onto the floor as obstacles in the obstacle map.
A reason for a simple algorithm is that the motion distur-
bances can cause numerous collisions on a path of minimal
length which worms between the obstacles.

Here a very simple approach is taken to the path find-
ing problem. This is legitimized by the possibility to send
an alarm to the opérator. The algorithm consists of two
steps. First a path described by a two vertex polygon is
searched. The position of the two vertices are varied in a
simple search, and after each modification of the path it is
tested with the use of the obstacle map if the path is avoid-
ing the known obstacles. When a free path consisting of a
polygon with two vertices has been found the program at-
tempts to smoothen the path by the calculation of a gpline
and then samples it to a many vertex polygon. It is checked
to determine if the resulting path is free. If not then it is
searched for a new two-vertex polygon. This procedure is
repeated. If a smoothed path is not found then the first free
two-vertex polygon will be used. The approach works in
several simple cases. It is worth mentioning that in a first
try to find an algorithm a one vertex polygon was used as a
path, but the problem was to find paths that stayed within
the image.

4.2 Event handling actions

Perform Workeyele. The normal mode of operation is Path-
Following on the paths of the workcycle.

ObstacleAvoidance. A collision may be with a new un-
known obstacle or it may be with a known obstacle when
the robot due to motion disturbances deviates from its
path. Hence, the Turtle position is determined from the
image and it is compared to the obstacle map. The Tur-
tle returns the shortest way to its path if it was a known
obstacle.

In a collision with a new obstacle the ContourFollowing-
ByTouch algorithm is used. The Turtle has to decide on
starting the contour following to the left or to the right.
The decision is not crucial for the ability to find a path, be-
cause if one search direction is unsuccessful then the other
search direction is automatically tried. However a good
guess speeds up the contour search. The guess is based
on the obstacle map, the planned path, and the state of
robot motion. The search direction is chosen to be away
from known obstacles. If there are no known obstacles in-
fluencing the path, then the direction of contour of the new
obstacle is estimated, and the search direction is chosen to
be the direction in which the robot moves forward. An
obstacle contour is obtained from the contour fol lowing al-
gorithm and the obstacle map is updated. The path finding
algorithm is called to replan the paths of the workeycle to
avoid the new obstacle,

VerifyAction and EzploreAction. An external detector can
indicate a new object moving into the scene. The moving-
object detector sends the detected object position, which
is the event point for this event. There are two possible
investigation actions.

Verify Action: The path finding algorithm is called to plan
a path to the event point, and the Turtle goes there. The
Turtle verifies the presence of an object by the use of its
touch sensors. The information is used e.g. to distinguish
between objects and shadows. The path finding algorithm
is called again to plan a path to the next station, and the
Turtle goes there.

ExploreAction: As in the verify action the Turtle goes to
the detected object position. If an object is sensed, then
the contour following algorithm is called. The Turtle will
as a result of this encircle the object, and an obstacle con-
tour is obtained from the contour following algorithm. The
obstacle map is updated and the path finding algorithm is
called if any path in the workspace needs replanning. The
path finding algorithm is called again to plan a path to the
next station, and the Turtle goes there.

RobotCooperation. The following sequence of actions is per-
formed in the case of robot cooperation. The Ilon car is
used. The marking symbols of the Ion car are known.
Both the position and the orientation of the Ilon car is
determined from the image, and the area on the floor oc-
cupied by the car is calculated. The event point 10 cm in
front of the Ilon car is also calculated. The obstacle map
is temporarily updated with the Ilon car as an obstacle.
The path finding algorithm is called to plan a path to the
event point, The Turtle goes there using the path following
algorithm. The Turtle then starts a rendez-vous operation
by moving straight to the Ilon car until the touch sensors
verify contact. The Turtle then returns to the event point.
This is a simulation of e.g. a load transfer. The path find-
ing algorithm is called again to plan a path to the next
station. The Hlon car signals when it leaves and the tem-
porary description of the Ilon car as an obstacle is then
removed from the obstacle map. The Turtle continues the
workcycle.

4.8 The eveni monitor

An event monitor controls the robot actions. Its purpose
is to give the robot a path to follow. The information
available to the monitor is the geometric description of the
workspace, the state of the robot, and the event signals.
The monitor introduces the event points and the temporary
paths, and may introduce obstacles in the obstacle map.
It replans the station-to-station paths according to the up-
dated obstacle map. The stations, the path attributes, and
the obstacles defined by the operator are never changed.
The control structure resembles an operating system of a
computer, and an outline of the event monitor with pos-
sible events, path attributes, event points, and actions is
described as follows.
EventMonitor is
Background job:
Action: PerformWorkcycle
Collision event (First priority):
Action: ObstacleAvoidance
Object detection event (Second priority):
Path attributes: verify and explore
Event point: detected object position
Action: if verify and explore then
ExploreAction
else if verify then
Verify Action
Robot cooperation event (Third priority):
Path attribute: cooperate
Event point: 10 cm in front of the other robot
Action: if cooperate then
RobotCooperation

An event signal requires a check of the path attribute values
on the present path. If the event is not handled immedi-

ately then the event is put in a list of events yet untreated.
The event list is scanned by the event monitor each time
the robot is at a station. It is checked to determine if the
path attribute values for the next station- to- station path
allows handling of any event in the list. An event will not
be treated if there is no path in the workeycle with at-
tribute values that allows handling it. There is an alarm
possibility at all levels if an action cannot be completed. If
it is possible to continue the robot only notifies the opera-
tor. Otherwise it calls for help and waits until the operator
intervenes.

5. THE MAN-ROBOT INTERFACE

A man-robot interface has been designed to provide two
main services. One is the programming where the the
workspace and tasks are defined. The other is supervision
facilities at different levels of detail.

The man-robot interface is used to describe the workspace
ie. to enter stations, obstacles, paths, and path attributes.
Hence the facilities of this interface is concentrated on mo-
tion. Other important aspects such as gripping and ma-
nipulation are not treated. Different approaches to robot
motion programming have been identified (Craig, 1986).
In explicit programming, the user specifies all of the mo-
tions needed to accomplish a desired path by giving an
explicit list of coordinates. Programming by teaching is
done by guiding the robot manually and storing the path.
The man-robot interface uses a manual mode where the
robot is controlled using the joysticks. The highest level of
programming is task level programming. The user speci-
fies geometric models and descriptions of tasks in terms of
these models. The detailed motions are derived automati-
cally from these specifications (Brady et al, 1982).

Correspondence between image and workspace. The map-
ping between the floor plane and the image is one to one.
There is thus a unique correspondence between the geo-
metrical objects of the workspace and points and curves
in the image. The geometric description of the workspace
may be entered by pointing in the image using a graphical
editor.

The graphical edstor. The key idea in this work on robot
programming is to explicitly use interaction based on real
gray scale images of the scene. These images are presented
on the monitor screen. A graphical editor allowing color
graphical manipulations on these images has been devel-
oped. The terminal, the mouse, the joysticks and the mon-
itor screen (Fig. 2.1) are used for the interaction. The
mouse is used for pointing in the image on the monitor
screen. The commands to the editor are selected from
menus on the terminal. The output of the graphical ed-
itor is overlayed on the gray level images.

The editor can handle points and curves. Two types of
curves are possible: polygons and cubic B-splines (Newman
and Sproull, 1979, Section 21.4). The shape of a polygon is
defined from its vertices. The shape of a cubic B-spline is
defined from control points. The editor can be used to in-
teractively enter, copy, move, rotate, or delete both points
and curves. The shape of a curve is edited by adding, mov-
ing, or deleting the shape defining points (a polygon vertex

or a control point of a cubic B-spline). The technique with
cubic B-splines is well established. The control points have
local support. This means that if a control point is moved
then the curve is changed only in the neighborhood of that
point. It also satisfies the requirements of shape stability in
editing, which means that the shape of a curve is not drastj-
cally changed if a control point is moved slightly (Newman
and Sproull, 1979, Chapter 21). These properties makes
them feasible for trajectory generation.

Path programming. The use of graphics in images of the
workspace simplifies the motion trajectory generation, A
spline is entered using the graphical editor. The spline is
automatically transformed to a Turtle path by sampling
it to a polygon, which when projected on the floor has
no segment longer than 15 cm. The program of course
checks that the obtained path avoids the obstacles. The
result is a smooth polygon path. In other current systems
for trajectory generation several intermediate positions, via
points, have to be defined to obtain a smooth path (Craig,
1986). Here only a few control points have to be defined.
It is easy done by pointing in the image and the result is
directly presented.

How to enter the workspace. Commands are used to de-
termine whether the graphical input is obstacles, stations
or paths. The coordinates in the image are transformed
to points on the floor. The obstacles, stations, paths and
path attributes are entered in the following way.

Obstacle: Entered as a closed polygon. The vertices are
pointed out directly in the image. Presentation: Red
polygon filled with a white grid net.

Station: A station may be entered in three ways: 1. Point
in the image with the mouse. 2. Control the robot to
the position of a station using the joysticks, and give a
command which tells that this is a station. The robot
position is determined from the image. 3. Tell the robot
that a certain feature in the image is a station. The only
features accepted as a station definition are a apecified
set of marking symbols. Presentation: Blue dot.

Path: Entered as a number of points, which by command
are interpreted as a polygon or a cubic B-spline (de-
fault). Both the spline and the sampled Turtle path are
presented during the editing, and thereafter only the
Turtle path is presented. Presentation: Polygon in color
according to the values of the path attributes.

Path attributes: Entered by placing the cursor on the path
and then give the desired path attribute values by com-
mands. A color code is used to indicate the different
combinations for the attribute values.

b

Task level programming. When a new station is entered a
path avoiding the obstacles is calculated by default, using
the path finding algorithm, and presented to the operator.
Hence, task level programming is done here using graphics.
The operator may of course modify the calculated path
using the path programming.

Presentation of Status. During operation there are three
levels of detail for the presentation on the monitor screen.
Firstly, the monitor can just display the working scene as
seen by the camera. Secordly, the graphical description of
the workspace can be overlayed the image. Thirdly, the
steps of the image processing can be added to the pre-
sentation, giving a complete record of the internal status

and algorithms. The actual processed part of the image is
marked, the output of the edge detector is displayed, etc.

6. THE IMAGE INTERPRETATION

The image interpretation in the servo will be presented.
First, one approach to image processing representing the
state of the art for industrial vision systems will be re-
viewed. Based on this approach the design of marking
symbols, that are described by invariants under parallel
projection will be treated. The derivation of invariants, the
symbols, and the algorithms for recognition of the symbols
are given. The image interpretation uses a number of deci-
sion thresholds that are assigned values based on an error
analysis.

6.1 An Approach to Image Processing

Special purpose parallel hardware that can identify an ob-
ject from a set of a hundred objects in less than a second
is available (Petersson, 1983). The input is a multilevel
grayscale image. A gradient operator is applied to the
image to extract the contours (Rosenfeld and Kak, 1982,
Section 10.2). The gradient values are iteratively refined
using image parallel relaxation (Rosenfeld and Kak, 1982,
Section 10.5). The refined gradient values are thresholded
to obtain a bilevel image representing the contours. The
contours in the bilevel image are described with a labeled
tree for each object, see Fig. 6.1. An object is defined by
an outer closed contour and the contours contained within
it. Going down in the tree means being inside. Each con-
tour (each node in the tree) is labeled with its properties.
Firstly, integrated measures of the contours are used. Each
curve is represented by its position C (centroid) relative to
the position (centroid) of its enclosing contour, by its area
A, and by its perimeter P. Secondly, different shape at-
tributes like the number of corners N may be extracted
(Pavlidis, 1980). The labeled tree is sufficient for identi-
fication of objects in applications with a camera mounted
above a conveyor belt. The objects may arrive on the con-
veyor belt in an arbitrary position and orientation within
the plane of the conveyor belt. The labels C, A, P, and
N are, however, invariant under two-dimensional rotation
and translation. So, the tree can be stored for each object
in a set, and the recognition of a specific object is done by
comparing its tree with the set of trees.

Object representation by a labeled tree repre-
senting the contours and their properties.

N O

Fig. 6.1

The situation changes in an application where the objects
can be arbitrarily oriented in three dimensions relative to
the camera. The shape and size of contours vary. The
number of poses is infinite and it is impossible to store
all the cases for comparison. The number of corners is
‘avariant, but it may be hard to detect. A sharp corner

may be projected to a wide angle corner. The solution is
to use invariants under three-dimensional projection.

6.2 Invariants Under Parallel Projection

Imaging can be described by parallel projection if beams
from different points of the object to the corresporniding
image points can be considered parallel. Parallel projection
has the properties that parallel lines map to parallel lines,
and that the ratio of division k between any three points on
a straight line is preserved. Invariants based on integrated
measures are easy to derive from these properties. Consider
objects consisting of two concentric similar curves as in Fig.
6.2. Let the inner curve be parameterized as r1(0), and the
outer curve be given by ry(0) = kry(#) where the ratio of
division k is a constant.

Fig. 6.2 Two concentric similar curves.

The area and perimeter inside the closed contours r;(6) in
Tig. 6.2 are

1 ror 2 .
A,-_E/; ri(0d8 5=1,2

0+ (a1

Invariants based on integrated measures follow:
= =k? and .

The invariants classify uniquely for & > 1, and a continuum
of separate objects can be obtained by varying the ratio of
division k. The results hold in particular for two concentric
squares or two concentric triangles.

6.3 Objects and Recognition

Objects. A set of six marking symbols is used. They are
based on the invariants presented in the previous section.
The set of marking symbols consists of three versions of two
concentric squares (k = 1.57,2.20,3.23), and three versions
of two concentric triangles (k = 1.58,2.00,3.21). The outer
dimension of the symbols are approximately the same. The
reason to use triangles and squares is that their shape can
be verified, for example using the shape classifier presented
below. The Turtle is marked with one symbol. The Ilon car
is marked with two symbols, see Fig. 2.2. One symbol is
used as a reference in the start up procedure. This symbol
and the two remaining symbols in the set may be used to
define stations as discussed in Section 5.

Recognition. The marking symbols are black and white.
Therefore a simple contour extraction suffices. The Roberts

operator is used to compute gradients on the grey-level
image f(z,y) (Rosenfeld and Kak, 1982, Section 10.2).
The magnitude of the gradient is computed as g(z,y) =
muﬂﬂ2+Ly+n—f&wndﬂay+n—f&+Lym-A
bilevel image B(z,y) representing the contours is obtained
by thresholding g(z,y) with a threshold ¢,. The nominal
value of t, is 40, which should be related to the image
dynamic 0-255. The connected components are extracted
from the bilevel image B(x,y), using the 8-connectedness
border following algorithm and the border finding algo-
rithm in Rosenfeld and Kak (1982, Section 11.2). The la-
beled trees are then built. A crude screening is made first
where small contours are disregarded. The tree represent-
ing the inside/outside relations is simple to obtain, and so
are the integrated measures C, A, and P.

The curvature changes under projection and corners may
be hard to detect. Here a special shape classifier has been
developed that can classify a contour (in fact any set of
points) ~ as a triangle, a quadrangle or neither. It per-
forms successfully even if a corner is projected to a wide
angle. A two step algorithm is used. The first step leads
to an hypothesis about the number of corners together
with rough estirnates of their positions. The centroid Te
of v and the point ry in ~ which is most distant from Te
are computed first. An orthogonal coordinate-system is
defined as in Fig. 6.3. The x-axis goes through r. and
r1, and ry is chosen as origin., The extremum-values of 9
in this coordinate-system are then computed, and we set
T2 = Uminy '3 = Tmasg, 204 Iy = Ymse. Finally the point rg
is the intersection between the z-axis and the line through
r; and ry. We have [r3 —rl| = |r5 —r1| for a triangle and
[r3—r1|=2.|r5 —rl1| for a parallelogram. A hypothesis
Ny about the number of corners is now formed as N g=3
if [ry—ry| < 1.5+|rg—ry| and Ny = 4 otherwise. A first esti-
mate of the corner positions is given by ri,ra,re if Ng =3
and ry,ry, ry, vy if Ny = 4. The second step uses the corner
estimates to divide 7 into Ny subsets «; corresponding to
the different sides of the object. Straight lines {; are then
fitted to each ~; using linear regression. Different tests can
be used to determine whether 7; can be considered as a
straight line. We require that all points of 4; be within
the distance ¢ to I;, for « to be considered as triangle or
quadrangle. If it is satisfied we set N = Ny, and if it is
not satisfied the contour is classified as neither triangle nor
quadrangle. The corners are more accurately determined
as the intersection of the lines I; in the case N = Ny.

Fig. 6.3 The local coordinate system and the points of

7 extracted by the shape classifier.

The symbols are composed of either two triangles or two
quadrangles with the same center. Let the subscript 1 and
2 denote the outer and inner contour respectively. The
labeled tree matches a known symbol denoted by the sub-
script O if

Nl = Nz = No
IC; — Czl L %
A4z

1
2
22t
|Al kolkg < A

Pz 1

=2k — <t

IP 1 kol ko N
The selection of the thresholds is discussed in combinatjon
with the error analysis.

Subimages. All image data is not always processed. Only
a rectangular subimage is interpreted when the Turtle is
tracked during path following. The predicted position of
the marking symbol of the Turtle is used as the midpoint
of the subimage. The size of the subimage is determined by
a length scale S, which depends on the predicted distance r
from the camera as S = Syry/r. The reference length scale
Sp of the subimage is chosen as the sum of the symbol image
size and the effect of robot motion errors both evaluated
at a reference distance ro.

6.4 Analysis and Decision Thresholds

There are many imperfections in the image data. The two
main errors in «y compared to an ideal image of the Turtle
symbol are rounding of corners and a bias towards brighter
areas in edge position. Rounding of corners means that the
connection between two sides is a smooth curve rather than
a sharp vertex. This problem can be neglected because the
second step of the shape classifier compensates by fitting
straight lines. Errors of perspective are negligible (Nielsen,
1985).

Estimates of maximal errors are used for the selection of
the four decision thresholds ¢, to, t4, and ¢p. This means
it has been chosen to be tolerant on each single test. The
combination of tests is still safe. The contour segments 5
are normally fairly close to straight lines. The rounding
of corners may, however, cause a few points at the end to
give larger deviations. The threshold ¢; which governs the
maximal allowed deviation is chosen so that no point of a
contour segment is allowed to be more than 3 pixels away
from the line. The position of the centroids depend on
discretizing effects, and ¢ is set to correspond to half the
diagonal of the inner symbol.

Bias. Both the perimeter and the area of the inner quad-
rangle will be overestimated because of the bias in the edge
detection. The outer quadrangle on the other hand is un-
derestimated. Estimates of the maximal relative errors are
obtained for the Turtle symbol as follows. It has been ex-
perimentally verified that the values obtained are suitable
both for the Turtle symbol and the other symbols used.
Referring to Fig. 6.4, assume parallel projection, let the
inner square be mapped to a parallelogram with sides &,
and b;, and denote the bias with e. The bias changes the
sides of the parallelogram by the distance e. The area- and
perimeter-quotients are then

Az n (kbl - 26)(kb1 bl 26)
Ar T (b + 2€) (bg + 2¢)

Py (kby —2e + kb, — 2¢)
Pl v (b1+26+b2+28)
The expressions degenerate to the invariants for e = 0. Let

pixel size be the length unit. In the experiment we have
roughly e < 1 and b; > 20. Then

Az 1 P. 2 1

IA—1 - k’[F < 0.25 and IE - kIE <0.13

Hence we use the values t, = 0.25 and tp = 0.13. Note
that the relative error in the perimeter quotient is smaller
than than the error in the area quotient. We form the
ratio between the relative errors to investigate this. The
minimum value with respect to by and b; is obtained for
by = by = b. Now introduce z = e/b giving |z| < 0.05.
Then

Rel.errorin Ay /A,
Rel.errorin P,/ P,

=21+z(k—1]ﬂ: —_
142z

This expression explains an experimental finding. The er-
rors in the perimeter-quotient were always smaller than the
errors in the area-quotient. This is the normal situation if
the main error is a bias in the position of the contour.

Fig. 6.4 The Turtle symbol under parallel projection.
The broken lines illustrate the effect of the bias

in the edge detection.

Iteration. The image interpretation steps are normally per-
formed in sequence, but it is iterated if the identification
of the symbols fails. Then it is assumed that identifica-
tion fails either if the contour is not properly extracted or
if the symbol is not within the subimage. The latter may
occur due to large motion disturbances. A contour can be
broken due to image noise. The other parts of the image in-
terpretation are robust under the experimental conditions
described here. The threshold of edge detection ¢, and the
size of the subimage S are alternately modified. The size
S is doubled in the first iteration but ty is kept as 40. The
next two iterations use the same S but ¢y is reduced to
35 and 30 in sequence to get more contour points. If the
interpretation fails then the whole image is processed with
tp = 40. The values t, = 35 and 30 are then tried.
An alarm is sent if the symbol is not found during these
iterations.

7. EXPERIMENTAL DATA

The dimensions of a typical experiment are presented in
Fig. 7.1, in meters. The angle between the optical axis of
the camera and floor is 32 degrees. The camera position
is in the coordinate system (-0.45, -2.45) and the height
above the floor is 1.85 m. The part of the floor seen by
the camera in the actual experiment is marked in the map.
There are three stations numbered 1, 2, and 3. There are
also three obstacles A, B, and C in the scene. The obstacles
are a chair A, a box B, and a variable-voltage transformer

C between the stations two and three. The obstacles A
and B symbolize permanent effects, for example machines,
which are defined as obstacles using the man-robot inter-
face. They are thus known to the robot. The obstacle C
will purposely not be defined. It represents an unknown ob-
stacle like something dropped by another AGV. The AGV
will collide with it on the way from Station 2 to Station 3.

The AGYV successfully performs its tasks. An automatic
start up procedure calculates actual perspective and de-
termines Turtle position and heading. A normal station
to station travel takes less than a minute. The obstacle
C is explored, the obstacle description is included in the
obstacle map, and the path is replanned. The AGV also
performs a rendez-vous with the Ilon car. The start-up and
the completion of the workcycles are performed completely
automatically by the robot without any human guidance
or help. In (Nielsen, 1985) a sequence of 36 images is used
to illustrate the behavior.

(=140, 195)

N (50,180

i i
| |

\ J

(-005, 1200

1-0.50. 120/ ‘

\ (-0.85, J.as I-Dsis. 090}

\ z 1015, 075)
2751

\ [
\ |

< 1-0.15, é’ 50/ |

‘I C - Ir

i {-0.60, 0.40) .-'J
} 3 1
A -0 s%. o/ . 01
\ /

o o R
(-1.08, -0.30] o -0 357
Fig. 7.1 A map of the floor showing the spatial dimen-

sions of the experiment. The map is generated
by the system.

The implementation. The hardware described in Section
2 has remained unchanged but the software has developed
in different directions during the experiments. Parts of the
experiment have been presented earlier (Nielsen and Jo-
hansson, 1984). The code consists of 13987 lines of Pascal
representing an amount of 387 kbytes of source code. No
special attempts have been made to obtain compact code.
The executable code size is 146 kbytes. The source code is
distributed in the following way.

Support packages 10 %
Turtle control 27T %
Image interpretation 21%
Man-robot interface 42 %

The support packages include the packages mentioned in
Section 2, in addition to a package for handling lists and a
package for handling of splines. The image interpretation
code size includes the start-up estimations.

8. CONCLUSIONS

There is not yet a problem formulation of visual servoing
which captures the essential properties and admits an an-
alytical or numerical solution. It is thus essential to build
a system, and try significant experiments. In the work
presented in this paper a robot moving on the floor is con-
trolled by image feedback. An abstraction of the workspace
reveals a simple geometric structure. The actions needed
to obtain flexible functioning of the robot can be composed
from three basic actions: path following with image feed-
back control, obstacle avoidance by touch, and path find-
ing using a map. If real-time image processing hardware is
used, the servo presented here illustrates how an an indus-
trially useful behavior of an AGV could be obtained.

A flexible system increases the requirements on good in-
teraction with an operator. The man-robot interface is
based on an operator manipulating interactive color graph-
ics overlaid on images of the working scene of the robot.
The interaction is accomplished by specifying obstacles and
stations rather than explicit path coordinates, The graph-
ics are entered simply by pointing in the image, since the
mapping between floor and image is one to one. In this
way it is feasible to use a new path programming tech-
nique requiring few control points instead of current meth-
ods involving several via points. Furthermore, task level
programming can be done by pointing out robot destina-
tions in the image. The use of graphics here is thus very
different from other recent uses in robotics, where graph-
ics have been used for simulation but not to simplify the
real-time interaction (Craig, 1986).

Visual recognition in the three-dimensional scene has to
cope with the problem of objects having infinitely many
poses. Obviously all poses cannot be stored, and there-
fore one must rely on more dense descriptions. A key con-
tribution in this work is the design of marking symbols,
which are described by invariants under parallel projection.
The status of image processing hardware has to be consid-
ered in the design. The marking symbols designed here
are black and white, which simplifies edge detection and
contour description. The recognition problem is thus con-
verted to a problem of designing symbols and algorithms
to detect the symbols. One example of a new algorithm
is the shape classifier. It was developed to solve the prob-
lems caused by curvatures changing under projection. The
experiments have shown it to be simple and reliable. The
invariants used here are based on integrated measures and
thus are not sensitive to individual pixel errors. The in-
variance of the area-quotient is well known. It seems to
be a new, though trivial, observation that the perimeter-
quotient is also invariant. Nevertheless it is tractable, since
the perimeter-quotient is the more precise criterion under
the typical errors. The problem formulation, the results,
and the analysis are believed to be new contributions.

9. ACKNOWLEDGMENT

This work has been supported by the Swedish Board for
Technological Development (STU-82-3429).

10. REFERENCES

Abelson, H. and A.A. diSessa (1981). Turtle Geometry.
The Computer as a Medium for Ezploring Mathemat-
tes. The MIT Press, Cambridge, Mass.

Brady, M., J.M. Hollerbach, T.L. Johnson, T. Lozano-
Perez and M.T. Mason (Eds.) (1982). Robot Motion
Planning and Control. The MIT Press, Cambridge,
Mass.

Craig I. (1986). Introduction to Robotics. Addison-Wesley.

Dahl, O. and L. Nielsen (1986). Ash-line control. Same
conference.

Newman, W.M. and R. F. Sproull (1978). Principles of
Interactive Computer Graphics. McGraw-Hill.

Nielsen, L. (1984). Motion detection in image sequences.
Preprint, NSF-STU International Workshop on Com-
puter Vision and Industrial Applications, May 14-18,
Stockholm, Sweden.

Nielsen, L. (1985). Simplifications in Visual Servoing. Ph
D thesis CODEN: LUTFD2/ (TFRT-1027), Depart-
ment of Automatic Control, Lund Institute of Tech-
nology, Sweden.

Nielsen, L. and K. Johansson (1984). Robot med egna
ogon. Industriell Datateknik, 1984:5, pp. 25-29.

Pavlidis, T. (1980). Algorithms for shape analysis of con-
tours and waveforms. IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, vol. PAMI-2, no. 4, pp.
301-312.

Petersson, C.U. (1983). An integrated robot vision sys-
tem for industrial use. Rovisec-9, Third International
Conference on Robot Vision and Sensory Control, Nov.
6-10, Cambridge, Mass.

‘Rosenfeld, A. and A.C. Kak (1982). Digital Pieture Pro-

cessing. Academic Press, New York.

Silverberg, P., L. Nielsen, P. Omling, L. Samuelsson (1985).
EL2-maps from computer based image analysis of semi-
insulating GaAs wafers. Symposium on Defect Recog-
nition and Image Processing in III-V Compounds, July
2-4, Montpellier, France.

Winston, P.H. (1977). Artificial Intelligence. Addison-
Wesley.

